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Preface

Traditionally, a first course in abstract algebra introduces groups, rings, and fields, in that
order. In contrast, we have chosen to develop ring theory first, in order to draw upon the
student’s familiarity with integers and with polynomials, which we use as the motivating
examples for studying rings.

This approach has worked well for us in motivating students in the study of abstract
algebra and in showing them the power of abstraction. Our students have found the process
of abstraction easier to understand, when they have more familiar examples to base it
upon. We introduce groups later on, again by first looking at concrete examples, in this
case symmetries of figures in the plane and space and permutations. By this time students
are more experienced, and they handle the abstraction much more easily. Indeed, these
parts of the text move quite quickly, which initially surprised (and pleased) the authors.

This is the third edition of this text and significant changes have been made to the second
edition. Both comments from adopters and our own experiences have prompted this. The
biggest change is in moving the section on Unique Factorization (now Section VII) further
back in the book reflecting that for many teaching a first course, this topic is optional.
Doing so necessitated reorganizing the introduction of ideals. Now Sections I, II, and III
form the core material on rings, integral domains, and fields.

Sections IV and V contain the basic group theory material. We have compressed the
motivating examples of symmetries of the plane and of space into one chapter, following it
with a more detailed treatment of permutations, our other motivating example for abstract
groups. Section VI introduces more topics in group theory including new chapters on the
Sylow theorems. Sections VIII, IX, and X remain sections on Constructibility, Vector Spaces
and Field Extensions, and Galois Theory; the latter contains much edited material and many
new exercises.

The diagram below roughly indicates the dependency of the large sections.

I II III IV V VI

VIII

VII

IX X

Descriptions of Sections

Section I (Numbers, Polynomials, and Factoring) introduces the integers Z, and the
polynomials Q[x] over the rationals. In both cases we emphasize the idea of factoring into
irreducibles, pointing out the structural similarities. We also introduce the rings of integers
modulo n in this section. Induction, the most important proof technique used in the early
part of this text, is introduced in Chapter 1.

In Section II (Rings, Domains, and Fields) we define a ring as the abstract concept

xiii
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encompassing our specific examples from Section I. We define integral domains and fields
and then look at polynomials over an arbitrary field. We make the point that the important
properties of Q[x] are really due to the fact that we have coefficients from a field; this gives
students a nice example of the power of abstraction. An introduction to complex numbers
is given. We also introduce ideals in this section.

Section III (Ring Homomorphisms and Ideals) has as its main goal the proof of the Fun-
damental Isomorphism Theorem. Section III also includes a chapter about the connection
between maximal ideals and fields, and prime ideals and domains. There is also an optional
chapter on the Chinese Remainder Theorem.

Section IV (Groups) begins with two chapters on concrete examples motivating abstract
groups: symmetries of geometric figures (in the plane and in space) and permutations. We
then define abstract groups and group isomorphisms and consider subgroups and cyclic
groups.

Section V (Group Homomorphisms) defines group homomorphisms with one of its goals
the Fundamental Isomorphism Theorem for groups. Cayley’s and Lagrange’s theorems are
presented in this section.

Section VI (Topics from Group Theory) explores three topics: the alternating group,
the Sylow theorems, and solvable groups. The latter is needed in Section X. We use groups
acting on sets to prove the Sylow theorems, which provides not only a very accessible method
of proof but also experience with permutations from a slightly different perspective.

In Section VII (Unique Factorization) we explore more general contexts in which unique
factorization is possible. Chapter 33 concludes with the theorem that every principal ideal
domain is a unique factorization domain. In the interest of time, many instructors may wish
to skip the last two chapters of this section.

Section VIII (Constructibility Problems) is an optional section that is a great example of
the power of abstract algebra. In it, we show that the three Greek constructibility problems
using a compass and straightedge are impossible. This section does not use Kronecker’s
Theorem and is very computational in flavor. It does not depend on knowing any group
theory and can be taught immediately after Section III, if the instructor wishes to delay
the introduction of groups.

We revisit the impossibility proofs in Section IX (Vector Spaces and Field Extensions),
where we give enough vector space theory to introduce students to the theory of algebraic
field extensions. Seeing the impossibility proofs again, in a more abstract context, empha-
sizes the power of abstract field theory.

Section X develops Galois Theory with the goal of showing the impossibility of solving
the quintic with radicals. This section depends heavily on Section IX, as well as Chapters
27 and 30.

Each chapter includes Quick Exercises, which are intended to be done by the student as
the text is read (or perhaps on the second reading) to make sure the topic just covered is
understood. Quick Exercises are typically straightforward, rather short verifications of facts
just stated that act to reinforce the information just presented. They also act as an early
warning to the student that something basic was missed. We often use some of them as
a basis for in-class discussion. The exercises following each chapter begin with the Warm-
up Exercises, which test fundamental comprehension and should be done by all students.
These are followed by the regular exercises, which include both computational problems and
supply-the-proof problems. Answers to most odd-numbered exercises that do not require
proof are given in the Hints and Answers section. Hints, of varying depth, to odd-numbered
proof problems are also given there.

