Air Pollution Control Technology Handbook

Second Edition

Karl B. Schnelle, Jr. Russell F. Dunn Mary Ellen Ternes

Air Pollution Control Technology Handbook

Second Edition

Air Pollution Control Technology Handbook

Second Edition

Karl B. Schnelle, Jr. Russell F. Dunn Mary Ellen Ternes

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2016 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works Version Date: 20150713

International Standard Book Number-13: 978-1-4822-4562-2 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Dedication

The authors would like to dedicate this book to all the students who have been in their air pollution control courses at Vanderbilt University, Western Washington University, Gonzaga University, Auburn University, and Education Services of the American Institute of Chemical Engineers. We appreciate your attendance, your attentiveness, and your desire to improve our environment.

Contents

•	-			
Autio18	•••••			
Chapter 1	Histo	orical Ov	verview of the Development of Clean Air Regulations	s1
	1.1	A Brie	f History of the Air Pollution Problem	1
	1.2	Federa	I Involvement in Air Pollution Control	3
	1.3	Charac	cterizing the Atmosphere	4
	1.4	Recipe	e for an Air Pollution Problem	6
		1.4.1	Sources of Air Pollution	8
		1.4.2	Meteorological Parameters Affecting Transport	
			of Pollutants	8
		1.4.3	Effects of Air Pollution—A Comparison	
			of London Smog and Los Angeles Smog	10
Chapter 2	Clear	n Air Ac	t	13
	2.1	Histor	y of the Clean Air Act	13
		2.1.1	1970 Clean Air Act Amendments	
			2.1.1.1 National Ambient Air Quality Standards	
			2.1.1.2 New Source Performance Standards	
			2.1.1.3 Hazardous Air Pollutants	
			2.1.1.4 Citizen Suits	15
		2.1.2	1977 Clean Air Act Amendments	15
			2.1.2.1 Prevention of Significant Deterioration	
			2.1.2.2 Offsets in Nonattainment Areas	
	2.2	1990 C	Clean Air Act Amendments	
		2.2.1	Title I: Provisions for Attainment and	
			Maintenance of NAAQS	18
			2.2.1.1 NAAQS Revisions	
		2.2.2	Title II: Mobile Sources	
		2.2.3	Title III: Hazardous Air Pollutant Program	
			2.2.3.1 Source Categories	
			2.2.3.2 Establishing MACT Standards	
			2.2.3.3 Risk Management Plans	
		2.2.4	Title IV: Acid Deposition Control	
		2.2.5	Title V: Operating Permits	
		2.2.6	Title VI: Stratospheric Ozone and Global	
			Climate Protection	36
		2.2.7	Title VII: Enforcement	
		2.2.8	Title VIII: Miscellaneous Provisions	

		2.2.9	Title IX: Research	37				
		2.2.10	Title X: Disadvantaged Business	37				
		2.2.11	Title XI: Employment Transition Assistance					
Chapter 3	Air I	Air Permits for New Source						
	3.1	Elemen	ts of a Permit Application	39				
		3.1.1	Applicability					
			3.1.1.1 Potential to Emit	41				
			3.1.1.2 Fugitive Emissions	41				
			3.1.1.3 Secondary Emissions	41				
		3.1.2	Significant Emission Rates	41				
		3.1.3	Modification	42				
		3.1.4	Emissions Netting	43				
			3.1.4.1 Netting Example	44				
	3.2	Best Av	vailable Control Technology	44				
		3.2.1	Step 1: Identify Control Technologies	45				
		3.2.2	Step 2: Eliminate Technically Infeasible Options	46				
		3.2.3	Step 3: Rank Remaining Options by Control					
			Effectiveness	46				
		3.2.4	Step 4: Evaluate Control Technologies in Order					
			of Control Effectiveness	47				
			3.2.4.1 Energy Impacts	47				
			3.2.4.2 Environmental Impacts	47				
			3.2.4.3 Economic Impacts and Cost-Effectiveness	48				
		3.2.5	Step 5: Select BACT	48				
	3.3	Air Qua	ality Analysis	48				
		3.3.1	Preliminary Analysis	49				
		3.3.2	Full Analysis	50				
	3.4	NSR Re	eform	50				
Chapter 4	Atm	ospheric I	Diffusion Modeling for Prevention of Significant					
I		-	Permit Regulations and Regional Haze	51				
	4.1	Introdu	ction—Meteorological Background	51				
		4.1.1	Inversions					
			4.1.1.1 Surface or Radiation Inversions					
			4.1.1.2 Evaporation Inversion					
			4.1.1.3 Advection Inversion					
			4.1.1.4 Subsidence Inversion					
		4.1.2	Diurnal Cycle					
		4.1.3	Principal Smoke-Plume Models					
	4.2		ick					
	4.3		ying Sources by Method of Emission					
		4.3.1	Definition of Tall Stacks					
		4.3.2	Process Stacks					
			· · · · · · · · · · · · · · · · · · ·					

Contents

	4.4	Atmospheric-Diff	usion Models	57
			es of Atmospheric-Diffusion Models	
	4.5		otection Agency's Computer Programs	
			Industry	59
		-	Source Complex Model	
			g Models	
			lels	
	4.6	Source-Transport-	Receptor Problem	61
		4.6.1 Source	-	61
		4.6.2 Transport		62
		4.6.2.1	Effective Emission Height	62
		4.6.2.2	Bulk Transport of Pollutants	63
		4.6.2.3	Dispersion of Pollutants	63
		4.6.3 Receptor		63
Chapter 5	Sour	e Testing		65
Chapter 5		-		
	5.1			
	5.2		Regulations	
	5.3		mpling Techniques	
			Pollutants	
		•	and Particulate Traverses	
		5.3.3 Isokinetic	Sampling	70
Chapter 6	Amb	ent Air Quality and	l Continuous Emissions Monitoring	73
	6.1	Ambient Air-Qua	lity Sampling Program	73
	6.2		mpling Program	
	6.3		ns	
			sus Mobile Sampling	
			us versus Integrated Sampling	
			of Instrumentation and Methods	
	6.4		Methods and Continuous Monitoring	
	6.5		nmental Surveillance and Control	
				78
	6.6	•	ling Train	
	6.7		ng Devices for Suspended Particulate	
		Matter		80
	6.8	Continuous Air-C	uality Monitors	81
		-	nductivity Analyzer for SO ₂	
			ric Analyzer for SO_2	
			rsive Infrared Method for CO	
			otometric Detection of	
			Fur and SO_2	85
			bons by Flame Ionization	
		-	nt SO_2 Monitor	
			-	-

		6.8.7	Chemilumenescence for Detection of Ozone and Nitrogen Oxides				
		6.8.8	Calibration of Continuous Monitors				
			6.8.8.1 Specifications for Continuous				
			Air-Quality Monitors				
			6.8.8.2 Steady-State Calibrations				
Chapter 7	Cost	Estimati	ng	91			
	7.1	Time V	Value of Money				
		7.1.1	Annualized Capital Cost	93			
		7.1.2	Escalation Factors	93			
	7.2	Types	of Cost Estimates	94			
	7.3	Air Po	Ilution Control Equipment Cost	95			
		7.3.1	OAQPS Control Cost Manual	95			
		7.3.2	Other Cost-Estimating Resources	95			
Chapter 8	Proc	ess Desig	gn and the Strategy of Process Design	97			
	8.1	Introdu	action to Process Design	97			
	8.2		y of Process Design				
	0.2	8.2.1	Process Flowsheets				
	8.3	0	and Energy Balances				
	0.0	8.3.1	Mass-Balance Example				
		8.3.2	Energy-Balance Example				
	8.4		is-Based Approaches to Design				
Chanton 0	Dreaf	tability a	nd Engineering Economics	100			
Chapter 9	PIOII	Profitability and Engineering Economics					
	9.1		action—Profit Goal				
	9.2	Profita	bility Analysis	109			
		9.2.1	Mathematical Methods for Profitability				
			Evaluation	109			
		9.2.2	Incremental Rate of Return on Investments				
			as a Measure of Profitability	110			
			9.2.2.1 Example of IROI Comparing				
			Two Cases				
			9.2.2.2 Example of IROI with Four Cases				
	9.3		of Depreciation				
		9.3.1	Example				
	9.4	-	I Investment and Total Product Cost				
		9.4.1	Design Development	116			

