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Preface

To create a usable piece of software, you have to fight for every fix, every feature, every little 
accommodation that will get one more person up the curve. There are no shortcuts. Luck is involved, but 
you don’t win by being lucky, it happens because you fought for every inch.
— Dave Winer

For many years, I had been looking for a book or a magazine article that would describe 
a truly practical way of coding modem state machines (UML1 statecharts) in a 
mainstream programming language such as C or C++. I have never found such a 
technique.

In 2002,1 wrote Practical Statecharts in C/C++: Quantum Programming for 
Embedded Systems (PSiCC), which was the first book to provide what had been missing 
thus far: a compact, efficient, and highly maintainable implementation of UML state 
machines in C and C++ with full support for hierarchical nesting of states. PSiCC was 
also the first book to offer complete C and C++ source code of a generic, state machine- 
based, real-time application framework for embedded systems.

To my delight, PSiCC continues to be one of the most popular books about 
statecharts and event-driven programming for embedded systems. Within a year of 
its publication, PSiCC was translated into Chinese, and a year later into Korean.
I’ve received and answered literally thousands of e-mails from readers who successfully 
used the published code in consumer, medical, industrial, wireless, networking, 
research, defense, robotics, automotive, space exploration, and many other 
applications worldwide. In 2003 I started to speak about the subject matter at

1 UML stands for Unified Modeling Language and is the trademark of Object Management Group.
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the Embedded Systems Conferences on both U.S. coasts. I also began to consult to 
companies. All this gave me additional numerous opportunities to find out firsthand 
how engineers actually use the published design techniques in a wide range of 
application areas.

What you’re holding in your hands is the second edition of PSiCC. It is the direct result 
of the plentiful feedback I’ve received as well as five years of the “massive parallel 
testing” and scrutiny that has occurred in the trenches.

W hat’s New in the Second Edition?
As promised in the first edition of PSiCC, I continued to advance the code and refine 
the design techniques. This completely revised second edition incorporates these 
advancements as well the numerous lessons learned from readers.

New Code

First of all, this book presents an entirely new version of the software, which is now 
called Quantum Platform (QP) and includes the hierarchical event processor (QEP) and 
the real-time framework (QF) as well as two new components. QP underwent several 
quantum leaps of improvement since the first publication six years ago. The 
enhancements introduced since the first edition of PSiCC are too numerous to list here, 
but the general areas of improvements include greater efficiency and testability and 
better portability across different processors, compilers, and operating systems. The two 
new QP components are the lightweight, preemptive, real-time kernel (QK) described 
in Chapter 10 and the software-tracing instrumentation (QS) covered in Chapter 11. 
Finally, I’m quite excited about the entirely new, ultralight, reduced-feature version of 
QP called QP-nano that scales the approach down to the lowest-end 8- and 16-bit 
MCUs. I describe QP-nano in Chapter 12.

Open Source and Dual Licensing

In 2004,1 decided to release the entire QP code as open source under the terms of the 
GNU General Public License (GPL) version 2, as published by the Free Software 
Foundation. Independent of the open-source licensing, the QP source code is also 
available under the terms of traditional commercial licenses, which expressly supersede 
the GPL and are specifically designed for users interested in retaining the proprietary
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status of their applications based on QP. This increasingly popular strategy of 
combining open source with commercial licensing, called dual licensing, is explained 
in more detail in Appendix A.

C as the Primary Language of Exposition

Most of the code samples in the first edition of PSiCC pertained to the C++ 
implementation. However, as I found out in the field, many embedded software 
developers come from a hardware background (mostly EE) and are often unnecessarily 
intimidated by C++.

In this edition, I decided to exactly reverse the roles of C and C++. As before, the 
companion Website contains the complete source code for both C and C++ versions. 
But now, most of the code examples in the text refer to the C version, and the C++ code 
is discussed only when the differences between it and the C implementation become 
nontrivial and important.

As far as the C source code is concerned, I no longer use the C+ object-oriented 
extension that I’ve applied and documented in the first edition. The code is still 
compatible with C+, but the C+ macros are not used.

More Examples

Compared to the first edition, this book presents more examples of event-driven 
systems and the examples are more complete. I made a significant effort to come up 
with examples that are not utterly trivial yet don’t obscure the general principles in too 
many details. I also chose examples that don’t require any specific domain knowledge, 
so I don’t need to waste space and your attention explaining the problem specification.

Preemptive Multitasking Support

An event-driven infrastructure such as QP can work with a variety of concurrency 
mechanisms, from a simple “superloop” to fully preemptive, priority-based 
multitasking. The previous version of QP supported the simple nonpreemptive 
scheduling natively but required an external RTOS to provide preemptive multitasking, 
if such capability was required.

In Chapter 10,1 describe the new real-time kernel (QK) component that provides 
deterministic, fully preemptive, priority-based multitasking to QP. QK is a very special,
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super-simple, run-to-completion, single-stack kernel that perfectly matches the 
universally assumed run-to-completion semantics required for state machine execution.

Testing Support

A running application built of concurrently executing state machines is a highly 
structured affair where all important system interactions funnel through the event- 
driven framework that ties all the state machines together. By instrumenting just this 
tiny “funnel” code, you can gain unprecedented insight into the live system. In fact, the 
software trace data from an instrumented event-driven framework can tell you much 
more about the application than any traditional real-time operating system (RTOS) 
because the framework “knows” so much more about the application.

Chapter 11 describes the new QS (“spy”) component that provides a comprehensive 
software-tracing instrumentation to the QP event-driven platform. The trace data 
produced by the QS component allows you to perform a live analysis of your running 
real-time embedded system with minimal target system resources and without stopping 
or significantly slowing down the code. Among other things, you can reconstruct 
complete sequence diagrams and detailed, timestamped state machine activities for all 
active objects in the system. You can monitor all event exchanges, event queues, 
event pools, time events (timers), and preemptions and context switches. You can also 
use QS to add your own instrumentation to the application-level code.

Ultra-Lightweight QP-nano Version

The event-driven approach with state machines scales down better than any 
conventional real-time kernel or RTOS. To address really small embedded systems, a 
reduced QP version called QP-nano implements a subset of features supported in QP/C 
or QP/C++. QP-nano has been specifically designed to enable event-driven 
programming with hierarchical state machines on low-end 8- and 16-bit 
microcontrollers (MCUs), such as AVR, MSP430, 8051, PICmicro, 68HC(S)08, M16C, 
and many others. Typically, QP-nano requires around 1-2KB of ROM and just a few 
bytes of RAM per state machine. I describe QP-nano in Chapter 12.

Removed Quantum Metaphor

In the first edition of PSiCC, I proposed a quantum-mechanical metaphor as a way of 
thinking about the event-driven software systems. Though I still believe that this
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analogy is remarkably accurate, it hasn’t particularly caught on with readers, even 
though providing such a metaphor is one of the key practices of eXtreme Programming 
(XP) and other agile methods.

Respecting readers’ feedback, I decided to remove the quantum metaphor from this 
edition. For historical reasons, the word quantum still appears in the names of the 
software components, and the prefix Q is consistently used in the code for type and 
function names to clearly distinguish the QP code from other code, but you don’t need 
to read anything into these names.

W hat You Need to  Use QP
Most of the code supplied with this book is highly portable C or C++, independent 
of any particular CPU, operating system, or compiler. However, to focus the discussion 
I provide executable examples that run in a DOS console under any variant of 
Windows. I’ve chosen the legacy 16-bit DOS as a demonstration platform because it 
allows programming a standard x86-based PC at the bare-metal level. Without leaving 
your desktop, you can work with interrupts, directly manipulate CPU registers, and 
directly access the I/O space. No other modem 32-bit development environment for the 
standard PC allows this much so easily.

The additional advantage of the legacy DOS platform is the availability of mature and 
free tools. To that end, I have compiled the examples with the legacy Borland Turbo 
C++ 1.01 toolset, which is available for 2ifree download from Borland.

To demonstrate modem embedded systems programming with QP, I also provide 
examples for the inexpensive2 ARM Corterx-M3-based Stellaris EV-LM3S811 
evaluation kit form Luminary Micro. The Cortex-M3 examples use the exact same 
source code as the DOS counterparts and differ only in the board support package 
(BSP). The Cortex-M3 examples require the 32KB-limited KickStart edition of the IAR 
EWARM toolset, which is included in the Stellaris kit and is also available for a free 
download from IAR.

Finally, some examples in this book run on Linux as well as any other POSIX- 
compliant operating system such as BSD, QNX, Max OS X, or Solaris. You can also 
build the Linux examples on Windows under Cygwin.

2 At the time of this writing, the EKIEV-LM3S811 kit was available for $49 (www. lu m in arym icro . com).

http://www.luminarymicro.com
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The companion Website to this book at www. quantum-leaps . com/psicc2 provides 
the links for downloading all the tools used in the book, as well as other resources. 
The Website also contains links to dozens of QP ports to various CPUs, operating 
systems, and compilers. Keep checking this Website; new ports are added frequently.

Intended Audience
This book is intended for the following software developers interested in event-driven 
programming and modem state machines:

• Embedded programmers and consultants will find a complete, ready-to-use, 
event-driven infrastmcture to develop applications. The book describes both 
state machine coding strategies and, equally important, a compatible real-time 
framework for executing concurrent state machines. These two elements are 
synergistically complementary, and one cannot reach its full potential without 
the other.

• Embedded developers looking for a real-time kernel or RTOS will find that the 
QP event-driven platform can do everything one might expect from an RTOS 
and that, in fact, QP actually contains a fully preemptive real-time kernel as 
well as a simple cooperative scheduler.

• Designers of ultra low-power systems, such as wireless sensor networks, will 
find how to scale down the event-driven, state machine-based approach to fit the 
tiniest MCUs. The ultra-light QP-nano version (Chapter 12) combines a 
hierarchical event processor, a real-time framework, and either a cooperative or 
a fully preemptive kernel in just 1-2KB of ROM.

• On the opposite end of the complexity spectrum, designers of very large-scale, 
massively parallel server applications will find that the event-driven approach 
combined with hierarchical state machines scales up easily and is ideal for 
managing very large numbers of stateful components, such as client sessions. 
As it turns out, the “embedded” design philosophy of QP provides the critical 
per-component efficiency both in time and space.

• The open-source community will find that QP complements other open-source 
software, such as Linux or BSD. The QP port to Linux (and more generally to 
POSIX-compliant operating systems) is described in Chapter 8.

http://www.quantum-leaps.com/psicc2
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• GUI developers and computer game programmers using C or C++ will find that 
QP very nicely complements GUI libraries. QP provides the high-level “screen 
logic” based on hierarchical state machines, whereas the GUI libraries handle 
low-level widgets and rendering of the images on the screen.

• System architects might find in QP a lightweight alternative to heavyweight 
design automation tools.

• Users of design automation tools will gain deeper understanding of the inner 
workings of their tools. The glimpse “under the hood” will help them use the 
tools more efficiently and with greater confidence.

Due to the code-centric approach, this book will primarily appeal to software 
developers tasked with creating actual, working code, as opposed to just modeling. 
Many books about UML already do a good job of describing model-driven analysis 
and design as well as related issues, such as software development processes and 
modeling tools.

This book does not provide yet another CASE tool. Instead, this book is about practical, 
manual coding techniques for hierarchical state machines and about combining state 
machines into robust event-driven systems by means of a real-time framework.

To benefit from the book, you should be reasonably proficient in C or C++ and have a 
general understanding of computer architectures. I am not assuming that you have 
prior knowledge of UML state machines, and I introduce the underlying concepts in 
a crash course in Chapter 2. I also introduce the basic real-time concepts of 
multitasking, mutual exclusion, and blocking in Chapter 6.