Historical remarks follow many of the chapters. For the most part we try to make use
of the history of algebra to make certain pedagogical points. We find that students enjoy
finding out a bit about the history of the subject, and how long it took for some of the



Preface xv

concepts of abstract algebra to evolve. We’ve relied on such authors as Boyer & Merzbach,
Eves, Burton, Kline, and Katz for this material.

We find that in a first (or second) course, students lose track of the forest, getting
bogged down in the details of new material. With this in mind, we’ve ended each section
with a short synopsis that we’ve called a “Nutshell” in which we’ve laid out the important
definitions and theorems developed in that section, sometimes in an order slightly altered
from the text. It’s a way for the student to organize their thoughts on the material and see
what the major points were, in case they missed them the first time through.

We include an appendix entitled “Guide to Notation,” which provides a list of mathe-
matical notations used in the book, and citations to where they are introduced in the text.
We group the notations together conceptually. There is also a complete index, which will
enable readers to find theorems, definitions, and biographical citations easily in the text.

Notes for the Instructor

There is more material here than can be used in one semester. Those teaching a one-
semester course may choose among various topics they might wish to include. There is
sufficient material in this text for a two-semester course, probably more, in most cases.

The suggested track through the text for a one-semester course is to tackle Sections I
through V (except possibly Chapter 16). We consider these chapters as the core ideas in the
text. If time permits, one could include topics from Section VI, VII, VIII, or a combination,
as to your taste.

A second semester could pick up wherever the first semester left off with the goal of
completing Section X on Galois Theory, or else finish the remaining topics in the text.

We assume that the students using the text have had the usual calculus sequence; this
is mostly an assumption of a little mathematical maturity, since we only occasionally make
any real use of the calculus. We do not assume any familiarity with linear algebra, although
it would be helpful. We regularly use the multiplication of 2 × 2 matrices, mostly as an
example of a non-commutative operation; we find that a short in-class discussion of this
(perhaps supplemented with some of our exercises) is sufficient even for students who’ve
never seen matrices before. We make heavy use of complex numbers in the text but do not
assume any prior acquaintance with them; our introduction to them in Chapters 8 and 10
should be quite adequate.

Instructors may contact the publisher for an Instructor’s Manual which contains answers
to all of the exercises, including in-depth outlines for proof problems.
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Chapter 1

The Natural Numbers

All mathematics begins with counting. This is the process of putting the set of objects
to be counted in one-to-one correspondence with the first several natural numbers (or
counting numbers):

1, 2, 3, 4, 5, · · · .

We denote by N the infinite set consisting of all these numbers. Amazingly, despite the
antiquity of its study, humankind has barely begun to understand the algebra of this set.
This introduction is intended to provide you with a fund of examples and principles that
we will generalize in later chapters.

1.1 Operations on the Natural Numbers

We encounter no trouble as long as we restrict ourselves to adding natural numbers, be-
cause more natural numbers result. Accordingly we say our set is closed under addition.
However, consider what happens when we attempt to subtract a natural number a from b,
or, equivalently, we seek a solution to the equation a+x = b in the unknown x. We discover
that our set of natural numbers is inadequate to the task. This naturally leads to the set of
all integers, which we denote by Z (for ‘Zahlen,’ in German):

· · · − 3,−2,−1, 0, 1, 2, 3, · · · .

This is the smallest set of numbers containing N and closed under subtraction.
It is easy to make sense of multiplication in N, by viewing it as repeated addition:

na = a+ a+ · · ·+ a.︸ ︷︷ ︸
n times

This operation is easily extended to Z by using the sign conventions with which you are
probably familiar. Why minus multiplied by minus needs to be plus is something you might
reflect on now. We will return to this question in a more general context later.

We now have a whole new class of equations, many of which lack solutions: ax = b. This
leads to division, and to the rational numbers Q, which are precisely the quotients of one
integer by another. The reason why we don’t allow division by 0 is because if we let a = 0
and b 6= 0 in the equation above, we obtain 0 = 0x = b 6= 0. Why 0x = 0 is another question
you might reflect on now – we will return to this later too.

But to address the algebra of Q takes us too far afield from our present subject. For the
present we shall be more than satisfied in considering Z and its operations.

3



4 A First Course in Abstract Algebra: Rings, Groups, and Fields

1.2 Well Ordering and Mathematical Induction

A fundamental property of N (which has a profound influence on the algebra of Z) is that
this set is well ordered, a property that we state formally as follows, and which we shall
accept as an axiom about N:

The Well-ordering Principle Every non-empty subset of N has a least element.

For any subset of N that we might specify by listing the elements, this seems obvious,
but the principle applies even to sets that are more indirectly defined. For example, consider
the set of all natural numbers expressible as 12x + 28y, where x and y are allowed to be
any integers. The extent of this set is not evident from the definition. Yet the Well-ordering
Principle applies and thus there is a smallest natural number expressible in this way. We
shall meet this example again, when we prove something called the GCD identity in the
next chapter. (See also Exercise 9.)