Chapter 10	Introdu	ction to Co	ntrol of Ga	seous Pollutants	119	
	10.1	Absorption	n and Adso	rption	121	
		10.1.1		hanics Terminology		
		10.1.2		of Hazardous Air Pollutants and		
			Volatile O	rganic Compounds by Absorption		
				ption	124	
	10.2	Process Sy		chnology for the Design of		
		•		pounds Recovery Systems	125	
Chapter 11	Absorp	tion for Ha	zardous Ai	r Pollutants and Volatile Organic		
•					127	
	1					
	11.1					
		11.1.1	-	n		
		11.1.2		2S		
	11.0	11.1.3		ages		
	11.2	-	•			
	11.3					
	11.4	• •	-	ents of Absorption Equipment	129	
	11.5	-	-	r Countercurrent Absorption	100	
		11.5.1	-	m Relationships		
		11.5.2		tions—Henry's Law	136	
		11.5.3		rrent Absorption Tower Design	1.00	
					138	
		11.5.4	-	Volume-Based Mass-Transfer		
				ts		
			11.5.4.1	Steady-State Molecular Diffusion		
		11.5.5		Two-Film Theory		
		11.5.6		ass-Transfer Coefficients		
		11.5.7		ased Mass-Transfer Coefficients	144	
		11.5.8		ng Height of Packing in the Tower:		
				a Transfer Unit Method		
		11.5.9		ution Case	146	
		11.5.10	U	ss Exchange Network Concepts		
				neously Evaluate Multiple Mass		
			Separating	g Agent (Absorbent) Options	147	
	11.6			Packed Absorption Tower Design		
		11.6.1	General C	onsiderations	151	
		11.6.2	Operation	s of Packed Towers	151	
		11.6.3		kings	153	
			11.6.3.1	Random or Dumped Packing	153	
			11.6.3.2	Types of Random Packing	154	
			11.6.3.3	Structured Packing		

			11.6.3.4	Types of Structured Packing	158
			11.6.3.5	Grid-Type Packing	161
		11.6.4	Packed To	ower Internals	162
			11.6.4.1	Packing Support Plate	162
			11.6.4.2	Liquid Distributors	162
			11.6.4.3	Liquid Redistributors	163
			11.6.4.4	Bed Limiter	163
		11.6.5	Choosing	a Liquid-Gas Flow Ratio	164
		11.6.6	Determin	ing Tower Diameter—Random	
			Dumped 1	Packing	165
		11.6.7	Determin	ing Tower Diameter—Structured	
			Packing	-	168
		11.6.8	Controlli	ng Film Concept	169
		11.6.9	Correlatio	on for the Effect of <i>L/G</i> Ratio	
			on the Pa	cking Height	169
		11.6.10	Henry's L	aw Constants and Mass-Transfer	
			Informati	on	171
		11.6.11	Using He	nry's Law for Multicomponent	
			Solutions		174
	11.7	Sample D	esign Calcu	alation	174
		11.7.1	Dumped 1	Packing	174
		11.7.2	Flooding.		179
		11.7.3	Structure	d Packing	180
			11.7.3.1	Flooding	182
Chapter 12				ir Pollutants and Volatile Organic	185
	12.1	Introducti	ion to Adso	rption Operations	185
		12.1.1		on	
		12.1.2		es	
		12.1.3		tages	
	12.2			enon	
	12.3	-		s	
		12.3.1		e Process	
		12.3.2	-	us Contact, Steady-State,	
				Bed Adsorbers	188
		12.3.3	•	-State, Fixed-Bed Adsorbers	
		12.3.4		chnologies	
			12.3.4.1	Rotary Wheel Adsorber	
			12.3.4.2	Chromatographic Adsorption	
			12.3.4.3	Pressure Swing Adsorption	
	12.4	Nature of		s	
		12.4.1		on Design with Activated Carbon	
			12.4.1.1	Pore Structure	
			12.4.1.2	Effect of Relative Humidity	

	12.5	Theories of	of Adsorption	192		
	12.6	Data of A	dsorption	194		
	12.7	Adsorption Isotherms				
		12.7.1	Freundlich's Equation			
		12.7.2	Langmuir's Equation			
		12.7.3	Brunauer, Emmett, Teller, or BET Isotherm			
			12.7.3.1 Adsorption without Capillary			
			Condensation	196		
			12.7.3.2 Adsorption with Capillary	170		
			Condensation	197		
	12.8	Polanvi Po	otential Theory			
	12.0	12.8.1	Hexane Example of the Polanyi	170		
		12.0.1	Potential Theory	108		
	12.9	Unstandy	State, Fixed-Bed Adsorbers			
	12.9	•	Adsorber Design Considerations			
	12.10	12.10.1	Safety Considerations			
	10.11		•			
	12.11		Drop through Adsorbers			
	10.10	12.11.1	Pressure Drop Example			
	12.12		Effectiveness, Regeneration, and Reactivation			
		12.12.1	Steam Regeneration			
		12.12.2	Hot Air or Gas Regeneration			
	10.10	12.12.3	Reactivation			
	12.13		ugh Model			
		12.13.1	Mass Transfer			
		12.13.2	Breakthrough Curve Example	211		
		12.13.3	Second Breakthrough Curve Example:			
			Hexane Problem			
	12.14	Regenerat	ion Modeling			
		12.14.1	Steam Regeneration Example	218		
	12.15	-	ss Exchange Network Concepts			
			neously Evaluate Multiple			
		-	arating Agent (Absorbent and Adsorbent)			
		Options		219		
Chapter 13	Thermal	Oxidation	for Volatile Organic Compounds Control	221		
	13.1		on Basics			
	13.2					
		13.2.1	Elevated, Open Flare			
		13.2.2	Smokeless Flare Assist			
		13.2.3	Flare Height			
		13.2.4	Ground Flare			
		13.2.5	Safety Features			
	13.3		on			
		13.3.1	Direct Flame Incineration			
		13.3.2	Thermal Incineration	231		

		13.3.3	Catalytic Incineration	235				
		13.3.4	Energy Recuperation in Incineration	237				
Chapter 14			ile Organic Compounds and Hazardous Air	•••				
	Polluta	nts by Co	ndensation	239				
	14.1	Introduc	tion	239				
		14.1.1	Description	240				
		14.1.2	Advantages					
		14.1.3	Disadvantages					
	14.2	Volatile	Organic Compounds Condensers					
		14.2.1	Contact Condensers					
		14.2.2	Surface Condensers	241				
			14.2.2.1 Example—Design Condensation					
			Temperature to Achieve Desired					
			Volatile Organic Compounds					
			Recovery					
	14.3	Coolant	and Heat Exchanger Type	244				
		14.3.1	Example—Heat Exchanger Area and Coolant					
			Flow Rate					
	14.4		s of Organic Vapors					
			Example—Condensation of a Binary Mixture					
	14.5		Noncondensable	251				
	14.6	•	-Based Approach for Designing					
			sation Systems for Volatile Organic Compounds					
			y from Gaseous Emission Streams	252				
	Append		Derivation of the Area Model for a Mixture					
			Condensing from a Gas	256				
	Append		Algorithm for the Area Model for a Mixture					
		(Condensing from a Gas	257				
Chapter 15			ile Organic Compounds and Hazardous Air					
	Polluta	Pollutants by Biofiltration						
	15.1	Introduc	tion	259				
	15.2		of Biofilter Operation					
	15.3		Parameters and Conditions					
			Depth and Media of Biofilter Bed					
		15.3.2	Microorganisms					
		15.3.3	Oxygen Supply					
		15.3.4	Inorganic Nutrient Supply					
		15.3.5	Moisture Content					
		15.3.6	Temperature					
		15.3.7	pH of the Biofilter					

		15.3.8	Loading an	nd Removal Rates	264
		15.3.9		Drop	
		15.3.10		ent of Gas Streams	
	15.4	Biofilter (Compared to	o Other Available	
		Control T	Cechnology.		265
	15.5	Successfu	Il Case Stud	ies	266
	15.6	Further C	onsideration	18	266
Chapter 16	Memb	rane Separa	ation		267
	16.1	Overview	·		267
		16.1.1	Descriptio	n	267
		16.1.2	Advantage	es	268
		16.1.3	Disadvanta	ages	268
	16.2	Polymeric	c Membrane		268
	16.3	Performa	nce		268
	16.4	Application	ons		269
	16.5	Membran	e Systems E	Design	270
Chapter 17	$NO_x C$	ontrol			271
	17.1	NO _x from	Combustio	n	271
		17.1.1		۷O _x	
		17.1.2	Prompt NO	D _x	274
		17.1.3	Fuel NO _x		274
	17.2	Control T	echniques		274
		17.2.1	Combustic	on Control Techniques	274
			17.2.1.1	Low Excess Air Firing	275
			17.2.1.2	Overfire Air	275
			17.2.1.3	Flue Gas Recirculation	275
			17.2.1.4	Reduce Air Preheat	275
			17.2.1.5	Reduce Firing Rate	275
			17.2.1.6	Water/Steam Injection	276
			17.2.1.7	Burners out of Service	276
			17.2.1.8	Reburn	276
			17.2.1.9	Low NO _x Burners	277
			17.2.1.10	Ultra Low NO _x Burners	278
		17.2.2	Flue Gas 7	Freatment Techniques	279
			17.2.2.1	Selective Noncatalytic Reduction	
			17.2.2.2	Selective Catalytic Reduction	280
			17.2.2.3	Low Temperature Oxidation	
				with Absorption	281
			17.2.2.4	Catalytic Absorption	282
			17.2.2.5	Corona-Induced Plasma	283