The Companion Websites
This book has a companion Website at www.quantum-leaps. com /psicc2 that 
contains the following information:

• Source code downloads for QP/C, QP/C++, and QP-nano

• All QP ports and examples described in the book

• Reference manuals for QP/C, QP/C++, and QP-nano in HTML and CHM file
formats

• Links for downloading compilers and other tools used in the book

http://www.quantum-leaps.com/psicc2
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• Selected reviews and reader feedback

• Errata

Additionally, the Quantum Leaps Website at www. quan tum -leaps. com has been 
supporting the QP user community since the publication of the first edition of PSiCC in 
2002. This Website offers the following resources:

• Latest QP downloads

•  QP ports and development kits

• Programmer manuals

• Application notes

• Resources and goodies such as Visio stencils for drawing UML diagrams, 
design patterns, links to related books and articles, and more

• Commercial licensing and technical support information

• Consulting and training in the technology

• News and events

• Discussion forum

• Newsletter

• Blog

• Links to related Websites

• And more

Finally, QP is also present on SourceForge.net—the world’s largest repository of open 
source code and applications. The QP project is located at h t t p s : / /s o u rc e fo rg e . 
n e t /p r o je c ts /q p c / .

http://www.quantum-leaps.com
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Introduction

Almost all computer systems in general, and embedded systems in particular, are event- 
driven, which means that they continuously wait for the occurrence of some external or 
internal event such as a time tick, an arrival of a data packet, a button press, or a mouse click. 
After recognizing the event, such systems react by performing the appropriate computation 
that may include manipulating the hardware or generating “soft” events that trigger other 
internal software components. (That’s why event-driven systems are alternatively called 
reactive systems.) Once the event handling is complete, the software goes back to waiting for 
the next event.

You are undoubtedly accustomed to the basic sequential control, in which a program 
waits for events in various places in its execution path by either actively polling for 
events or passively blocking on a semaphore or other such operating system 
mechanism. Though this approach to programming event-driven systems is functional 
in many situations, it doesn’t work very well when there are multiple possible 
sources of events whose arrival times and order you cannot predict and where it is 
important to handle the events in a timely manner. The problem is that while a 
sequential program is waiting for one kind of event, it is not doing any other work and 
is not responsive to other events.

Clearly, what we need is a program structure that can respond to a multitude of possible 
events, any of which can arrive at unpredictable times and in an unpredictable sequence. 
Though this problem is very common in embedded systems such as home appliances, 
cell phones, industrial controllers, medical devices and many others, it is also very 
common in modem desktop computers. Think about using a Web browser, a word 
processor, or a spreadsheet. Most of these programs have a modem graphical user 
interface (GUI), which is clearly capable of handling multiple events. All developers of
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modem GUI systems, and many embedded applications, have adopted a common program 
stmcture that elegantly solves the problem of dealing with many asynchronous events 
in a timely manner. This program stmcture is generally called event-driven programming.

Inversion o f Control
Event-driven programming requires a distinctly different way of thinking than 
conventional sequential programs, such as “superloops” or tasks in a traditional RTOS. 
Most modem event-driven systems are structured according to the Hollywood principle, 
which means “Don’t call us, we’ll call you.” So an event-driven program is not in 
control while waiting for an event; in fact, it’s not even active. Only once the event 
arrives, the program is called to process the event and then it quickly relinquishes the 
control again. This arrangement allows an event-driven system to wait for many events 
in parallel, so the system remains responsive to all events it needs to handle.

This scheme has three important consequences. First, it implies that an event-driven 
system is naturally divided into the application, which actually handles the events, 
and the supervisory event-driven infrastructure, which waits for events and dispatches 
them to the application. Second, the control resides in the event-driven infrastructure, so 
from the application standpoint the control is inverted compared to a traditional 
sequential program. And third, the event-driven application must return control after 
handling each event, so the execution context cannot be preserved in the stack-based 
variables and the program counter as it is in a sequential program. Instead, the 
event-driven application becomes a state machine, or actually a set of collaborating 
state machines that preserve the context from one event to the next in the 
static variables.

The Importance o f the Event-Driven Framework
The inversion of control, so typical in all event-driven systems, gives the event-driven 
infrastructure all the defining characteristics of an application framework rather than 
a toolkit. When you use a toolkit, such as a traditional operating system or an RTOS, you 
write the main body of the application and call the toolkit code that you want to reuse. 
When you use a framework, you reuse the main body and write the code it calls.

Another important point is that an event-driven framework is actually necessary if you 
want to combine multiple event-driven state machines into systems. It really takes more 
than “just” an API, such as a traditional RTOS, to execute concurrent state machines.
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State machines require an infrastructure (framework) that provides, at a minimum, 
mn-to-completion (RTC) execution context for each state machine, queuing of events, 
and event-based timing services. This is really the pivotal point. State machines cannot 
operate in a vacuum and are not really practical without an event-driven framework.

Active Object Computing Model
This book brings together two most effective techniques of decomposing event-driven 
systems: hierarchical state machines and an event-driven framework. The combination 
of these two elements is known as the active object computing model. The term active 
object comes from the UML and denotes an autonomous object engaging other 
active objects asynchronously via events. The UML further proposes the UML variant 
of statecharts with which to model the behavior of event-driven active objects.

In this book, active objects are implemented by means of the event-driven framework 
called QF, which is the main component of the QP event-driven platform. The QF 
framework orderly executes active objects and handles all the details of thread-safe 
event exchange and processing within active objects. QF guarantees the universally 
assumed RTC semantics of state machine execution, by queuing events and dispatching 
them sequentially (one at a time) to the internal state machines of active objects.

The fundamental concepts of hierarchical state machines combined with an event- 
driven framework are not new. In fact, they have been in widespread use for at least two 
decades. Virtually all commercially successful design automation tools on the market 
today are based on hierarchical state machines (statecharts) and incorporate internally a 
variant of an event-driven, real-time framework similar to QF.

The Code-Centric Approach
The approach I assume in this book is code-centric, minimalist, and low-level. This 
characterization is not pejorative; it simply means that you’ll learn how to map 
hierarchical state machines and active objects directly to C or C++ source code, without 
big tools. The issue here is not a tool—the issue is understanding.

The modem design automation tools are truly powerful, but they are not for everyone. 
For many developers the tool simply can’t pull its own weight and gets abandoned. For 
such developers, the code-centric approach presented in this book can provide a 
lightweight alternative to the heavyweight tools.
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Most important, though, no tool can replace conceptual understanding. For example, 
determining which exit and entry actions fire in which sequence in a nontrivial state 
transition is not something you should discover by running a tool-supported animation 
of your state machine. The answer should come from your understanding of the 
underlying state machine implementation (discussed in Chapters 3 and 4). Even if 
you later decide to use a design automation tool and even if that particular tool would 
use a different statechart implementation technique than discussed in this book, you 
will still apply the concepts with greater confidence and more efficiency because of 
your understanding of the fundamental mechanisms at a low level.

In spite of many pressures from existing users, I persisted in keeping the QP event- 
driven platform lean by directly implementing only the essential elements of the bulky 
UML specification and supporting the niceties as design patterns. Keeping the core 
implementation small and simple has real benefits. Programmers can learn and deploy 
QP quickly without large investments in tools and training. They can easily adapt 
and customize the framework’s source code to the particular situation, including 
to severely resource-constrained embedded systems. They can understand, and indeed 
regularly use, all the provided features.

Focus on Real-Life Problems
You can’t just look at state machines and the event-driven framework as a collection of 
features, because some of the features will make no sense in isolation. You can only use 
these powerful concepts effectively if you are thinking about design, not simply coding. 
And to understand state machines that way, you must understand the problems with 
event-driven programming in general.

This book discusses event-driven programming problems, why they are problems, 
and how state machines and active object computing model can help. Thus, I begin 
most chapters with the programming problems the chapter will address. In this way,
I hope to move you, a little at a time, to the point where hierarchical state machines 
and the event-driven framework become a much more natural way of solving the 
problems than the traditional approaches such as deeply nested i f s  and e l s e s  for 
coding stateful behavior or passing events via semaphores or event flags of a 
traditional RTOS.
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Object Orientation
Even though I use C as the primary programming language, I also extensively use 
object-oriented design principles. Like virtually all application frameworks, QP uses the 
basic concepts of encapsulation (classes) and single inheritance as the primary 
mechanisms of customizing, specializing, and extending the framework to a particular 
application. Don’t worry if these concepts are new to you, especially in C. At the C 
language level, encapsulation and inheritance become just simple coding idioms, which 
I introduce in Chapter 1. I specifically avoid polymorphism in the C version 
because implementing late binding in C is a little more involved. Of course, the C++ 
version uses classes and inheritance directly and QP/C++ applications can use 
polymorphism.

More Fun
When you start using the techniques described in this book, your problems will change. 
You will no longer struggle with 15 levels of convoluted i f - e l s e  statements, and you 
will stop worrying about semaphores or other such low-level RTOS mechanisms. 
Instead, you’ll start thinking at a higher level of abstraction about state machines, 
events, and active objects. After you experience this quantum leap you will find, 
as I did, that programming can be much more fun. You will never want to go back to 
the “spaghetti” code or the raw RTOS.

How to Contact Me
If you have comments or questions about this book, the code, or event-driven 
programming in general, I’d be pleased to hear from you. Please e-mail me at
miro@quantum-leaps.com.

mailto:miro@quantum-leaps.com
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PART I UM L STATE M ACHINES

State machines are the best-known formalism for specifying and implementing event- 
driven systems that must react to incoming events in a timely fashion. The advanced 
UML state machines represent the current state of the art in state machine theory 
and notation.

Part I of this book shows practical ways of using UML state machines in event-driven 
applications to help you produce efficient and maintainable software with well- 
understood behavior, rather than creating “spaghetti” code littered with convoluted IFs 
and ELSEs. Chapter 1 presents an overview of the method based on a working example.

http://www.CartoonStock.comPARTIUMLSTATEMACHINESStatemachinesarethebest-knownformalismforspecifyingandimplementingevent-drivensystemsthatmustre


2 Part I

Chapter 2 introduces state machine concepts and the UML notation. Chapter 3 shows 
the standard techniques of coding state machines, and Chapter 4 describes a generic 
hierarchical event processor. Part I concludes with Chapter 5, which presents a mini
catalogue of five state design patterns. You will learn that UML state machines are a 
powerful design method that you can use, even without complex code-synthesizing 
tools.



C H A P T E R  1

Getting Started with UML State 
Machines and Event-Driven 

Programming

It is common sense to take a method and try it. I f  it fails, admit it frankly and try another. But above all, 

try something.

— Franklin D. Roosevelt

This chapter presents an example project implemented entirely with UML state 
machines and the event-driven paradigm. The example application is an interactive 
“Fly ‘n’ Shoot”-type game, which I decided to include early in the book so that you can 
start playing (literally) with the code as soon as possible. My aim in this chapter is 
to show the essential elements of the method in a real, nontrivial program, but without 
getting bogged down in details, rules, and exceptions. At this point, I am not trying 
to be complete or even precise, although this example as well as all other examples in 
the book is meant to show a good design and the recommended coding style. I don’t 
assume that you know much about UML state machines, UML notation, or event-driven 
programming. I will either briefly introduce the concepts, as needed, or refer you to 
the later chapters of the book for more details.

The example “Fly ‘n’ Shoot” game is based on the Quickstart application provided in source 
code with the Stellaris EV-LM3S811 evaluation kit from Luminary Micro [Luminary 06]. 
I was trying to make the “Fly ‘n’ Shoot” example behave quite similarly to the original 
Luminary Micro Quickstart application so that you can directly compare the event-driven 
approach with the traditional solution to essentially the same problem specification.
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1.1 Installing the Accompanying Code
The companion Website to this book at www.quantum-leaps.com/psicc2 contains the 
self-extracting archive with the complete source code of the QP event-driven platform 
and all executable examples described in this book; as well as documentation, 
development tools, resources, and more. You can uncompress the archive into any 
directory. The installation directory you choose will be referred henceforth as the QP 
Root Directory <qp>.

N O TE

Although in the text I mostly concentrate on the C implementation, the accompanying Web
site also contains the equivalent C++ version of virtually every element available in C. The 
C++ code is organized in exactly the same directory tree as the corresponding C code, except 
you need to look in the < q p > \q p c p p \... directory branch.

Specifically to the “Fly ‘n’ Shoot” example, the companion code contains two versions1 
of the game. I provide a DOS version for the standard Windows-based PC (see 
Figure 1.1) so that you don’t need any special embedded board to play the game and 
experiment with the code.

N O TE

I ’ve chosen the legacy 16-bit DOS platform because it allows programming a standard PC at 
the bare-metal level. Without leaving your desktop, you can work with interrupts, directly 
manipulate CPU registers, and directly access the I/O space. No other modem 32-bit devel
opment environment for the standard PC allows this much so easily. The ubiquitous PC run
ning under DOS (or a DOS console within any variant of Windows) is as close as it gets to 
emulating embedded software development on the commodity 80x86 hardware. Addition
ally, you can use free, mature tools, such as the Borland C/C++ compiler.