Suppose we wish to apply the Well-ordering Principle to a particular subset X of N. We
may then consider a sequence of yes/no questions of the following form:

Is 1 ∈ X?
Is 2 ∈ X?

...

Because X is non-empty, sooner or later one of these questions must be answered yes.
The first such occurrence gives the least element of X. Of course, such questions might not
be easily answerable in practice. But nevertheless, the Well-ordering Principle asserts the
existence of this least element, without identifying it explicitly.

The Well-ordering Principle allows us to prove one of the most powerful techniques of
proof that you will encounter in this book. (See Theorem 1.1 later in this chapter.) This is
the Principle of Mathematical Induction:

Principle of Mathematical Induction Suppose X is a subset of N that satisfies the
following two criteria:

1. 1 ∈ X, and

2. If k ∈ X for all k < n, then n ∈ X.

Then X = N.

The Principle of Mathematical Induction is used to prove that certain sets X equal the
entire set N. In practice, the set X will usually be “the set of all natural numbers with
property such-and-such.” To apply it we must check two things:

1. The base case: That the least element of N belongs to X, and

2. The bootstrap: A general statement which asserts that a natural number belongs to
X whenever all its predecessors do.

You should find the Principle of Mathematical Induction plausible because successively
applying the bootstrap allows you to conclude that

2 ∈ X, 3 ∈ X, 4 ∈ X, · · · .

When checking the bootstrap, we assume that all predecessors of n belong to X and
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must infer that n belongs to X. In practice we often need only that certain predecessors of
n belong to X. For instance, many times we will need only that n−1 belongs to X. Indeed,
the form of induction you have used before probably assumed only that n − 1 was in X,
instead of all k < n. It turns out that the version you learned before and the version we
will be using are equivalent, although they don’t appear to be at first glance. We will find
the version given above of more use. (See Exercise 17.)

Before proving the Principle of Mathematical Induction itself, let us look at some simple
examples of its use.

Example 1.1

A finite set with n elements has exactly 2n subsets.

Proof by Induction: Let X be the set of those positive integers for which this is
true. We first check that 1 ∈ X. But a set with exactly one element has two subsets,
namely, the empty set ∅ and the set itself. This is 2 = 21 subsets, as required.

Now suppose that n > 1, and k ∈ X for all k < n. We must prove that n ∈ X.
Suppose then that S is a set with n elements; we must show that S has 2n subsets.
Because S has at least one element, choose one of them and call it s. Now every subset
of S either contains s or it doesn’t. Those subsets that don’t contain s are precisely
the subsets of S\{s} = {x ∈ S : x 6= s}. But this latter set has n− 1 elements, and so
by our assumption that n− 1 ∈ X we know that S\{s} has 2n−1 subsets. Now those
subsets of S that do contain s are of the form A ∪ {s}, where A is a subset of S\{s}.
There are also 2n−1 of these subsets. Thus, there are 2n−1 + 2n−1 = 2n subsets of S
altogether. In other words, n ∈ X. Thus, by the Principle of Mathematical Induction,
any finite set with n elements has exactly 2n subsets. 2

Notice that this formula for counting subsets also works for a set with zero elements
because the empty set has exactly one subset (namely, itself). We could have easily in-
corporated this fact into the proof above by starting at n = 0 instead. This amounts to
saying that the set {0, 1, 2, · · ·} is well ordered too. In the future we will feel free to start an
induction proof at any convenient point, whether that happens to be n = 1 or n = 0. (We
can also start induction at, say, n = 2, but in such a case remember that we would then
have proved only that X = N\{1}.)

Example 1.2

The sum of the first n positive odd integers is n2. That is,

1 + 3 + 5 + · · ·+ (2n− 1) = n2, for n ≥ 1.

Proof by Induction: In this proof we proceed slightly less formally than before
and suppress explicit mention of the set X.

� Quick Exercise. What is the set X in this proof? �

Because 2 · 1− 1 = 12, our formula certainly holds for n = 1. We now assume that the
formula holds for k < n and show that it holds for n. But then, putting k = n− 1, we
have

1 + 3 + 5 + · · ·+ (2(n− 1)− 1) = (n− 1)2.

Thus,

1 + 3 + 5 + · · ·+ (2(n− 1)− 1) + (2n− 1) =

(n− 1)2 + (2n− 1) = n2,

which shows that the formula holds for n. Thus, by the Principle of Mathematical
Induction, the formula holds for all n. 2
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Students new to mathematical induction often feel that in verifying (2) they are assuming
exactly what they are required to prove. This feeling arises from a misunderstanding of the
fact that (2) is an implication: that is, a statement of the form p ⇒ q. To prove such a
statement we must assume p, and then derive q. Indeed, assuming that k is in X for all
k < n is often referred to as the induction hypothesis.

