

Practical UML Statecharts
in C/C++

http://taylorandfrancis.com

Practical UML Statecharts
in C/C++

E vent-D riven P rog ram m in g fo r
Em bedded System s

2nd Edition

Miro Sam ek

CRC Press
Taylor &. Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

First issued in hardback 2018

© 2009 by Taylor & Francis Group, LLC
CRC Press is an im print of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

ISBN 13: 978-1-138-43638-1 (hbk)
ISBN 13: 978-0-7506-8706-5 (pbk)

This book contains inform ation obtained from authentic and highly regarded sources. Reasonable efforts have been made to
publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials
or the consequences of their use. The authors and publishers have attem pted to trace the copyright holders of all material repro
duced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as perm itted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transm itted, or utilized in any
form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming,
and recording, or in any inform ation storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from th is work, please access www.copyright.com(http://www.copy-
right.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400.
CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been
granted a photocopy license by the CCC, a separate system of payment has been arranged.

T radem ark Notice: Product or corporate names may be tradem arks or registered tradem arks, and are used only for identifica
tion and explanation without intent to infringe.

V isit th e Taylor & Francis Web site at
h ttp ://w w w .taylorandfrancis.com

and the CRC Press W eb site at
http://w w w .crcpress.com

http://www.copyright.com
http://www.copyright.com/
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com

Table o f Contents

Part I: Uml State Machines... 1

Chapter 1: Getting Started with UML State Machines and
Event-Driven Programming... 3

1.1 Installing the Accompanying Code.. 4
1.2 Let’s Play... 5

1.2.1 Running the DOS Version........................ 7
1.2.2 Running the Stellaris Version...8

1.3 The main() Function.. 11
1.4 The Design of the “Fly ‘n’ Shoot” Game...16
1.5 Active Objects in the “Fly ‘n’ Shoot” Game..20

1.5.1 The Missile Active Object.. 21
1.5.2 The Ship Active Object.. 24
1.5.3 The Tunnel Active Object... 27
1.5.4 The Mine Components...29

1.6 Events in the “Fly ‘n’ Shoot” Game.. 32
1.6.1 Generating, Posting, and Publishing Events... 36

1.7 Coding Hierarchical State Machines.. 39
1.7.1 Step 1: Defining the Ship Structure.. 39
1.7.2 Step 2: Initializing the State Machine..42
1.7.3 Step 3: Defining State-Handier Functions.. 43

1.8 The Execution Model.. 48
1.8.1 Simple Nonpreemptive “Vanilla” Scheduler..48
1.8.2 The QK Preemptive Kernel...49
1.8.3 Traditional OS/RTOS..50

1.9 Comparison to the Traditional Approach..50
1.10 Summary.. 52

Chapter 2: A Crash Course in UML State Machines.. 55
2.1 The Oversimplification of the Event-Action Paradigm......................................56
2.2 Basic State Machine Concepts... 59

2.2.1 States... 60
2.2.2 State Diagrams..61

vi Table of Contents

2.2.3 State Diagrams versus Flowcharts...61
2.2.4 Extended State Machines...63
2.2.5 Guard Conditions..64
2.2.6 Events... 66
2.2.7 Actions and Transitions...67
2.2.8 Run-to-Completion Execution Model... 67

2.3 UML Extensions to the Traditional FSM Formalism.. 68
2.3.1 Reuse of Behavior in Reactive Systems... 69
2.3.2 Hierarchically Nested States... 69
2.3.3 Behavioral Inheritance... 71
2.3.4 Liskov Substitution Principle for States.. 73
2.3.5 Orthogonal Regions..74
2.3.6 Entry and Exit Actions.. 75
2.3.7 Internal Transitions...77
2.3.8 Transition Execution Sequence... 78
2.3.9 Local versus External Transitions...81

2.3.10 Event Types in the UML...82
2.3.11 Event Deferral.. 83
2.3.12 Pseudostates..83
2.3.13 UML Statecharts and Automatic Code Synthesis.................................85
2.3.14 The Limitations of the UML State Diagrams...................................... 86
2.3.15 UML State Machine Semantics: An Exhaustive Example...................87

2.4 Designing A UML State Machine...91
2.4.1 Problem Specification.. 91
2.4.2 High-Level Design...92
2.4.3 Scavenging for Reuse.. 93
2.4.4 Elaborating Composite States... 94
2.4.5 Refining the Behavior.. 95
2.4.6 Final Touches... 96

2.5 Summary..96

Chapter 3: Standard State Machine Implementations... 101
3.1 The Time-Bomb Example... 102

3.1.1 Executing the Example Code...104
3.2 A Generic State Machine Interface...105

3.2.1 Representing Events...106
3.3 Nested Switch Statement...108

3.3.1 Example Implementation... 108
3.3.2 Consequences..112
3.3.3 Variations of the Technique...113

3.4 State Table.. 113
3.4.1 Generic State-Table Event Processor...114
3.4.2 Application-Specific Code... 118

Table of Contents vii

3.4.3 Consequences.. 122
3.4.4 Variations of the Technique... 123

3.5 Object-Oriented State Design Pattern.. 124
3.5.1 Example Implementation..126
3.5.2 Consequences.. 130
3.5.3 Variations of the Technique... 131

3.6 QEP FSM Implementation..132
3.6.1 Generic QEP Event Processor.. 133
3.6.2 Application-Specific Code... 137
3.6.3 Consequences.. 142
3.6.4 Variations of the Technique... 143

3.7 General Discussion of State Machine Implementations...................................144
3.7.1 Role of Pointers to Functions... 144
3.7.2 State Machines and C++ Exception Handling.................................... 145
3.7.3 Implementing Guards and Choice Pseudostates..................................145
3.7.4 Implementing Entry and Exit Actions... 146

3.8 Summary...146

Chapter 4: Hierarchical Event Processor Implementation.................................. 149
4.1 Key Features of the QEP Event Processor..150
4.2 QEP Structure... 152

4.2.1 QEP Source Code Organization...153
4.3 Events.. 154

4.3.1 Event Signal (QSignal)...154
4.3.2 QEvent Structure in C .. 155
4.3.3 QEvent Structure in C++..157

4.4 Hierarchical State-Handier Functions.. 158
4.4.1 Designating the Superstate (Q_SUPER() Macro)................................158
4.4.2 Hierarchical State-Handier Function Example in C 158
4.4.3 Hierarchical State-Handier Function Example in C++....................... 160

4.5 Hierarchical State Machine Class..161
4.5.1 Hierarchical State Machine in C (Structure QHsm)..............................162
4.5.2 Hierarchical State Machine in C++ (Class QHsm)...............................163
4.5.3 The Top State and the Initial Pseudostate...164
4.5.4 Entry/Exit Actions and Nested Initial Transitions...............................166
4.5.5 Reserved Events and Helper Macros in QEP...................................... 168
4.5.6 Topmost Initial Transition (QHsm_init ()) 170
4.5.7 Dispatching Events (QHsm_dispatch (), General Structure) 174
4.5.8 Executing a Transition in the State Machine

(QHsm_dispatch (), Transition)... 177
4.6 Summary of Steps for Implementing HSMs with QEP....................................183

4.6.1 Step 1: Enumerating Signals.. 185
4.6.2 Step 2: Defining Events..185

viii Table o f Contents

4.6.3 Step 3: Deriving the Specific State Machine..................................... 186
4.6.4 Step 4: Defining the Initial Pseudostate..188
4.6.5 Step 5: Defining the State-Handier Functions.................................... 188
4.6.6 Coding Entry and Exit Actions... 189
4.6.7 Coding Initial Transitions.. 189
4.6.8 Coding Internal Transitions..190
4.6.9 Coding Regular Transitions..190

4.6.10 Coding Guard Conditions.. 190
4.7 Pitfalls to Avoid While Coding State Machines with QEP...............................191

4.7.1 Incomplete State Handlers... 192
4.7.2 Ill-Formed State Handlers.. 193
4.7.3 State Transition Inside Entry or Exit Action....................................... 193
4.7.4 Incorrect Casting of Event Pointers... 194
4.7.5 Accessing Event Parameters in Entry/Exit Actions or Initial

Transitions.. 194
4.7.6 Targeting a Nonsubstate in the Initial Transition............................... 195
4.7.7 Code Outside the switch Statement.. 196
4.7.8 Suboptimal Signal Granularity... 197
4.7.9 Violating the Run-to-Completion Semantics....................................... 198

4.7.10 Inadvertent Corruption of the Current Event...................................... 198
4.8 Porting and Configuring QEP... 199
4.9 Summary..201

Chapter 5: State Patterns...203
5.1 Ultimate Hook... 205

5.1.1 Intent...205
5.1.2 Problem... 205
5.1.3 Solution..206
5.1.4 Sample Code...207
5.1.5 Consequences..211

5.2 Reminder.. 211
5.2.1 Intent...211
5.2.2 Problem... 212
5.2.3 Solution... 212
5.2.4 Sample Code...213
5.2.5 Consequences..218

5.3 Deferred Event... 219
5.3.1 Intent...219
5.3.2 Problem..219
5.3.3 Solution..220
5.3.4 Sample Code...222
5.3.5 Consequences..229
5.3.6 Known Uses..230

Table o f Contents ix

5.4 Orthogonal Component...230
5.4.1 Intent.. 230
5.4.2 Problem... 230
5.4.3 Solution... 231
5.4.4 Sample Code.. 234
5.4.5 Consequences... 243
5.4.6 Known Uses... 244

5.5 Transition to History..245
5.5.1 Intent.. 245
5.5.2 Problem...245
5.5.3 Solution... 245
5.5.4 Sample Code.. 246
5.5.5 Consequences... 250
5.5.6 Known Uses... 251

5.6 Summary.. 251

Part II: Real-Time Framework..253

Chapter 6: Real-Time Framework Concepts.. 255
6.1 Inversion of Control...256
6.2 CPU Management.. 257

6.2.1 Traditional Sequential Systems... 257
6.2.2 Traditional Multitasking Systems..259
6.2.3 Traditional Event-Driven Systems...263

6.3 Active Object Computing Model.. 266
6.3.1 System Structure..267
6.3.2 Asynchronous Communication.. 269
6.3.3 Run-to-Completion.. 269
6.3.4 Encapsulation... 269
6.3.5 Support for State Machines..271
6.3.6 Traditional Preemptive Kemel/RTOS... 273
6.3.7 Cooperative Vanilla Kernel..274
6.3.8 Preemptive RTC Kernel..276

6.4 Event Delivery Mechanisms..279
6.4.1 Direct Event Posting.. 280
6.4.2 Publish-Subscribe...281

6.5 Event Memory Management..282
6.5.1 Copying Entire Events... 282
6.5.2 Zero-Copy Event Delivery...284
6.5.3 Static and Dynamic Events..286
6.5.4 Multicasting Events and the Reference-Counting Algorithm...............286
6.5.5 Automatic Garbage Collection.. 287
6.5.6 Event Ownership..288

x Table of Contents

6.5.7 Memory Pools...289
6.6 Time Management... 291

6.6.1 Time Events.. 291
6.6.2 System Clock Tick... 293

6.7 Error and Exception Handling... 294
6.7.1 Design by Contract... 294
6.7.2 Errors versus Exceptional Conditions..296
6.7.3 Customizable Assertions in C and C++...297
6.7.4 State-Based Handling of Exceptional Conditions................................300
6.7.5 Shipping with Assertions..301
6.7.6 Asserting Guaranteed Event Delivery.. 302

6.8 Framework-Based Software Tracing... 303
6.9 Summary...304

Chapter 7: Real-Time Framework Implementation..307
7.1 Key Features of the QF Real-Time Framework.. 308

7.1.1 Source Code... 309
7.1.2 Portability..309
7.1.3 Scalability...310
7.1.4 Support for Modem State Machines... 312
7.1.5 Direct Event Posting and Publish-Subscribe Event Delivery 312
7.1.6 Zero-Copy Event Memory Management...312
7.1.7 Open-Ended Number of Time Events... 312
7.1.8 Native Event Queues... 313
7.1.9 Native Memory Pool... 313

7.1.10 Built-in “Vanilla” Scheduler... 313
7.1.11 Tight Integration with the QK Preemptive Kernel............................ 313
7.1.12 Low-Power Architecture..313
7.1.13 Assertion-Based Error Handling..314
7.1.14 Built-in Software Tracing Instrumentation..314

7.2 QF Structure..315
7.2.1 QF Source Code Organization.. 316

7.3 Critical Sections in QF.. 318
7.3.1 Saving and Restoring the Interrupt Status...319
7.3.2 Unconditional Locking and Unlocking Interrupts..............................321
7.3.3 Internal QF Macros for Interrupt Locking/Unlocking........................ 323

7.4 Active Objects...324
7.4.1 Internal State Machine of an Active Object..328
7.4.2 Event Queue of an Active Object...328
7.4.3 Thread of Execution and Active Object Priority................................330

7.5 Event Management in QF.. 333
7.5.1 Event Structure... 333
7.5.2 Dynamic Event Allocation...335

Table o f Contents xi

7.5.3 Automatic Garbage Collection.. 339
7.5.4 Deferring and Recalling Events... 341

7.6 Event Delivery Mechanisms in Q F.. 343
7.6.1 Direct Event Posting.. 343
7.6.2 Publish-Subscribe Event Delivery...344

7.7 Time Management...351
7.7.1 Time Event Structure and Interface...351
7.7.2 The System Clock Tick and the QF_tick () Function................. 354
7.7.3 Arming and Disarming a Time Event... 356

7.8 Native QF Event Queue... 359
7.8.1 The QEQueue Structure...360
7.8.2 Initialization of QEQueue...362
7.8.3 The Native QF Active Object Queue...362
7.8.4 The “Raw” Thread-Safe Queue... 367

7.9 Native QF Memory Pool..369
7.9.1 Initialization of the Native QF Memory Pool................................ 372
7.9.2 Obtaining a Memory Block from the Pool......................................375
7.9.3 Recycling a Memory Block Back to the Pool................................ 376

7.10 Native QF Priority Set.. 377
7.11 Native Cooperative “Vanilla” Kernel.. 379

7.11.1 The q v a n i l la .c Source File... 380
7.11.2 The q v a n i l l a . h Header File.. 384

7.12 QP Reference Manual... 386
7.13 Summary..387

Chapter 8: Porting and Configuring Q F ...389
8.1 The QP Platform Abstraction Layer.. 390

8.1.1 Building QP Applications..390
8.1.2 Building QP Libraries.. 391
8.1.3 Directories and Files.. 392
8.1.4 The q e p _ p o rt. h Header File.. 398
8.1.5 The q f_ p o rt .h Header File.. 400

Types of Platform-Specific QActive Data Members.......................402
Base Class for Derivation of Q A ctive... 402
The Maximum Number of Active Objects in the Application 403
Various Object Sizes Within the QF Framework.............................. 403
QF Critical Section Mechanism... 404
Include Files Used by this QF Port....:.. 404
Interface Used Only Inside QF, But Not in Applications................. 405
Active Object Event Queue Operations... 406
QF Event Pool Operations..406

8.1.6 The q f_ p o r t .c Source F ile.. 407
8.1.7 The q p _ p o rt. h Header File.. 411

xii Table o f Contents

8.1.8 Platform-Specific QF Callback Functions..412
8.1.9 System Clock Tick (Calling QF_tick ()) ...413

8.1.10 Building the QF Library... 413
8.2 Porting the Cooperative “Vanilla” Kernel.. 414

8.2.1 The q e p _ p o rt. h Header File...414
8.2.2 The q f_ p o r t . h Header File...415
8.2.3 The System Clock Tick (QF_tick ()) ... 417
8.2.4 Idle Processing (QF_onldle ()) ... 418