I also provide an embedded version for the inexpensive2 ARM Cortex-M3-based 
Stellaris EV-LM3S811 evaluation kit (see Figure 1.2). Both the PC and Cortex-M3

1 The accompanying code actually contains many more versions of the “Fly ‘n’ Shoot” game, but they are 
not relevant at this point.
2 At the time of this writing the EV-LM3S811 kit was available for $49 (www.luminarymicro.com).

http://www.quantum-leaps.com/psicc2
http://www.luminarymicro.com
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versions use the exact same source code for all application components and differ only 
in the Board Support Package (BSP).

1.2 Let’s Play
The following description of the “Fly ‘n’ Shoot” game serves the dual purpose of 
explaining how to play the game and as the problem specification for the purpose of 
designing and implementing the software later in the chapter. To accomplish these two 
goals I need to be quite detailed, so please bear with me.

Your objective in the game is to navigate a spaceship through an endless horizontal 
tunnel with mines. Any collision with the tunnel or the mine destroys the ship. You can 
move the ship up and down with Up-arrow and Down-arrow keys on the PC (see 
Figure 1.1) or via the potentiometer wheel on the EV-LM3S811 board (see Figure 1.2). 
You can also fire a missile to destroy the mines in the tunnel by pressing the Spacebar 
on the PC or the User button on the EV-LM3S811 board. Score accumulates for 
survival (at the rate of 30 points per second) and destroying the mines. The game lasts 
for only one ship.

The game starts in a demo mode, where the tunnel walls scroll at the normal pace 
from right to left and the “Press Button” text flashes in the middle of the screen.
You need to generate the “fire missile” event for the game to begin (press Spacebar 
on the PC or the User button on the EV-LM3S811 board).

You can have only one missile in flight at a time, so trying to fire a missile while it is 
already flying has no effect. Hitting the tunnel wall with the missile brings you no 
points, but you earn extra points for destroying the mines.

The game has two types of mines with different behavior. In the original Luminary 
Quickstart application both types of mines behave the same, but I wanted to 
demonstrate how state machines can elegantly handle differently behaving mines.

Mine type 1 is small, but can be destroyed by hitting any of its pixels with the missile. 
You earn 25 points for destroying a mine type 1. Mine type 2 is bigger but is nastier 
in that the missile can destroy it only by hitting its center, not any of the “tentacles.” 
Of course, the ship is vulnerable to the whole mine. You earn 45 points for destroying 
a mine type 2.

When you crash the ship, by either hitting a wall or a mine, the game ends and displays 
the flashing “Game Over” text as well as your final score. After 5 seconds of flashing,
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the “Game Over” screen changes back to the demo screen, where the game waits to be 
started again.

Additionally the application contains a screen saver because the OLED display of the 
original EV-LM3S811 board has burn-in characteristics similar to a CRT. The screen 
saver only becomes active if 20 seconds elapse in the demo mode without starting 
the game (i.e., the screen saver never appears during game play). The screen saver is 
a simple random pixel type rather than the “Game of Life” algorithm used in the 
original Luminary Quickstart application. I’ve decided to simplify this aspect of the 
implementation because the more elaborate pixel-mixing algorithm does not contribute 
any new or interesting behavior.

After a minute of running the screen saver, the display turns blank and only a single 
random pixel shows on the screen. Again, this is a little different from the original 
Quickstart application, which instead blanks the screen and starts flashing the User 
LED. I’ve changed this behavior because I have a better purpose for the User LED (to 
visualize the activity of the idle loop).

Command Prompt - dbg\game

FLV 1n * SHOOT

Press UP-arrow to move the space ship upPress DOWN-arrow to move the space ship down
Press SPACE to fire the missile
Press ESC to quit the game

Missile
Mine 

Type 1

Figure 1.1: The “ Fly ‘n ’ Shoot” game running in a DOS window under Windows XP.
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User
Switch

USB Cable 
to PC

Potentiometer
Wheel

Reset
Switch

LM3S811 
Cortex-M3 MCU

96 x 16 
OLED Display

LMI FTDI 
Debugger

User
LED

Power
LED

Figure 1.2: The “Fly ‘n’ Shoot” game running on the Stellaris EV-LM3S811
evaluation board.

1.2.1 Running the DOS Version

The “Fly ‘n’ Shoot” sample code for the DOS version (in C) is located in the 
<qp>\qpc\examples\80x86\dos\tcppl01\l\game\ directory, where <qp> stands 
for the installation directory in which you chose to install the accompanying software.

The compiled executable is provided, so you can run the game on any Windows-based 
PC by simply double-clicking the executable game. exe located in the directory 
<qp>\qpc\examples\80x86\dos\tcppl01\l\game\dbg\. The first screen you 
see is the game running in the demo mode with the text “Push Button” flashing in 
the middle of the display. At the top of the display you see a legend of keystrokes 
recognized by the application. You need to hit the s p a c e b a r  to start playing the game. 
Press the e s c  key to cleanly exit the application.

If you run “Fly ‘n’ Shoot” in a window under Microsoft Windows, the animation effects in 
the game might appear a little jumpy, especially compared to the Stellaris version of the 
same game. You can make the application execute significantly more smoothly if you 
switch to the full-screen mode by pressing and holding the Alt key and then pressing the 
Enter key. You go back to the window mode via the same Alt-Enter key combination.

As you can see in Figure 1.1, the DOS version uses simply the standard VGA text mode 
to emulate the OLED display of the EV-LM3S811 board. The lower part of the DOS screen
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is used as a matrix of 80 x 16 character-wide “pixels,” which is a little less than the 96 x 16 
pixels of the OLED display but still good enough to play the game. I specifically avoid 
employing any fancier graphics in this early example because I have bigger fish to fry for 
you than to worry about the irrelevant complexities of programming graphics.

My main goal is to make it easy for you to understand the event-driven code and 
experiment with it. To this end, I chose the legacy Borland Turbo C++ 1.01 toolset to 
build this example as well as several other examples in this book. Even though Turbo 
C++ 1.01 is an older compiler, it is adequate to demonstrate all features of both the 
C and C++ versions. Best of all, it is available for a free download from the Borland 
“Museum” at http://bdn.borland.eom/article/0,1410,21751,00.html.

The toolset is very easy to install. After you download the Turbo C++ 1.01 files directly 
from Borland, you need to unzip the files onto your hard drive. Then you run the 
I N S T A L L . E X E  program and follow the installation instructions it provides.

N O TE

I strongly recommend that you install the Turbo C++ 1.01 toolset into the directory 
C:\tools\tcppl01\. That way you will be able to directly use the provided project files 
and make scripts.

Perhaps the easiest way to experiment with the “Fly ‘n’ Shoot” code is to launch the Turbo 
C++ IDE ( t c  . e x e )  and open the provided project file G A M E -D B G . P R J , which is located 
in the directory <qp>\qpc\examples\80x8 6\dos\tcppl01\l\game\. You can 
modify, recompile, execute, and debug the program directly from the IDE. However, you 
should avoid terminating the program stopped in the debugger, because this will not restore 
the standard DOS interrupt vectors for the time tick and keyboard interrupts. You should 
always cleanly exit the application by letting it freely run and pressing the Esc key.

The next section briefly describes how to run the embedded version of the game. If you 
are not interested in the Cortex-M3 version, feel free to skip to Section 1.3, where I start 
explaining the application code.

1.2.2 Running the Stellaris Version

In contrast to the “Fly ‘n’ Shoot” version for DOS running in the ancient real mode of 
the 80x86 processor, the exact same source code runs on one of the most modem 
processors in the industry: the ARM Cortex-M3.

http://bdn.borland.eom/article/0,1410,21751,00.html
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The sample code for the Stellaris EV-LM3S811 board is located in the 
<qp>\qpc\examples\cortex-m3\vanilla\iar\game-ev-lm3s811\ directory, 
where <qp> stands for the root directory in which you chose to install the 
accompanying software.

The code for the Stellaris kit has been compiled with the 32KB-limited Kickstart edition 
of the IAR Embedded Workbench for ARM (IAR EWARM) v 5.11, which is provided 
with the Stellaris EV-LM3S811 kit. You can also download this software free of charge 
directly from IAR Systems (www.iar.com) after filling out an online registration.

The installation of IAR EWARM is quite straightforward, since the software comes 
with the installation utility. You also need to install the USB drivers for the hardware 
debugger built into the EV-LM3S811 board, as described in the documentation of 
the Stellaris EV-LM3S811 kit.

N O TE

I strongly recommend that you install the IAR EWARM toolset into the directory C: \ t o o l s  
\ ia r \a r m _ k s _ 5 .1 1 .  That way you will be able to directly use the provided EWARM work
space files and make scripts.

Before you program the “Fly ‘n’ Shoot” game to the EV-LM3S811 board, you might 
want to play a little with the original Quickstart application that comes preprogrammed 
with the EV-LM3S811 kit.

To program the “Fly ‘n’ Shoot” game to the Flash memory of the EV-LM3S811 board, 
you first connect the EV-LM3S811 board to your PC with the USB cable provided in the 
kit and make sure that the Power LED is on (see Figure 1.2). Next, you need to launch the 
IAR Embedded Workbench and open the workspace game-ev-lm3s811. eww located 
in the <qp>\qpc\examples\cortex-m3\vanilla\iar\game-ev-lm3s811\ 
directory. At this point your screen should look similar to the screenshot shown in 
Figure 1.3.

The game-ev-lm3s811 project is set up to use the LMI FTDI debugger, which is the 
piece of hardware integrated on the EV-LM3S811 board (see Figure 1.2). You can 
verify this setup by opening the “Options” dialog box via the Project I Options menu. 
Within the “Options” dialog box, you need to select the Debugger category in the panel 
on the left. While you’re at it, you could also verify that the Flash loading is enabled 
by selecting the “Download” tab. The checked “Use flash loader(s)” check box means

http://www.iar.com
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that the Flash loader application provided by IAR will be first loaded to the RAM of the 
MCU, and this application will program the Flash with the image of your application.

To start the Flash programming process, select the Project I Debug menu, or simply 
click the Debug button (see Figure 1.3) in the toolbar. The IAR Workbench should 
respond by showing the Flash programming progress bar for several seconds, as shown 
in Figure 1.3. Once the Flash programming completes, the IAR EWARM switches to 
the IAR C-Spy debugger and the program should stop at the entry to main (). You can 
start playing the game either by clicking the Go button in the debugger or you can 
close the debugger and reset the board by pressing the Reset button. Either way, the 
“Fly ‘n’ Shoot” game is now permanently programmed into the EV-LM3S811 board 
and will start automatically on every powerup.

IAR Embedded Workbench IDE
I File Edit View Eroject lools Window Help

□  & a Els l°?

Debug
bsp.c | missile,c | ship.c | tunnel.c

Files
E |cE]game - Debug
— C3 Luminary 

F -  E] driverlib.a 
E (Si osram96xl6xl.c 

9 CD QP-Debug
IS) libqep.a 
IS) libqf.a

—510  QP-Release 
“ 51 C j  Q P -S p y  

—El C j Source 
—El E l bsp.c
—El EG
—El El m inel.c 
-E l El e2.c 
—El E  missile.c 
-E l  E  ship.c 
—0  E  startup.c 
—El E  tunnel.c 

1—[S C l Output

Build Configuration 
Selection

t . h" Debug
Button

—h b j e c r s --------------------------------------------------------------------
"static QEvent const - l_m issi1eQ ueueSto[2];
s t a t i c  QEvent const  * i_shipQueueSto[3];
s t a t i c  QEvent const  * l_tunnelQueueStof ga m e_mii*«ES_max
s t a t i c  obj ectPosEvt 1_sm1 Pool St oCgame_mihes_ma;x + si
s t a t i c  Obj ectXmageEvt 1_m<edPool St o £GAME_MIN»ES_MAX + 8]   n f..!»« 5t l_subscr Sto [MAX_PUB_SIG] ;

QP Libraries
v o id  T a ir i/ in t  argc.

M i s s 11e _ c t o r () ;Ship_ctor Q ;
T u n n e l_ c t o r ();

BSP_i ni t (a rgc .

QF_1ni t O ;

* sm& medf

char "*argv[]) {/ *  exp7 ici tly invoke the active obje

argv); /* initialize the Board S l

/• initialize the framework and the under ly
Application Sources |i_smpooisto.

P r o g r e s s . .