Chapter 18	Control	l of SO_x			285	
	18.1	H ₂ S Con	trol		285	
	18.2			noval		
		18.2.1				
			18.2.1.1	Calcium-Based Reactions	287	
			18.2.1.2	Calcium-Based Reaction Products	288	
			18.2.1.3	Sodium-Based Reactions	289	
			18.2.1.4	Sodium-Based Reaction Products	290	
		18.2.2	Capital ve	ersus Operating Costs	290	
			18.2.2.1	Operating Costs	290	
		18.2.3	SO ₂ Remo	oval Processes		
			18.2.3.1	Wet Limestone		
			18.2.3.2	Wet Soda Ash or Caustic Soda	293	
			18.2.3.3	Lime Spray Drying	294	
			18.2.3.4	Circulating Lime Reactor	296	
			18.2.3.5	Sodium Bicarbonate/Sodium		
				Sesquicarbonate Injection		
			18.2.3.6	Other SO ₂ Removal Processes		
		18.2.4 Example Evaluation				
	18.3	SO ₃ and Sulfuric Acid				
		18.3.1		I_2SO_4 Formation		
		18.3.2	Toxic Rel	ease Inventory	304	
Chapter 19	Fundar	nentals of	Particulate	e Control	305	
	19.1	Particle	Size Distril	bution	305	
	19.2			neter		
	19.3			Correction		
	19.4			isms		
	-,	19.4.1		chanisms: Impaction, Interception,		
				sion	311	
			19.4.1.1	Impaction	312	
			19.4.1.2	Interception		
			19.4.1.3	Diffusion		
		19.4.2	Other Me	chanisms		
			19.4.2.1	Electrostatic Attraction	313	
			19.4.2.2	Gravity		
			19.4.2.3	Centrifugal Force		
			19.4.2.4	Thermophoresis		
			19.4.2.5	Diffusiophoresis	314	

Chapter 20	Hood and Ductwork Design					
	20.2	Introduction Hood Design	. 316 . 317 . 317 . 317 . 317 . 318 . 318 . 318 . 319 . 320 . 321			
	20.4	Effect of Entrance into a Hood				
	20.4	Total Energy Loss				
	20.6	Fan Power				
	20.7	Hood–Duct Example	. 326			
Chapter 21	Cyclone	Design	. 329			
	21.1 21.2 21.3	Collection Efficiency	. 331 . 333 . 334 . 335 . 336 . 337			
Chapter 22	Design a	and Application of Wet Scrubbers	. 341			
	22.1 22.2 22.3 22.4 22.5 22.6 22.7	Introduction Collection Mechanisms and Efficiency Collection Mechanisms and Particle Size Selection and Design of Scrubbers Devices for Wet Scrubbing Semrau Principle and Collection Efficiency Model for Countercurrent Spray Chambers 22.7.1 Application to a Spray Tower	. 342 . 342 . 344 . 344 . 344 . 347			

	22.8	A Model	for Venturi Scrubbers	. 357
	22.9	Calvert C	Cut Diameter Design Technique	. 357
		22.9.1	Example Calculation	.360
		22.9.2	Second Example Problem	. 361
	22.10	Cut-Pow	er Relationship	. 362
	Appendi		alvert Performance Cut Diameter Data	
Chapter 23	Filtratior	n and Bag	houses	. 367
	23.1	Introduct	tion	367
	23.2		ssues	
	23.3		Mechanisms	
	20.0	23.3.1	Shake/Deflate	
		23.3.2	Reverse Air	
		23.3.3	Pulse Jet (High Pressure)	
		23.3.4	Pulse Jet (Low Pressure)	
		23.3.5	Sonic Horns	
	23.4		roperties	
	23.1	23.4.1	Woven Bags	
		23.4.2	Felted Fabric	
		23.4.3	Surface Treatment	
		23.4.4	Weight	
		23.4.5	Membrane Fabrics	
		23.4.6	Catalytic Membranes	
		23.4.7	Pleated Cartridges	
		23.4.8	Ceramic Candles	
	23.5		e Size	
	2010	23.5.1	Air-to-Cloth Ratio	
		23.5.2	Can Velocity	
	23.6		Drop	
	23.7		F	
		23.7.1	Failure Modes	
		23.7.2	Inlet Design	
		23.7.3	Startup Seasoning	
	23.8	Baghous	e Design Theory	
		23.8.1	Design Considerations	
		23.8.2	Number of Compartments	
		23.8.3	Example Problem for a Baghouse Design	.386
			I C C C C	
Chapter 24	Electrost	atic Preci	pitators	. 391
	24.1	Early De	velopment	391
	24.2	-	eory	
		24.2.1	Corona Formation	
		24.2.2	Particle Charging	

24.2	3 Particle Migration	
24.2	-	
	24.2.4.1 Sneakage	
	24.2.4.2 Rapping Re-Entrainment	
	24.2.4.3 Particulate Resistivity	
	24.2.4.4 Gas-Flow Distribution	
24.3 Prac	tical Application of Theory	400
24.3	1 Effective Migration Velocity	400
24.3	2 Automatic Voltage Controller	400
24.4 Flue	Gas Conditioning	
24.4	-	
24.4	2 SO ₃	
24.4	3 Ammonia	
24.4	4 SO ₃ and Ammonia	
24.4	5 Ammonium Sulfate	
24.4	6 Proprietary Additives	
24.5 Usin	g V-I Curves for Troubleshooting	
References		

Preface

This book has been written to serve as a reference handbook for the practicing engineer or scientist who needs to prepare the basic process engineering and cost estimation required for the design of an air pollution control system. The user of this book should have a fundamental understanding of the factors resulting in air pollution and a general knowledge of the techniques used for air pollution control. The topics presented in this handbook are covered in sufficient depth so the user can proceed with the basic equipment design using the methods and design equations presented. Although moving sources, especially those powered by internal combustion engines, are serious contributors to the air pollution problem, this book will focus on stationary sources. Furthermore, this handbook will not consider nuclear power plants or other radioactive emissions. Therefore, the major audience for this book will be engineers and scientists in the chemical- and petroleum-processing industry and steam power plant and gas turbine industry.

Using this book, the air pollution control systems designer may

- Begin to select techniques for control
- Review alternative design methods
- Review equipment proposals from vendors
- Initiate cost studies of control equipment

This book is certainly suitable for anyone with an engineering or science background who needs a basic introduction to air pollution control equipment design. It can also be used as a textbook or reference in a continuing education program or a university classroom.

> Karl B. Schnelle, Jr. and Russell F. Dunn Vanderbilt University

Mary Ellen Ternes Crowe and Dunlevy

Acknowledgments

Professor Schnelle acknowledges the assistance of his former student Dr. Partha Dey and his wife, Anita Dey, as well as Atip Laungphairojana, another former student, for the preparation of 70 drawings, which are part of the chapters he wrote. There would have been no book without their help. Furthermore, Professor Schnelle is forever grateful to his wife, Mary Dabney Schnelle, who read every word he wrote, including the equations. She helped remove many errors of grammar and spelling and corrected errors of algebra and definition that the author did not find.

Dr. Dunn acknowledges the support and encouragement of his wife, Donna Dunn, their children, Elizabeth and Catherine, and his parents, Gene and Carole Dunn. Dr. Dunn also acknowledges the continual inspiration that has been provided by Professor Mahmoud El-Halwagi, Texas A&M University.

Mary Ellen Ternes acknowledges the support of her children, Joshua and Jake, and her parents, William and Agnes Crowley.

All of the authors acknowledge Charles Brown for his significant contribution as an author on the first edition of this book.