8.3 QF Port to pC/OS-II (Conventional RTOS)... 420
8.3.1 The q e p _ p o rt. h Header File...422
8.3.2 The q f_ p o rt .h Header File...423
8.3.3 The q f_ p o r t . c Source F ile ...425
8.3.4 Building the pC/OS-II Port...430
8.3.5 The System Clock Tick (QF_tick ()) ... 430
8.3.6 Idle Processing... 431

8.4 QF Port to Linux (Conventional POSIX-Compliant OS).................................431
8.4.1 The qep_port .h Header File.. 432
8.4.2 The qf _ p o r t . h Header File...432
8.4.3 The q f_ p o r t . c Source F ile ...435

8.5 Summary.. 441

Chapter 9: Developing QP Application..443
9.1 Guidelines for Developing QP Applications... 444

9.1.1 Rules..444
9.1.2 Heuristics.. 445

9.2 The Dining Philosopher Problem.. 446
9.2.1 Step 1: Requirements..447
9.2.2 Step 2: Sequence Diagrams... 447
9.2.3 Step 3: Signals, Events, and Active Objects.. 449
9.2.4 Step 4: State Machines...451
9.2.5 Step 5: Initializing and Starting the Application..................................457
9.2.6 Step 6: Gracefully Terminating the Application..................................460

9.3 Running DPP on Various Platforms.. 461
9.3.1 “Vanilla” Kernel on DOS.. 461
9.3.2 “Vanilla” Kernel on Cortex-M3...465
9.3.3 pC/OS-II... 469
9.3.4 Linux...472

9.4 Sizing Event Queues and Event Pools... 476
9.4.1 In Sizing Event Queues... 477
9.4.2 Sizing Event Pools... 479
9.4.3 System Integration.. 480

9.5 Summary...480

Table o f Contents xiii

Chapter 10: Preemptive Run-to-Completion Kernel..483
10.1 Reasons for Choosing a Preemptive Kernel..483
10.2 Introduction to RTC Kernels...485

10.2.1 Preemptive Multitasking with a Single Stack................................... 486
10.2.2 Nonblocking Kernel...487
10.2.3 Synchronous and Asynchronous Preemptions................................... 487
10.2.4 Stack Utilization.. 491
10.2.5 Comparison to Traditional Preemptive Kernels................................494

10.3 QK Implementation..496
10.3.1 QK Source Code Organization...497
10.3.2 The q k . h Header File...498
10.3.3 Interrupt Processing.. 503
10.3.4 The qk_sched.c Source File (QK Scheduler)................................ 506
10.3.5 The qk .c Source File (QK Startup and Idle Loop)....................511

10.4 Advanced QK Features.. 514
10.4.1 Priority-Ceiling Mutex...515
10.4.2 Thread-Local Storage...518
10.4.3 Extended Context Switch (Coprocessor Support).............................520

10.5 Porting QK...524
10.5.1 The q ep _ p o rt.h Header File..525
10.5.2 The q f_ p o rt .h Header File..525
10.5.3 The qk_port .h Header File..526
10.5.4 Saving and Restoring FPU Context.. 531

10.6 Testing the QK Port..531
10.6.1 Asynchronous Preemption Demonstration.. 531
10.6.2 Priority-Ceiling Mutex Demonstration..535
10.6.3 TLS Demonstration.. 536
10.6.4 Extended Context Switch Demonstration..539

10.7 Summary... 540

Chapter 11: Software Tracing for Event-Driven Systems..................................541
11.1 Software Tracing Concepts.. 542
11.2 Quantum Spy Software-Tracing System..544

11.2.1 Example of a Software-Tracing Session..545
11.2.2 The Human-Readable Trace Output.. 547

11.3 QS Target Component..550
11.3.1 QS Source Code Organization...552
11.3.2 The QS Platform-Independent Header Files q s . h and qs_dummy. h .. 553
11.3.3 QS Critical Section.. 560
11.3.4 General Structure of QS Records.. 561
11.3.5 QS Filters... 562

Global On/Off Filter... 562

xiv Table of Contents

Local Filters...564
11.3.6 QS Data Protocol..566

Transparency... 567
Endianness..568

11.3.7 QS Trace Buffer.. 569
Initializing the QS Trace Buffer Q S_initBuf ()569
Byte-Oriented Interface: QS_getByte()571
Block-Oriented Interface: Q S_getBlock()573

11.3.8 Dictionary Trace Records...574
Object Dictionaries..575
Function Dictionaries.. 577
Signal Dictionaries...577

11.3.9 Application-Specific QS Trace Records.. 578
11.3.10 Porting and Configuring QS...580

11.4 The QSPY Host Application..581
11.4.1 Installing QSPY.. 582
11.4.2 Building QSPY Application from Sources......................................584

Building QSPY for Windows with Visual
C++ 2005...584
Building QSPY for Windows with MinGW...................................584
Building QSPY for Linux...584

11.4.3 Invoking QSPY... 585
11.5 Exporting Trace Data to MATLAB..587

11.5.1 Analyzing Trace Data with MATLAB.. 587
11.5.2 MATLAB Output File.. 589
11.5.3 MATLAB Script q sp y . m... 590
11.5.4 MATLAB Matrices Generated by qspy .m593

11.6 Adding QS Software Tracing to a QP Application.. 596
11.6.1 Initializing QS and Setting Up the Filters....................................... 596
11.6.2 Defining Platform-Specific QS Callbacks....................................... 598
11.6.3 Generating QS Timestamps with the QS_onGetTime ()

Callback..601
11.6.4 Generating QS Dictionary Records from

Active Objects...604
11.6.5 Adding Application-Specific Trace Records.................................... 607
11.6.6 “QSPY Reference Manual” .. 608

11.7 Summary... 608

Chapter 12: QP-nano: How Small Can You Co?...611
12.1 Key Features of QP-nano.. 612
12.2 Implementing the “Fly ‘n’ Shoot” example with QP-nano............................ 614

12.2.1 The main () function...615
12.2.2 The qp n _ p o rt.h Header File..618

Table o f Contents xv

12.2.3 Signals, Events, and Active Objects in the “Fly ‘n’ Shoot”
Game..620

12.2.4 Implementing the Ship Active Object in QP-nano.........................622
12.2.5 Time Events in QP-nano.. 626
12.2.6 Board Support Package for “Fly ‘n’ Shoot” Application in

QP-nano.. 628
12.2.7 Building the “Fly ‘n’ Shoot” QP-nano Application........................630

12.3 QP-nano Structure... 631
12.3.1 QP-nano Source Code, Examples, and Documentation.................. 633
12.3.2 Critical Sections in QP-nano... 634

Task-Level Interrupt Locking.. 635
ISR-Level Interrupt Locking.. 635

12.3.3 State Machines in QP-nano... 637
12.3.4 Active Objects in QP-nano..640
12.3.5 The System Clock Tick in QP-nano... 642

12.4 Event Queues in QP-nano... 644
12.4.1 The Ready-Set in QP-nano (QF_readySet_)..................................645
12.4.2 Posting Events from the Task Level (QActive_post ()) 646
12.4.3 Posting Events from the ISR Level (QActive_postlSR ())649

12.5 The Cooperative “Vanilla” Kernel in QP-nano.. 650
12.5.1 Interrupt Processing Under the “Vanilla” Kernel...........................655
12.5.2 Idle Processing under the “Vanilla” Kernel....................................655

12.6 The Preemptive Run-to-Completion QK-nano Kernel...................................655
12.6.1 QK-nano Interface qkn.h..656
12.6.2 Starting Active Objects and the QK-nano Idle Loop......................658
12.6.3 The QK-nano Scheduler...660
12.6.4 Interrupt Processing in QK-nano...665
12.6.5 Priority Ceiling Mutex in QK-nano...666

12.7 The PELICAN Crossing Example.. 666
12.7.1 PELICAN Crossing State Machine..668
12.7.2 The Pedestrian Active Object.. 671
12.7.3 QP-nano Port to MSP430 with QK-nano Kernel............................ 672
12.7.4 QP-nano Memory Usage.. 675

12.8 Summary...678

Appendix A. Licensing Polity for QP and QP-nano...679
A.l Open-Source Licensing..679
A.2 Closed-Source Licensing.. 680
A.3 Evaluating the Software...680
A.4 NonProfits, Academic Institutions, and Private Individuals.......................... 680
A.5 GNU General Public License Version 2 .. 681

xvi Table o f Contents

Appendix B. Guide to Notation...685
B.l Class Diagrams... 685
B.2 State Diagrams..688
B.3 Sequence Diagrams.. 689
B.4 Timing Diagrams.. 690

Bibliography..693
Index...699

Preface

To create a usable piece of software, you have to fight for every fix, every feature, every little
accommodation that will get one more person up the curve. There are no shortcuts. Luck is involved, but
you don’t win by being lucky, it happens because you fought for every inch.
— Dave Winer

For many years, I had been looking for a book or a magazine article that would describe
a truly practical way of coding modem state machines (UML1 statecharts) in a
mainstream programming language such as C or C++. I have never found such a
technique.

In 2002,1 wrote Practical Statecharts in C/C++: Quantum Programming for
Embedded Systems (PSiCC), which was the first book to provide what had been missing
thus far: a compact, efficient, and highly maintainable implementation of UML state
machines in C and C++ with full support for hierarchical nesting of states. PSiCC was
also the first book to offer complete C and C++ source code of a generic, state machine-
based, real-time application framework for embedded systems.

To my delight, PSiCC continues to be one of the most popular books about
statecharts and event-driven programming for embedded systems. Within a year of
its publication, PSiCC was translated into Chinese, and a year later into Korean.
I’ve received and answered literally thousands of e-mails from readers who successfully
used the published code in consumer, medical, industrial, wireless, networking,
research, defense, robotics, automotive, space exploration, and many other
applications worldwide. In 2003 I started to speak about the subject matter at

1 UML stands for Unified Modeling Language and is the trademark of Object Management Group.

xviii Preface

the Embedded Systems Conferences on both U.S. coasts. I also began to consult to
companies. All this gave me additional numerous opportunities to find out firsthand
how engineers actually use the published design techniques in a wide range of
application areas.

What you’re holding in your hands is the second edition of PSiCC. It is the direct result
of the plentiful feedback I’ve received as well as five years of the “massive parallel
testing” and scrutiny that has occurred in the trenches.

W hat’s New in the Second Edition?
As promised in the first edition of PSiCC, I continued to advance the code and refine
the design techniques. This completely revised second edition incorporates these
advancements as well the numerous lessons learned from readers.

New Code

First of all, this book presents an entirely new version of the software, which is now
called Quantum Platform (QP) and includes the hierarchical event processor (QEP) and
the real-time framework (QF) as well as two new components. QP underwent several
quantum leaps of improvement since the first publication six years ago. The
enhancements introduced since the first edition of PSiCC are too numerous to list here,
but the general areas of improvements include greater efficiency and testability and
better portability across different processors, compilers, and operating systems. The two
new QP components are the lightweight, preemptive, real-time kernel (QK) described
in Chapter 10 and the software-tracing instrumentation (QS) covered in Chapter 11.
Finally, I’m quite excited about the entirely new, ultralight, reduced-feature version of
QP called QP-nano that scales the approach down to the lowest-end 8- and 16-bit
MCUs. I describe QP-nano in Chapter 12.

Open Source and Dual Licensing

In 2004,1 decided to release the entire QP code as open source under the terms of the
GNU General Public License (GPL) version 2, as published by the Free Software
Foundation. Independent of the open-source licensing, the QP source code is also
available under the terms of traditional commercial licenses, which expressly supersede
the GPL and are specifically designed for users interested in retaining the proprietary

Preface xix

status of their applications based on QP. This increasingly popular strategy of
combining open source with commercial licensing, called dual licensing, is explained
in more detail in Appendix A.

C as the Primary Language of Exposition

Most of the code samples in the first edition of PSiCC pertained to the C++
implementation. However, as I found out in the field, many embedded software
developers come from a hardware background (mostly EE) and are often unnecessarily
intimidated by C++.

In this edition, I decided to exactly reverse the roles of C and C++. As before, the
companion Website contains the complete source code for both C and C++ versions.
But now, most of the code examples in the text refer to the C version, and the C++ code
is discussed only when the differences between it and the C implementation become
nontrivial and important.

As far as the C source code is concerned, I no longer use the C+ object-oriented
extension that I’ve applied and documented in the first edition. The code is still
compatible with C+, but the C+ macros are not used.

More Examples

Compared to the first edition, this book presents more examples of event-driven
systems and the examples are more complete. I made a significant effort to come up
with examples that are not utterly trivial yet don’t obscure the general principles in too
many details. I also chose examples that don’t require any specific domain knowledge,
so I don’t need to waste space and your attention explaining the problem specification.

Preemptive Multitasking Support

An event-driven infrastructure such as QP can work with a variety of concurrency
mechanisms, from a simple “superloop” to fully preemptive, priority-based
multitasking. The previous version of QP supported the simple nonpreemptive
scheduling natively but required an external RTOS to provide preemptive multitasking,
if such capability was required.

In Chapter 10,1 describe the new real-time kernel (QK) component that provides
deterministic, fully preemptive, priority-based multitasking to QP. QK is a very special,

xx Preface

super-simple, run-to-completion, single-stack kernel that perfectly matches the
universally assumed run-to-completion semantics required for state machine execution.

Testing Support

A running application built of concurrently executing state machines is a highly
structured affair where all important system interactions funnel through the event-
driven framework that ties all the state machines together. By instrumenting just this
tiny “funnel” code, you can gain unprecedented insight into the live system. In fact, the
software trace data from an instrumented event-driven framework can tell you much
more about the application than any traditional real-time operating system (RTOS)
because the framework “knows” so much more about the application.

Chapter 11 describes the new QS (“spy”) component that provides a comprehensive
software-tracing instrumentation to the QP event-driven platform. The trace data
produced by the QS component allows you to perform a live analysis of your running
real-time embedded system with minimal target system resources and without stopping
or significantly slowing down the code. Among other things, you can reconstruct
complete sequence diagrams and detailed, timestamped state machine activities for all
active objects in the system. You can monitor all event exchanges, event queues,
event pools, time events (timers), and preemptions and context switches. You can also
use QS to add your own instrumentation to the application-level code.

Ultra-Lightweight QP-nano Version

The event-driven approach with state machines scales down better than any
conventional real-time kernel or RTOS. To address really small embedded systems, a
reduced QP version called QP-nano implements a subset of features supported in QP/C
or QP/C++. QP-nano has been specifically designed to enable event-driven
programming with hierarchical state machines on low-end 8- and 16-bit
microcontrollers (MCUs), such as AVR, MSP430, 8051, PICmicro, 68HC(S)08, M16C,
and many others. Typically, QP-nano requires around 1-2KB of ROM and just a few
bytes of RAM per state machine. I describe QP-nano in Chapter 12.

Removed Quantum Metaphor

In the first edition of PSiCC, I proposed a quantum-mechanical metaphor as a way of
thinking about the event-driven software systems. Though I still believe that this

Preface xxi

analogy is remarkably accurate, it hasn’t particularly caught on with readers, even
though providing such a metaphor is one of the key practices of eXtreme Programming
(XP) and other agile methods.