Jful

Messages

Total number of errors: 0 
Total number of warnings: 0

Programming flash

/* initialize the _smlPoolsto). s1 z e o f( l_  olsto). s1 z e o f( l_

/* init pub) 
/* setup the

J

Flash Programming 
Progress

C:\software\qpc\examples\cortex-m3VvaniHa\iar\game-ev-lm3s811N Errors 0, Warnings 0

>
NL

Figure 1.3: Loading the “Fly *n’ Shoot” game into the flash o f LM3S811 MCU
with IAR EWARM IDE.
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The IAR Embedded Workbench environment allows you to experiment with the 
“Fly ‘n’ Shoot” code very easily. You can edit the files and recompile the application 
at a click of a button (F7). The only caveat is that the first time after the installation 
of the IAR toolset you need to build the Luminary Micro driver library for the 
LM3S811 MCU from the sources. You accomplish this by loading the workspace 
ek-lm3s811. eww located in the directory <lAR-EWARM>\ARM\examples 
\Luminary\ Stellar is\boards\ek-lm3s811, where <IAR-EWARM> stands for the 
directory name where you’ve installed the IAR toolset. In the ev-lm3s811 .eww 
workspace, you select the “driverlib - Debug” project from the drop-down list at 
the top of the Workspace panel and then press F7 to build the library.

1.3 The m ain() Function
Perhaps the best place to start the explanation of the “Fly ‘iT Shoot” application code is 
the main() function, located in the file main. c. Unless indicated otherwise in this 
chapter, you can browse the code in either the DOS version or the EV-LM3S811 
version, because the application source code is identical in both. The complete main, c 
file is shown in Listing 1.1.

N O TE

To explain code listings, I place numbers in parentheses at the interesting lines in the left 
margin of the listing. I then use these labels in the left margin of the explanation section that 
immediately follows the listing. Occasionally, to unambiguously refer to a line of a particular 
listing from sections of text other than the explanation section, I use the full reference con
sisting of the listing number followed by the label. For example, Listing 1.1(21) refers to 
the label (21) in Listing 1.1.

Listing 1.1 The file m a in .c  o f the “ Fly ‘n’ Shoot” game application

(1) #include "qp_port.h"
(2) #include "bsp.h"
(3) #include "game.h"

/* the QP port */ 
/* Board Support Package */ 

/* this application */

/* Local-scope objects-------------------------------------
(4) static QEvent const * l_missileQueueSto [2] ;
(5) static QEvent const * l_shipQueueSto[3] ;
(6) static QEvent const * l_tunnelQueueSto [GAME_MINES_MAX + 5] ;

 */
event queue * / 
event queue */ 
event queue * /

Continued onto next page
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(7) static Obj ectPosEvt l_smlPoolsto[GAME_MINES_MAX+ 8] ; /* small-size pool */
(8) static ObjectlmageEvt l_medPoolSto [GAME_MINES_MAX + 8] ; /* medium-size pool */
(9) static QSubscrList l_subscrSto [MAX_PUB_SIG] ; /* publish-subscribe */

/*  */
void main (int argc, char *argv[] ) {

/* explicitly invoke the active objects' ctors. . . */
(10) Missile_ctor();
(11) Ship_ctor();
(12) Tunnel_ctor() ;

(13) BSP_init(argc, argv) ; /* initialize the Board Support Package */
(14) QF_init() ; /* initialize the framework and the underlying RT kernel */

/ * initialize the event pools. . . * /
(15) QF_poolInit (l_sml Pools to, sizeof (l_smlPoolSto) , sizeof (l_sml Pools to [0] ) ) ;
(16) QF_poolInit(l_medPoolSto, sizeof(l_medPoolSto), sizeof(l_medPoolSto[0]));

(17) QF__psInit (l_subscrSto, Q_DIM(l_subscrSto) ) ; /* init publish-subscribe */

/* start the active objects. . . */
(18) QActive_start (AO_Missile, /* global pointer to the Missile active object */

1, /* priority (lowest) */
l_missileQueueSto, 0 DIM(1 missileOueueSto) , /*evtqueue*/ 
(void*)0, 0, /* no per-thread stack */
(QEvent *)0) ; /* no initialization event */

(19) QActive_start (AO_Ship, /* global pointer to the Ship active object */
2 , /* priority */
l_shipQueueSto, Q DIM(1 shipQueueSto), /* evt queue */
(void*)0, 0, /* no per-thread stack */
(QEvent *)0) ; /* no initialization event */

(20) QActive_start (AO_Tunnel, /* global pointer to the Tunnel active object */
3 , /* priority */
l_tunnelQueueSto, 0 DIM(l_tunnelQueueSto), /* evt queue * /
(void*)0, 0, /* no per-thread stack */
(QEvent *)0) ; /* no initialization event */

(21) QF_run(); /* run the QF application */
}

(1) The “Fly ‘iT Shoot” game is an example of an application implemented with the 
QP event-driven platform. Every application C-file that uses QP must include the 
q p _ p o rt. h header file. This header file contains the specific adaptation of QP to 
the given processor, operating system, and compiler, which is called a port. Each 
QP port is located in a separate directory, and the C compiler finds the right 
q p _ p o rt. h header file through the include search path provided to the compiler
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(typically via the -I  compiler option). That way I don’t need to change the 
application source code to recompile it for a different processor or compiler.
I only need to instruct the compiler to look in a different QP port directory 
for the qp_port .h header file. For example, the DOS version includes the 
qp_port.h header file from the directory <qp>\qpc\ports\80x86\dos 
\tcppl01\l \ ,  and the EV-LM3S811 version from the directory <qp>\qpc 
\ports\cortex-m3\vanilla\iar\.

(2) The b sp . h header file contains the interface to the Board Support Package and 
is located in the application directory.

(3) The game. h header file contains the declarations of events and other facilities 
shared among the components of the application. I will discuss this header file 
in the upcoming Section 1.7. This header file is located in the application 
directory.

The QP event-driven platform is a collection of components, such as the QEP event 
processor that executes state machines according to the UML semantics and the QF 
real-time framework that implements the active object computing model. Active 
objects in QF are encapsulated state machines (each with an event queue, a separate 
task context, and a unique priority) that communicate with one another 
asynchronously by sending and receiving events, whereas QF handles all the details of 
thread-safe event exchange and queuing. Within an active object, the events are 
processed by the QEP event processor sequentially in a run-to-completion (RTC) 
fashion, meaning that processing of one event must necessarily complete before 
processing the next event. (See also Section 6.3.3 in Chapter 6.)

(4-6) The application must provide storage for the event queues of all active objects 
used in the application. Here the storage is provided at compile time 
through the statically allocated arrays of immutable (const) pointers to 
events, because QF event queues hold just pointers to events, not events 
themselves. Events are represented as instances of the QEvent structure 
declared in the qp_port .h header file. Each event queue of an active 
object can have a different size, and you need to decide this size based 
on your knowledge of the application. Event queues are discussed in 
Chapters 6 and 7.

(7,8) The application must also provide storage for event pools that the framework 
uses for fast and deterministic dynamic allocation of events. Each event pool
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can provide only fixed-size memory blocks. To avoid wasting memory by 
using oversized blocks for small events, the QF framework can manage up to 
three event pools of different block sizes (for small, medium, and large 
events). The “Fly ‘n’ Shoot” application uses only two out of the three 
possible event pools (the small and medium pools).

The QF real-time framework supports two event delivery mechanisms: the simple 
direct event posting to active objects and the more advanced mechanism called 
publish-subscribe that decouples event producers from the consumers. In the publish- 
subscribe mechanism, active objects subscribe to events by the framework. Event 
producers publish the events to the framework. Upon each publication request, the 
framework delivers the event to all active objects that had subscribed to that event 
type. One obvious implication of publish-subscribe is that the framework must 
store the subscriber information, whereas it must be possible to handle multiple 
subscribers to any given event type. The event delivery mechanisms are described 
in Chapters 6 and 7.

(9) The “Fly ‘n’ Shoot” application uses the publish-subscribe event delivery 
mechanism supported by QF, so it needs to provide the storage for the 
subscriber lists. The subscriber lists remember which active objects have 
subscribed to which events. The size of the subscriber database depends on 
both the number of published events, which is specified in the m a x_pub_SIG 
constant found in the game. h header file, and the maximum number of active 
objects allowed in the system, which is determined by the QF configuration 
parameter qf_m a x_a c t i v e .

(10-12) These functions perform an early initialization of the active objects in the 
system. They play the role of static “constructors,” which in C you need to 
invoke explicitly. (C++ calls such static constructors implicitly before 
entering main () ).

(13) The function BSP_init () initializes the board and is defined in the bsp . c 
file.

(14) The function QF_init () initializes the QF component and the underlying 
RTOS/kemel, if such software is used. You need to call QF_init () before 
you invoke any QF services.

(15,16) The function QF_poollnit () initializes the event pools. The parameters of 
this function are the pointer to the event pool storage, the size of this storage,
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and the block-size of this pool. You can call this function up to three times to 
initialize up to three event pools. The subsequent calls to QF_poolinit () 
must be made in the increasing order of block size. For instance, the small 
block-size pool must be initialized before the medium block-size pool.

(17) The function QF_poolinit () initializes the publish-subscribe event
delivery mechanism of QF. The parameters of this function are the pointer to 
the subscriber-list array and the dimension of this array.

The utility macro Q_d i m (a ) provides the dimension of a one-dimensional array a [ ] 
computed as s i z e o f ( a ) / s i z e o f ( a [ 0 ] ) ,  which is a compile-time constant. The use 
of this macro simplifies the code because it allows me to eliminate many #define  
constants that otherwise I would need to provide for the dimensions of various arrays. 
I can simply hard-code the dimension right in the definition of an array, which is the 
only place that I specify it. I then use the macro q_d i m () whenever I need this 
dimension in the code.

(18-20) The function QActive_start () tells the QF framework to start managing 
an active object as part of the application. The function takes the following 
parameters: the pointer to the active object structure, the priority of the active 
object, the pointer to its event queue, the dimension (length) of that queue, 
and three other parameters that I explain in Chapter 7 (they are not relevant at 
this point). The active object priorities in QF are numbered from 1 to 
qf_m a x_a c t i v e, inclusive, where a higher-priority number denotes higher 
urgency of the active object. The constant qf_m a x_a c t i v e is defined in 
the QF port header file qf_port. h and currently cannot exceed 63.

I like to keep the code and data of every active object strictly encapsulated within its 
own C-file. For example, all code and data for the active object Ship are encapsulated in 
the file ship, c, with the external interface consisting of the function ship_ctor () 
and the pointer AO_Ship.

(21) At this point, you have provided to the framework all the storage and
information it needs to manage your application. The last thing you must do is 
call the function QF_run () to pass the control to the framework.

After the call to QF_run () the framework is in full control. The framework 
executes the application by calling your code, not the other way around. The function 
QF_run () never returns the control back to main (). In the DOS version of the
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“Fly 4n’ Shoot” game, you can terminate the application by pressing the Esc key, in 
which case QF_run () exits to DOS but not to main (). In an embedded system, such 
as the Stellaris board, QF_run () runs forever or till the power is removed, whichever 
comes first.

N O TE

For best cross-platform portability, the source code consistently uses the UNIX end-of-line 
convention (lines are terminated with LF only, OxA character). This convention seems to 
be working for all C/C++ compilers and cross-compilers, including legacy DOS-era tools. 
In contrast, the DOS/Windows end-of-line convention (lines terminated with the CR,LF, or 
0xD,0xA pair of characters) is known to cause problems on UNIX-like platforms, especially 
in the multiline preprocessor macros.

1.4 The Design o f the "Fly ‘n* Shoot” Game
To proceed further with the explanation of the “Fly ‘n’ Shoot” application, I need to 
step up to the design level. At this point I need to explain how the application has been 
decomposed into the active objects and how these objects exchange events to 
collectively deliver the functionality of the “Fly ‘n’ Shoot” game.

In general, the decomposition of a problem into active objects is not trivial. As usual 
in any decomposition, your goal is to achieve possibly loose coupling among the 
active object components (ideally no sharing of any resources), and you also strive 
for minimizing the communication in terms of the frequency and size of exchanged 
events.