Authors

Karl B. Schnelle, Jr., PhD, PE, is professor emeritus of chemical and environmental engineering; he has been a member of the Vanderbilt University faculty for more than 55 years. He has served as chair of the Environmental and Water Resources Engineering Program and the Chemical Engineering Department for a total of 14 years. He has extensive publications in the chemical engineering and environmental area. Dr. Schnelle is an emeritus member of both the American Institute of Chemical Engineers and the Air and Waste Management Association. He is a fellow of the American Institute of Chemical Engineers, a board certified environmental engineer of the American Academy of Environmental Engineers, and a life member of the American Institute of Chemical Engineers' continuing education program for more than 30 years, where he taught designing air pollution control systems and atmospheric dispersion modeling courses.

Dr. Schnelle is a licensed professional engineer in the state of Tennessee. He has been an environmental consultant to the World Health Organization, the Environmental Protection Agency, the U.S. State Department, and the Tennessee and Nashville air pollution control agencies as well as to numerous private corporations. He has served two terms as a member of the Air Pollution Control Board of the state of Tennessee and continues teaching part time at Vanderbilt University.

Russell F. Dunn, PhD, PE, is a professor of the practice of chemical and environmental engineering at Vanderbilt University. He also has prior academic experience teaching chemical engineering courses at Auburn University and the Technical University of Denmark. He has authored numerous publications and presentations on chemical and environmental engineering design, in addition to having over 30 years of professional experience in industry, consulting, and academia. His industrial experience includes being appointed as fellow when he worked at Solutia. Dr. Dunn is the founder and president of Polymer and Chemical Technologies, LLC, a company that provides chemical process and product failure analysis, in addition to developing environmental and energy-based process designs for large chemical plants. Through his company, Dr. Dunn has been a consultant to numerous private corporations and legal firms and has served as an expert witness on well over 200 chemical product and process engineering investigations.

Dr. Dunn is a licensed professional engineer in the state of Florida. Before starting his engineering consulting company, Dr. Dunn had industrial experience in various research, technology, and management positions at General Electric Company, Monsanto Chemical Company, Solutia, and Ampex Corporation. He has served a three-year term as a director of the Environmental Division of the American Institute of Chemical Engineers and currently teaches chemical engineering design and laboratory courses at Vanderbilt University. **Mary Ellen Ternes, BE ChE, JD**, is a director of Crowe & Dunlevy, in the law firm's Environmental, Energy and Natural Resources practice group. For more than 20 years, Ternes has advised clients regarding Clean Air Act permitting, compliance strategies, enforcement defense, as well as federal and state litigation. Ternes has published and lectured extensively on environmental law, particularly the Clean Air Act. She is former chair of the American Bar Association's Section of Environment, Energy and Resources Air Quality Committee, the Climate Change, the Sustainable Development and Ecosystems Committee, and the Annual Conference on Environmental Law. Ternes began her career as a chemical engineer for the U.S. Environmental Protection Agency and then managed permitting and compliance for the hazardous waste incineration industry. She is a senior member of the American Institute of Chemical Engineers, and a founder and initial chair of that institute's Chemical Engineering and the Law Forum and Public Affairs and Information Committee.

Ternes earned a JD (high honors) at the University of Arkansas at Little Rock and a BE in chemical engineering at Vanderbilt University. Ternes has been admitted to practice law in Oklahoma, Arkansas, South Carolina, and the District of Columbia. Before law school, Ternes served as a Summer Honors Associate for the U.S. Environmental Protection Agency's Office of General Counsel Air and Radiation Division. She is listed in the *Chambers USA Guide* to America's Leading Lawyers for Business; The Best Lawyers in America, Super Lawyers, and International Who's Who of Environment Lawyers; and she is a fellow of the American College of Environmental Lawyers, serving on the Board of Regents.

1 Historical Overview of the Development of Clean Air Regulations

1.1 A BRIEF HISTORY OF THE AIR POLLUTION PROBLEM

Media reports about air pollution might lead us to think of air pollution as being something that developed in the second half of the twentieth century. But this is not so. The kind of air pollution to which human beings have been exposed has changed with time, as well as what we recognize as *air pollution*, but air pollution has been known in larger cities at least from the twentieth century, when people first started using coal for heating their homes.¹

In England, during the reign of Edward I, there was a recorded protest by the nobility about the use of *sea* coal, which burned in an unusually smoky manner. Under his successor, Edward II (1307–1327), a man was put to torture for filling the air with a "pestilential odor" through the use of coal. Under the reign of Richard III and Henry V, England undertook to restrict the use of coal through taxation. Nevertheless, the situation continued to grow worse in the larger cities, so much so that during the reign of Elizabeth I (1533–1603; Queen, 1558–1603) Parliament passed a law forbidding the use of coal in the city of London while Parliament was in session. While this may have eased the pollution for the parliamentarians, it did very little to actually solve the problem.

As cities grew and the Industrial Revolution developed, the spread of coal smoke grew. In 1686, a paper was presented to the Royal Philosophical Society: "An Engine That Consumes Smoke." To this day, we have been working on this same problem, as yet to no avail. Legislation that was introduced often ignored the technical aspects of the problem, and hence was unenforceable. For example, a law passed by Parliament in 1845 stated that locomotives must consume their own smoke, which would be grand but, of course, it is not realizable.

The air pollution problem in the United States was first recognized as being due to coal smoke. In 1881, Chicago adopted a smoke control ordinance. St. Louis, Cincinnati, and other cities also adopted smoke ordinances in the years that followed. In these early years, it was established that the responsibility rested with the state and local governments.

Nashville, Tennessee, had a population of 80,865 in 1900, and it was a typical community of that period that depended on bituminous coal for heating. A short story written by O'Henry describes his visit to Nashville in 1900 as follows:

A MUNICIPAL REPORT

Nashville—a city, port of delivery, and the capital of the state of Tennessee, is on the Cumberland River and on the N.C. & St. L. and the L&N Railroads. This city is regarded as the most important educational centre in the South. I stepped off the train at 8 P.M. Having searched thesaurus in vain for adjectives, I must, as a substitution, hie me to comparison in the form of a recipe:

Take [a] London fog, thirty parts; malaria, ten parts; gas leaks, twenty parts; dewdrops gathered in a brick-yard at sunrise, twenty-five parts; odor of honeysuckle, fifteen parts. Mix. The mixture will give you [an] approximate conception of a Nashville drizzle. It is not so fragrant as a moth ball, nor as thick as pea soup; but 'tis enough—'twill serve.

From 1930 to 1941, the focus of air pollution was on smoke control laws. Public protest groups from Chicago, St. Louis, Cincinnati, and Pittsburgh had some success. However, air pollution was not recognized as the health hazard we know it to be today.

In 1941, war broke out with the Axis powers of Germany and Japan and their allies, and from late 1941 until 1945, there was an all-out effort to defeat these countries. This effort allowed no time or materials for air pollution control. Smoke levels reached new highs as the national effort rallied to the war. Finally, with a return to peace, action on pollution control was initiated.

In the prewar era, Pittsburgh had enacted a stringent new control regulation. In October 1946, a regulation that centered on the type of coal used was put into effect. Then, in October of 1948, tragedy struck at Donora, Pennsylvania.² Weather conditions were perfect for a stagnating inversion. As the inversion deepened, people in Donora became ill, and 20 died from the effects of the excessive air pollution that was prevalent. The result was an awakening to the health hazards of air pollution. Other such incidents were recognized throughout the world and are indicated in Table 1.1 compiled from several sources.²⁻⁴

October 1948 marks the start of a more vigorous program of air pollution control in the United States. For example, on May 1, 1949, the Pittsburgh smoke ordinance was extended to the whole of Allegheny County. Air pollution abatement was soon to attract the public's eye and money, but it was not until the advent of the Clean Air Act of 1963 that there was a national awakening to the value of our air environment.

During World War II, a new type of air pollution had been discovered in the Los Angeles atmosphere. New effects were manifest in the form of eye and skin irritation and plant damage not evident from simple smoke pollution. It was the result of a photochemical smog that was at first attributed to the oil refineries and storage facilities. When controls of these facilities did not result in a significant reduction of the problem, it was then discovered that the internal combustion engine was a major cause of this new type of pollution. The result of photochemical oxidation is seen in the brown haze apparent in the upper layer of the atmosphere. The brown haze is a mixture of particulates, oxides of nitrogen, sulfuric acid mist condensed from the oxidation of sulfur dioxide, and particles produced from photochemical reaction in the atmosphere. The haze limits visibility, decreases the amount of sunlight reaching the earth, results in an increase in the amount of cloudy weather present, and, when it accumulates, results in all the unpleasant effects associated with air pollution.