Respecting readers’ feedback, I decided to remove the quantum metaphor from this
edition. For historical reasons, the word quantum still appears in the names of the
software components, and the prefix Q is consistently used in the code for type and
function names to clearly distinguish the QP code from other code, but you don’t need
to read anything into these names.

W hat You Need to Use QP
Most of the code supplied with this book is highly portable C or C++, independent
of any particular CPU, operating system, or compiler. However, to focus the discussion
I provide executable examples that run in a DOS console under any variant of
Windows. I’ve chosen the legacy 16-bit DOS as a demonstration platform because it
allows programming a standard x86-based PC at the bare-metal level. Without leaving
your desktop, you can work with interrupts, directly manipulate CPU registers, and
directly access the I/O space. No other modem 32-bit development environment for the
standard PC allows this much so easily.

The additional advantage of the legacy DOS platform is the availability of mature and
free tools. To that end, I have compiled the examples with the legacy Borland Turbo
C++ 1.01 toolset, which is available for 2ifree download from Borland.

To demonstrate modem embedded systems programming with QP, I also provide
examples for the inexpensive2 ARM Corterx-M3-based Stellaris EV-LM3S811
evaluation kit form Luminary Micro. The Cortex-M3 examples use the exact same
source code as the DOS counterparts and differ only in the board support package
(BSP). The Cortex-M3 examples require the 32KB-limited KickStart edition of the IAR
EWARM toolset, which is included in the Stellaris kit and is also available for a free
download from IAR.

Finally, some examples in this book run on Linux as well as any other POSIX-
compliant operating system such as BSD, QNX, Max OS X, or Solaris. You can also
build the Linux examples on Windows under Cygwin.

2 At the time of this writing, the EKIEV-LM3S811 kit was available for $49 (www. lu m in arym icro . com).

http://www.luminarymicro.com

xxii Preface

The companion Website to this book at www. quantum-leaps . com/psicc2 provides
the links for downloading all the tools used in the book, as well as other resources.
The Website also contains links to dozens of QP ports to various CPUs, operating
systems, and compilers. Keep checking this Website; new ports are added frequently.

Intended Audience
This book is intended for the following software developers interested in event-driven
programming and modem state machines:

• Embedded programmers and consultants will find a complete, ready-to-use,
event-driven infrastmcture to develop applications. The book describes both
state machine coding strategies and, equally important, a compatible real-time
framework for executing concurrent state machines. These two elements are
synergistically complementary, and one cannot reach its full potential without
the other.

• Embedded developers looking for a real-time kernel or RTOS will find that the
QP event-driven platform can do everything one might expect from an RTOS
and that, in fact, QP actually contains a fully preemptive real-time kernel as
well as a simple cooperative scheduler.

• Designers of ultra low-power systems, such as wireless sensor networks, will
find how to scale down the event-driven, state machine-based approach to fit the
tiniest MCUs. The ultra-light QP-nano version (Chapter 12) combines a
hierarchical event processor, a real-time framework, and either a cooperative or
a fully preemptive kernel in just 1-2KB of ROM.

• On the opposite end of the complexity spectrum, designers of very large-scale,
massively parallel server applications will find that the event-driven approach
combined with hierarchical state machines scales up easily and is ideal for
managing very large numbers of stateful components, such as client sessions.
As it turns out, the “embedded” design philosophy of QP provides the critical
per-component efficiency both in time and space.

• The open-source community will find that QP complements other open-source
software, such as Linux or BSD. The QP port to Linux (and more generally to
POSIX-compliant operating systems) is described in Chapter 8.

http://www.quantum-leaps.com/psicc2

Preface xxiii

• GUI developers and computer game programmers using C or C++ will find that
QP very nicely complements GUI libraries. QP provides the high-level “screen
logic” based on hierarchical state machines, whereas the GUI libraries handle
low-level widgets and rendering of the images on the screen.

• System architects might find in QP a lightweight alternative to heavyweight
design automation tools.

• Users of design automation tools will gain deeper understanding of the inner
workings of their tools. The glimpse “under the hood” will help them use the
tools more efficiently and with greater confidence.

Due to the code-centric approach, this book will primarily appeal to software
developers tasked with creating actual, working code, as opposed to just modeling.
Many books about UML already do a good job of describing model-driven analysis
and design as well as related issues, such as software development processes and
modeling tools.

This book does not provide yet another CASE tool. Instead, this book is about practical,
manual coding techniques for hierarchical state machines and about combining state
machines into robust event-driven systems by means of a real-time framework.

To benefit from the book, you should be reasonably proficient in C or C++ and have a
general understanding of computer architectures. I am not assuming that you have
prior knowledge of UML state machines, and I introduce the underlying concepts in
a crash course in Chapter 2. I also introduce the basic real-time concepts of
multitasking, mutual exclusion, and blocking in Chapter 6.

The Companion Websites
This book has a companion Website at www.quantum-leaps. com /psicc2 that
contains the following information:

• Source code downloads for QP/C, QP/C++, and QP-nano

• All QP ports and examples described in the book

• Reference manuals for QP/C, QP/C++, and QP-nano in HTML and CHM file
formats

• Links for downloading compilers and other tools used in the book

http://www.quantum-leaps.com/psicc2

xxiv Preface

• Selected reviews and reader feedback

• Errata

Additionally, the Quantum Leaps Website at www. quan tum -leaps. com has been
supporting the QP user community since the publication of the first edition of PSiCC in
2002. This Website offers the following resources:

• Latest QP downloads

• QP ports and development kits

• Programmer manuals

• Application notes

• Resources and goodies such as Visio stencils for drawing UML diagrams,
design patterns, links to related books and articles, and more

• Commercial licensing and technical support information

• Consulting and training in the technology

• News and events

• Discussion forum

• Newsletter

• Blog

• Links to related Websites

• And more

Finally, QP is also present on SourceForge.net—the world’s largest repository of open
source code and applications. The QP project is located at h t t p s : / /s o u rc e fo rg e .
n e t /p r o je c ts /q p c / .

http://www.quantum-leaps.com

Acknowledgments

First and foremost, I’d like to thank my wonderful family for the unfading support over
the years of creating the software and the two editions of this book.

I would also like to thank the team at Elsevier, which includes Rachel Roumeliotis and
Heather Scherer, and John (Jay) Donahue.

Finally, I’m grateful to all the software developers who contacted me with thought-
provoking questions, bug reports, and countless suggestions for improvements in the
code and documentation. As a rule, a software system only gets better if it is used and
scrutinized by many people in many different real-life projects.

http://taylorandfrancis.com

Introduction

Almost all computer systems in general, and embedded systems in particular, are event-
driven, which means that they continuously wait for the occurrence of some external or
internal event such as a time tick, an arrival of a data packet, a button press, or a mouse click.
After recognizing the event, such systems react by performing the appropriate computation
that may include manipulating the hardware or generating “soft” events that trigger other
internal software components. (That’s why event-driven systems are alternatively called
reactive systems.) Once the event handling is complete, the software goes back to waiting for
the next event.

You are undoubtedly accustomed to the basic sequential control, in which a program
waits for events in various places in its execution path by either actively polling for
events or passively blocking on a semaphore or other such operating system
mechanism. Though this approach to programming event-driven systems is functional
in many situations, it doesn’t work very well when there are multiple possible
sources of events whose arrival times and order you cannot predict and where it is
important to handle the events in a timely manner. The problem is that while a
sequential program is waiting for one kind of event, it is not doing any other work and
is not responsive to other events.

Clearly, what we need is a program structure that can respond to a multitude of possible
events, any of which can arrive at unpredictable times and in an unpredictable sequence.
Though this problem is very common in embedded systems such as home appliances,
cell phones, industrial controllers, medical devices and many others, it is also very
common in modem desktop computers. Think about using a Web browser, a word
processor, or a spreadsheet. Most of these programs have a modem graphical user
interface (GUI), which is clearly capable of handling multiple events. All developers of

xxviii Introduction

modem GUI systems, and many embedded applications, have adopted a common program
stmcture that elegantly solves the problem of dealing with many asynchronous events
in a timely manner. This program stmcture is generally called event-driven programming.

Inversion o f Control
Event-driven programming requires a distinctly different way of thinking than
conventional sequential programs, such as “superloops” or tasks in a traditional RTOS.
Most modem event-driven systems are structured according to the Hollywood principle,
which means “Don’t call us, we’ll call you.” So an event-driven program is not in
control while waiting for an event; in fact, it’s not even active. Only once the event
arrives, the program is called to process the event and then it quickly relinquishes the
control again. This arrangement allows an event-driven system to wait for many events
in parallel, so the system remains responsive to all events it needs to handle.

This scheme has three important consequences. First, it implies that an event-driven
system is naturally divided into the application, which actually handles the events,
and the supervisory event-driven infrastructure, which waits for events and dispatches
them to the application. Second, the control resides in the event-driven infrastructure, so
from the application standpoint the control is inverted compared to a traditional
sequential program. And third, the event-driven application must return control after
handling each event, so the execution context cannot be preserved in the stack-based
variables and the program counter as it is in a sequential program. Instead, the
event-driven application becomes a state machine, or actually a set of collaborating
state machines that preserve the context from one event to the next in the
static variables.

The Importance o f the Event-Driven Framework
The inversion of control, so typical in all event-driven systems, gives the event-driven
infrastructure all the defining characteristics of an application framework rather than
a toolkit. When you use a toolkit, such as a traditional operating system or an RTOS, you
write the main body of the application and call the toolkit code that you want to reuse.
When you use a framework, you reuse the main body and write the code it calls.

Another important point is that an event-driven framework is actually necessary if you
want to combine multiple event-driven state machines into systems. It really takes more
than “just” an API, such as a traditional RTOS, to execute concurrent state machines.

Introduction xxix

State machines require an infrastructure (framework) that provides, at a minimum,
mn-to-completion (RTC) execution context for each state machine, queuing of events,
and event-based timing services. This is really the pivotal point. State machines cannot
operate in a vacuum and are not really practical without an event-driven framework.

Active Object Computing Model
This book brings together two most effective techniques of decomposing event-driven
systems: hierarchical state machines and an event-driven framework. The combination
of these two elements is known as the active object computing model. The term active
object comes from the UML and denotes an autonomous object engaging other
active objects asynchronously via events. The UML further proposes the UML variant
of statecharts with which to model the behavior of event-driven active objects.

In this book, active objects are implemented by means of the event-driven framework
called QF, which is the main component of the QP event-driven platform. The QF
framework orderly executes active objects and handles all the details of thread-safe
event exchange and processing within active objects. QF guarantees the universally
assumed RTC semantics of state machine execution, by queuing events and dispatching
them sequentially (one at a time) to the internal state machines of active objects.

The fundamental concepts of hierarchical state machines combined with an event-
driven framework are not new. In fact, they have been in widespread use for at least two
decades. Virtually all commercially successful design automation tools on the market
today are based on hierarchical state machines (statecharts) and incorporate internally a
variant of an event-driven, real-time framework similar to QF.

The Code-Centric Approach
The approach I assume in this book is code-centric, minimalist, and low-level. This
characterization is not pejorative; it simply means that you’ll learn how to map
hierarchical state machines and active objects directly to C or C++ source code, without
big tools. The issue here is not a tool—the issue is understanding.

The modem design automation tools are truly powerful, but they are not for everyone.
For many developers the tool simply can’t pull its own weight and gets abandoned. For
such developers, the code-centric approach presented in this book can provide a
lightweight alternative to the heavyweight tools.

xxx Introduction

Most important, though, no tool can replace conceptual understanding. For example,
determining which exit and entry actions fire in which sequence in a nontrivial state
transition is not something you should discover by running a tool-supported animation
of your state machine. The answer should come from your understanding of the
underlying state machine implementation (discussed in Chapters 3 and 4). Even if
you later decide to use a design automation tool and even if that particular tool would
use a different statechart implementation technique than discussed in this book, you
will still apply the concepts with greater confidence and more efficiency because of
your understanding of the fundamental mechanisms at a low level.

In spite of many pressures from existing users, I persisted in keeping the QP event-
driven platform lean by directly implementing only the essential elements of the bulky
UML specification and supporting the niceties as design patterns. Keeping the core
implementation small and simple has real benefits. Programmers can learn and deploy
QP quickly without large investments in tools and training. They can easily adapt
and customize the framework’s source code to the particular situation, including
to severely resource-constrained embedded systems. They can understand, and indeed
regularly use, all the provided features.

Focus on Real-Life Problems
You can’t just look at state machines and the event-driven framework as a collection of
features, because some of the features will make no sense in isolation. You can only use
these powerful concepts effectively if you are thinking about design, not simply coding.
And to understand state machines that way, you must understand the problems with
event-driven programming in general.

This book discusses event-driven programming problems, why they are problems,
and how state machines and active object computing model can help. Thus, I begin
most chapters with the programming problems the chapter will address. In this way,
I hope to move you, a little at a time, to the point where hierarchical state machines
and the event-driven framework become a much more natural way of solving the
problems than the traditional approaches such as deeply nested i f s and e l s e s for
coding stateful behavior or passing events via semaphores or event flags of a
traditional RTOS.

Introduction xxxi

Object Orientation
Even though I use C as the primary programming language, I also extensively use
object-oriented design principles. Like virtually all application frameworks, QP uses the
basic concepts of encapsulation (classes) and single inheritance as the primary
mechanisms of customizing, specializing, and extending the framework to a particular
application. Don’t worry if these concepts are new to you, especially in C. At the C
language level, encapsulation and inheritance become just simple coding idioms, which
I introduce in Chapter 1. I specifically avoid polymorphism in the C version
because implementing late binding in C is a little more involved. Of course, the C++
version uses classes and inheritance directly and QP/C++ applications can use
polymorphism.

More Fun
When you start using the techniques described in this book, your problems will change.
You will no longer struggle with 15 levels of convoluted i f - e l s e statements, and you
will stop worrying about semaphores or other such low-level RTOS mechanisms.
Instead, you’ll start thinking at a higher level of abstraction about state machines,
events, and active objects. After you experience this quantum leap you will find,
as I did, that programming can be much more fun. You will never want to go back to
the “spaghetti” code or the raw RTOS.

How to Contact Me
If you have comments or questions about this book, the code, or event-driven
programming in general, I’d be pleased to hear from you. Please e-mail me at
miro@quantum-leaps.com.

mailto:miro@quantum-leaps.com

http://taylorandfrancis.com

"IT /VVW (TT A PEJRFtjCT BOT IT'S
A STATt-of -TAF'ACT lOHtEL."

www.CartoonStock.com

PART I UM L STATE M ACHINES

State machines are the best-known formalism for specifying and implementing event-
driven systems that must react to incoming events in a timely fashion. The advanced
UML state machines represent the current state of the art in state machine theory
and notation.

Part I of this book shows practical ways of using UML state machines in event-driven
applications to help you produce efficient and maintainable software with well-
understood behavior, rather than creating “spaghetti” code littered with convoluted IFs
and ELSEs. Chapter 1 presents an overview of the method based on a working example.

http://www.CartoonStock.comPARTIUMLSTATEMACHINESStatemachinesarethebest-knownformalismforspecifyingandimplementingevent-drivensystemsthatmustre

2 Part I

Chapter 2 introduces state machine concepts and the UML notation. Chapter 3 shows
the standard techniques of coding state machines, and Chapter 4 describes a generic
hierarchical event processor. Part I concludes with Chapter 5, which presents a mini
catalogue of five state design patterns. You will learn that UML state machines are a
powerful design method that you can use, even without complex code-synthesizing
tools.