In the case of the “Fly ‘n’ Shoot” game, I need to first identify all objects with reactive 
behavior (i.e., with a state machine). I applied the simplest object-oriented technique of 
identifying objects, which is to pick the frequently used nouns in the problem 
specification. From Section 1.2,1 identified Ship, Missile, Mines, and Tunnel. However, 
not every state machine in the system needs to be an active object (with a separate 
task context, an event queue, and a unique priority level), and merging them is a valid 
option when performance or space is needed. As an example of this idea, I ended up 
merging the Mines into the Tunnel active object, whereas I preserved the Mines as 
independent state machine components of the Tunnel active object. By doing so 
I applied the “Orthogonal Component” design pattern described in Chapter 5.
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The next step in the event-driven application design is assigning responsibilities and 
resources to the identified active objects. The general design strategy for avoiding 
sharing of resources is to encapsulate each resource inside a dedicated active object and 
to let that object manage the resource for the rest of the application. That way, instead 
of sharing the resource directly, the rest of the application shares the dedicated 
active object via events.

So, for example, I decided to put the Tunnel active object in charge of the display. 
Other active objects and state machine components, such as Ship, Missile, and Mines, 
don’t draw on the display directly, but rather send events to the Tunnel object with 
the request to render the Ship, Missile, or Mine bitmaps at the provided (x, y) 
coordinates of the display.

With some understanding of the responsibilities and resource allocations to active 
objects I can move on to devising the various scenarios of event exchanges among 
the objects. Perhaps the best instrument to aid the thinking process at this stage is the 
UML sequence diagram, such as the diagram depicted in Figure 1.4. This particular 
sequence diagram shows the most common event exchange scenarios in the 
“Fly ‘iT Shoot” game (the primary use cases, if you will). The explanation section 
immediately following the diagram illuminates the interesting points.

N O TE

A UML sequence diagram like Figure 1.4 has two dimensions. Horizontally arranged boxes 
represent the various objects participating in the scenario, whereas heavy borders indicate 
active objects. As usual in the UML, the object name is underlined. Time flows down the 
page along the vertical dashed lines descending from the objects. Events are represented as 
horizontal arrows originating from the sending object and terminating at the receiving object. 
Optionally, thin rectangles around instance lines indicate focus of control.

N O TE

To explain diagrams, I place numbers in parentheses at the interesting elements of the dia
gram. I then use these labels in the left margin of the explanation section that immediately 
follows the diagram. Occasionally, to unambiguously refer to a specific element of a partic
ular diagram from sections of text other than the explanation section, I use the full reference 
consisting of the figure number followed by the label. For example, Figure 1.4(12) refers to 
the element (12) in Figure 1.4.
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Figure 1.4: The sequence diagram of the “Fly ‘n’ Shoot” game.

(1) The t im e_t i c k is the most important event in the game. This event is generated 
by the QF framework from the system time tick interrupt at a rate of 30 times 
per second, which is needed to drive a smooth animation of the display. Because 
the t im e_t i c k event is of interest to virtually all objects in the application,
it is published by the framework to all active objects. (The publish-subscribe 
event delivery in QF is described in Chapter 6.)

(2) Upon reception of the ti m e_t i c k event, the Ship object advances its position by 
one step and posts the event ship_ img (x , y, bmp) to the Tunnel object. The
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SHIP_IMG event has parameters x and y, which are the coordinates of the Ship on 
the display, as well as the bitmap number bmp to draw at these coordinates.

(3) The Missile object is not in flight yet, so it simply ignores the tim e_t ic k event 
this time.

(4) The Tunnel object performs the heaviest lifting for the tim e_tic k event. First, 
Tunnel redraws the entire display from the current frame buffer. This action, 
performed 30 times per second, provides the illusion of animation of the display. 
Next, the Tunnel clears the frame buffer and starts filling it up again for the next 
time frame. The Tunnel advances the tunnel walls by one step and copies the 
walls to the frame buffer. The Tunnel also dispatches the t im e_t ic k event to all 
its Mine state machine components.

(5) Each Mine advances its position by one step and posts the m i n e_ img (x , y , bmp) 
event to the Tunnel to render the appropriate Mine bitmap at the position (x, y) in 
the current frame buffer. Mines of type 1 send the bitmap number m i n e1_bmp , 
whereas mines of type 2 send m i n e2_bmp .

(6) Upon receipt of the SHIP_i m g (x , y, bmp) event from the Ship, the Tunnel 
object renders the specified bitmap in the frame buffer and checks for any 
collision between the ship bitmap and the tunnel walls. Tunnel also dispatches 
the original SHlP_lMG(x, y, bmp) event to all active Mines.

(7) Each Mine determines whether the Ship is in collision with that Mine.

(8) The p la yer_t r i g g e r event is generated when the Player reliably presses the
button (button press is debounced). This event is published by the QF framework 
and is delivered to the Ship and Tunnel objects, which both subscribe to the 
PLAYER_TRIGGER event.

(9) Ship generates the m i s s i l e_fire (x , y) event to the Missile object. The 
parameters of this event are the current {x, y) coordinates of the Ship, which are 
the starting point for the Missile.

(10) Tunnel receives the published p la yer_t r i g g e r event as well because Tunnel 
occasionally needs to start the game or terminate the screen saver mode based on 
this stimulus.

(11) Missile reacts to the m i s s i l e_fire (x , y) event by starting to fly, whereas it 
sets its initial position from the (x, y) event parameters delivered from the Ship.
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(12) This time around, the ti m e_t i c k event arrives while Missile is in flight. Missile 
posts the m i s s i l e_i m g (x , y, bmp) event to the Table.

(13) Table renders the Missile bitmap in the current frame buffer and dispatches 
the m i s s i l e_img (x, y , bmp) event to all the Mines to let the Mines test for the 
collision with the Missile. This determination depends on the type of the Mine. In 
this scenario a particular Mine[n] object detects a hit and posts the h i t_mi n e 
(score) event to the Missile. The Mine provides the score earned for destroying 
this particular mine as the parameter of this event.

(14) Missile handles the h it_m i n e (score) event by becoming immediately ready to 
launch again and lets the Mine do the exploding. Because I decided to make the Ship 
responsible for the scorekeeping, the Missile also generates the d e s t r o y e d_mi n e 
(score) event to the Ship, to report the score for destroying the Mine.

(15) Upon reception of the de s t r o y e d_m i n e (score) event, the Ship increments 
the score by the value received from the Missile.

(16) The Ship object handles the p la yer_ship_m o v e (x, y) event by updating its 
position from the event parameters.

(17) When the Tunnel object handles the SHIP_img (x, y , bmp_id) event next time 
around, it detects a collision between the Ship and the tunnel wall. In that case 
it posts the event hi t_w a l l to the Ship.

(18) The Ship responds to the hit_w a l l event by transitioning to the “exploding” state.

Even though the sequence diagram in Figure 1.4 shows merely some selected scenarios 
of the “Fly ‘n’ Shoot” game, I hope that the explanations give you a big picture of 
how the application works. More important, you should start getting the general idea 
about the thinking process that goes into designing an event-driven system with 
active objects and events.

1.5 Active Objects in the “ Fly ‘n* Shoot” Game
I hope that the analysis of the sequence diagram in Figure 1.4 makes it clear that actions 
performed by an active object depend as much on the events it receives as on the 
internal mode of the object. For example, the Missile active object handles the 
t im e_ti c k event very differently when the Missile is in flight (Figure 1.4(12)) 
compared to the time when it is not (Figure 1.4(3)).
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The best-known mechanism for handling such modal behavior is through state 
machines because a state machine makes the behavior explicitly dependent on both the 
event and the state of an object. Chapter 2 introduces UML state machine concepts 
more thoroughly. In this section, I give a cursory explanation of the state machines 
associated with each object in the “Fly ‘n’ Shoot” game.

1.5.1 The Missile Active Object

I start with the Missile state machine shown in Figure 1.5 because it turns out to be the 
simplest one. The explanation section immediately following the diagram illuminates 
the interesting points.

NO TE

A UML state diagram like Figure 1.5 preserves the general form of the traditional state tran
sition diagrams, where states are represented as nodes and transitions as arcs connecting the 
nodes. In the UML notation the state nodes are represented as rectangles with rounded cor
ners. The name of the state appears in bold type in the name compartment at the top of 
the state. Optionally, right below the name, a state can have an internal transition compart
ment separated from the name by a horizontal line. The internal transition compartment 
can contain entry actions (actions following the reserved symbol “entry”), exit actions 
(actions following the reserved symbol “exit”), and other internal transitions (e.g., those trig
gered by time_tick in Figure 1.5(3)). State transitions are represented as arrows originating 
at the boundary of the source state and pointing to the boundary of the target state. At a min
imum, a transition must be labeled with the triggering event. Optionally, the trigger can be 
followed by event parameters, a guard, and a list of actions.

(1) The state transition originating at the black ball is called the initial transition. 
Such transition designates the first active state after the state machine object 
is created. An initial transition can have associated actions, which in the 
UML notation are enlisted after the forward slash ( / ) .  In this particular case, 
the Missile state machine starts in the “armed” state and the actions executed 
upon the initialization consist of subscribing to the event t i m e _ t i c k . Subscribing 
to an event means that the framework will deliver the specified event to the 
Missile active object every time the event is published to the framework.
Chapter 7 describes the implementation of the publish-subscribe event delivery 
in QF.
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(1)
/ QActive_subscribe(me, TIMEJTICK);—

flying
TIME_TICK [me->x + GAME_MISSILE_SPEED_X 

< GAME_SCREEN_WIDTH] / 
me->x += GAME_MISSILE_SPEED_X; 
QActive_postFIFO(Tunnel,

MISSILE_IMG(me->x, me->y,
MISSILE_BMP));

(3)

(2)

(4)

MISSILE_FIRE(x, y) / 
me->x = e->x; 
me->y = e->y;

\
<---------------
 TIME.TICK [else]—

HIT_MINE(score) / (5)------------ x
QActive_postFI FO(Ship, 

DESTROYED_MINE(e->score)); 
— HIT_WALL ^

f  exploding \
entry/

me->exp_ctr = 0; (7)

TIME_TICK [(me->x >= GAME_SPEED_X)
&& (me->exp_ctr < 16)] / (8)

me->x -= GAME_SPEED_X;
++me->exp_ctr;
QActive_postFIFO(Tunnel,

EXPLOSION_IMG(me->x + 3, me->y -4,
EXPLOSIONO_BMP + (me->exp_ctr»  2)));

V J

(6)

(9)
-TIME_TICK [else]—

Figure 1.5: Missile state machine diagram.

(2) The arrow labeled with the m i s s i l e _ f i r e  ( x ,  y )  event denotes a state transition, 
that is, a change of state from “armed” to “flying.” The m i s s i l e _ f i r e  (x , y )  

event is generated by the Ship object when the Player triggers the Missile (see the 
sequence diagram in Figure 1.4). In the m i s s i l e _ f i r e  event, Ship provides 
Missile with the initial coordinates in the event parameters {x, y).

N O TE

The UML intentionally does not specify the notation for actions. In practice, the actions are 
often written in the programming language used for coding the particular state machine. In 
all state diagrams in this book, I assume the C programming language. Furthermore, in the 
C expressions I refer to the data members associated with the state machine object through 
the “me->” prefix and to the event parameters through the “e -> ” prefix. For example, the 
action “me->x = e - > x ;” means that the internal data member x  of the Missile active object 
is assigned the value of the event parameter x.
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(3) The event name t im e_t ic k enlisted in the compartment below the state name 
denotes an internal transition. Internal transitions are simple reactions to 
events performed without a change of state. An internal transition, as well as a 
regular transition, can have a guard condition, enclosed in square brackets. Guard 
condition is a Boolean expression evaluated at runtime. If the guard evaluates
to TRUE, the transition is taken. Otherwise, the transition is not taken and no 
actions enlisted after the forward slash ( / ) are executed. In this particular case, 
the guard condition checks whether the ^-coordinate propagated by the Missile 
speed is still visible on the screen. If so, the actions are executed. These actions 
include propagation of the Missile position by one step and posting the 
m i  S S I l e _ im g  event with the current Missile position and the m i s s i l e _ b m p  

bitmap number to the Tunnel active object. Direct event posting to an active object 
is accomplished by the QF function QActive_postFiFO () , which I discuss 
in Chapter 7.

(4) The same event tim e_t ic k with the [else] guard denotes a regular state
transition with the guard condition complementary to the other occurrence of the
tim e_tic k event in the same state. In this case, the tim e_ti c k transition to 
“armed” is taken if the Missile object flies out of the screen.