Mention should also be made of the fact that mathematical induction is a deductive
method of proof and so should not be confused with the notion of inductive reasoning dis-
cussed by philosophers. The latter involves inferring likely general principles from particular
cases. This sort of reasoning has an important role in mathematics, and we hope you will
apply it to make conjectures regarding the more general principles that lie behind many of
the particular examples which we will discuss. However, for a mathematician an inductive
inference of this sort does not end the story. What is next required is a deductive proof that
the conjecture (which might have been verified in particular instances) is always true.

1.3 The Fibonacci Sequence

To provide us with another example of proof by induction, we consider a famous sequence
of integers, called the Fibonacci sequence in honor of the medieval mathematician who
first described it. The first several terms are

1, 1, 2, 3, 5, 8, 13, · · · .

You might have already detected the pattern: A typical element of the sequence is the sum
of its two immediate predecessors. This means that we can inductively define the sequence
by setting

a1 = 1,

a2 = 1, and

an+2 = an+1 + an, for n ≥ 1.

This sort of inductive or recursive definition of a sequence is often very useful. However,
it would still be desirable to have an explicit formula for an in terms of n. It turns out that
the following surprising formula does the job:

an =
(1 +

√
5)n − (1−

√
5)n

2n
√

5
.

At first (or even second) glance, it does not even seem clear that this formula gives integer
values, much less the particular integers that make up the Fibonacci sequence. You will
prove this formula in Exercise 13. The proof uses the Principle of Mathematical Induction,
because the Fibonacci sequence is defined in terms of its two immediate predecessors. We
now prove another simpler fact about the Fibonacci sequence:

Example 1.3

an+1 ≤ 2an, for all n ≥ 1.

Proof by Induction: This is trivially true when n = 1. In the argument which
follows we rely on two successive true instances of our formula—as might be expected
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because the Fibonacci sequence is defined in terms of two successive terms. Conse-
quently, you should check that the inequality holds when n = 2.

� Quick Exercise. Verify that the inequality an+1 ≤ 2an holds for n = 1 and
n = 2. �

We now assume that ak+1 ≤ 2ak for all k < n, where n > 2. We must show that
this inequality holds for k = n. Now

an+1 = an + an−1 ≤ 2an−1 + 2an−2,

where we have applied the induction hypothesis for both k = n− 1 and k = n− 2. But
because an−1 + an−2 = an, we have an+1 ≤ 2an, as required. 2

1.4 Well Ordering Implies Mathematical Induction

We now prove the Principle of Mathematical Induction, using the Well-ordering Principle.

Theorem 1.1 The Well-ordering Principle implies the Principle of Mathematical Induc-
tion.

Proof: Suppose that X is a subset of N satisfying both (1) and (2). Our strategy for
showing that X = N is ‘reductio ad absurdum’ (or ‘proof by contradiction’): We assume
the contrary and derive a contradiction.

In this case we assume that X is a proper subset of N, and so Y = N\X is a non-empty
subset of N. By the Well-ordering Principle, Y possesses a least element m. Clearly m 6= 1 by
(1). All natural numbers k < m belong to X because m is the least element of Y . However,
by (2) we conclude that m ∈ X. But now we have concluded that m ∈ X and m /∈ X; this
is clearly a contradiction. Our assumption that X is a proper subset of N must have been
false. Hence, X = N. 2

The converse of this theorem is also true (see Exercise 16).

1.5 The Axiomatic Method

Our careful proof of the Principle of Mathematical Induction from the Well-ordering Princi-
ple is part of a general program we are beginning in this chapter. We wish eventually to base
our analysis of the arithmetic of the integers on as few assumptions as possible. This will be
an example of the axiomatic method in mathematics. By making our assumptions clear and
our proofs careful, we will be able to accept with confidence the truth of statements about
the integers which we will prove later, even if the statements themselves are not obviously
true. We eventually will also apply the axiomatic method to many algebraic systems other
than the integers.

The first extended example of an axiomatic approach to mathematics appears in The
Elements of Euclid, who was a Greek mathematician living circa 300 B.C. In his book he
developed much of ordinary plane geometry by means of a careful logical string of theorems,
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based on only five axioms and some definitions. The logical structure of Euclid’s book is
a model of mathematical economy and elegance. So much mathematics is inferred from so
few underlying assumptions!

Note of course that we must accept some statements without proof (and we call these
statements axioms)—for otherwise we’d be led into circular reasoning or an infinite regress.

One cost of the axiomatic method is that we must sometimes prove a statement that
already seems ‘obvious’. But if we are to be true to the axiomatic method, a statement we
believe to be true must either be proved, or else added to our list of axioms. And for reasons
of logical economy and elegance, we wish to rely on as few axioms as possible.

Unfortunately, we are not yet in a position to proceed in a completely axiomatic way.
We shall accept the Well-ordering Principle as an axiom about the natural numbers. But
in addition, we shall accept as given facts your understanding of the elementary arithmetic
in Z: that is, addition, subtraction, and multiplication. In Chapter 6, we will finally be able
to enumerate carefully the abstract properties which make this arithmetic work. The role
of Z as a familiar, motivating example will be crucial.