C H A P T E R 1

Getting Started with UML State
Machines and Event-Driven

Programming

It is common sense to take a method and try it. I f it fails, admit it frankly and try another. But above all,

try something.

— Franklin D. Roosevelt

This chapter presents an example project implemented entirely with UML state
machines and the event-driven paradigm. The example application is an interactive
“Fly ‘n’ Shoot”-type game, which I decided to include early in the book so that you can
start playing (literally) with the code as soon as possible. My aim in this chapter is
to show the essential elements of the method in a real, nontrivial program, but without
getting bogged down in details, rules, and exceptions. At this point, I am not trying
to be complete or even precise, although this example as well as all other examples in
the book is meant to show a good design and the recommended coding style. I don’t
assume that you know much about UML state machines, UML notation, or event-driven
programming. I will either briefly introduce the concepts, as needed, or refer you to
the later chapters of the book for more details.

The example “Fly ‘n’ Shoot” game is based on the Quickstart application provided in source
code with the Stellaris EV-LM3S811 evaluation kit from Luminary Micro [Luminary 06].
I was trying to make the “Fly ‘n’ Shoot” example behave quite similarly to the original
Luminary Micro Quickstart application so that you can directly compare the event-driven
approach with the traditional solution to essentially the same problem specification.

4 Chapter 1

1.1 Installing the Accompanying Code
The companion Website to this book at www.quantum-leaps.com/psicc2 contains the
self-extracting archive with the complete source code of the QP event-driven platform
and all executable examples described in this book; as well as documentation,
development tools, resources, and more. You can uncompress the archive into any
directory. The installation directory you choose will be referred henceforth as the QP
Root Directory <qp>.

N O TE

Although in the text I mostly concentrate on the C implementation, the accompanying Web
site also contains the equivalent C++ version of virtually every element available in C. The
C++ code is organized in exactly the same directory tree as the corresponding C code, except
you need to look in the < q p > \q p c p p \... directory branch.

Specifically to the “Fly ‘n’ Shoot” example, the companion code contains two versions1
of the game. I provide a DOS version for the standard Windows-based PC (see
Figure 1.1) so that you don’t need any special embedded board to play the game and
experiment with the code.

N O TE

I ’ve chosen the legacy 16-bit DOS platform because it allows programming a standard PC at
the bare-metal level. Without leaving your desktop, you can work with interrupts, directly
manipulate CPU registers, and directly access the I/O space. No other modem 32-bit devel
opment environment for the standard PC allows this much so easily. The ubiquitous PC run
ning under DOS (or a DOS console within any variant of Windows) is as close as it gets to
emulating embedded software development on the commodity 80x86 hardware. Addition
ally, you can use free, mature tools, such as the Borland C/C++ compiler.

I also provide an embedded version for the inexpensive2 ARM Cortex-M3-based
Stellaris EV-LM3S811 evaluation kit (see Figure 1.2). Both the PC and Cortex-M3

1 The accompanying code actually contains many more versions of the “Fly ‘n’ Shoot” game, but they are
not relevant at this point.
2 At the time of this writing the EV-LM3S811 kit was available for $49 (www.luminarymicro.com).

http://www.quantum-leaps.com/psicc2
http://www.luminarymicro.com

Getting Started with UML State Machines and Event-Driven Programming 5

versions use the exact same source code for all application components and differ only
in the Board Support Package (BSP).

1.2 Let’s Play
The following description of the “Fly ‘n’ Shoot” game serves the dual purpose of
explaining how to play the game and as the problem specification for the purpose of
designing and implementing the software later in the chapter. To accomplish these two
goals I need to be quite detailed, so please bear with me.

Your objective in the game is to navigate a spaceship through an endless horizontal
tunnel with mines. Any collision with the tunnel or the mine destroys the ship. You can
move the ship up and down with Up-arrow and Down-arrow keys on the PC (see
Figure 1.1) or via the potentiometer wheel on the EV-LM3S811 board (see Figure 1.2).
You can also fire a missile to destroy the mines in the tunnel by pressing the Spacebar
on the PC or the User button on the EV-LM3S811 board. Score accumulates for
survival (at the rate of 30 points per second) and destroying the mines. The game lasts
for only one ship.

The game starts in a demo mode, where the tunnel walls scroll at the normal pace
from right to left and the “Press Button” text flashes in the middle of the screen.
You need to generate the “fire missile” event for the game to begin (press Spacebar
on the PC or the User button on the EV-LM3S811 board).

You can have only one missile in flight at a time, so trying to fire a missile while it is
already flying has no effect. Hitting the tunnel wall with the missile brings you no
points, but you earn extra points for destroying the mines.

The game has two types of mines with different behavior. In the original Luminary
Quickstart application both types of mines behave the same, but I wanted to
demonstrate how state machines can elegantly handle differently behaving mines.

Mine type 1 is small, but can be destroyed by hitting any of its pixels with the missile.
You earn 25 points for destroying a mine type 1. Mine type 2 is bigger but is nastier
in that the missile can destroy it only by hitting its center, not any of the “tentacles.”
Of course, the ship is vulnerable to the whole mine. You earn 45 points for destroying
a mine type 2.

When you crash the ship, by either hitting a wall or a mine, the game ends and displays
the flashing “Game Over” text as well as your final score. After 5 seconds of flashing,

6 Chapter 1

the “Game Over” screen changes back to the demo screen, where the game waits to be
started again.

Additionally the application contains a screen saver because the OLED display of the
original EV-LM3S811 board has burn-in characteristics similar to a CRT. The screen
saver only becomes active if 20 seconds elapse in the demo mode without starting
the game (i.e., the screen saver never appears during game play). The screen saver is
a simple random pixel type rather than the “Game of Life” algorithm used in the
original Luminary Quickstart application. I’ve decided to simplify this aspect of the
implementation because the more elaborate pixel-mixing algorithm does not contribute
any new or interesting behavior.

After a minute of running the screen saver, the display turns blank and only a single
random pixel shows on the screen. Again, this is a little different from the original
Quickstart application, which instead blanks the screen and starts flashing the User
LED. I’ve changed this behavior because I have a better purpose for the User LED (to
visualize the activity of the idle loop).

Command Prompt - dbg\game

FLV 1n * SHOOT

Press UP-arrow to move the space ship upPress DOWN-arrow to move the space ship down
Press SPACE to fire the missile
Press ESC to quit the game

Missile
Mine

Type 1

Figure 1.1: The “ Fly ‘n ’ Shoot” game running in a DOS window under Windows XP.

Getting Started with UML State Machines and Event-Driven Programming 7

User
Switch

USB Cable
to PC

Potentiometer
Wheel

Reset
Switch

LM3S811
Cortex-M3 MCU

96 x 16
OLED Display

LMI FTDI
Debugger

User
LED

Power
LED

Figure 1.2: The “Fly ‘n’ Shoot” game running on the Stellaris EV-LM3S811
evaluation board.

1.2.1 Running the DOS Version

The “Fly ‘n’ Shoot” sample code for the DOS version (in C) is located in the
<qp>\qpc\examples\80x86\dos\tcppl01\l\game\ directory, where <qp> stands
for the installation directory in which you chose to install the accompanying software.

The compiled executable is provided, so you can run the game on any Windows-based
PC by simply double-clicking the executable game. exe located in the directory
<qp>\qpc\examples\80x86\dos\tcppl01\l\game\dbg\. The first screen you
see is the game running in the demo mode with the text “Push Button” flashing in
the middle of the display. At the top of the display you see a legend of keystrokes
recognized by the application. You need to hit the s p a c e b a r to start playing the game.
Press the e s c key to cleanly exit the application.

If you run “Fly ‘n’ Shoot” in a window under Microsoft Windows, the animation effects in
the game might appear a little jumpy, especially compared to the Stellaris version of the
same game. You can make the application execute significantly more smoothly if you
switch to the full-screen mode by pressing and holding the Alt key and then pressing the
Enter key. You go back to the window mode via the same Alt-Enter key combination.

As you can see in Figure 1.1, the DOS version uses simply the standard VGA text mode
to emulate the OLED display of the EV-LM3S811 board. The lower part of the DOS screen

8 Chapter 1

is used as a matrix of 80 x 16 character-wide “pixels,” which is a little less than the 96 x 16
pixels of the OLED display but still good enough to play the game. I specifically avoid
employing any fancier graphics in this early example because I have bigger fish to fry for
you than to worry about the irrelevant complexities of programming graphics.

My main goal is to make it easy for you to understand the event-driven code and
experiment with it. To this end, I chose the legacy Borland Turbo C++ 1.01 toolset to
build this example as well as several other examples in this book. Even though Turbo
C++ 1.01 is an older compiler, it is adequate to demonstrate all features of both the
C and C++ versions. Best of all, it is available for a free download from the Borland
“Museum” at http://bdn.borland.eom/article/0,1410,21751,00.html.

The toolset is very easy to install. After you download the Turbo C++ 1.01 files directly
from Borland, you need to unzip the files onto your hard drive. Then you run the
I N S T A L L . E X E program and follow the installation instructions it provides.

N O TE

I strongly recommend that you install the Turbo C++ 1.01 toolset into the directory
C:\tools\tcppl01\. That way you will be able to directly use the provided project files
and make scripts.

Perhaps the easiest way to experiment with the “Fly ‘n’ Shoot” code is to launch the Turbo
C++ IDE (t c . e x e) and open the provided project file G A M E -D B G . P R J , which is located
in the directory <qp>\qpc\examples\80x8 6\dos\tcppl01\l\game\. You can
modify, recompile, execute, and debug the program directly from the IDE. However, you
should avoid terminating the program stopped in the debugger, because this will not restore
the standard DOS interrupt vectors for the time tick and keyboard interrupts. You should
always cleanly exit the application by letting it freely run and pressing the Esc key.

The next section briefly describes how to run the embedded version of the game. If you
are not interested in the Cortex-M3 version, feel free to skip to Section 1.3, where I start
explaining the application code.

1.2.2 Running the Stellaris Version

In contrast to the “Fly ‘n’ Shoot” version for DOS running in the ancient real mode of
the 80x86 processor, the exact same source code runs on one of the most modem
processors in the industry: the ARM Cortex-M3.

http://bdn.borland.eom/article/0,1410,21751,00.html

Getting Started with UML State Machines and Event-Driven Programming 9

The sample code for the Stellaris EV-LM3S811 board is located in the
<qp>\qpc\examples\cortex-m3\vanilla\iar\game-ev-lm3s811\ directory,
where <qp> stands for the root directory in which you chose to install the
accompanying software.

The code for the Stellaris kit has been compiled with the 32KB-limited Kickstart edition
of the IAR Embedded Workbench for ARM (IAR EWARM) v 5.11, which is provided
with the Stellaris EV-LM3S811 kit. You can also download this software free of charge
directly from IAR Systems (www.iar.com) after filling out an online registration.

The installation of IAR EWARM is quite straightforward, since the software comes
with the installation utility. You also need to install the USB drivers for the hardware
debugger built into the EV-LM3S811 board, as described in the documentation of
the Stellaris EV-LM3S811 kit.

N O TE

I strongly recommend that you install the IAR EWARM toolset into the directory C: \ t o o l s
\ ia r \a r m _ k s _ 5 .1 1 . That way you will be able to directly use the provided EWARM work
space files and make scripts.

Before you program the “Fly ‘n’ Shoot” game to the EV-LM3S811 board, you might
want to play a little with the original Quickstart application that comes preprogrammed
with the EV-LM3S811 kit.

To program the “Fly ‘n’ Shoot” game to the Flash memory of the EV-LM3S811 board,
you first connect the EV-LM3S811 board to your PC with the USB cable provided in the
kit and make sure that the Power LED is on (see Figure 1.2). Next, you need to launch the
IAR Embedded Workbench and open the workspace game-ev-lm3s811. eww located
in the <qp>\qpc\examples\cortex-m3\vanilla\iar\game-ev-lm3s811\
directory. At this point your screen should look similar to the screenshot shown in
Figure 1.3.

The game-ev-lm3s811 project is set up to use the LMI FTDI debugger, which is the
piece of hardware integrated on the EV-LM3S811 board (see Figure 1.2). You can
verify this setup by opening the “Options” dialog box via the Project I Options menu.
Within the “Options” dialog box, you need to select the Debugger category in the panel
on the left. While you’re at it, you could also verify that the Flash loading is enabled
by selecting the “Download” tab. The checked “Use flash loader(s)” check box means

http://www.iar.com

10 Chapter 1

that the Flash loader application provided by IAR will be first loaded to the RAM of the
MCU, and this application will program the Flash with the image of your application.

To start the Flash programming process, select the Project I Debug menu, or simply
click the Debug button (see Figure 1.3) in the toolbar. The IAR Workbench should
respond by showing the Flash programming progress bar for several seconds, as shown
in Figure 1.3. Once the Flash programming completes, the IAR EWARM switches to
the IAR C-Spy debugger and the program should stop at the entry to main (). You can
start playing the game either by clicking the Go button in the debugger or you can
close the debugger and reset the board by pressing the Reset button. Either way, the
“Fly ‘n’ Shoot” game is now permanently programmed into the EV-LM3S811 board
and will start automatically on every powerup.

IAR Embedded Workbench IDE
I File Edit View Eroject lools Window Help

□ & a Els l°?

Debug
bsp.c | missile,c | ship.c | tunnel.c

Files
E |cE]game - Debug
— C3 Luminary

F - E] driverlib.a
E (Si osram96xl6xl.c

9 CD QP-Debug
IS) libqep.a
IS) libqf.a

—510 QP-Release
“ 51 C j Q P -S p y

—El C j Source
—El E l bsp.c
—El EG
—El El m inel.c
-E l El e2.c
—El E missile.c
-E l E ship.c
—0 E startup.c
—El E tunnel.c

1—[S C l Output

Build Configuration
Selection

t . h" Debug
Button

—h b j e c r s --
"static QEvent const - l_m issi1eQ ueueSto[2];
s t a t i c QEvent const * i_shipQueueSto[3];
s t a t i c QEvent const * l_tunnelQueueStof ga m e_mii*«ES_max
s t a t i c obj ectPosEvt 1_sm1 Pool St oCgame_mihes_ma;x + si
s t a t i c Obj ectXmageEvt 1_m<edPool St o £GAME_MIN»ES_MAX + 8] n f..!»« 5t l_subscr Sto [MAX_PUB_SIG] ;

QP Libraries
v o id T a ir i/ in t argc.

M i s s 11e _ c t o r () ;Ship_ctor Q ;
T u n n e l_ c t o r ();

BSP_i ni t (a rgc .

QF_1ni t O ;

* sm& medf

char "*argv[]) {/ * exp7 ici tly invoke the active obje

argv); /* initialize the Board S l

/• initialize the framework and the under ly
Application Sources |i_smpooisto.

P r o g r e s s . .

Jful

Messages

Total number of errors: 0
Total number of warnings: 0

Programming flash

/* initialize the _smlPoolsto). s1 z e o f(l_ olsto). s1 z e o f(l_

/* init pub)
/* setup the

J

Flash Programming
Progress

C:\software\qpc\examples\cortex-m3VvaniHa\iar\game-ev-lm3s811N Errors 0, Warnings 0

>
NL

Figure 1.3: Loading the “Fly *n’ Shoot” game into the flash o f LM3S811 MCU
with IAR EWARM IDE.