Perhaps it was in response to these visual signs of air pollution that people could see occurring that the nation decided to act. Most certainly, it was at this point that

normine rotal—Mail Dreatnes, Coughs, and Dies				
Location	Date	Deathsa	Reported Illness	Common Conditions
Meuse Valley, Belgium	12/1/30	63	6000	Low atmospheric dilution
Donora, Pennsylvania	10/26/48	18	5900 (43%)	Fog and gaseous materials
London	11/26/48	700-800		
Poza Rica, Mexico	11/21/50	22	>320	
London	12/5/52	3500-4000	Unknown	
New York	11/22/53	175-260	Unknown	
London	11/56	1000	Unknown	
London	12/2/57	700-800		
London	1/26/59	200-250		
London	12/5/62	700	Unknown	
London	1/7/63	700		
New York	1/9/63	200-400		
New York	11/23/66	170		
^a Number of deaths above expected average death rate.				

TABLE 1.1Horrible Total—Man Breathes, Coughs, and Dies

the federal government entered the picture with statutes and regulations governing conventional pollutants such as particulate and acid gases. More recently, the federal government began to regulate air pollution that people cannot see and with broader effects, specifically, ozone-depleting chemicals and greenhouse gases,⁵ to protect stratospheric ozone and mitigate global climate change.

1.2 FEDERAL INVOLVEMENT IN AIR POLLUTION CONTROL

After World War II and the advent of the air pollution episodes in Donora and London, it became apparent that more concerted federal action was required. Congress first passed an air pollution law in 1955. At this time, Congress was particularly reluctant to interfere in states' rights, and early laws were not strong. These laws more or less defined the role of the federal government in research and training in air pollution effects and control. The following brief summary leads to the 1970 amendments to the Clean Air Act, beginning with the following:

The Air Pollution Control Act of 1955, Public Law 84–159, July 14, 1955

- Left states principally in charge of prevention and control of air pollution at the source
- Recognized the danger to the population of the growing problem
- Provided for research and training in air pollution control
- Air Pollution Control Act Amendments of 1960, Public Law 86–493, June 6, 1960 and Amendments of 1962, Public Law 87–761, October 9, 1962
 - Directed the Surgeon General to conduct a thorough study of the effects of motor vehicle exhausts on human health

The Clean Air Act of 1963, Public Law 88–206, December 1963

- Encouraged state and local programs for the control and abatement of air pollution while reserving federal authority to intervene in interstate conflicts
- Required development of air quality criteria which would be used as guides in setting ambient and emission standards
- Provided research authority to develop methods for removal of sulfur from fuels

Motor Vehicle Air Pollution Control Act of 1965, Public Law 89–272, October 20, 1965

- Recognized the technical feasibility of setting automobile emission standards
- Determined that such standards must be national standards and relegated automotive emission control to the federal government
- Gave the state of California waivers to develop standards more appropriate to the local situation

The Air Quality Act of 1967, Public Law 90–148, November 21, 1967

- Designated air quality control regions (AQCRs) within the United States, either inter-or intrastate
- Required issuance of air quality criteria
- Required states to established air quality standards consistent with air quality criteria in a fixed time schedule
- Gave states primary responsibility for action, but a very strong federal authority was provided
- Required development and issuance of information on recommended air pollution control technique

The Clean Air Amendments Act of 1970, Public Law 91-604, December 31, 1970

- Created the Environmental Protection Agency (EPA)
- Required states to prepare implementation plans on a given time schedule
- Set automotive emission standards
- Set the following basic control strategy to be employed, establishing
 - National Ambient Air Quality Standards (NAAQS)
 - Standards of performance for new stationary sources
 - National emission standards for hazardous pollutants

The Clean Air Act of 1970, subsequent amendments in 1990 and 1997, and judicial decisions followed by greenhouse gas regulations are discussed in more detail in Chapter 2.

1.3 CHARACTERIZING THE ATMOSPHERE

The atmosphere seems boundless, but of course it isn't! If we consider the relative amount of all living matter of mass equivalent to 1.0 unit, then the atmosphere, that is, all gases as we know them, would be about 300 units, and the hydrosphere, all waters, oceans, lakes, rivers, streams, ponds, and so on, would be about 70,000 units. Figure 1.1 illustrates the layers of the atmosphere.

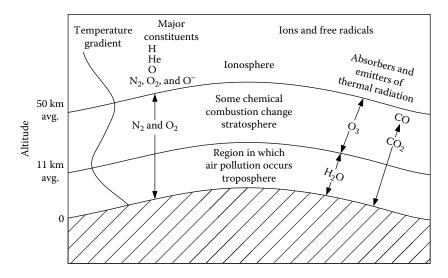


FIGURE 1.1 Layers of the atmosphere.

• Ionosphere (above 50 km)—ions and activated molecules produced by ultraviolet radiation such as in the following reaction:

$$O_2 = hv \rightarrow O^- + O^-$$

• Stratosphere (11–50 km)—the layer in which chemical composition changes takes place as illustrated by the following chain reaction:

$$NO_2 = hv \rightarrow NO + O^-$$
$$O + O_2 + M \rightarrow O_3 + M$$
$$O_3 + NO \rightarrow NO_2 + O_2$$

Sinks above polar caps may be responsible for these actions. Temperature variation with altitude is small.

 Troposphere (0–11 km)—area of major concern in air pollution: Temperature decreases with altitude. Micrometeorological processes control the amount of pollution as it spreads and reaches ground level.

Table 1.2 records the chemical composition of air. Air normally contains water vapor, which would be somewhere around 1% by volume of the total mixture. The concentrations in Table 1.2 remain nearly constant or vary slowly. The following are variable in their concentration:

- 1. Water > variable 1.0% by volume
- 2. Meteoric dust

TABLE 1.2	
Chemical Con	nposition of Normal Air
Substance	Percent by Volume in Dry Air

	, , ,
N_2	78.09
O_2	20.94
Ar	0.93
CO ₂	0.03
Ne	0.0018
He	0.00052
CH_4	0.00022
Kr	0.00010
N ₂ O	0.00010
H_2	0.00005
Xe	0.00008

Note: 1 ppm by volume = 0.0001% by volume.

- 3. Sodium chloride
- 4. Soil
- 5. NO_2 formed by electric discharge
- 6. O_3 formed by electric discharge
- 7. Pollen
- 8. Bacteria
- 9. Spores
- 10. Condensation nuclei
- 11. SO₂ volcanic oxygen
- 12. HCl volcanic origin
- 13. HF of volcanic origin

When doing combustion calculations, it is usual to assume that dry air contains 21% by volume of O_2 and 79% by volume of N_2 . Table 1.3 compares concentrations of what could be considered pure air to concentrations in polluted air, including concentrations of CO_2 in 1750, before the industrial revolution, compared to 2010.

Table 1.4 is a historical record of concentrations of pollutants in cities in the United States in 1956, compiled by H. C. Wohlers and G. B. Bell at the Stanford Research Institute.

1.4 RECIPE FOR AN AIR POLLUTION PROBLEM

To have an air pollution incident, such as the one that occurred in Donora, or to have a problem, such as the one in Nashville, there are three factors that must occur simultaneously. There must be sources, a means of transport, and receptors.

IADLE 1.5			
Comparison of Pure Air and a Polluted Atmosphere			
Component	Considered to Be Pure Air	Typical Polluted Atmosphere	
Particulate matter	10-20 µg/m ³	260-3200 µg/m ³	
Sulfur dioxide	0.001-0.01 ppm	0.02–3.2 ppm	
Carbon dioxide	300–330 ppm	350–700 ppm	
Carbon monoxide	1 ppm	2–300 ppm	
Oxides of nitrogen	0.001-0.01 ppm	0.30–3.5 ppm	
Total hydrocarbons	1 ppm	1–20 ppm	
Total oxidant	0.01 ppm	0.01–1.0 ppm	

TABLE 1.4

TARIE 1 2

Ranges of Concentrations of Gaseous Pollutants—A Historical Record from 1956

Pollutant	Range of Average Concentrations (ppm)	Range of Maximum Concentrations (ppm)	Number of Cities from Which Data Was Compiled
Aldehyde (as	0.02-0.2	0.03-2.0	8
formaldehyde)			
Ammonia	0.02-0.2	0.05-3.0	7
Carbon monoxide	2.0-10.0	3.0-300	8
Hydrogen fluoride	0.001-0.02	0.005-0.08	7
Hydrogen sulfide	0.002-0.1	Up to 1.0	4
Nitrogen oxides	0.02-0.9	0.03-3.5	8
Ozone	0.009-0.3	0.03-1.0	8
Sulfur dioxide	0.001-0.7	0.02-3.2	50
Source: Wohlers, H.C. and Bell, G.B., Stanford Research Institute Project No. SU-1816, 1956.			