The status of division in the integers is quite different. It is considerably trickier (because
it is not always possible). We will examine this carefully in the next chapter.

Chapter Summary

In this chapter we introduced the natural numbers N and emphasized the following facts
about this set:

• N is closed under addition;

• Multiplication in N can be defined in terms of addition, and under this definition N
is closed under multiplication;

• The Well-ordering Principle holds for N.

We then used the Well-ordering Principle to prove the Principle of Mathematical Induc-
tion and provided examples of its use.

We also introduced the set Z of all integers, as the smallest set of numbers containing
N that is closed under subtraction.

Warm-up Exercises

a. Explain the arithmetic advantages of Z, as compared with N. How about Q, as com-
pared with Z?

b. Why isn’t Z well ordered? Why isn’t Q well ordered? Why isn’t the set of all rational
numbers x with 0 ≤ x ≤ 1 well ordered?

c. Suppose we have an infinite row of dominoes, set up on end. What sort of induction
argument would convince us that knocking down the first domino will knock them all
down?

d. Explain why any finite subset of Q is well ordered.
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Exercises

1. Prove using mathematical induction that for all positive integers n,

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
.

2. Prove using mathematical induction that for all positive integers n,

12 + 22 + 32 + · · ·+ n2 =
n(2n+ 1)(n+ 1)

6
.

3. You probably recall from your previous mathematical work the triangle inequality:
for any real numbers x and y,

|x+ y| ≤ |x|+ |y|.

Accept this as given (or see a calculus text to recall how it is proved). Generalize the
triangle inequality, by proving that

|x1 + x2 + · · ·+ xn| ≤ |x1|+ |x2|+ · · ·+ |xn|,

for any positive integer n.

4. Given a positive integer n, recall that n! = 1 · 2 · 3 · · ·n (this is read as n factorial).
Provide an inductive definition for n!. (It is customary to actually start this definition
at n = 0, setting 0! = 1.)

5. Prove that 2n < n! for all n ≥ 4.

6. Prove that for all positive integers n,

13 + 23 + · · ·+ n3 =

(
n(n+ 1)

2

)2

.

7. Prove the familiar geometric progression formula. Namely, suppose that a and r
are real numbers with r 6= 1. Then show that

a+ ar + ar2 + · · ·+ arn−1 =
a− arn

1− r
.

8. Prove that for all positive integers n,

1

1 · 2
+

1

2 · 3
+ · · ·+ 1

n(n+ 1)
=

n

n+ 1
.

9. By trial and error, try to find the smallest positive integer expressible as 12x + 28y,
where x and y are allowed to be any integers.

10. A complete graph is a collection of n points, each of which is connected to each
other point. The complete graphs on 3, 4, and 5 points are illustrated below:

•

•

• •

•

•

•

•

•

•

•

•

Use mathematical induction to prove that the complete graph on n points has exactly
n(n− 1)/2 lines.
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11. Consider the sequence {an} defined inductively as follows:

a1 = a2 = 1, an+2 = 2an+1 − an.

Use mathematical induction to prove that an = 1, for all natural numbers n.

12. Consider the sequence {an} defined inductively as follows:

a1 = 5, a2 = 7, an+2 = 3an+1 − 2an.

Use mathematical induction to prove that an = 3 + 2n, for all natural numbers n.

13. Consider the Fibonacci sequence {an}.

(a) Use mathematical induction to prove that

an+1an−1 = (an)2 + (−1)n.

(b) Use mathematical induction to prove that

an =
(1 +

√
5)n − (1−

√
5)n

2n
√

5
.

14. In this problem you will prove some results about the binomial coefficients, using
induction. Recall that (

n

k

)
=

n!

(n− k)!k!
,

where n is a positive integer, and 0 ≤ k ≤ n.

(a) Prove that (
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
,

n ≥ 2 and k < n. Hint: You do not need induction to prove this. Bear in mind
that 0! = 1.

(b) Verify that
(
n
0

)
= 1 and

(
n
n

)
= 1. Use these facts, together with part (a), to prove

by induction on n that
(
n
k

)
is an integer, for all k with 0 ≤ k ≤ n. (Note: You

may have encountered
(
n
k

)
as the count of the number of k element subsets of a

set of n objects; it follows from this that
(
n
k

)
is an integer. What we are asking

for here is an inductive proof based on algebra.)

(c) Use part (a) and induction to prove the Binomial Theorem: For non-negative
n and variables x, y,

(x+ y)n =

n∑
k=0

(
n

k

)
xn−kyk.

15. Criticize the following ‘proof’ showing that all cows are the same color.

It suffices to show that any herd of n cows has the same color. If the herd has but one
cow, then trivially all the cows in the herd have the same color. Now suppose that we
have a herd of n cows and n > 1. Pick out a cow and remove it from the herd, leaving
n− 1 cows; by the induction hypothesis these cows all have the same color. Now put
the cow back and remove another cow. (We can do so because n > 1.) The remaining
n − 1 again must all be the same color. Hence, the first cow selected and the second
cow selected have the same color as those not selected, and so the entire herd of n
cows has the same color.
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16. Prove the converse of Theorem 1.1; that is, prove that the Principle of Mathematical
Induction implies the Well-ordering Principle. (This shows that these two principles
are logically equivalent, and so from an axiomatic point of view it doesn’t matter
which we assume is an axiom for the natural numbers.)