Getting Started with UML State Machines and Event-Driven Programming 11

The IAR Embedded Workbench environment allows you to experiment with the
“Fly ‘n’ Shoot” code very easily. You can edit the files and recompile the application
at a click of a button (F7). The only caveat is that the first time after the installation
of the IAR toolset you need to build the Luminary Micro driver library for the
LM3S811 MCU from the sources. You accomplish this by loading the workspace
ek-lm3s811. eww located in the directory <lAR-EWARM>\ARM\examples
\Luminary\ Stellar is\boards\ek-lm3s811, where <IAR-EWARM> stands for the
directory name where you’ve installed the IAR toolset. In the ev-lm3s811 .eww
workspace, you select the “driverlib - Debug” project from the drop-down list at
the top of the Workspace panel and then press F7 to build the library.

1.3 The m ain() Function
Perhaps the best place to start the explanation of the “Fly ‘iT Shoot” application code is
the main() function, located in the file main. c. Unless indicated otherwise in this
chapter, you can browse the code in either the DOS version or the EV-LM3S811
version, because the application source code is identical in both. The complete main, c
file is shown in Listing 1.1.

N O TE

To explain code listings, I place numbers in parentheses at the interesting lines in the left
margin of the listing. I then use these labels in the left margin of the explanation section that
immediately follows the listing. Occasionally, to unambiguously refer to a line of a particular
listing from sections of text other than the explanation section, I use the full reference con
sisting of the listing number followed by the label. For example, Listing 1.1(21) refers to
the label (21) in Listing 1.1.

Listing 1.1 The file m a in .c o f the “ Fly ‘n’ Shoot” game application

(1) #include "qp_port.h"
(2) #include "bsp.h"
(3) #include "game.h"

/* the QP port */
/* Board Support Package */

/* this application */

/* Local-scope objects-------------------------------------
(4) static QEvent const * l_missileQueueSto [2] ;
(5) static QEvent const * l_shipQueueSto[3] ;
(6) static QEvent const * l_tunnelQueueSto [GAME_MINES_MAX + 5] ;

 */
event queue * /
event queue */
event queue * /

Continued onto next page

12 Chapter 1

(7) static Obj ectPosEvt l_smlPoolsto[GAME_MINES_MAX+ 8] ; /* small-size pool */
(8) static ObjectlmageEvt l_medPoolSto [GAME_MINES_MAX + 8] ; /* medium-size pool */
(9) static QSubscrList l_subscrSto [MAX_PUB_SIG] ; /* publish-subscribe */

/* */
void main (int argc, char *argv[]) {

/* explicitly invoke the active objects' ctors. . . */
(10) Missile_ctor();
(11) Ship_ctor();
(12) Tunnel_ctor() ;

(13) BSP_init(argc, argv) ; /* initialize the Board Support Package */
(14) QF_init() ; /* initialize the framework and the underlying RT kernel */

/ * initialize the event pools. . . * /
(15) QF_poolInit (l_sml Pools to, sizeof (l_smlPoolSto) , sizeof (l_sml Pools to [0])) ;
(16) QF_poolInit(l_medPoolSto, sizeof(l_medPoolSto), sizeof(l_medPoolSto[0]));

(17) QF__psInit (l_subscrSto, Q_DIM(l_subscrSto)) ; /* init publish-subscribe */

/* start the active objects. . . */
(18) QActive_start (AO_Missile, /* global pointer to the Missile active object */

1, /* priority (lowest) */
l_missileQueueSto, 0 DIM(1 missileOueueSto) , /*evtqueue*/
(void*)0, 0, /* no per-thread stack */
(QEvent *)0) ; /* no initialization event */

(19) QActive_start (AO_Ship, /* global pointer to the Ship active object */
2 , /* priority */
l_shipQueueSto, Q DIM(1 shipQueueSto), /* evt queue */
(void*)0, 0, /* no per-thread stack */
(QEvent *)0) ; /* no initialization event */

(20) QActive_start (AO_Tunnel, /* global pointer to the Tunnel active object */
3 , /* priority */
l_tunnelQueueSto, 0 DIM(l_tunnelQueueSto), /* evt queue * /
(void*)0, 0, /* no per-thread stack */
(QEvent *)0) ; /* no initialization event */

(21) QF_run(); /* run the QF application */
}

(1) The “Fly ‘iT Shoot” game is an example of an application implemented with the
QP event-driven platform. Every application C-file that uses QP must include the
q p _ p o rt. h header file. This header file contains the specific adaptation of QP to
the given processor, operating system, and compiler, which is called a port. Each
QP port is located in a separate directory, and the C compiler finds the right
q p _ p o rt. h header file through the include search path provided to the compiler

Getting Started with UML State Machines and Event-Driven Programming 13

(typically via the -I compiler option). That way I don’t need to change the
application source code to recompile it for a different processor or compiler.
I only need to instruct the compiler to look in a different QP port directory
for the qp_port .h header file. For example, the DOS version includes the
qp_port.h header file from the directory <qp>\qpc\ports\80x86\dos
\tcppl01\l \ , and the EV-LM3S811 version from the directory <qp>\qpc
\ports\cortex-m3\vanilla\iar\.

(2) The b sp . h header file contains the interface to the Board Support Package and
is located in the application directory.

(3) The game. h header file contains the declarations of events and other facilities
shared among the components of the application. I will discuss this header file
in the upcoming Section 1.7. This header file is located in the application
directory.

The QP event-driven platform is a collection of components, such as the QEP event
processor that executes state machines according to the UML semantics and the QF
real-time framework that implements the active object computing model. Active
objects in QF are encapsulated state machines (each with an event queue, a separate
task context, and a unique priority) that communicate with one another
asynchronously by sending and receiving events, whereas QF handles all the details of
thread-safe event exchange and queuing. Within an active object, the events are
processed by the QEP event processor sequentially in a run-to-completion (RTC)
fashion, meaning that processing of one event must necessarily complete before
processing the next event. (See also Section 6.3.3 in Chapter 6.)

(4-6) The application must provide storage for the event queues of all active objects
used in the application. Here the storage is provided at compile time
through the statically allocated arrays of immutable (const) pointers to
events, because QF event queues hold just pointers to events, not events
themselves. Events are represented as instances of the QEvent structure
declared in the qp_port .h header file. Each event queue of an active
object can have a different size, and you need to decide this size based
on your knowledge of the application. Event queues are discussed in
Chapters 6 and 7.

(7,8) The application must also provide storage for event pools that the framework
uses for fast and deterministic dynamic allocation of events. Each event pool

14 Chapter 1

can provide only fixed-size memory blocks. To avoid wasting memory by
using oversized blocks for small events, the QF framework can manage up to
three event pools of different block sizes (for small, medium, and large
events). The “Fly ‘n’ Shoot” application uses only two out of the three
possible event pools (the small and medium pools).

The QF real-time framework supports two event delivery mechanisms: the simple
direct event posting to active objects and the more advanced mechanism called
publish-subscribe that decouples event producers from the consumers. In the publish-
subscribe mechanism, active objects subscribe to events by the framework. Event
producers publish the events to the framework. Upon each publication request, the
framework delivers the event to all active objects that had subscribed to that event
type. One obvious implication of publish-subscribe is that the framework must
store the subscriber information, whereas it must be possible to handle multiple
subscribers to any given event type. The event delivery mechanisms are described
in Chapters 6 and 7.

(9) The “Fly ‘n’ Shoot” application uses the publish-subscribe event delivery
mechanism supported by QF, so it needs to provide the storage for the
subscriber lists. The subscriber lists remember which active objects have
subscribed to which events. The size of the subscriber database depends on
both the number of published events, which is specified in the m a x_pub_SIG
constant found in the game. h header file, and the maximum number of active
objects allowed in the system, which is determined by the QF configuration
parameter qf_m a x_a c t i v e .

(10-12) These functions perform an early initialization of the active objects in the
system. They play the role of static “constructors,” which in C you need to
invoke explicitly. (C++ calls such static constructors implicitly before
entering main ()).

(13) The function BSP_init () initializes the board and is defined in the bsp . c
file.

(14) The function QF_init () initializes the QF component and the underlying
RTOS/kemel, if such software is used. You need to call QF_init () before
you invoke any QF services.

(15,16) The function QF_poollnit () initializes the event pools. The parameters of
this function are the pointer to the event pool storage, the size of this storage,

Getting Started with UML State Machines and Event-Driven Programming 15

and the block-size of this pool. You can call this function up to three times to
initialize up to three event pools. The subsequent calls to QF_poolinit ()
must be made in the increasing order of block size. For instance, the small
block-size pool must be initialized before the medium block-size pool.

(17) The function QF_poolinit () initializes the publish-subscribe event
delivery mechanism of QF. The parameters of this function are the pointer to
the subscriber-list array and the dimension of this array.

The utility macro Q_d i m (a) provides the dimension of a one-dimensional array a []
computed as s i z e o f (a) / s i z e o f (a [0]) , which is a compile-time constant. The use
of this macro simplifies the code because it allows me to eliminate many #define
constants that otherwise I would need to provide for the dimensions of various arrays.
I can simply hard-code the dimension right in the definition of an array, which is the
only place that I specify it. I then use the macro q_d i m () whenever I need this
dimension in the code.

(18-20) The function QActive_start () tells the QF framework to start managing
an active object as part of the application. The function takes the following
parameters: the pointer to the active object structure, the priority of the active
object, the pointer to its event queue, the dimension (length) of that queue,
and three other parameters that I explain in Chapter 7 (they are not relevant at
this point). The active object priorities in QF are numbered from 1 to
qf_m a x_a c t i v e, inclusive, where a higher-priority number denotes higher
urgency of the active object. The constant qf_m a x_a c t i v e is defined in
the QF port header file qf_port. h and currently cannot exceed 63.

I like to keep the code and data of every active object strictly encapsulated within its
own C-file. For example, all code and data for the active object Ship are encapsulated in
the file ship, c, with the external interface consisting of the function ship_ctor ()
and the pointer AO_Ship.

(21) At this point, you have provided to the framework all the storage and
information it needs to manage your application. The last thing you must do is
call the function QF_run () to pass the control to the framework.

After the call to QF_run () the framework is in full control. The framework
executes the application by calling your code, not the other way around. The function
QF_run () never returns the control back to main (). In the DOS version of the

16 Chapter 1

“Fly 4n’ Shoot” game, you can terminate the application by pressing the Esc key, in
which case QF_run () exits to DOS but not to main (). In an embedded system, such
as the Stellaris board, QF_run () runs forever or till the power is removed, whichever
comes first.

N O TE

For best cross-platform portability, the source code consistently uses the UNIX end-of-line
convention (lines are terminated with LF only, OxA character). This convention seems to
be working for all C/C++ compilers and cross-compilers, including legacy DOS-era tools.
In contrast, the DOS/Windows end-of-line convention (lines terminated with the CR,LF, or
0xD,0xA pair of characters) is known to cause problems on UNIX-like platforms, especially
in the multiline preprocessor macros.

1.4 The Design o f the "Fly ‘n* Shoot” Game
To proceed further with the explanation of the “Fly ‘n’ Shoot” application, I need to
step up to the design level. At this point I need to explain how the application has been
decomposed into the active objects and how these objects exchange events to
collectively deliver the functionality of the “Fly ‘n’ Shoot” game.

In general, the decomposition of a problem into active objects is not trivial. As usual
in any decomposition, your goal is to achieve possibly loose coupling among the
active object components (ideally no sharing of any resources), and you also strive
for minimizing the communication in terms of the frequency and size of exchanged
events.

In the case of the “Fly ‘n’ Shoot” game, I need to first identify all objects with reactive
behavior (i.e., with a state machine). I applied the simplest object-oriented technique of
identifying objects, which is to pick the frequently used nouns in the problem
specification. From Section 1.2,1 identified Ship, Missile, Mines, and Tunnel. However,
not every state machine in the system needs to be an active object (with a separate
task context, an event queue, and a unique priority level), and merging them is a valid
option when performance or space is needed. As an example of this idea, I ended up
merging the Mines into the Tunnel active object, whereas I preserved the Mines as
independent state machine components of the Tunnel active object. By doing so
I applied the “Orthogonal Component” design pattern described in Chapter 5.

Getting Started with UML State Machines and Event-Driven Programming 17

The next step in the event-driven application design is assigning responsibilities and
resources to the identified active objects. The general design strategy for avoiding
sharing of resources is to encapsulate each resource inside a dedicated active object and
to let that object manage the resource for the rest of the application. That way, instead
of sharing the resource directly, the rest of the application shares the dedicated
active object via events.

So, for example, I decided to put the Tunnel active object in charge of the display.
Other active objects and state machine components, such as Ship, Missile, and Mines,
don’t draw on the display directly, but rather send events to the Tunnel object with
the request to render the Ship, Missile, or Mine bitmaps at the provided (x, y)
coordinates of the display.

With some understanding of the responsibilities and resource allocations to active
objects I can move on to devising the various scenarios of event exchanges among
the objects. Perhaps the best instrument to aid the thinking process at this stage is the
UML sequence diagram, such as the diagram depicted in Figure 1.4. This particular
sequence diagram shows the most common event exchange scenarios in the
“Fly ‘iT Shoot” game (the primary use cases, if you will). The explanation section
immediately following the diagram illuminates the interesting points.

N O TE

A UML sequence diagram like Figure 1.4 has two dimensions. Horizontally arranged boxes
represent the various objects participating in the scenario, whereas heavy borders indicate
active objects. As usual in the UML, the object name is underlined. Time flows down the
page along the vertical dashed lines descending from the objects. Events are represented as
horizontal arrows originating from the sending object and terminating at the receiving object.
Optionally, thin rectangles around instance lines indicate focus of control.

N O TE

To explain diagrams, I place numbers in parentheses at the interesting elements of the dia
gram. I then use these labels in the left margin of the explanation section that immediately
follows the diagram. Occasionally, to unambiguously refer to a specific element of a partic
ular diagram from sections of text other than the explanation section, I use the full reference
consisting of the figure number followed by the label. For example, Figure 1.4(12) refers to
the element (12) in Figure 1.4.

18 Chapter 1

Player OP Ship Missile Tunnel Mine[n]

(8)
j=PLAYER_TRIGGER=

' o) ' (2)
bi=TIME_TICK=Mq- - -

(3)

I

—
— SHIPJMG(x,y,bmp)-i

(9)

(4)
TIME_TICK

(6)
■MINE IMG—

I— SHIPJMG—►
(7)

I “ MISSILE_FIRE(x!p (11) V
. (10)

I

^TIM E_TIC K
U — SHIPJMG— j—

(12)

-MISSILEJMG>—

TIME_TICK

(5)

(15)

i ^DESTROYED r
C^MINE(type) *1(14)

'MISSILE JMGF
HITJ\/IINE(type)--------

(13)

LAYER_SHIP_MOVE(x,y)->[-J-j (16)

=TIME_TICK
SHIPJMG-

&

(18) C f -HIT_WALL-

TIME_TICK

—SHIPJMG
(17)

Figure 1.4: The sequence diagram of the “Fly ‘n’ Shoot” game.

(1) The t im e_t i c k is the most important event in the game. This event is generated
by the QF framework from the system time tick interrupt at a rate of 30 times
per second, which is needed to drive a smooth animation of the display. Because
the t im e_t i c k event is of interest to virtually all objects in the application,
it is published by the framework to all active objects. (The publish-subscribe
event delivery in QF is described in Chapter 6.)