(5) The event h it_m i n e (score) triggers another transition to the “armed” state. 
The action associated with this transition posts the de s t r o y e d_mi n e event with 
the parameter e->score to the Ship object, to report destroying the mine.

(6) The event hi t_wa l l triggers a transition to the “exploding” state, with the 
purpose of animating the explosion bitmaps on the display.

(7) The label “entry” denotes the entry action to be executed unconditionally upon the
entry to the “exploding” state. This action consists of clearing the explosion 
counter (me->exp_ctr) member of the Missile object.

(8) The t im e_ti c k internal transition is guarded by the condition that the explosion 
does not scroll off the screen and that the explosion counter is lower than 16. The 
actions executed include propagation of the explosion position and posting the 
e x p l o s i o n_img event to the Tunnel active object. Please note that the bitmap of 
the explosion changes as the explosion counter gets bigger.

(9) The tim e_t i c k regular transition with the complementary guard changes the 
state back to the “armed” state. This transition is taken after the animation of the 
explosion completes.
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1.5.2 The Ship Active Object

The state machine of the Ship active object is shown in Figure 1.6. This state machine 
introduces the profound concept of hierarchical state nesting. The power of state 
nesting derives from the fact that it is designed to eliminate repetitions that otherwise 
would have to occur.

One of the main responsibilities of the Ship active object is to maintain the current position 
of the Ship. On the original EV-LM3S811 board, this position is determined by the 
potentiometer wheel (see Figure 1.2). The player_shi p_move ( x , y) event is generated 
whenever the wheel position changes, as shown in the sequence diagram (Figure 1.4). 
The Ship object must always keep track of the wheel position, which means that all states 
of the Ship state machine must handle the player_ship_move (x, y) event.

In the traditional finite state machine (FSM) formalism, you would need to repeat the 
Ship position update from the pla y e r_ship_m o v e (x , y) event in every state. But 
such repetitions would bloat the state machine and, more important, would represent 
multiple points of maintenance both in the diagram and the code. Such repetitions go 
against the DRY (Don’t Repeat Yourself) principle, which is vital for flexible and 
maintainable code [Hunt+ 00].

Hierarchical state nesting remedies the problem. Consider the state “active” 
that surrounds all other states in Figure 1.6. The high-level “active” state is called the 
superstate and is abstract in that the state machine cannot be in this state directly but only 
in one of the states nested within, which are called the substates of “active.” The UML 
semantics associated with state nesting prescribe that any event is first handled in the 
context of the currently active substate. If the substate cannot handle the event, the state 
machine attempts to handle the event in the context of the next-level superstate.
Of course, state nesting in UML is not limited to just one level and the simple rule of 
processing events applies recursively to any level of nesting.

Specifically to the Ship state machine diagram shown in Figure 1.6, suppose that the event 
p la yer_ship_m ov e (x, y ) arrives when the state machine is in the “parked” state. The 
“parked” state does not handle the p la yer_ship_m o v e (x, y) event. In the traditional 
finite state machine this would be the end of the story—the p la yer_shi p_m o v e (x, y) 
event would be silently discarded. However, the state machine in Figure 1.6 has another layer 
of the “active” superstate. Per the semantics of state nesting, this higher-level superstate 
handles the p la yer_ship_m ov e (x, y) event, which is exactly what’s needed. The same 
exact argumentation applies for any other substate of the “active” superstate, such as “flying”



or “exploding,” because none of these substates handle the p la yer_ship_m o v e (x, y ) 
event. Instead, the “active” superstate handles the event in one single place, without repetitions.
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£ - / QActive_subscribe(me, TIME_TICK);  •
QActive_subscribe(me, PLAYER_TRIGGER); (1)

active
PLAYER_SHIP_MOVE(x, y) / 

me->x = e->x; 
me->y = e->y;

(3)

parked
£ (2)

TAKEJDFF- ~X(4)
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entry/
me->score = 0;
QActive_postFIFO(Tunnel, SCORE(me->score));

(5)

TIME_TICK / (6)
QActive_postFIFO(Tunnel,

SHIP_IMG(me->x, me->y, SHIP_BMP));
++me->score; 
if ((me->score % 10) == 0)

QActive_postFIFO(Tunnel, SCORE(me->score));

PLAYER_TRIGGER / (7)
QActive_postFIFO(Missile, MISSLE_FIRE(me->x, me->y));

DESTROYED_MINE(score) / 
me->score += e->score;

(8)

— HIT WALL-

-HIT_MINE(type)

(10)A

exploding (11)
entry/

me->exp_ctr = 0;

TIME_TICK [me->exp_ctr < 16] /
++me->exp_ctr;
QActive_postFIFO(Tunnel,

EXPLOSION(me->x, me->y + SHIP_HEIGHT -1, 
EXPLOSIONO_BMP + (me->exp_ctr»  2)));

J
-TIME_TICK [else] /

QActive_postFI FO(T able, 
GAME_OVER(me->score));

(12)

Figure 1.6: Ship state machine diagram.

(1) Upon the initial transition, the Ship state machine enters the “active” superstate 
and subscribes to events t im e_t t c k and pla yer_t r i g g e r .

(2) At each level of nesting, a superstate can have a private initial transition that 
designates the active substate after the superstate is entered directly. Here the
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initial transition of state “active” designates the substate “parked” as the initial 
active substate.

(3) The “active” superstate handles the p l a y e r_ship_mo v e (x, y) event as an 
internal transition in which it updates the internal data members me->x and 
me->y from the event parameters e->x and e->y, respectively.

(4) The ta k e_off event triggers transition to “flying.” This event is generated by 
the Tunnel object when the Player starts the game (see the description of the 
game in Section 1.2).

(5) The entry actions to “flying” include clearing the me->score data member and 
posting the event SCORE with the event parameter me->score to the Tunnel 
active object.

(6) The ti m e_tic k internal transition causes posting the event shi p_ img with 
current Ship position and the shi p_bmp bitmap number to the Tunnel active 
object. Additionally, the score is incremented for surviving another time tick. 
Finally, when the score is “round” (divisible by 10) it is also posted to the Tunnel 
active object. This decimation of the score event is performed just to reduce 
the bandwidth of the communication, because the Tunnel active object only 
needs to give an approximation of the running score tally to the user.

(7) The pla yer_tr i i g g e r internal transition causes posting the event m i s s i l e_fire 
with current Ship position to the Missile active object. The parameters (me->x, 
me->y) provide the Missile with the initial position from the Ship.

(8) The DESTROYED_MlNE (score) internal transition causes update of the score 
kept by the Ship. The score is not posted to the Table at this point, because the 
next t i m e_t i c k will send the “rounded” score, which is good enough for giving 
the Player the score approximation.

(9) The h it_w a l l event triggers transition to “exploding.”

(10) The h i t_m i n e (type) event also triggers transition to “exploding.”

(11) The “exploding” state of the Ship state machine is very similar to the 
“exploding” state of Missile (see Figure 1.5(7-9)).

(12) The t i m e_ti c k [else] transition is taken when the Ship finishes exploding. Upon 
this transition, the Ship object posts the event ga m e_ov e r (me->score) to the 
Tunnel active object to terminate the game and display the final score to the Player.
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1.5.3 The Tunnel Active Object

The Tunnel active object has the most complex state machine, which is shown in 
Figure 1.7. Unlike the previous state diagrams, the diagram in Figure 1.7 shows only the 
high level of abstraction and omits a lot of details such as most entry/exit actions, 
internal transitions, guard conditions, or actions on transitions. Such a “zoomed out” 
view is always legal in the UML because UML allows you to choose the level of detail 
that you want to include in your diagram.

The Tunnel state machine uses state hierarchy more extensively than the Ship state 
machine in Figure 1.6. The explanation section immediately following Figure 1.7 
illuminates the new uses of state nesting as well as the new elements not explained yet 
in the other state diagrams.

active
MINE_DISABLED(mine_id) / (4)

me->mines[e->mine_id] = NULL;

demo
entry / QTimeEvt_postln(&me->screenTimeEvt, me, 

BSP_TICKS_PER_SEC*20); (5)

exit / QTimeEvt_disarm(&me->screenTimeEvt); (6)

playing

—SCREEN_TIMEOUT
(7) \

S\
PLAYER_TRIGGER 

.______

game_over

s\
GAME_OVER

 J
SCREEN_TIMEOUT-

screen_saver

screen_saver_n_pixeis

screen_saver_1 _pixel
\

SCREEN_TIMEOUT

(8)
-PLAYEFLTRIGGEI

(1)
— 9

(2)

(3) @ 4  PLAYEFLQUIT-

Figure 1.7: Tunnel state machine diagram.
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(1) An initial transition can target a substate at any level of state hierarchy, not 
necessarily just the next-lower level. Here the topmost initial transition goes down 
two levels to the substate “demo.”

(2) The superstate “active” handles the p la yer_q u i t event as a transition to the final 
state (see explanation of element (3)). Please note that the p l a y e r_QUIT 
transition applies to all substates directly or transitively nested in the “active” 
superstate. Because a state transition always involves execution of all exit actions 
from the states, the high-level p la yer_QUIT transition guarantees the proper 
cleanup that is specific to the current state context, whichever substate happens to 
be active at the time when the p la yer_q u i t event arrives.

(3) The final state is indicated in the UML notation as the bull’s-eye symbol and 
typically indicates destruction of the state machine object. In this case, the 
pla yer_qui t event indicates termination of the game.

(4) The MINE_DlSABLED(mine_id) event is handled at the high level of the 
“active” state, which means that this internal transition applies to the whole sub
machine nested inside the “active” superstate. (See also the discussion of the Mine 
object in the next section.)

(5) The entry action to the “demo” state starts the screen time event (timer) 
me->screenTimeEvt to expire in 20 seconds. Time events are allocated by the 
application, but they are managed by the QF framework. QF provides functions 
to arm a time event, such as QTimeEvt_postin () for one-shot timeout, and 
QTimeEvt_postEvery () for periodic time events. Arming a time event is in effect 
telling the QF framework, for instance, “Give me a nudge in 20 seconds.” QF then posts 
the time event (the event me->screenTimeEvt in this case) to the active object after 
the requested number of clock ticks. Chapters 6 and 7 talk about time events in detail.

(6) The exit action from the “demo” state disarms the me->screenTimeEvt time 
event. This cleanup is necessary when the state can be exited by a different event 
than the time event, such as the p la yer_t r i g g e r transition.

(7) The scr een_t i m e o u t transition to “screen_saver” is triggered by the expiration 
of the me->screenTimeEvt time event. The signal SCREEN_TlMEOUT is 
assigned to this time event upon initialization and cannot be changed later.

(8) The transition triggered by pla yer_t r i g g e r applies equally to the two substates 
of the “screen_saver” superstate.
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1.5.4 The Mine Components

Mines are also modeled as hierarchical state machines, but are not active objects. Instead, 
Mines are components of the Tunnel active object and share its event queue and priority 
level. The Tunnel active object communicates with the Mine components synchronously 
by directly dispatching events to them via the function QHsm_dispatch (). Mines 
communicate with Tunnel and all other active objects asynchronously by posting events 
to their event queues via the function QActive_postFiFO ().

N O TE

Active objects exchange events asynchronously, meaning that the sender of the event merely 
posts the event to the event queue of the recipient active object without waiting for the com
pletion of the event processing. In contrast, synchronous event processing corresponds to a 
function call (e.g., QHsm_dispatch()), which processes the event in the caller’s thread of 
execution.

As shown in Figure 1.8, Tunnel maintains the data member mines [ ], which is an array 
of pointers to hierarchical state machines (QHsm *). Each of these pointers can point 
either to a Minel object, a Mine2 object, or null, if the entry is unused. Note that 
Tunnel “knows” the Mines only as generic state machines (pointers to the QHsm 
structure defined in QP). Tunnel dispatches events to Mines uniformly, without 
differentiating between different types of Mines. Still, each Mine state machine handles 
the events in its specific way. For example, Mine type 2 checks for collision with the 
Missile differently than with the Ship, whereas Mine type 1 handles both identically.

Minel mines'! 0

[0]

[1]

[2]

[3]
[4]

Tunnel

QHsm *mines[] 

[0]«

' [1]

[2]*-

[3 ]« -

[4 ]* -

NULL

NULL

Mine2 mines2[] 

[0]

[1]

[2]

[3]

[4]

Figure 1.8: The Table active object manages two types o f Mines.
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NOTE

The last point is actually very interesting. Dispatching the same event to different Mine 
objects results in different behavior, specific to the type of the Mine, which in OOP is known 
as polymorphism. I ’ll have more to say about this in Chapter 3.