17. The Strong Principle of Mathematical Induction asserts the following. Suppose that
X is a subset of N that satisfies the following two criteria:

(a) 1 ∈ X, and

(b) If n > 1 and n− 1 ∈ X, then n ∈ X.

Then X = N. Prove that the Principle of Mathematical Induction holds if and only if
the Strong Principle of Mathematical Induction does.
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Chapter 2

The Integers

In this chapter we analyze how multiplication works in the integers Z, and in particular
when division is possible. This is more interesting than asking how multiplication works in
the rational numbers Q, where division is always possible (except for division by zero).

We all learned at a very young age that we can always divide one integer by another
non-zero integer, as long as we allow for a remainder. For example, 326÷ 21 gives quotient
15 with remainder 11. The actual computation used to produce this result is our usual long
division. Note that the division process halts when we arrive at a number less than the
divisor. In this case 11 is less than 21, and so our division process stops. We can record the
result of this calculation succinctly as

326 = (21)(15) + 11, where 0 ≤ 11 < 21.

2.1 The Division Theorem

The following important theorem describes this situation formally. This is the first of many
examples in this book of an existence and uniqueness theorem: We assert that something
exists, and that there is only one such. Both assertions must be proved. We will use induction
for the existence proof.

Theorem 2.1 Division Theorem for Z Let a, b ∈ Z, with a 6= 0. Then there exist
unique integers q and r (called the quotient and remainder, respectively), with 0 ≤ r < |a|,
such that b = aq + r.

Proof: We first prove the theorem in case a > 0 and b ≥ 0. To show the existence of q
and r in this case, we use induction on b.

We must first establish the base case for the induction. You might expect us to check
that the theorem holds in case b = 0 (the smallest possible value for b). But actually, we
can establish the theorem for all b where b < a; for in this case the quotient is 0 and the
remainder is b. That is, b = a · 0 + b.

We may now assume that b ≥ a. Our induction hypothesis is that there exist a quotient
and remainder whenever we attempt to divide an integer c < b by a. So let c = b− a. Since
c < b we have by the induction hypothesis that c = aq′ + r, where 0 ≤ r < a. But then

b = aq′ + r + a = a(q′ + 1) + r, where 0 ≤ r < a.

We therefore have a quotient q = q′ + 1 and a remainder r.
We now consider the general case, where b is any integer, and a is any non-zero integer.

We apply what we have already proved to the integers |b| and |a| to obtain unique integers

13
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q′ and r′ so that |b| = q′|a|+ r′, with r′ < |a|. We now obtain the quotient and remainders
required, depending on the signs of a and b, in the following three cases:

Case (i): Suppose that a < 0 and b ≤ 0. Then let q = q′ + 1 and r = −a− r′. Note first
that 0 ≤ r < |a|. Now

aq + r = a(q′ + 1) +−a− r′ = aq′ + a− a− r′

= aq′ − r′ = −(|a|q′ + r′) = −|b| = b,

as required.
You can now check the remaining two cases:
Case (ii): If a < 0 and b ≥ 0, then let q = −q′ and r = r′.
Case (iii): If a > 0 and b ≤ 0, then let q = −q′ − 1 and r = a− r′.

� Quick Exercise. Verify that the quotients and remainders specified in Cases (ii) and
(iii) actually work. �

Now we prove the uniqueness of q and r. Our strategy is to assume that we have two
potentially different quotient-remainder pairs, and then show that the different pairs are
actually the same. So, suppose that b = aq+r = aq′+r′, where 0 ≤ r < |a| and 0 ≤ r′ < |a|.
We hope that q = q′ and r = r′.

Since aq + r = aq′ + r′, we have that a(q − q′) = r′ − r. Now |r′ − r| < |a|, and so
|a||q− q′| = |r′− r| < |a|. Hence, |q− q′| < 1. Thus, q− q′ is an integer whose absolute value
is less than 1, and so q − q′ = 0. That is, q = q′. But then r′ − r = a · 0 = 0 and so r′ = r,
proving uniqueness. 2

You should exercise some care in applying the Division Theorem with negative integers.
The fact that the remainder must be positive leads to some answers that may be surprising.

Example 2.1

For example, while 326 divided by 21 gives quotient 15 and remainder 11, −326 divided
by 21 gives quotient −16 and remainder 10, and −326 divided by −21 gives quotient
16 and remainder 10.

We say an integer a divides an integer b if b = aq for some integer q. In this case, we
say a is a factor of b, and write a|b. In the context of the Division Theorem, a|b means that
the remainder obtained is 0.

Example 2.2

Thus, −6|126, because 126 = (−6)(−21). Note that any integer divides 0, because
0 = (a)(0).