(2) Upon reception of the ti m e_t i c k event, the Ship object advances its position by
one step and posts the event ship_ img (x , y, bmp) to the Tunnel object. The

Getting Started with UML State Machines and Event-Driven Programming 19

SHIP_IMG event has parameters x and y, which are the coordinates of the Ship on
the display, as well as the bitmap number bmp to draw at these coordinates.

(3) The Missile object is not in flight yet, so it simply ignores the tim e_t ic k event
this time.

(4) The Tunnel object performs the heaviest lifting for the tim e_tic k event. First,
Tunnel redraws the entire display from the current frame buffer. This action,
performed 30 times per second, provides the illusion of animation of the display.
Next, the Tunnel clears the frame buffer and starts filling it up again for the next
time frame. The Tunnel advances the tunnel walls by one step and copies the
walls to the frame buffer. The Tunnel also dispatches the t im e_t ic k event to all
its Mine state machine components.

(5) Each Mine advances its position by one step and posts the m i n e_ img (x , y , bmp)
event to the Tunnel to render the appropriate Mine bitmap at the position (x, y) in
the current frame buffer. Mines of type 1 send the bitmap number m i n e1_bmp ,
whereas mines of type 2 send m i n e2_bmp .

(6) Upon receipt of the SHIP_i m g (x , y, bmp) event from the Ship, the Tunnel
object renders the specified bitmap in the frame buffer and checks for any
collision between the ship bitmap and the tunnel walls. Tunnel also dispatches
the original SHlP_lMG(x, y, bmp) event to all active Mines.

(7) Each Mine determines whether the Ship is in collision with that Mine.

(8) The p la yer_t r i g g e r event is generated when the Player reliably presses the
button (button press is debounced). This event is published by the QF framework
and is delivered to the Ship and Tunnel objects, which both subscribe to the
PLAYER_TRIGGER event.

(9) Ship generates the m i s s i l e_fire (x , y) event to the Missile object. The
parameters of this event are the current {x, y) coordinates of the Ship, which are
the starting point for the Missile.

(10) Tunnel receives the published p la yer_t r i g g e r event as well because Tunnel
occasionally needs to start the game or terminate the screen saver mode based on
this stimulus.

(11) Missile reacts to the m i s s i l e_fire (x , y) event by starting to fly, whereas it
sets its initial position from the (x, y) event parameters delivered from the Ship.

20 Chapter 1

(12) This time around, the ti m e_t i c k event arrives while Missile is in flight. Missile
posts the m i s s i l e_i m g (x , y, bmp) event to the Table.

(13) Table renders the Missile bitmap in the current frame buffer and dispatches
the m i s s i l e_img (x, y , bmp) event to all the Mines to let the Mines test for the
collision with the Missile. This determination depends on the type of the Mine. In
this scenario a particular Mine[n] object detects a hit and posts the h i t_mi n e
(score) event to the Missile. The Mine provides the score earned for destroying
this particular mine as the parameter of this event.

(14) Missile handles the h it_m i n e (score) event by becoming immediately ready to
launch again and lets the Mine do the exploding. Because I decided to make the Ship
responsible for the scorekeeping, the Missile also generates the d e s t r o y e d_mi n e
(score) event to the Ship, to report the score for destroying the Mine.

(15) Upon reception of the de s t r o y e d_m i n e (score) event, the Ship increments
the score by the value received from the Missile.

(16) The Ship object handles the p la yer_ship_m o v e (x, y) event by updating its
position from the event parameters.

(17) When the Tunnel object handles the SHIP_img (x, y , bmp_id) event next time
around, it detects a collision between the Ship and the tunnel wall. In that case
it posts the event hi t_w a l l to the Ship.

(18) The Ship responds to the hit_w a l l event by transitioning to the “exploding” state.

Even though the sequence diagram in Figure 1.4 shows merely some selected scenarios
of the “Fly ‘n’ Shoot” game, I hope that the explanations give you a big picture of
how the application works. More important, you should start getting the general idea
about the thinking process that goes into designing an event-driven system with
active objects and events.

1.5 Active Objects in the “ Fly ‘n* Shoot” Game
I hope that the analysis of the sequence diagram in Figure 1.4 makes it clear that actions
performed by an active object depend as much on the events it receives as on the
internal mode of the object. For example, the Missile active object handles the
t im e_ti c k event very differently when the Missile is in flight (Figure 1.4(12))
compared to the time when it is not (Figure 1.4(3)).

Getting Started with UML State Machines and Event-Driven Programming 21

The best-known mechanism for handling such modal behavior is through state
machines because a state machine makes the behavior explicitly dependent on both the
event and the state of an object. Chapter 2 introduces UML state machine concepts
more thoroughly. In this section, I give a cursory explanation of the state machines
associated with each object in the “Fly ‘n’ Shoot” game.

1.5.1 The Missile Active Object

I start with the Missile state machine shown in Figure 1.5 because it turns out to be the
simplest one. The explanation section immediately following the diagram illuminates
the interesting points.

NO TE

A UML state diagram like Figure 1.5 preserves the general form of the traditional state tran
sition diagrams, where states are represented as nodes and transitions as arcs connecting the
nodes. In the UML notation the state nodes are represented as rectangles with rounded cor
ners. The name of the state appears in bold type in the name compartment at the top of
the state. Optionally, right below the name, a state can have an internal transition compart
ment separated from the name by a horizontal line. The internal transition compartment
can contain entry actions (actions following the reserved symbol “entry”), exit actions
(actions following the reserved symbol “exit”), and other internal transitions (e.g., those trig
gered by time_tick in Figure 1.5(3)). State transitions are represented as arrows originating
at the boundary of the source state and pointing to the boundary of the target state. At a min
imum, a transition must be labeled with the triggering event. Optionally, the trigger can be
followed by event parameters, a guard, and a list of actions.

(1) The state transition originating at the black ball is called the initial transition.
Such transition designates the first active state after the state machine object
is created. An initial transition can have associated actions, which in the
UML notation are enlisted after the forward slash (/) . In this particular case,
the Missile state machine starts in the “armed” state and the actions executed
upon the initialization consist of subscribing to the event t i m e _ t i c k . Subscribing
to an event means that the framework will deliver the specified event to the
Missile active object every time the event is published to the framework.
Chapter 7 describes the implementation of the publish-subscribe event delivery
in QF.

22 Chapter 1

(1)
/ QActive_subscribe(me, TIMEJTICK);—

flying
TIME_TICK [me->x + GAME_MISSILE_SPEED_X

< GAME_SCREEN_WIDTH] /
me->x += GAME_MISSILE_SPEED_X;
QActive_postFIFO(Tunnel,

MISSILE_IMG(me->x, me->y,
MISSILE_BMP));

(3)

(2)

(4)

MISSILE_FIRE(x, y) /
me->x = e->x;
me->y = e->y;

\
<---------------
 TIME.TICK [else]—

HIT_MINE(score) / (5)------------ x
QActive_postFI FO(Ship,

DESTROYED_MINE(e->score));
— HIT_WALL ^

f exploding \
entry/

me->exp_ctr = 0; (7)

TIME_TICK [(me->x >= GAME_SPEED_X)
&& (me->exp_ctr < 16)] / (8)

me->x -= GAME_SPEED_X;
++me->exp_ctr;
QActive_postFIFO(Tunnel,

EXPLOSION_IMG(me->x + 3, me->y -4,
EXPLOSIONO_BMP + (me->exp_ctr» 2)));

V J

(6)

(9)
-TIME_TICK [else]—

Figure 1.5: Missile state machine diagram.

(2) The arrow labeled with the m i s s i l e _ f i r e (x , y) event denotes a state transition,
that is, a change of state from “armed” to “flying.” The m i s s i l e _ f i r e (x , y)

event is generated by the Ship object when the Player triggers the Missile (see the
sequence diagram in Figure 1.4). In the m i s s i l e _ f i r e event, Ship provides
Missile with the initial coordinates in the event parameters {x, y).

N O TE

The UML intentionally does not specify the notation for actions. In practice, the actions are
often written in the programming language used for coding the particular state machine. In
all state diagrams in this book, I assume the C programming language. Furthermore, in the
C expressions I refer to the data members associated with the state machine object through
the “me->” prefix and to the event parameters through the “e -> ” prefix. For example, the
action “me->x = e - > x ;” means that the internal data member x of the Missile active object
is assigned the value of the event parameter x.

Getting Started with UML State Machines and Event-Driven Programming 23

(3) The event name t im e_t ic k enlisted in the compartment below the state name
denotes an internal transition. Internal transitions are simple reactions to
events performed without a change of state. An internal transition, as well as a
regular transition, can have a guard condition, enclosed in square brackets. Guard
condition is a Boolean expression evaluated at runtime. If the guard evaluates
to TRUE, the transition is taken. Otherwise, the transition is not taken and no
actions enlisted after the forward slash (/) are executed. In this particular case,
the guard condition checks whether the ^-coordinate propagated by the Missile
speed is still visible on the screen. If so, the actions are executed. These actions
include propagation of the Missile position by one step and posting the
m i S S I l e _ im g event with the current Missile position and the m i s s i l e _ b m p

bitmap number to the Tunnel active object. Direct event posting to an active object
is accomplished by the QF function QActive_postFiFO () , which I discuss
in Chapter 7.

(4) The same event tim e_t ic k with the [else] guard denotes a regular state
transition with the guard condition complementary to the other occurrence of the
tim e_tic k event in the same state. In this case, the tim e_ti c k transition to
“armed” is taken if the Missile object flies out of the screen.

(5) The event h it_m i n e (score) triggers another transition to the “armed” state.
The action associated with this transition posts the de s t r o y e d_mi n e event with
the parameter e->score to the Ship object, to report destroying the mine.

(6) The event hi t_wa l l triggers a transition to the “exploding” state, with the
purpose of animating the explosion bitmaps on the display.

(7) The label “entry” denotes the entry action to be executed unconditionally upon the
entry to the “exploding” state. This action consists of clearing the explosion
counter (me->exp_ctr) member of the Missile object.

(8) The t im e_ti c k internal transition is guarded by the condition that the explosion
does not scroll off the screen and that the explosion counter is lower than 16. The
actions executed include propagation of the explosion position and posting the
e x p l o s i o n_img event to the Tunnel active object. Please note that the bitmap of
the explosion changes as the explosion counter gets bigger.

(9) The tim e_t i c k regular transition with the complementary guard changes the
state back to the “armed” state. This transition is taken after the animation of the
explosion completes.

24 Chapter 1

1.5.2 The Ship Active Object

The state machine of the Ship active object is shown in Figure 1.6. This state machine
introduces the profound concept of hierarchical state nesting. The power of state
nesting derives from the fact that it is designed to eliminate repetitions that otherwise
would have to occur.

One of the main responsibilities of the Ship active object is to maintain the current position
of the Ship. On the original EV-LM3S811 board, this position is determined by the
potentiometer wheel (see Figure 1.2). The player_shi p_move (x , y) event is generated
whenever the wheel position changes, as shown in the sequence diagram (Figure 1.4).
The Ship object must always keep track of the wheel position, which means that all states
of the Ship state machine must handle the player_ship_move (x, y) event.

In the traditional finite state machine (FSM) formalism, you would need to repeat the
Ship position update from the pla y e r_ship_m o v e (x , y) event in every state. But
such repetitions would bloat the state machine and, more important, would represent
multiple points of maintenance both in the diagram and the code. Such repetitions go
against the DRY (Don’t Repeat Yourself) principle, which is vital for flexible and
maintainable code [Hunt+ 00].

Hierarchical state nesting remedies the problem. Consider the state “active”
that surrounds all other states in Figure 1.6. The high-level “active” state is called the
superstate and is abstract in that the state machine cannot be in this state directly but only
in one of the states nested within, which are called the substates of “active.” The UML
semantics associated with state nesting prescribe that any event is first handled in the
context of the currently active substate. If the substate cannot handle the event, the state
machine attempts to handle the event in the context of the next-level superstate.
Of course, state nesting in UML is not limited to just one level and the simple rule of
processing events applies recursively to any level of nesting.

Specifically to the Ship state machine diagram shown in Figure 1.6, suppose that the event
p la yer_ship_m ov e (x, y) arrives when the state machine is in the “parked” state. The
“parked” state does not handle the p la yer_ship_m o v e (x, y) event. In the traditional
finite state machine this would be the end of the story—the p la yer_shi p_m o v e (x, y)
event would be silently discarded. However, the state machine in Figure 1.6 has another layer
of the “active” superstate. Per the semantics of state nesting, this higher-level superstate
handles the p la yer_ship_m ov e (x, y) event, which is exactly what’s needed. The same
exact argumentation applies for any other substate of the “active” superstate, such as “flying”

or “exploding,” because none of these substates handle the p la yer_ship_m o v e (x, y)
event. Instead, the “active” superstate handles the event in one single place, without repetitions.

Getting Started with UML State Machines and Event-Driven Programming 25

£ - / QActive_subscribe(me, TIME_TICK); •
QActive_subscribe(me, PLAYER_TRIGGER); (1)

active
PLAYER_SHIP_MOVE(x, y) /

me->x = e->x;
me->y = e->y;

(3)

parked
£ (2)

TAKEJDFF- ~X(4)
Jlzina_

entry/
me->score = 0;
QActive_postFIFO(Tunnel, SCORE(me->score));

(5)

TIME_TICK / (6)
QActive_postFIFO(Tunnel,

SHIP_IMG(me->x, me->y, SHIP_BMP));
++me->score;
if ((me->score % 10) == 0)

QActive_postFIFO(Tunnel, SCORE(me->score));

PLAYER_TRIGGER / (7)
QActive_postFIFO(Missile, MISSLE_FIRE(me->x, me->y));

DESTROYED_MINE(score) /
me->score += e->score;

(8)

— HIT WALL-

-HIT_MINE(type)

(10)A

exploding (11)
entry/

me->exp_ctr = 0;

TIME_TICK [me->exp_ctr < 16] /
++me->exp_ctr;
QActive_postFIFO(Tunnel,

EXPLOSION(me->x, me->y + SHIP_HEIGHT -1,
EXPLOSIONO_BMP + (me->exp_ctr» 2)));

J
-TIME_TICK [else] /

QActive_postFI FO(T able,
GAME_OVER(me->score));

(12)

Figure 1.6: Ship state machine diagram.

(1) Upon the initial transition, the Ship state machine enters the “active” superstate
and subscribes to events t im e_t t c k and pla yer_t r i g g e r .

(2) At each level of nesting, a superstate can have a private initial transition that
designates the active substate after the superstate is entered directly. Here the

26 Chapter 1

initial transition of state “active” designates the substate “parked” as the initial
active substate.

(3) The “active” superstate handles the p l a y e r_ship_mo v e (x, y) event as an
internal transition in which it updates the internal data members me->x and
me->y from the event parameters e->x and e->y, respectively.

(4) The ta k e_off event triggers transition to “flying.” This event is generated by
the Tunnel object when the Player starts the game (see the description of the
game in Section 1.2).

(5) The entry actions to “flying” include clearing the me->score data member and
posting the event SCORE with the event parameter me->score to the Tunnel
active object.

(6) The ti m e_tic k internal transition causes posting the event shi p_ img with
current Ship position and the shi p_bmp bitmap number to the Tunnel active
object. Additionally, the score is incremented for surviving another time tick.
Finally, when the score is “round” (divisible by 10) it is also posted to the Tunnel
active object. This decimation of the score event is performed just to reduce
the bandwidth of the communication, because the Tunnel active object only
needs to give an approximation of the running score tally to the user.