Each Mine object is fairly autonomous. The Mine maintains its own position and is 
responsible for informing the Tunnel object whenever the Mine gets destroyed or scrolls 
out of the display. This information is vital for the Tunnel object so that it can keep 
track of the unused Mines.

Figure 1.9 shows a hierarchical state machine of Mine2 state machine. Minel is very 
similar, except that it uses the same bitmap for testing collisions with the Missile and 
the Ship.

(1) The Mine starts in the “unused” state.

(2) The Tunnel object plants a Mine by dispatching the mine_plant (x, y) event 
to the Mine. The Tunnel provides the ( y) coordinates as the original position of 
the Mine.

(3) When the Mine scrolls off the display, the state machine transitions to
“unused.”

(4) When the Mine hits the Ship, the state machine transitions to “unused.”

(5) When the Mine finishes exploding, the state machine transitions to “unused.”

(6) When the Mine is recycled by the Tunnel object, the state machine transitions to
“unused.”

(7) The exit action in the “used” state posts the mine_disablded (mine_id) 
event to the Tunnel active object. Through this event, the Mine informs the 
Tunnel that it’s becoming disabled, so that Tunnel can update its mines [ ] 
array (see also Figure 1.9(4)). The mine_id parameter of the event becomes 
the index into the mines [ ] array. Note that generating the
MINE_DISABLDED (mine_id) event in the exit action from “used” is much 
safer and more maintainable than repeating this action in each individual 
transition (3), (4), (5), and (6).
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used
exit / (7)

QActive_postFIFO(Tunnel, MINE_DISABLED(MINE_ID(me))); 

planted

(2)  ̂
MINE_PLANT(x, y) / -  

me->x = e->x; -
me->y = e->y;

TIME_TICK [me->x + GAME_MISSILE_SPEED_X 
< GAME_SCREEN_WIDTH] / 

me->x += GAME_MISSILE_SPEED_X; 
postFIFO(Tunnel,

MISSILEJMG(me->x, me->y, 
MISSILE_BMP));

0) A
-TIME_TICK [elsef

SHIPJMG [do_bitmaps_overlap( 
MINE2.BMP, 
me->x, me->y, 

e->bmp, e->x, e->y)] / 
postFIFO(Ship, HIT_MINE(2));

(4)

MISSILEJMG [do_bitmaps_overlap(
MINE2_MISSILE_BMP, ^  

me->x, me->y,' 
e->bmp, e->x, e->y)] / 

postFIFO(Missile, DESTROYED_MINE(45));
J

exploding
entry / me->exp_ctr = 0;

TIME_TICK [(me->x >= GAME_SPEED_X)
&& (me->exp_ctr <16)]/ 

me->x -= GAME_SPEED_X;
++me->exp_ctr;
postFIFO(Tunnel, EXPLOSION(me->x + 3, me->y -4, 

EXPLOSIONO_BMP + (me->exp_ctr»  2))); -TIME_TICK [else;
(5)

Figure 1.9: Mine2 state machine diagram.



1.6 Events in the "Fly ‘n’ Shoot” Game
The key events in the “Fly ‘n’ Shoot” game have been identified in the sequence 
diagram in Figure 1.4. Other events have been invented during the state machine design 
stage. In any case, you must have noticed that events consist really of two parts. The 
part of the event called the signal conveys the type of the occurrence (what happened). 
For example, the time_tick signal conveys the arrival of a time tick, whereas the 
player_ship_move signal conveys that the player wants to move the Ship. An event 
can also contain additional quantitative information about the occurrence in form of 
event parameters. For example, the player_ship_move signal is accompanied by the 
parameters (x, y) that contain the quantitative information as to where exactly to move 
the Ship.

In QP, events are represented as instances of the QEvent structure provided by the 
framework. Specifically, the QEvent structure contains the member sig, to represent 
the signal of that event. Event parameters are added in the process of inheritance, as 
described in the sidebar “Single Inheritance in C.”
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SINGLE IN H E R ITA N C E  IN C

Inheritance is the ability to derive new structures based on existing structures in order to 
reuse and organize code. You can implement single inheritance in C very simply by literally 
embedding the base structure as the first member of the derived structure. For example, 
Figure 1.10(A) shows the structure ScoreEvt derived from the base structure QEvent by 
embedding the QEvent instance as the first member of ScoreEvt. To make this idiom better 
stand out, I always name the base stmcture member super.

typedef struct QEventTag { ^  
QSignal sig;

} QEvent;

me

typedef struct ScoreEvtTag { ^  
QEvent super;
uint16_t score;

} ScoreEvt;

------►
Instance of the

base struct
super

Members
added in

the derived
struct

B

Figure 1.10: (A) Derivation o f structures in C, (B) memory alignment, 
and (C) the UM L class diagram.
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As shown in Figure 1.10(B), such nesting of structures always aligns the data member super 
at the beginning of every instance of the derived structure, which is actually guaranteed by 
the C standard. Specifically, WG14/N1124 Section 6.7.2.1.13 says: “ ... A pointer to a struc
ture object, suitably converted, points to its initial member. There may be unnamed padding 
within a structure object, but not at its beginning” [ISO/IEC 9899:TC2]. The alignment lets 
you treat a pointer to the derived ScoreEvt structure as a pointer to the QEvent base struc
ture. All this is legal, portable, and guaranteed by the C standard. Consequently, you can 
always safely pass a pointer to ScoreEvt to any C function that expects a pointer to 
QEvent. (To be strictly correct in C, you should explicitly cast this pointer. In OOP such 
casting is called upcasting and is always safe.) Therefore, all functions designed for the 
QEvent structure are automatically available to the ScoreEvt structure as well as other 
structures derived from QEvent. Figure 1.10(C) shows the UML class diagram depicting 
the inheritance relationship between ScoreEvt and QEvent structures.

QP uses single inheritance quite extensively not just for derivation of events with parameters, 
but also for derivation of state machines and active objects. Of course, the C++ version of QP 
uses the native C++ support for class inheritance rather than “derivation of structures.” 
You’ll see more examples of inheritance later in this chapter and throughout the book.

Because events are explicitly shared among most of the application components, it is 
convenient to declare them in the separate header file game. h shown in Listing 1.2. The 
explanation section immediately following the listing illuminates the interesting points.

Listing 1.2 Signals, event structures, and active object interfaces 
defined in file gam e. h

(1) enum GameSignaIs { /* signals used in the game */
(2) TIME_TICK_SIG = Q_USER_SIG, /* published from tick ISR */

PLAYER_TRIGGER_SIG, /* published by Player (ISR) to trigger the Missile */ 
PLAYER_QUIT_SIG/ /* published by Player (ISR) to quit the game */
GAME_OVER_SIG, /* published by Ship when it finishes exploding */
/* insert other published signals here ... * /

(3) MAX_PUB_SIG, /* the last published signal */

PLAYER_SHIP_MOVE_SIG/ /* posted by Player (ISR) to the Ship to move it */
BLINK_TIMEOUT_SIG, /* signal for Tunnel's blink timeout event */
SCREEN_TIMEOUT_SIG, /* signal for Tunnel's screen timeout event */
TAKE_OFF_SIG, /* from Tunnel to Ship to grant permission to take of f */ 
HIT_WALL_SIG, /* from Tunnel to Ship when Ship hits the wall */
HIT_MINE_SIG, /* from Mine to Ship or Missile when it hits the mine */
SHIP_IMG_SIG, /* from Ship to the Tunnel to draw and check for hits */
MISSILE_IMG_SIG, /* from Missile the Tunnel to draw and check for hits */
MINE_IMG_SIG/ /* sent by Mine to the Tunnel to draw the mine */

Continued onto next page
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MISSILE_FIRE_SIG, /* sent by Ship to the Missile to fire */
DESTROYED_MINE_SIG, /* from Missile to Ship when Missile destroyed Mine */ 
EXPLOSION_SIG/ /* from any exploding object to render the explosion */ 
MINE_PLANT_SIG/ /* from Tunnel to the Mine to plant it */
MINE_DISABLED_SIG, /* from Mine to Tunnel when it becomes disabled */
MINE_RECYCLE_SIG, /* sent by Tunnel to Mine to recycle the mine */
SCORE_SIG, /* from Ship to Tunnel to adjust game level based on score */ 
/* insert other signals here ... * /

(4) MAX_SIG /* the last signal (keep always last) */
};

(5) typedef struct ObjectPosEvtTag {
(6) QEvent super;
(7) uint8_t x;
(8) uint8_t y;

} ObjectPosEvt;

/* extend the QEvent class */ 
/* the x-position of the object */ 
/* new y-position of the object */

typedef struct ObjectlmageEvtTag {
QEvent super; /* extend the QEvent class */
uint8_t x; /* the x-position of the object */
int8_t y; /* the y-position of the object */
uint8_t bmp; /* the bitmap ID representing the object */

} ObjectlmageEvt;

typedef struct MineEvtTag {
QEvent super; /* extend the QEvent class */
uint8_t id; /* the ID of the Mine */

} MineEvt;

typedef struct ScoreEvtTag {
QEvent super; /* extend the QEvent class */
uintl6_t score; /* the current score */

} ScoreEvt;

/* opaque pointers to active objects in the application */
(9) extern QActive * const AO_Tunnel;
(10) extern QActive * const AO_Ship;
(11) extern QActive * const AO_Missile;

/* active objects' "constructors" */
(12) void Tunnel_ctor (void) ;
(13) void Ship_ctor (void) ;
(14) void Missile_ctor (void) ;

(1) In QP, signals of events are simply enumerated constants. Placing all signals in 
a single enumeration is particularly convenient to avoid inadvertent overlap 
in the numerical values of different signals.
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(2) The application-level signals do not start from zero but rather are offset by the 
constant q_u se r_s i g . This is because QP reserves the lowest few signals for 
the internal use and provides the constant q_u s e r_sig as an offset from which 
user-level signals can start. Also note that by convention, I attach the suffix 
_sig to all signals so that I can easily distinguish signals from other constants. I 
drop the suffix _SIG in the state diagrams to reduce the clutter.

(3) The constant m a x_pub_sig delimits the published signals from the rest. The 
publish-subscribe event delivery mechanism consumes some RAM, which is 
proportional to the number of published signals. I save some RAM by providing 
the lower limit of published signals to QP (m a x_pub_sig) rather than the 
maximum of all signals used in the application. (See also Listing 1.1(9)).

(4) The last enumeration m a x_sig indicates the maximum of all signals used in the 
application.

(5) The event structure ObjectPosEvt defines a “class” of events that convey the 
object’s position on the display in the event parameters.

(6) The structure ObjectPosEvt derives from the base structure QEvent, as 
explained in the sidebar “Single Inheritance in C.”

(7,8) The structure Obj ectPosEvt adds parameters x and y, which are coordinates of 
the object on the display.

NO TE

Throughout this book I use the following standard exact-width integer types (WG14/N843 
C99 Standard, Section 7.18.1.1) [ISO/IEC 9899:TC2]:

Exact Size Unsigned Signed

8-bits uint8_t int8_t

16-bits u in tl 6_t in ti 6_t

32-bits uint32_t int32_t

If your (pre-standard) compiler does not provide the <stdint.h> header file, you can 
always typedef the exact-width integer types using the standard C data types such as
signed/unsigned char, short, int, and long.
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(9-11) These global pointers represent active objects in the application and are used 
for posting events directly to active objects. Because the pointers can be 
initialized at compile time, I like to declare them const, so that they can be 
placed in ROM. The active object pointers are “opaque” because they cannot 
access the whole active object, only the part inherited from the QActive 
structure. I’ll have more to say about this in the next section.

(12-14) These functions perform an early initialization of the active objects in the 
system. They play the role of static “constructors,” which in C you need to 
call explicitly, typically at the beginning of m ain () . (See also Listing 1.1 
(10-12).)

1.6.1 Generating, Posting, and Publishing Events

The QF framework supports two types of asynchronous event exchange:

1. The simple mechanism of direct event posting supported through the functions 
QActive_postFlFO () and QActive_postLlFO (), where the producer of an 
event directly posts the event to the event queue of the consumer active object.