2.2 The Greatest Common Divisor

In practice, it may be very difficult to find the factors of a given integer, if it is large.
However, it turns out to be relatively easy to determine whether two given integers have
a common factor. To understand this, we must introduce the notion of greatest common
divisor: Given two integers a and b (not both zero), then the integer d is the greatest
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common divisor (gcd) of a and b if d divides both a and b, and it is the largest positive
integer that does. We will often write gcd(a, b) = d to express this relationship.

For example 6 = gcd(42,−30), as you can check directly by computing all possible
common divisors, and picking out the largest one. Because all integers divide 0, we have
not allowed ourselves to consider the meaningless expression gcd(0, 0). However, if a 6= 0, it
does make sense to consider gcd(a, 0).

� Quick Exercise. Argue that for all a 6= 0, gcd(a, 0) = |a|. �

But why should an arbitrary pair of integers (not both zero) have a gcd? That is, does
the definition we have of gcd really make sense? Note that if c > 0 and c|a and c|b, then
c ≤ |a| and c ≤ |b|. This means that there are only finitely many positive integers that could
possibly be the gcd of a and b, and because 1 does divide both a and b, a and b do have
at least one common divisor. This means that the gcd of any pair of integers exists (and is
unique).

To actually determine gcd(a, b) we would rather not check all the possibilities less than
|a| and |b|. Fortunately, we don’t have to, because there is an algorithm that determines the
gcd quite efficiently. This first appears as Proposition 2 of Book 7 of Euclid’s Elements and
depends on repeated applications of the Division Theorem; we call it Euclid’s Algorithm.
We present the algorithm below but first need the following lemma:

Lemma 2.2 Suppose that a, b, q, r are integers and b = aq + r. Then gcd(b, a) = gcd(a, r).

Proof: To show this, we need only check that every common divisor of b and a is a
common divisor of a and r, and vice versa, for then the greatest element of this set will be
both gcd(b, a) and gcd(a, r). But if d|a and d|b then d|r, because r = b− aq. Conversely, if
d|a and d|r, then d|b, because b = aq + r. 2

We will now give an example of Euclid’s Algorithm, before describing it formally below.
This example should make the role of the lemma clear.

Example 2.3

Suppose we wish to determine the gcd of 285 and 255. If we successively apply the
Division Theorem until we reach a remainder of 0, we obtain the following:

285 = 255 · 1 + 30

255 = 30 · 8 + 15

30 = 15 · 2 + 0

By the lemma we have that

gcd(285, 255) = gcd(255, 30) = gcd(30, 15) = gcd(15, 0),

and by the Quick Exercise above, this last is equal to 15.

Explicitly, to compute the gcd of b and a using Euclid’s Algorithm, where |b| ≥ |a|, we
proceed inductively as follows. First, set b0 = b, a0 = a, and let q0 and r0 be the quotient
and remainder that result when b0 is divided by a0. Then, for n ≥ 0, let bn = an−1 and
an = rn−1, and let qn and rn be the quotient and remainder that result when bn is divided
by an. We then continue until rn = 0, and claim that rn−1 = gcd(b, a). Setting aside for
a moment the important question of why rn need ever reach 0, the general form of the
algorithm looks like this:
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b0 = a0q0 + r0

b1 = a1q1 + r1
...

bn−1 = an−1qn−1 + rn−1

bn = anqn + 0

We can now formally show that Euclid’s Algorithm does indeed compute gcd(b, a):

Theorem 2.3 Euclid’s Algorithm computes gcd(b, a).

Proof: Using the general form for Euclid’s Algorithm above, the lemma says that

gcd(b, a) = gcd(b0, a0) =

gcd(a0, r0) = gcd(b1, a1) =

gcd(a1, r1) = · · · =
gcd(an−1, rn−1) = gcd(bn, an) =

gcd(an, 0) = an = rn−1.

It remains only to understand why this algorithm halts. That is, why must some remain-
der rn = 0? But ai+1 = ri < |ai| = ri−1. Thus, the ri’s form a strictly decreasing sequence of
non-negative integers. By the Well-ordering Principle, such a sequence is necessarily finite.
This means that rn = 0 for some n. 2

We have thus proved that after finitely many steps Euclid’s Algorithm will produce the
gcd of any pair of integers. In fact, this algorithm reaches the gcd quite rapidly, in a sense
we cannot make precise here. It is certainly much more rapid than considering all possible
common factors case by case.

2.3 The GCD Identity

In the equations describing Euclid’s Algorithm above, we can start with the bottom equation
bn−1 = an−1qn−1 + rn−1 and solve this for gcd(b, a) = rn−1 in terms of bn−1 and an−1.
Plugging this into the previous equation, we can express gcd(b, a) in terms of bn−2 and an−2.
Repeating this process, we can eventually obtain an equation of the form gcd(b, a) = ax+by,
where x and y are integers. That is, gcd(b, a) can be expressed as a linear combination
of a and b. (Here the coefficients of the linear combination are integers x and y; we will use
this terminology in a more general context later.)