Figure 1.2 illustrates the process. Air pollution sources are relatively common knowledge. Their strength, type, and location are important factors. By transport, reference is made to the meteorological conditions, and the topography and climatology of a region, which are the important factors in dispersion—that is, in getting the material from the sources to the receptors. The receptors include human beings, other animals, materials, and plants. We also know that air pollution can affect visibility and can endanger our lives simply by making it difficult to travel on the highways and difficult for planes to land. The dollar cost of air pollution is the subject of much debate. However, it must be an astronomical figure, especially when you add such things as the extra dry cleaning and washing, houses that need more paintings than they should, and so on. The dollars lost to poor crops is a costly item in our economy, notwithstanding the impairment to shrubs, flowers, and trees.

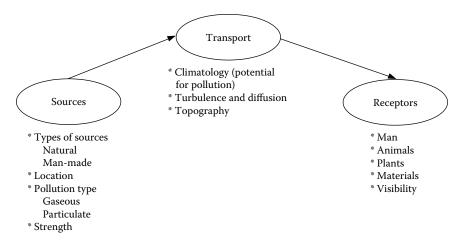


FIGURE 1.2 The trilogy: sources—transport—receptors.

1.4.1 Sources of Air Pollution

Sources of air pollution are either man-made or natural. Man-made sources are what we focus on because we may be able to effect some control on these sources. Both gaseous and particulate sources are troublesome. We have set standards for concentrations for both these materials in the atmosphere and in emission from chimneys for those sources we have recognized to be harmful. The concentration and the flow rate of the emissions are information required to determine the downwind transport of the pollutants. Knowing the location of the source relative to the receptor would allow us to calculate the concentration at a particular downwind receptor using a dispersion model. Chapter 2 details more about the pollutants that we are trying to control.

The EPA estimates the quantities of pollutants emitted each year. This information and many other facts are available at EPA's Air Trends website and other air pollution tracking websites available at: http://www.epa.gov/ttnchief1/trends/. Figure 1.3 records the annual production of air pollution by categories from Air Trends and the Inventory of U.S. Greenhouse Gas Emissions and Sinks.

1.4.2 METEOROLOGICAL PARAMETERS AFFECTING TRANSPORT OF POLLUTANTS

While ozone-depleting chemicals rise to the stratosphere, and greenhouse gases are recognized as being well-mixed in earth's atmosphere, the same is not true for conventional pollutants. The meteorological characteristics of the Los Angeles and Donora areas combine with the topographical features to form a container that traps conventional air pollution contaminants. The mountains in Los Angeles and the river valley in Donora form the walls of the containers that hamper horizontal air flow through these areas. A high-pressure area over the region forms the lid of such a container. A temperature inversion occurs, and the air becomes thermally stable, which has the effect of stopping vertical air flow, reinforcing the *lid* effect. In this way, the polluted air is not allowed to flow up and over the mountains or hills.

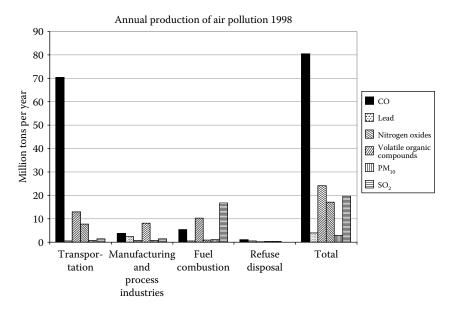


FIGURE 1.3 Annual production of pollutants by categories.

Meteorologists have long known that the amount of vertical motion of the atmosphere depends to an important extent on how the temperature varies with altitude. Near the ground, air temperature normally decreases with height. When the rate of decrease is rapid, there is a pronounced tendency toward vertical air mixing. On the other hand, when the air temperature increases with height, vertical air motions are suppressed. This temperature structure is called a *temperature inversion* because it is *inverted* from the normal condition of temperature decreasing with height.

Under adiabatic conditions, the temperature of dry air decreases at 5.45°F for each gain in altitude of 1000 ft. This temperature gradient is known as the *dry adiabatic lapse rate*. However, when the temperature of the air increases as the altitude increases; a condition known as *inversion* is present. An inversion may take place at the surface or in the upper air. A surface or a radiation inversion usually occurs on clear nights with low wind speed. In this situation, the ground cools the surface air by nature of its own cooling due to long wave radiation of heat to the outer atmosphere. The surface air becomes cooler than the upper layers, and vertical air flow is halted (hot air rises and cool air sinks). A parcel of warm air trying to rise finds the air above it hotter than itself. Thus, it will not rise because the temperature gradient is inverted. This type of inversion is common and is broken up as the sun once again heats the ground the next morning.

In Los Angeles, California, the typical inversion occurs in the upper air. There is an almost permanent high-pressure area centered over the north Pacific near the city. The axis of this high is inclined in such a way that air reaching the California coast is descending or subsiding. During the subsidence, the air is heated by compression, creating an inversion of the temperature gradient in the upper atmosphere over the city as the air moves from the sea over the land. This is termed as *subsidence inversion*. Since the surface air in the Los Angeles area usually results from the sea breeze, the temperature difference between the upper layer and the surface is increased. The water is relatively cold and so the surface air that moves on over the land as the sea breeze is also cold. One might think that the daily cycle of sea and land breezes would break up the inversion, but this is not the case. The sea breezes only serve to raise and lower the altitude of the inversion layer. In the Los Angeles area, the effect of large air masses overrides the effect of the less powerful local heating from the surface.

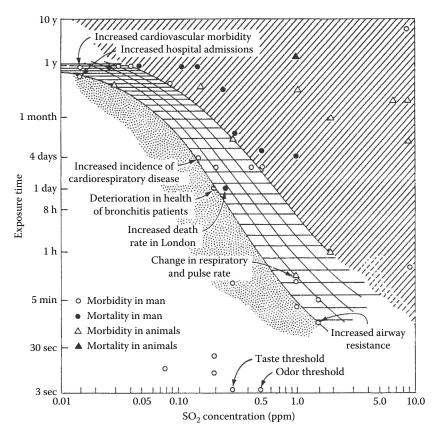
In Donora, Pennsylvania, in the fall of 1948, as in London four years later, the weather was the wicked conspirator. A high-pressure area moved over western Pennsylvania on October 26, 1948, and remained fairly stationary for the next five days. Winds in the lowest 2000 ft of the atmosphere were quite weak. Mostly they were between a dead calm and 3 mph, but for brief periods they were slightly higher. The air was *thermally stable*, a formal description implying that there was very little vertical motion of the air.

Donora, lying near the bottom of a steep valley, is about 500 ft below the surrounding terrain. During the period October 26–31, 1948, an inversion capped the valley. Pilot reports and weather balloons showed that the cap, at least part of the time, was less than 1000 ft above the town. Thus, smoke fed to the atmosphere was largely confined within the valley walls and the inversion top. The air near the ground was very humid. Fog formed in the night, and in some low-lying areas of western Pennsylvania, it persisted during the day. At Donora, the visibility, cut by smoke and fog, ranged from about 0.6 to 1.5 miles. The overall weather conditions were similar to those that occurred in London, and the consequences tragically alike.