(7) The pla yer_tr i i g g e r internal transition causes posting the event m i s s i l e_fire
with current Ship position to the Missile active object. The parameters (me->x,
me->y) provide the Missile with the initial position from the Ship.

(8) The DESTROYED_MlNE (score) internal transition causes update of the score
kept by the Ship. The score is not posted to the Table at this point, because the
next t i m e_t i c k will send the “rounded” score, which is good enough for giving
the Player the score approximation.

(9) The h it_w a l l event triggers transition to “exploding.”

(10) The h i t_m i n e (type) event also triggers transition to “exploding.”

(11) The “exploding” state of the Ship state machine is very similar to the
“exploding” state of Missile (see Figure 1.5(7-9)).

(12) The t i m e_ti c k [else] transition is taken when the Ship finishes exploding. Upon
this transition, the Ship object posts the event ga m e_ov e r (me->score) to the
Tunnel active object to terminate the game and display the final score to the Player.

Getting Started with UML State Machines and Event-Driven Programming 27

1.5.3 The Tunnel Active Object

The Tunnel active object has the most complex state machine, which is shown in
Figure 1.7. Unlike the previous state diagrams, the diagram in Figure 1.7 shows only the
high level of abstraction and omits a lot of details such as most entry/exit actions,
internal transitions, guard conditions, or actions on transitions. Such a “zoomed out”
view is always legal in the UML because UML allows you to choose the level of detail
that you want to include in your diagram.

The Tunnel state machine uses state hierarchy more extensively than the Ship state
machine in Figure 1.6. The explanation section immediately following Figure 1.7
illuminates the new uses of state nesting as well as the new elements not explained yet
in the other state diagrams.

active
MINE_DISABLED(mine_id) / (4)

me->mines[e->mine_id] = NULL;

demo
entry / QTimeEvt_postln(&me->screenTimeEvt, me,

BSP_TICKS_PER_SEC*20); (5)

exit / QTimeEvt_disarm(&me->screenTimeEvt); (6)

playing

—SCREEN_TIMEOUT
(7) \

S\
PLAYER_TRIGGER

.______

game_over

s\
GAME_OVER

 J
SCREEN_TIMEOUT-

screen_saver

screen_saver_n_pixeis

screen_saver_1 _pixel
\

SCREEN_TIMEOUT

(8)
-PLAYEFLTRIGGEI

(1)
— 9

(2)

(3) @ 4 PLAYEFLQUIT-

Figure 1.7: Tunnel state machine diagram.

28 Chapter 1

(1) An initial transition can target a substate at any level of state hierarchy, not
necessarily just the next-lower level. Here the topmost initial transition goes down
two levels to the substate “demo.”

(2) The superstate “active” handles the p la yer_q u i t event as a transition to the final
state (see explanation of element (3)). Please note that the p l a y e r_QUIT
transition applies to all substates directly or transitively nested in the “active”
superstate. Because a state transition always involves execution of all exit actions
from the states, the high-level p la yer_QUIT transition guarantees the proper
cleanup that is specific to the current state context, whichever substate happens to
be active at the time when the p la yer_q u i t event arrives.

(3) The final state is indicated in the UML notation as the bull’s-eye symbol and
typically indicates destruction of the state machine object. In this case, the
pla yer_qui t event indicates termination of the game.

(4) The MINE_DlSABLED(mine_id) event is handled at the high level of the
“active” state, which means that this internal transition applies to the whole sub
machine nested inside the “active” superstate. (See also the discussion of the Mine
object in the next section.)

(5) The entry action to the “demo” state starts the screen time event (timer)
me->screenTimeEvt to expire in 20 seconds. Time events are allocated by the
application, but they are managed by the QF framework. QF provides functions
to arm a time event, such as QTimeEvt_postin () for one-shot timeout, and
QTimeEvt_postEvery () for periodic time events. Arming a time event is in effect
telling the QF framework, for instance, “Give me a nudge in 20 seconds.” QF then posts
the time event (the event me->screenTimeEvt in this case) to the active object after
the requested number of clock ticks. Chapters 6 and 7 talk about time events in detail.

(6) The exit action from the “demo” state disarms the me->screenTimeEvt time
event. This cleanup is necessary when the state can be exited by a different event
than the time event, such as the p la yer_t r i g g e r transition.

(7) The scr een_t i m e o u t transition to “screen_saver” is triggered by the expiration
of the me->screenTimeEvt time event. The signal SCREEN_TlMEOUT is
assigned to this time event upon initialization and cannot be changed later.

(8) The transition triggered by pla yer_t r i g g e r applies equally to the two substates
of the “screen_saver” superstate.

Getting Started with UML State Machines and Event-Driven Programming 29

1.5.4 The Mine Components

Mines are also modeled as hierarchical state machines, but are not active objects. Instead,
Mines are components of the Tunnel active object and share its event queue and priority
level. The Tunnel active object communicates with the Mine components synchronously
by directly dispatching events to them via the function QHsm_dispatch (). Mines
communicate with Tunnel and all other active objects asynchronously by posting events
to their event queues via the function QActive_postFiFO ().

N O TE

Active objects exchange events asynchronously, meaning that the sender of the event merely
posts the event to the event queue of the recipient active object without waiting for the com
pletion of the event processing. In contrast, synchronous event processing corresponds to a
function call (e.g., QHsm_dispatch()), which processes the event in the caller’s thread of
execution.

As shown in Figure 1.8, Tunnel maintains the data member mines [], which is an array
of pointers to hierarchical state machines (QHsm *). Each of these pointers can point
either to a Minel object, a Mine2 object, or null, if the entry is unused. Note that
Tunnel “knows” the Mines only as generic state machines (pointers to the QHsm
structure defined in QP). Tunnel dispatches events to Mines uniformly, without
differentiating between different types of Mines. Still, each Mine state machine handles
the events in its specific way. For example, Mine type 2 checks for collision with the
Missile differently than with the Ship, whereas Mine type 1 handles both identically.

Minel mines'! 0

[0]

[1]

[2]

[3]
[4]

Tunnel

QHsm *mines[]

[0]«

' [1]

[2]*-

[3]« -

[4]* -

NULL

NULL

Mine2 mines2[]

[0]

[1]

[2]

[3]

[4]

Figure 1.8: The Table active object manages two types o f Mines.

30 Chapter 1

NOTE

The last point is actually very interesting. Dispatching the same event to different Mine
objects results in different behavior, specific to the type of the Mine, which in OOP is known
as polymorphism. I ’ll have more to say about this in Chapter 3.

Each Mine object is fairly autonomous. The Mine maintains its own position and is
responsible for informing the Tunnel object whenever the Mine gets destroyed or scrolls
out of the display. This information is vital for the Tunnel object so that it can keep
track of the unused Mines.

Figure 1.9 shows a hierarchical state machine of Mine2 state machine. Minel is very
similar, except that it uses the same bitmap for testing collisions with the Missile and
the Ship.

(1) The Mine starts in the “unused” state.

(2) The Tunnel object plants a Mine by dispatching the mine_plant (x, y) event
to the Mine. The Tunnel provides the (y) coordinates as the original position of
the Mine.

(3) When the Mine scrolls off the display, the state machine transitions to
“unused.”

(4) When the Mine hits the Ship, the state machine transitions to “unused.”

(5) When the Mine finishes exploding, the state machine transitions to “unused.”

(6) When the Mine is recycled by the Tunnel object, the state machine transitions to
“unused.”

(7) The exit action in the “used” state posts the mine_disablded (mine_id)
event to the Tunnel active object. Through this event, the Mine informs the
Tunnel that it’s becoming disabled, so that Tunnel can update its mines []
array (see also Figure 1.9(4)). The mine_id parameter of the event becomes
the index into the mines [] array. Note that generating the
MINE_DISABLDED (mine_id) event in the exit action from “used” is much
safer and more maintainable than repeating this action in each individual
transition (3), (4), (5), and (6).

Getting Started with UML State Machines and Event-Driven Programming 31

used
exit / (7)

QActive_postFIFO(Tunnel, MINE_DISABLED(MINE_ID(me)));

planted

(2) ̂
MINE_PLANT(x, y) / -

me->x = e->x; -
me->y = e->y;

TIME_TICK [me->x + GAME_MISSILE_SPEED_X
< GAME_SCREEN_WIDTH] /

me->x += GAME_MISSILE_SPEED_X;
postFIFO(Tunnel,

MISSILEJMG(me->x, me->y,
MISSILE_BMP));

0) A
-TIME_TICK [elsef

SHIPJMG [do_bitmaps_overlap(
MINE2.BMP,
me->x, me->y,

e->bmp, e->x, e->y)] /
postFIFO(Ship, HIT_MINE(2));

(4)

MISSILEJMG [do_bitmaps_overlap(
MINE2_MISSILE_BMP, ^

me->x, me->y,'
e->bmp, e->x, e->y)] /

postFIFO(Missile, DESTROYED_MINE(45));
J

exploding
entry / me->exp_ctr = 0;

TIME_TICK [(me->x >= GAME_SPEED_X)
&& (me->exp_ctr <16)]/

me->x -= GAME_SPEED_X;
++me->exp_ctr;
postFIFO(Tunnel, EXPLOSION(me->x + 3, me->y -4,

EXPLOSIONO_BMP + (me->exp_ctr» 2))); -TIME_TICK [else;
(5)

Figure 1.9: Mine2 state machine diagram.

1.6 Events in the "Fly ‘n’ Shoot” Game
The key events in the “Fly ‘n’ Shoot” game have been identified in the sequence
diagram in Figure 1.4. Other events have been invented during the state machine design
stage. In any case, you must have noticed that events consist really of two parts. The
part of the event called the signal conveys the type of the occurrence (what happened).
For example, the time_tick signal conveys the arrival of a time tick, whereas the
player_ship_move signal conveys that the player wants to move the Ship. An event
can also contain additional quantitative information about the occurrence in form of
event parameters. For example, the player_ship_move signal is accompanied by the
parameters (x, y) that contain the quantitative information as to where exactly to move
the Ship.

In QP, events are represented as instances of the QEvent structure provided by the
framework. Specifically, the QEvent structure contains the member sig, to represent
the signal of that event. Event parameters are added in the process of inheritance, as
described in the sidebar “Single Inheritance in C.”

32 Chapter 1

SINGLE IN H E R ITA N C E IN C

Inheritance is the ability to derive new structures based on existing structures in order to
reuse and organize code. You can implement single inheritance in C very simply by literally
embedding the base structure as the first member of the derived structure. For example,
Figure 1.10(A) shows the structure ScoreEvt derived from the base structure QEvent by
embedding the QEvent instance as the first member of ScoreEvt. To make this idiom better
stand out, I always name the base stmcture member super.

typedef struct QEventTag { ^
QSignal sig;

} QEvent;

me

typedef struct ScoreEvtTag { ^
QEvent super;
uint16_t score;

} ScoreEvt;

------►
Instance of the

base struct
super

Members
added in

the derived
struct

B

Figure 1.10: (A) Derivation o f structures in C, (B) memory alignment,
and (C) the UM L class diagram.

Getting Started with UML State Machines and Event-Driven Programming 33

As shown in Figure 1.10(B), such nesting of structures always aligns the data member super
at the beginning of every instance of the derived structure, which is actually guaranteed by
the C standard. Specifically, WG14/N1124 Section 6.7.2.1.13 says: “ ... A pointer to a struc
ture object, suitably converted, points to its initial member. There may be unnamed padding
within a structure object, but not at its beginning” [ISO/IEC 9899:TC2]. The alignment lets
you treat a pointer to the derived ScoreEvt structure as a pointer to the QEvent base struc
ture. All this is legal, portable, and guaranteed by the C standard. Consequently, you can
always safely pass a pointer to ScoreEvt to any C function that expects a pointer to
QEvent. (To be strictly correct in C, you should explicitly cast this pointer. In OOP such
casting is called upcasting and is always safe.) Therefore, all functions designed for the
QEvent structure are automatically available to the ScoreEvt structure as well as other
structures derived from QEvent. Figure 1.10(C) shows the UML class diagram depicting
the inheritance relationship between ScoreEvt and QEvent structures.

QP uses single inheritance quite extensively not just for derivation of events with parameters,
but also for derivation of state machines and active objects. Of course, the C++ version of QP
uses the native C++ support for class inheritance rather than “derivation of structures.”
You’ll see more examples of inheritance later in this chapter and throughout the book.

Because events are explicitly shared among most of the application components, it is
convenient to declare them in the separate header file game. h shown in Listing 1.2. The
explanation section immediately following the listing illuminates the interesting points.

Listing 1.2 Signals, event structures, and active object interfaces
defined in file gam e. h

(1) enum GameSignaIs { /* signals used in the game */
(2) TIME_TICK_SIG = Q_USER_SIG, /* published from tick ISR */

PLAYER_TRIGGER_SIG, /* published by Player (ISR) to trigger the Missile */
PLAYER_QUIT_SIG/ /* published by Player (ISR) to quit the game */
GAME_OVER_SIG, /* published by Ship when it finishes exploding */
/* insert other published signals here ... * /

(3) MAX_PUB_SIG, /* the last published signal */

PLAYER_SHIP_MOVE_SIG/ /* posted by Player (ISR) to the Ship to move it */
BLINK_TIMEOUT_SIG, /* signal for Tunnel's blink timeout event */
SCREEN_TIMEOUT_SIG, /* signal for Tunnel's screen timeout event */
TAKE_OFF_SIG, /* from Tunnel to Ship to grant permission to take of f */
HIT_WALL_SIG, /* from Tunnel to Ship when Ship hits the wall */
HIT_MINE_SIG, /* from Mine to Ship or Missile when it hits the mine */
SHIP_IMG_SIG, /* from Ship to the Tunnel to draw and check for hits */
MISSILE_IMG_SIG, /* from Missile the Tunnel to draw and check for hits */
MINE_IMG_SIG/ /* sent by Mine to the Tunnel to draw the mine */

Continued onto next page

34 Chapter 1

MISSILE_FIRE_SIG, /* sent by Ship to the Missile to fire */
DESTROYED_MINE_SIG, /* from Missile to Ship when Missile destroyed Mine */
EXPLOSION_SIG/ /* from any exploding object to render the explosion */
MINE_PLANT_SIG/ /* from Tunnel to the Mine to plant it */
MINE_DISABLED_SIG, /* from Mine to Tunnel when it becomes disabled */
MINE_RECYCLE_SIG, /* sent by Tunnel to Mine to recycle the mine */
SCORE_SIG, /* from Ship to Tunnel to adjust game level based on score */
/* insert other signals here ... * /

(4) MAX_SIG /* the last signal (keep always last) */
};

(5) typedef struct ObjectPosEvtTag {
(6) QEvent super;
(7) uint8_t x;
(8) uint8_t y;

} ObjectPosEvt;

/* extend the QEvent class */
/* the x-position of the object */
/* new y-position of the object */

typedef struct ObjectlmageEvtTag {
QEvent super; /* extend the QEvent class */
uint8_t x; /* the x-position of the object */
int8_t y; /* the y-position of the object */
uint8_t bmp; /* the bitmap ID representing the object */

} ObjectlmageEvt;

typedef struct MineEvtTag {
QEvent super; /* extend the QEvent class */
uint8_t id; /* the ID of the Mine */

} MineEvt;

typedef struct ScoreEvtTag {
QEvent super; /* extend the QEvent class */
uintl6_t score; /* the current score */

} ScoreEvt;

/* opaque pointers to active objects in the application */
(9) extern QActive * const AO_Tunnel;
(10) extern QActive * const AO_Ship;
(11) extern QActive * const AO_Missile;

/* active objects' "constructors" */
(12) void Tunnel_ctor (void) ;
(13) void Ship_ctor (void) ;
(14) void Missile_ctor (void) ;

(1) In QP, signals of events are simply enumerated constants. Placing all signals in
a single enumeration is particularly convenient to avoid inadvertent overlap
in the numerical values of different signals.