2. A more sophisticated publish-subscribe event delivery mechanism supported 
through the functions QF_publish () and QActive_subscribe (), where the 
producers of the events “publish” them to the framework, and the framework then 
delivers the events to all active objects that had “subscribed” to these events.

In QF, any part of the system, not necessarily only the active objects, can produce 
events. For example, interrupt service routines (ISRs) or device drivers can also produce 
events. On the other hand, only active objects can consume events, because only active 
objects have event queues.

N O TE

QF also provides “raw” thread-safe event queues (struct QEQueue), which can consume 
events as well. These “raw” thread-safe queues cannot block and are intended to deliver 
events to ISRs or device drivers. Refer to Chapter 7 for more details.

The most important characteristic of event management in QF is that the framework 
passes around only pointers to events, not the events themselves. QF never copies the
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events by value (“zero-copy” policy); even in case of publishing events that often 
involves multicasting the same event to multiple subscribers. The actual event instances 
are either constant events statically allocated at compile time or dynamic events 
allocated at runtime from one of the event pools that the framework manages. Listing 1.3 
provides examples of publishing static events and posting dynamic events from the 
ISRs of the “Fly ‘n’ Shoot” version for the Stellaris board (file <qp>\qpc\examples 
\cortex-m3\vanilla\iar\game-ev-lm3s811\bsp.c). In Section 1.7.3 you will 
see other examples of event posting from active objects in the state machine code.

Listing 1.3 Generating, posting, and publishing events from the ISRs 
in b s p . c for the Stellaris board

(1) void ISR_SysTick (void) {
(2) static QEvent const tickEvt = { TIME_TICK_SIG, 0 };
(3) QF_publish(&tickEvt) ; /* publish the tick event to all subscribers */
(4) QF_tick() ; /* process all armed time events */

}
/*  */

(5) void ISR_ADC (void) {
static uint32_t adcLPS = 0; /* Low-Pass-Filtered ADC reading */
static uint32_t wheel = 0; /* the last wheel position */
unsigned long tmp;

ADCIntClear(ADC_BASE, 3) ; /* clear the ADC interrupt */
(6) ADCSequenceDataGet(ADC_BASE, 3, &tmp) ; /* read the data from the ADC */

/* 1st order low-pass filter: time constant ~= 2An samples
* TF = (l/2An)/(z-((2An- 1)/2An)),
* e . g . , n=3, y(k+l) = y(k) - y (k) /8 + x(k) /8 => y += (x - y) /8
*/

(7) adcLPS+= (((int)tmp- (int)adcLPS+4) >>3); /* Low-Pass-Filter */

/* compute the next position of the wheel */
(8) tmp = ( ( (1 «  10) - adcLPS) * (BSP_SCREEN_HEIGHT - 2) ) »  10;

if (tmp != wheel) { /* did the wheel position change? */
(9) ObjectPosEvt *ope = Q_NEW(ObjectPosEvt, PLAYER_SHIP_MOVE_SIG);
(10) ope->x = (uint8_t)GAME_SHIP_X; /* x-position is fixed */
(11) ope->y = (uint8_t)tmp;
(12) QActive_postFIFO (AO_ship, (QEvent *)ope) ; /* post to the Ship AO */

wheel = tmp; /* save the last position of the wheel */
}
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(1) In the case of the Stellaris board, the function lSR_SysTick() services the 
system clock tick ISR generated by the Cortex-M3 system tick timer.

(2) The t im e_ti c k event never changes, so it can be statically allocated just 
once. This event is declared as const, which means that it can be placed in 
ROM. The initializer list for this event consists of the signal t i m e_t ic k_sig 
followed by zero. This zero informs the QF framework that this event is 
static and should never be recycled to an event pool.

(3) The ISR calls the framework function QF_publish (), which takes the
pointer to the tickEvt event to deliver to all subscribers.

(4) The ISR calls the function QF_tick (), in which the framework manages
the armed time events.

(5) The function isr_adc () services the ADC conversions, which ultimately 
deliver the position of the Ship.

(6) The ISR reads the data from the ADC.

(7,8) A low-pass filter is applied to the raw ADC reading and the potentiometer 
wheel position is computed.

(9) The QF macro Q_NEW(ObjectPosEvt, PLAYER_SHlP_MOVE_SIG)
dynamically allocates an instance of the objectPosEvt event from an event 
pool managed by QF. The macro also performs the association between the 
signal PLAYER_SHIP_M0VE_SIG and the allocated event. The Q_n e w ( ) 
macro returns the pointer to the allocated event.

N O TE

The p l a y e r _ s h i p _ m o v e  ( x ,  y )  event is an example of an event with changing parameters. 
In general, such an event cannot be allocated statically (like the t i m e _ t i c k  event at label 
(2)) because it can change asynchronously next time the ISR executes. Some active objects 
in the system might still be referring to the event via a pointer, so the event should not be 
changing. Dynamic event allocation of QF solves all such concurrency issues because every 
time a new event is allocated. QF then recycles the dynamic events after it determines that all 
active objects are done with accessing the events.

(10,11) The x and y parameters of the event are assigned.

(12) The dynamic event is posted directly to the Ship active object.



Getting Started with UML State Machines and Event-Driven Programming 39

1.7 Coding Hierarchical State Machines
Contrary to widespread misconceptions, you don’t need big design automation tools to 
translate hierarchical state machines (UML statecharts) into efficient and highly 
maintainable C or C++. This section explains how to hand-code the Ship state machine 
from Figure 1.6 with the help of the QF real-time framework and the QEP hierarchical 
processor, which is also part of the QP event-driven platform. Once you know how 
to code this state machine, you know how to code them all.

The source code for the Ship state machine is found in the file s h ip . c located either in 
the DOS version or the Stellaris version of the “Fly ‘n’ Shoot” game. I break the 
explanation of this file into three steps.

1.7.1 Step 1: Defining the Ship Structure

In the first step you define the Ship data structure. Just as in the case of events, you use 
inheritance to derive the Ship structure from the framework structure QActive (see 
the sidebar “Single Inheritance in C”). Creating this inheritance relationship ties the 
Ship structure to the QF framework.

The main responsibility of the QActive base structure is to store the information about the 
current active state of the state machine as well as the event queue and priority level of 
the Ship active object. In fact, QActive itself derives from a simpler QEP structure QHsm 
that represents just the current active state of a hierarchical state machine. On top of that 
information, almost every state machine must also store other “extended-state” information. 
For example, the Ship object is responsible for maintaining the Ship position as well as 
the score accumulated in the game. You supply this additional information by means of data 
members enlisted after the base structure member super, as shown in Listing 1.4.

Listing 1 .4 Deriving the Ship structure in file ship. c
(i) tinclude "qp_port.h" /* the QP port */
(2) #include "bsp.h" /* Board Support Package */
(3) # include "game.h " /* this application */

/* local objects------- ---------------------------------------------------*/
(4) typedef struct ShipTag {
(5) QActive super; /* derive from the QActive struct */
(6) uint8_t x; /* x-coordinate of the Ship position on the display */
(7) uint8_t y; /* y-coordinate of the Ship position on the display */
(8) uint8_t exp_ctr; /* explosion counter, used to animate explosions */

Continued onto next page
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(9) uintl6_t score; /* running score of the game */
(10) } Ship; /* the typedef-ed name for the Ship struct */

/* state handler functions. . . */
(11) static QState Ship_active (Ship *me, QEvent const *e) ;
(12) static QState Ship_parked (Ship *me, QEvent const *e) ;
(13) static QState Ship_flying (Ship *me, QEvent const *e) ;
(14) static QState Ship_exploding (Ship *me, QEvent const *e) ;

(15) static QState Ship_initial (Ship *me, QEvent const *e) ;

(16) static Ship l_ship; /* the sole instance of the Ship active object */

/* global objects---------------------------------------------------------*/
(17) QActive * const AO_ship = (QActive *)&l_ship; /* opaque pointer to Ship AO */

(1) Every application-level C file that uses the QP platform must include the 
q p _ p o rt. h header file.

(2) The b s p . h header file contains the interface to the Board Support Package.

(3) The game. h header file contains the declarations of events and other facilities 
shared among the components of the application (see Listing 1.2).

(4) This structure defines the Ship active object.

N O TE

I like to keep active objects, and indeed all state machine objects (such as Mines), strictly
encapsulated. Therefore, I don’t put the state machine structure definitions in header files; rather,
I define them right in the implementation file, such as s h i p . c . That way I can be sure that the
internal data members of the S h ip  structure are not known to any other parts of the application.

(5) The Ship active object structure derives from the framework structure 
QActive, as described in the sidebar “Single Inheritance in C.”

(6,7) The x and y data members represent the position of the Ship on the display.

(8) The exp__ctr member is used for pacing the explosion animation (see also the 
“exploding” state in the Ship state diagram in Figure 1.6).

(9) The score member stores the accumulated score in the game.
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(10) I use the ty p e d e f  to define the shorter name Ship equivalent to 
s t r u c t  ShipTag.

(11-14) These four functions are called state-handier functions because they correspond 
one to one to the states of the Ship state machine shown in Figure 1.6. For 
example, the Ship_active () function represents the “active” state. The 
QEP event processor calls the state-handier functions to realize the UML 
semantics of state machine execution. All state-handier functions have the same 
signature. A state-handier function takes the state machine pointer and the 
event pointer as arguments and returns the status of the operation back to the 
event processor—for example whether the event was handled or not. The return 
type QState of state-handier functions is typedef-ed to uint8_t as 
QState in the header file <qp>\qpc\include\qep.h.

NO TE

I use a simple naming convention to strengthen the association between the structures and the 
functions designed to operate on these structures. First, I name the functions by combining 
the typedef’ed structure name with the name of the operation (e.g., Ship_active). Sec
ond, I always place the pointer to the structure as the first argument of the associated func
tion, and I always name this argument "me" (e.g., Ship_active(Ship *me, ...)).

(15) In addition to state-handier functions, every state machine must declare the 
initial pseudostate, which QEP invokes to execute the topmost initial 
transition (see Figure 1.6(1)). The initial pseudostate handler has a signature 
identical to the regular state-handier function.

(16) In this line I statically allocate the storage for the ship active object. Note 
that the object l_ship is defined as static so that it is accessible only 
locally at the file scope of the ship. c file.

(17) In this line I define and initialize the global pointer AO_Ship to the Ship 
active object (see also Listing 1.2(10)). This pointer is “opaque” because it 
treats the Ship object as the generic QActive base structure rather than the 
specific Ship structure. The power of an “opaque” pointer is that it allows me 
to completely hide the definition of the Ship structure and make it 
inaccessible to the rest of the application. Still, the other application 
components can access the Ship object to post events directly to it via the 
QActive_postFIFO (QActive *me, QEvent const *e) function.
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1.7.2 Step 2: Initializing the State Machine

The state machine initialization is divided into the following two steps for increased 
flexibility and better control of the initialization timeline:

1. The state machine “constructor”; and

2. The top-most initial transition.

The state machine “constructor,” such as ship_ctor (), intentionally does not execute 
the topmost initial transition defined in the initial pseudostate because at that time 
some vital objects can be missing and critical hardware might not be properly initialized 
yet.3 Instead, the state machine “constructor” merely puts the state machine in the 
initial pseudostate. Later, the user code must trigger the topmost initial transition 
explicitly, which happens actually inside the function QActive_start () (see 
Listing 1.1(18-20)). Listing 1.5 shows the instantiation (the “constructor” function) 
and initialization (the initial pseudostate) of the Ship active object.

Listing 1.5 Instantiation and initialization o f the Ship active object in ship. c
(1) void Ship_ctor( void) { /‘ instantiation*/
(2) Ship *me = &l_ship;
(3) QActive_ctor(&me->super, (QStateHandler)&Ship_initial);
(4) me->x = GAME_SHIP_X;
(5) me->y = GAME_SHIP_Y;

>
/*  */

(6) QState Ship_initial (Ship *me, QEvent const *e) { /* initialization */
(7) QActive_subscribe((QActive *)me, TIME_TICK_SIG);
(8) QActive_subscribe((QActive *)me, PLAYER_TRIGGER_SIG);

(9) return Q_TRAN(&Ship_active) ; /* top-most initial transition */
>

(1) The global function Ship_ctor () is prototyped in game.h and called at the 
beginning of main () .

(2) The “me” pointer points to the statically allocated Ship object (see Listing 1.4(16)).

3 In C++, the static constructors run even before main ().