1.4.3 EFFECTS OF AIR POLLUTION—A COMPARISON OF LONDON SMOG AND LOS ANGELES SMOG

What makes a Los Angeles smog different from a London smog? A few conditions that apply to both cities are as follows. They are both similar in that they result in community air pollution, and the major source is the combustion of fuels. In London, it is coal and many hydrocarbons. In Los Angeles, it is primarily hydrocarbons. The peak time in London is early morning. In Los Angeles, the peak time is midday. In London, the temperature is 30°F–40°F; in Los Angeles, 75°F–90°F. The humidity is high with fog in London. Generally speaking, in Los Angeles, pollution occurs on a relatively clear day with low humidity. The inversions in London are at the surface; in Los Angeles, inversions are overhead. Visibility is severely reduced in London, but only partially reduced in Los Angeles. The effects in London are to produce bronchial irritation, whereas in Los Angeles, the effects are to produce eye and skin irritations. In Los Angeles, the smog is primarily produced through photochemical oxidation of the hydrocarbons by the ozone and nitrogen oxides that are in the atmosphere. The product of this photochemical reaction is an organic type molecule that causes plant damage and reduced visibility, and irritates skin and eyes very badly. The London type chokes us. We get a feeling of being in the midst of a big smoke, because that is primarily what it is-smoke and fumes mixed with moisture in the air. A summary of these conditions is given in Table 1.5. Both problems result

•	0	5 0
Condition	London	Los Angeles
Fuel	Coal and hydrocarbons	Hydrocarbons
Season during year	December-January	August-September
Peak time	Early morning	Midday
Temperature	30°F-40°F	75°F–90°F
Humidity	High with fog	Low-relatively clear sky
Wind speed	Calm	<5 mph
Inversions	Surface (radiation)	Overhead (subsidence)
Visibility	Severely reduced (<1000 ft)	Reduced (¹ / ₂ to 1 mile)
Principal constituents	Sulfur compounds, carbon	Ozone, nitrogen, oxides, organics,
	monoxide, and particulates	peroxyacetyl nitrate, and carbon monoxide
Effects on humans	Bronchial irritation	Eye and skin irritation
Chemical effects	Reducing	Oxidizing


TABLE 1.5 Comparison of London Smog and Los Angeles Smog

from community air pollution. However, Los Angeles is different from London, Pittsburgh, and St. Louis.

Undesirable effects in Los Angeles are due to photochemical reactions irradiated by solar radiation. Due to oxidant formation, such as peroxyacetyl nitrate, photochemical smog produces undesirable effects such as eye and skin irritation, plant damage, and reduced visibility. The sources of the organic compounds and oxides of nitrogen largely are from the internal combustion engine.

It is the effects of air pollution on human beings, animals, plants, materials, and visibility that the EPA must consider when setting standards. Scientific evidence must be reviewed to support the standards selected. Therefore, the EPA has studied a great number of research documents and supported research to furnish the evidence needed for setting the standards.

Effects in all cases are dependent on a concentration-time effect, which can be called the dosage. All effects, especially health effects, are difficult to quantify. The problem is that people differ in their makeup and sensitivity to the various pollutants. Williamson⁶ made an early attempt to quantify health effects, as can be seen in Figure 1.4. Here, the effects are shown as a function of concentration and exposure time. For example, the increased death rate in London occurred when people were exposed to a concentration of 0.30 ppm SO₂ for a period of one day. It is interesting to note that this time period was shorter than the other data showing mortality in humans. As discussed previously, we do know that the SO₂ emissions in London were accompanied by particulate matter, which formed the London smog. Experiments with exposure of individuals to controlled concentrations of SO₂ in otherwise pure air indicated that the human body can stand higher levels of SO₂ without the detriment experienced in the Donora incident. This incident also was accompanied by a high concentration of particulate matter. When the experiments were carried out with particulates mixed in the air along with the SO₂, the level of tolerance dropped well below the value, which can be tolerated for SO₂ alone.

FIGURE 1.4 Health effects due to exposure to SO₂. Shaded area—range of exposures where excess deaths have been reported, grid area—range of exposures in which increased morbidity has been reported, speckled area—range of exposures where health effects are suspected. (Data from Williamson, S., *Fundamentals of Air Pollution*, Addison-Wesley, Reading, MA, 1973. With permission.)

These results can be summarized by noting that two plus two is greater than four when dealing with air pollution effects. Single contaminants in significant concentrations produce effects, but the effect is more generally associated with the mixture. Furthermore, the effect is intensified when a mixture is in the air. Thus, the total effect is greater than the sum of the effects of each individual pollutant. In other words, air pollution effects are synergistic.

2 Clean Air Act

2.1 HISTORY OF THE CLEAN AIR ACT

The development and maturation of the Clean Air Act (CAA) in the United States demonstrates an increasing federal role in the regulation of air pollution, including a broader scope to address the global issues, stratospheric ozone protection, and climate change. Until the 1950s, air pollution generally was perceived as a local and regional problem to be regulated at the local and state levels. California was the first state to act against air pollution, primarily because of deteriorating air quality in the already highly populated Los Angeles basin area with its unique geography and meteorology that exacerbated the problem.

The Air Pollution Control Act of 1955 authorized air pollution research and training programs and technical assistance to state and local governments, but the responsibility for air pollution control was left to state and local governments. The Air Pollution Control Act was amended in 1961 and again in 1962 to authorize special studies for health effects associated with motor vehicle pollutants.

The CAA was passed in 1963, establishing for the first time federal responsibility for air pollution control. In addition to authorizing grant research and training and technical assistance, federal enforcement authority was granted to abate interstate air pollution control problems. Also, air quality criteria were required to be developed for the protection of public health and welfare. The Motor Vehicle Air Pollution Control Act of 1965 authorized the Department of Health, Education, and Welfare to promulgate emission standards for motor vehicles, and the first federal emission standards for light motor vehicles were established for the 1968 model year.

2.1.1 1970 CLEAN AIR ACT AMENDMENTS

The 1970 Clean Air Act Amendments (CAAA) produced a dramatic change in broadening the federal responsibility for air pollution control. It created the U.S. Environmental Protection Agency (EPA), and it established the following programs for new air quality standards:

- National Ambient Air Quality Standards (NAAQS)
- New Source Performance Standards (NSPS)
- National Emission Standards for Hazardous Air Pollutants (NESHAP)
- Citizen suits for enforcement
- New automobile emission standards

States received EPA's delegation to implement and enforce the CAA upon obtaining EPA's approval of a state's proposed state implementation plan. The EPA-approved state implementation plans are promulgated in the federal regulations at 40 CFR

Part 52, so that they are federally enforceable. However, even in CAA-delegated states, EPA retains oversight and enforcement authority.

2.1.1.1 National Ambient Air Quality Standards

The NAAQS for criteria pollutants were to be established by the EPA at two levels: (1) primary standards to protect health and (2) secondary standards to protect welfare (e.g., crops, vegetation, buildings, visibility). The following six criteria pollutants were specified:

- 1. Particulate
- 2. Carbon monoxide (CO)
- 3. Ozone (O_3)
- 4. Sulfur dioxide (SO_2)
- 5. Nitrogen dioxide (NO₂)
- 6. Lead

Note that volatile organic compounds (VOCs) are not a criteria pollutant, but they are regulated like a criteria pollutant because VOCs and nitrogen oxides are precursors to ozone, which is produced by photochemical reactions.

Specifying lead as a criteria pollutant instead of a hazardous air pollutant is interesting, and this distinction proved to be effective. At that time, tetraethyl lead was prevalent in leaded gasoline as an inexpensive way to boost the octane rating. Controlling the spread of lead molecules throughout the environment as gasoline was burned was accomplished effectively as a criteria pollutant. Conversely, the hazardous air pollutant program, NESHAP, became bogged down in establishing health-based standards.

The EPA was required to review the NAAQS every five years to ensure that new research would be considered. The standard could remain at the same level if the review proved that the standard provides sufficient protection for health and welfare.

2.1.1.2 New Source Performance Standards

The 1970 amendments established a program of technology-based NSPS, so that any new source of air pollution would be required to apply effective air pollution controls. The NSPS are codified at 40 CFR Part 60. Existing sources were *grandfathered* and were not required to retrofit pollution controls. Existing sources that are modified are considered new sources, so old plants have to upgrade their air pollution control equipment as the plant is upgraded. The definition of *modified* is a subject of controversy to this day, centering on the distinction between *modification* and *maintenance*.¹

2.1.1.3 Hazardous Air Pollutants

The NESHAP program for hazardous air pollutants required setting pollutantspecific, health-based standards for each hazardous air pollutant. Unfortunately, this program turned out to be too cumbersome to be implemented effectively. One significant problem was that the EPA administrator was to set the standard "at the level which in his judgment provides an ample margin of safety to protect the public from such hazardous pollutant."² First, it takes a great deal of research to

TABLE 2.1 Hazardous Air Pollutants for Which NESHAP Standards Were Established

Asbestos Benzene Beryllium Inorganic arsenic Mercury Radionuclides Radon-22 Vinyl chloride Coke oven emissions (listed, but not promulgated)

establish a human health-based standard. Second, establishing an ample margin of safety was problematic, especially for the portion of the public that is sensitive to air pollution. It required court decisions to determine that cost of control could not be a factor in determining a health-based standard, but cost could be used to establish an ample margin of safety. Finally, establishing standards for over a 100 hazardous chemicals proved to be too burdensome. NESHAP standards were promulgated and codified at 40 CFR Part 61 for only the few hazardous pollutants listed in Table 2.1.