Getting Started with UML State Machines and Event-Driven Programming 35

(2) The application-level signals do not start from zero but rather are offset by the
constant q_u se r_s i g . This is because QP reserves the lowest few signals for
the internal use and provides the constant q_u s e r_sig as an offset from which
user-level signals can start. Also note that by convention, I attach the suffix
_sig to all signals so that I can easily distinguish signals from other constants. I
drop the suffix _SIG in the state diagrams to reduce the clutter.

(3) The constant m a x_pub_sig delimits the published signals from the rest. The
publish-subscribe event delivery mechanism consumes some RAM, which is
proportional to the number of published signals. I save some RAM by providing
the lower limit of published signals to QP (m a x_pub_sig) rather than the
maximum of all signals used in the application. (See also Listing 1.1(9)).

(4) The last enumeration m a x_sig indicates the maximum of all signals used in the
application.

(5) The event structure ObjectPosEvt defines a “class” of events that convey the
object’s position on the display in the event parameters.

(6) The structure ObjectPosEvt derives from the base structure QEvent, as
explained in the sidebar “Single Inheritance in C.”

(7,8) The structure Obj ectPosEvt adds parameters x and y, which are coordinates of
the object on the display.

NO TE

Throughout this book I use the following standard exact-width integer types (WG14/N843
C99 Standard, Section 7.18.1.1) [ISO/IEC 9899:TC2]:

Exact Size Unsigned Signed

8-bits uint8_t int8_t

16-bits u in tl 6_t in ti 6_t

32-bits uint32_t int32_t

If your (pre-standard) compiler does not provide the <stdint.h> header file, you can
always typedef the exact-width integer types using the standard C data types such as
signed/unsigned char, short, int, and long.

36 Chapter 1

(9-11) These global pointers represent active objects in the application and are used
for posting events directly to active objects. Because the pointers can be
initialized at compile time, I like to declare them const, so that they can be
placed in ROM. The active object pointers are “opaque” because they cannot
access the whole active object, only the part inherited from the QActive
structure. I’ll have more to say about this in the next section.

(12-14) These functions perform an early initialization of the active objects in the
system. They play the role of static “constructors,” which in C you need to
call explicitly, typically at the beginning of m ain () . (See also Listing 1.1
(10-12).)

1.6.1 Generating, Posting, and Publishing Events

The QF framework supports two types of asynchronous event exchange:

1. The simple mechanism of direct event posting supported through the functions
QActive_postFlFO () and QActive_postLlFO (), where the producer of an
event directly posts the event to the event queue of the consumer active object.

2. A more sophisticated publish-subscribe event delivery mechanism supported
through the functions QF_publish () and QActive_subscribe (), where the
producers of the events “publish” them to the framework, and the framework then
delivers the events to all active objects that had “subscribed” to these events.

In QF, any part of the system, not necessarily only the active objects, can produce
events. For example, interrupt service routines (ISRs) or device drivers can also produce
events. On the other hand, only active objects can consume events, because only active
objects have event queues.

N O TE

QF also provides “raw” thread-safe event queues (struct QEQueue), which can consume
events as well. These “raw” thread-safe queues cannot block and are intended to deliver
events to ISRs or device drivers. Refer to Chapter 7 for more details.

The most important characteristic of event management in QF is that the framework
passes around only pointers to events, not the events themselves. QF never copies the

Getting Started with UML State Machines and Event-Driven Programming 37

events by value (“zero-copy” policy); even in case of publishing events that often
involves multicasting the same event to multiple subscribers. The actual event instances
are either constant events statically allocated at compile time or dynamic events
allocated at runtime from one of the event pools that the framework manages. Listing 1.3
provides examples of publishing static events and posting dynamic events from the
ISRs of the “Fly ‘n’ Shoot” version for the Stellaris board (file <qp>\qpc\examples
\cortex-m3\vanilla\iar\game-ev-lm3s811\bsp.c). In Section 1.7.3 you will
see other examples of event posting from active objects in the state machine code.

Listing 1.3 Generating, posting, and publishing events from the ISRs
in b s p . c for the Stellaris board

(1) void ISR_SysTick (void) {
(2) static QEvent const tickEvt = { TIME_TICK_SIG, 0 };
(3) QF_publish(&tickEvt) ; /* publish the tick event to all subscribers */
(4) QF_tick() ; /* process all armed time events */

}
/* */

(5) void ISR_ADC (void) {
static uint32_t adcLPS = 0; /* Low-Pass-Filtered ADC reading */
static uint32_t wheel = 0; /* the last wheel position */
unsigned long tmp;

ADCIntClear(ADC_BASE, 3) ; /* clear the ADC interrupt */
(6) ADCSequenceDataGet(ADC_BASE, 3, &tmp) ; /* read the data from the ADC */

/* 1st order low-pass filter: time constant ~= 2An samples
* TF = (l/2An)/(z-((2An- 1)/2An)),
* e . g . , n=3, y(k+l) = y(k) - y (k) /8 + x(k) /8 => y += (x - y) /8
*/

(7) adcLPS+= (((int)tmp- (int)adcLPS+4) >>3); /* Low-Pass-Filter */

/* compute the next position of the wheel */
(8) tmp = (((1 « 10) - adcLPS) * (BSP_SCREEN_HEIGHT - 2)) » 10;

if (tmp != wheel) { /* did the wheel position change? */
(9) ObjectPosEvt *ope = Q_NEW(ObjectPosEvt, PLAYER_SHIP_MOVE_SIG);
(10) ope->x = (uint8_t)GAME_SHIP_X; /* x-position is fixed */
(11) ope->y = (uint8_t)tmp;
(12) QActive_postFIFO (AO_ship, (QEvent *)ope) ; /* post to the Ship AO */

wheel = tmp; /* save the last position of the wheel */
}

38 Chapter 1

(1) In the case of the Stellaris board, the function lSR_SysTick() services the
system clock tick ISR generated by the Cortex-M3 system tick timer.

(2) The t im e_ti c k event never changes, so it can be statically allocated just
once. This event is declared as const, which means that it can be placed in
ROM. The initializer list for this event consists of the signal t i m e_t ic k_sig
followed by zero. This zero informs the QF framework that this event is
static and should never be recycled to an event pool.

(3) The ISR calls the framework function QF_publish (), which takes the
pointer to the tickEvt event to deliver to all subscribers.

(4) The ISR calls the function QF_tick (), in which the framework manages
the armed time events.

(5) The function isr_adc () services the ADC conversions, which ultimately
deliver the position of the Ship.

(6) The ISR reads the data from the ADC.

(7,8) A low-pass filter is applied to the raw ADC reading and the potentiometer
wheel position is computed.

(9) The QF macro Q_NEW(ObjectPosEvt, PLAYER_SHlP_MOVE_SIG)
dynamically allocates an instance of the objectPosEvt event from an event
pool managed by QF. The macro also performs the association between the
signal PLAYER_SHIP_M0VE_SIG and the allocated event. The Q_n e w ()
macro returns the pointer to the allocated event.

N O TE

The p l a y e r _ s h i p _ m o v e (x , y) event is an example of an event with changing parameters.
In general, such an event cannot be allocated statically (like the t i m e _ t i c k event at label
(2)) because it can change asynchronously next time the ISR executes. Some active objects
in the system might still be referring to the event via a pointer, so the event should not be
changing. Dynamic event allocation of QF solves all such concurrency issues because every
time a new event is allocated. QF then recycles the dynamic events after it determines that all
active objects are done with accessing the events.

(10,11) The x and y parameters of the event are assigned.

(12) The dynamic event is posted directly to the Ship active object.

Getting Started with UML State Machines and Event-Driven Programming 39

1.7 Coding Hierarchical State Machines
Contrary to widespread misconceptions, you don’t need big design automation tools to
translate hierarchical state machines (UML statecharts) into efficient and highly
maintainable C or C++. This section explains how to hand-code the Ship state machine
from Figure 1.6 with the help of the QF real-time framework and the QEP hierarchical
processor, which is also part of the QP event-driven platform. Once you know how
to code this state machine, you know how to code them all.

The source code for the Ship state machine is found in the file s h ip . c located either in
the DOS version or the Stellaris version of the “Fly ‘n’ Shoot” game. I break the
explanation of this file into three steps.

1.7.1 Step 1: Defining the Ship Structure

In the first step you define the Ship data structure. Just as in the case of events, you use
inheritance to derive the Ship structure from the framework structure QActive (see
the sidebar “Single Inheritance in C”). Creating this inheritance relationship ties the
Ship structure to the QF framework.

The main responsibility of the QActive base structure is to store the information about the
current active state of the state machine as well as the event queue and priority level of
the Ship active object. In fact, QActive itself derives from a simpler QEP structure QHsm
that represents just the current active state of a hierarchical state machine. On top of that
information, almost every state machine must also store other “extended-state” information.
For example, the Ship object is responsible for maintaining the Ship position as well as
the score accumulated in the game. You supply this additional information by means of data
members enlisted after the base structure member super, as shown in Listing 1.4.

Listing 1 .4 Deriving the Ship structure in file ship. c
(i) tinclude "qp_port.h" /* the QP port */
(2) #include "bsp.h" /* Board Support Package */
(3) # include "game.h " /* this application */

/* local objects------- ---*/
(4) typedef struct ShipTag {
(5) QActive super; /* derive from the QActive struct */
(6) uint8_t x; /* x-coordinate of the Ship position on the display */
(7) uint8_t y; /* y-coordinate of the Ship position on the display */
(8) uint8_t exp_ctr; /* explosion counter, used to animate explosions */

Continued onto next page

40 Chapter 1

(9) uintl6_t score; /* running score of the game */
(10) } Ship; /* the typedef-ed name for the Ship struct */

/* state handler functions. . . */
(11) static QState Ship_active (Ship *me, QEvent const *e) ;
(12) static QState Ship_parked (Ship *me, QEvent const *e) ;
(13) static QState Ship_flying (Ship *me, QEvent const *e) ;
(14) static QState Ship_exploding (Ship *me, QEvent const *e) ;

(15) static QState Ship_initial (Ship *me, QEvent const *e) ;

(16) static Ship l_ship; /* the sole instance of the Ship active object */

/* global objects---*/
(17) QActive * const AO_ship = (QActive *)&l_ship; /* opaque pointer to Ship AO */

(1) Every application-level C file that uses the QP platform must include the
q p _ p o rt. h header file.

(2) The b s p . h header file contains the interface to the Board Support Package.

(3) The game. h header file contains the declarations of events and other facilities
shared among the components of the application (see Listing 1.2).

(4) This structure defines the Ship active object.

N O TE

I like to keep active objects, and indeed all state machine objects (such as Mines), strictly
encapsulated. Therefore, I don’t put the state machine structure definitions in header files; rather,
I define them right in the implementation file, such as s h i p . c . That way I can be sure that the
internal data members of the S h ip structure are not known to any other parts of the application.

(5) The Ship active object structure derives from the framework structure
QActive, as described in the sidebar “Single Inheritance in C.”

(6,7) The x and y data members represent the position of the Ship on the display.

(8) The exp__ctr member is used for pacing the explosion animation (see also the
“exploding” state in the Ship state diagram in Figure 1.6).

(9) The score member stores the accumulated score in the game.

Getting Started with UML State Machines and Event-Driven Programming 41

(10) I use the ty p e d e f to define the shorter name Ship equivalent to
s t r u c t ShipTag.

(11-14) These four functions are called state-handier functions because they correspond
one to one to the states of the Ship state machine shown in Figure 1.6. For
example, the Ship_active () function represents the “active” state. The
QEP event processor calls the state-handier functions to realize the UML
semantics of state machine execution. All state-handier functions have the same
signature. A state-handier function takes the state machine pointer and the
event pointer as arguments and returns the status of the operation back to the
event processor—for example whether the event was handled or not. The return
type QState of state-handier functions is typedef-ed to uint8_t as
QState in the header file <qp>\qpc\include\qep.h.

NO TE

I use a simple naming convention to strengthen the association between the structures and the
functions designed to operate on these structures. First, I name the functions by combining
the typedef’ed structure name with the name of the operation (e.g., Ship_active). Sec
ond, I always place the pointer to the structure as the first argument of the associated func
tion, and I always name this argument "me" (e.g., Ship_active(Ship *me, ...)).

(15) In addition to state-handier functions, every state machine must declare the
initial pseudostate, which QEP invokes to execute the topmost initial
transition (see Figure 1.6(1)). The initial pseudostate handler has a signature
identical to the regular state-handier function.

(16) In this line I statically allocate the storage for the ship active object. Note
that the object l_ship is defined as static so that it is accessible only
locally at the file scope of the ship. c file.

(17) In this line I define and initialize the global pointer AO_Ship to the Ship
active object (see also Listing 1.2(10)). This pointer is “opaque” because it
treats the Ship object as the generic QActive base structure rather than the
specific Ship structure. The power of an “opaque” pointer is that it allows me
to completely hide the definition of the Ship structure and make it
inaccessible to the rest of the application. Still, the other application
components can access the Ship object to post events directly to it via the
QActive_postFIFO (QActive *me, QEvent const *e) function.

42 Chapter 1

1.7.2 Step 2: Initializing the State Machine

The state machine initialization is divided into the following two steps for increased
flexibility and better control of the initialization timeline:

1. The state machine “constructor”; and

2. The top-most initial transition.

The state machine “constructor,” such as ship_ctor (), intentionally does not execute
the topmost initial transition defined in the initial pseudostate because at that time
some vital objects can be missing and critical hardware might not be properly initialized
yet.3 Instead, the state machine “constructor” merely puts the state machine in the
initial pseudostate. Later, the user code must trigger the topmost initial transition
explicitly, which happens actually inside the function QActive_start () (see
Listing 1.1(18-20)). Listing 1.5 shows the instantiation (the “constructor” function)
and initialization (the initial pseudostate) of the Ship active object.

Listing 1.5 Instantiation and initialization o f the Ship active object in ship. c
(1) void Ship_ctor(void) { /‘ instantiation*/
(2) Ship *me = &l_ship;
(3) QActive_ctor(&me->super, (QStateHandler)&Ship_initial);
(4) me->x = GAME_SHIP_X;
(5) me->y = GAME_SHIP_Y;

>
/* */

(6) QState Ship_initial (Ship *me, QEvent const *e) { /* initialization */
(7) QActive_subscribe((QActive *)me, TIME_TICK_SIG);
(8) QActive_subscribe((QActive *)me, PLAYER_TRIGGER_SIG);

(9) return Q_TRAN(&Ship_active) ; /* top-most initial transition */
>

(1) The global function Ship_ctor () is prototyped in game.h and called at the
beginning of main () .

(2) The “me” pointer points to the statically allocated Ship object (see Listing 1.4(16)).

3 In C++, the static constructors run even before main ().