2.1.1.4 Citizen Suits

Determining that any person has sufficient interest to protect a universal resource such as clean air, Congress established citizen suits that authorize civil action against any person, including a government entity, who is alleged to be in violation of an emission standard or limitation. It also authorized suits against the EPA administrator when the administrator is alleged to fail to perform acts or duties required by the CAA. Costs of litigation, including reasonable attorney and expert witness fees, may be awarded. A key concept associated with citizen suits is the granting of *standing* to any individual, corporation, state, or municipality, doing away with the normal requirement of *injury in fact*.

There are procedural requirements, codified at 40 CFR Part 54, to limit excessive use of citizen litigation. One is providing 60 days' notice of a violation to the EPA, state, and alleged violator prior to starting a civil action. This is intended to allow agencies and violators the opportunity to correct a problem. Another condition barring a citizen suit is that the EPA or state has not already commenced and is not diligently pursuing a civil action. Again, citizen suits come into play when the enforcement agencies fail to meet their duties.

2.1.2 1977 CLEAN AIR ACT AMENDMENTS

Two highlights of the 1977 amendments were (1) codifying of the concept of prevention of significant deterioration (PSD) and (2) establishing an emission offset policy in areas that are not in attainment of the NAAQS.

2.1.2.1 Prevention of Significant Deterioration

The concept of preventing an area with good air quality from deteriorating to a lesser quality was introduced with the 1970 amendments. However, the wording was thin and controversy erupted. In 1973, the EPA proposed a plan for defining no significant deterioration, and reproposed and adopted the concept in 1974. The 1977 amendments removed the controversy by codifying PSD.

Three classifications of geographical areas were established, with boundaries initially set by the EPA. Changes could be made by state and local officials to allow local determination of land use. Class I areas were designated to allow very little deterioration of the existing air quality. Pristine areas were to remain pristine. These areas include national parks and wilderness areas and many Indian reservations. Class II areas allow a moderate decline from existing ambient air quality as growth occurs. Class III areas are specifically designated as heavy industrial areas, where a larger amount of deterioration of the existing ambient air quality is allowed. In no case are any areas allowed to have pollution levels that exceed the NAAQS, so if the existing air quality is already poor, limited or no additional deterioration is allowed.

Each area classification allows a specified incremental increase in the ambient pollutant concentration above the ambient background level as of 1977. Thus, a permanent cap is established, which may be lower than the NAAQS.

Areas with air pollutant concentrations below the applicable NAAQS are referred to as *attainment areas*. Any new major stationary source of air emissions, or major modification of an existing stationary source, which proposes to construct in an NAAQS attainment area, or an area that is unclassified, must first obtain a PSD construction permit issued pursuant to an approved state implementation plan, where both the permit and the plan satisfy substantive requirements provided by 40 CFR §§ 51.165 and 51.166, respectively. The PSD air permit authorizes the projected increase in ambient pollutant concentration. New source review for PSD air permit applications is discussed in Chapter 3. An approved PSD air permit allots a portion of the available increment for deterioration to that source. Later, new sources wishing to locate in the area, or major modifications of existing sources, must consider the amount of the increment that has already been consumed. Delegated air permitting agencies must consider reasonable increment consumption and projected growth in the area to avoid granting the increment spuriously on a *first come, first served* basis.

2.1.2.2 Offsets in Nonattainment Areas

A new air pollution source that wishes to locate in an area that does not meet the NAAQS is precluded from doing so, unless a net decrease in air pollution can be demonstrated. The proposed new source can agree to control or shut down emission sources of like pollutant in exchange, in order to offset the new source of pollution. To ensure that progress is made toward bringing the ambient air quality closer to the NAAQS, the offset ratio must be greater than 1 to 1.

To avoid putting industry in the position of keeping old, dirty emission sources operating to preserve offsets for future expansions, and to encourage emission reductions, the offset policy was accompanied by banking. When emission reductions were made, emission reduction credits could be applied for and granted. Banked emission reduction credits could be used as offsets in the future. Under federal guidance, credits were only good for a five-year contemporaneous period, however. Some state agencies, to which air permitting authority has been delegated by the EPA, use different contemporaneous periods. This is the type of discrepancy that has led to confusion between federal and state authority and program implementation.

2.2 1990 CLEAN AIR ACT AMENDMENTS

The 1990 CAAA made major, sweeping changes to the Act. They have been hailed³ as "one of the most significant pieces of environmental legislation ever enacted." There was significant and lengthy Congressional debate throughout the 1980s as to how to address shortcomings of the Act, especially over provisions for acid rain control and air toxics.

The previous CAAA fell short of their goal of achieving acceptable air quality throughout the United States. Indeed, every major urban area was in violation of at least one of the NAAQS, affecting over 100 million people.⁴ NESHAP had been promulgated for only eight hazardous air pollutants in the 20 years since the program has been established by the 1970 amendments. The EPA estimated that an excess of 1000– 3000 cancer deaths per year were occurring as a result of hazardous air pollutants.

The political mandate for the 1990 amendments was large. The U.S. House of Representatives passed the amendments by a vote of 401 to 21, and the Senate voted in favor by 89 to 11.

The 1990 amendments were organized in 11 Titles, as listed in Table 2.2. The major changes include new provisions addressing visibility to mitigate *regional haze* (Title I), a completely overhauled hazardous air pollutant program (Title III), specific provisions to control pollutants that cause acid rain (Title IV), a new operating permit program (Title V), and a specific program to control pollutants that cause stratospheric ozone depletion (Title VI).

Concerns about the effectiveness of implementing the 1990 amendments still remain. There are numerous deadlines that the EPA must meet, but few *statutory hammers* or consequences to ensure that they are met. This opens the door to resorting

TABLE 2.2	
1990 Clean A	ir Act Amendments
Title I	Attainment and Maintenance of NAAQS
Title II	Mobile Sources
Title III	Hazardous Air Pollutants (Air Toxics)
Title IV	Acid Rain (Acid Deposition Control)
Title V	Operating Permits
Title VI	Stratospheric Ozone and Global Climate Protection
Title VII	Enforcement
Title VIII	Miscellaneous Provisions
Title IX	Research
Title X	Disadvantaged Business
Title XI	Employment Transition Assistance

to lawsuits to force the EPA to meet the deadlines, diverting the EPA's budget resources to the defense of those lawsuits.

2.2.1 TITLE I: PROVISIONS FOR ATTAINMENT AND MAINTENANCE OF NAAQS

The 1990 CAAA recognized that many urban areas were not in attainment of the NAAQS, and that there were major problems with high levels of tropospheric ozone and CO. To address the problems practically, the amendments extended the time for states to achieve compliance, but required constant progress in reducing emissions and established provisions for sanctions on areas of the country that do not meet the conditions.

The new amendments also established degrees of severity for nonattainment for O_3 , CO, and particulate matter with an aerodynamic diameter of less than 10 μ (PM₁₀).

Ozone nonattainment was broken into five degrees of severity, as listed in Table 2.3. Areas of extreme severity were allowed more time to achieve attainment, but receive increased federal scrutiny for new source review of major sources. The definition of *major* stationary source, discussed further in new source review permit applications in Chapter 3, applies to smaller sources, and the emission offset ratio requirement for new sources is increased.

Carbon monoxide and particulate matter degrees of severity for nonattainment were established at two levels as shown in Table 2.4.

Also in 1990, Congress added Section 169B, *Visibility*, to better address regional haze issues, which were not sufficiently addressed with Section 169A. Pursuant to

TABLE 2.3Degrees of Severity for Ozone Nonattainment

	1-h Avg.	Attainment Date	Major Source Threshold (tons/year)	Offset Ratio for New Sources
Marginal	0.12-0.138	11/15/1993	100	1.1
Moderate	0.138-0.16	11/15/1996	100	1.15
Serious	0.16-0.18	11/15/1999	50	1.2
Severe	0.18-0.19	11/15/2005	25	1.3
	0.19-0.28	11/15/2007		
Extreme	>0.28	11/15/2010	10	1.5

TABLE 2.4
Degrees of Severity for CO and PM Nonattainment

	CO	PM
Moderate	9–16.5 ppm	Area that can achieve attainment by November 1996
Serious	>16.5 ppm	Area that cannot achieve compliance by November 1996