Example 2.4

In the case of 285 and 255 we have the following:

15 = 255− 30(8)

= 255− (285− 255 · 1)(8)

= 255(9) + 285(−8)
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This important observation we state formally:

Theorem 2.4 The GCD identity for integers Given integers a and b (not both
zero), there exist integers x and y for which gcd(b, a) = ax+ by.

� Quick Exercise. Try using Euclid’s Algorithm to compute

gcd(120, 27),

and then express this gcd as a linear combination of 120 and 27. �

What we have described above is a constructive (or algorithmic) approach to expressing
the gcd of two integers as a linear combination of them. We will now describe an alternative
proof of the GCD identity, which shows the existence of the linear combination, without
giving us an explicit recipe for finding it. This sort of proof is inherently more abstract
than the constructive proof, but we are able to conclude a bit more about the gcd from
it. We will also find it valuable when we generalize these notions to more general algebraic
structures than the integers.

Existential proof of the GCD identity: We begin by considering the set of all linear
combinations of the integers a and b. That is, consider the set

S = {ax+ by : x, y ∈ Z}.

This is obviously an infinite subset of Z. If the GCD identity is to be true, then the gcd
of a and b belongs to this set. But which element is it? By the Well-ordering Principle, S
contains a unique smallest positive element which we will call d.

� Quick Exercise. To apply the Well-ordering Principle, the set S must contain at least
one positive element. Why is this true? �

Since d ∈ S, we can write it as d = ax0 + by0, for some particular integers x0 and y0.
We claim that d is the gcd of a and b.

To prove this, we must first check that d is a common divisor, that is, that it divides
both a and b. If we apply the Division Theorem 2.1 to d and a, we obtain a = dq + r. We
must show that r is zero. But

r = a− dq = a− (ax0 + by0)q = a(1− qx0) + b(−qy0),

and so r ∈ S. Because 0 ≤ r < d, and d is the smallest positive element of S, r = 0, as
required. A similar argument shows that d|b too.

Now suppose that c > 0 and c|a and c|b. Then a = nc and b = mc. But then ax+ by =
ncx+mcy = c(nx+my), and so c divides any linear combination of a and b. Thus, c divides
d. But because c and d are both positive, c ≤ d. That is, d is the gcd of a and b. 2

Example 2.5

Thus, the gcd of 12 and 28 is 4, because 4 = 12 · (−2) + 28(1) is the smallest positive
integer expressible as a linear combination of 12 and 28. We referred to this example
when introducing the Well-ordering Principle in the previous chapter; see Exercise 1.9.

We conclude from this proof the following:

Corollary 2.5 The gcd of two integers (not both zero) is the least positive linear combina-
tion of them.
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2.4 The Fundamental Theorem of Arithmetic

We are now ready to tackle the main business of this chapter: Proving that every non-zero
integer can be factored uniquely as a product of integers that cannot be further factored.
This theorem’s importance is emphasized by the fact that it is usually known as the Fun-
damental Theorem of Arithmetic. It first appears (in essence) as Proposition 14 of Book 9
in Euclid’s Elements.

We first need a formal definition. An integer p (other than±1) is irreducible if whenever
p = ab, then a or b is ±1. We are thus allowing the always possible ‘trivial’ factorizations p =
(1)(p) = (−1)(−p). We are not allowing ±1 to be irreducible because it would unnecessarily
complicate the formal statement of the Fundamental Theorem of Arithmetic that we make
below. Because 0 = (a)(0) for any integer a, it is clear that 0 is not irreducible. Finally,
notice that if p is irreducible, then so is −p. This means that in the arguments that follow
we can often assume that p is positive.

The positive integers that are irreducible form a familiar list:

2, 3, 5, 7, 11, 13, 17, · · · .

You are undoubtedly familiar with these numbers, under the name prime integers, and it
may seem perverse for us to call them ‘irreducible’. But this temporary perversity now will
allow us to be consistent with the more general terminology we’ll use later.

We reserve the term ‘prime’ for another definition: An integer p (other than 0 and ±1)
is prime if, whenever p divides ab, then either p divides a or p divides b. (Notice that when
we say ‘or’ here, we mean one or the other or both. This is what logicians call the inclusive
‘or’, and is the sense of this word that we will always use.)

Example 2.6

For instance, we know that 2 is a prime integer. For if 2|ab, then ab is even. But a
product of integers is even exactly if at least one of the factors is even, and so 2|a or
2|b.

The prime property generalizes to more than two factors:

Theorem 2.6 If p is prime and p|a1a2 · · · an, then p|ai for some i.

Proof: This is Exercise 5. Prove it using induction on n. 2

For the integers, the ideas of primeness and irreducibility coincide. This is the content
of the next theorem.

Theorem 2.7 An integer is prime if and only if it is irreducible.

Proof: This theorem asserts that the concepts of primeness and irreducibility are equiva-
lent for integers. This amounts to two implications which must be proved: primeness implies
irreducibility, and the converse statement that irreducibility implies primeness.

Suppose first that p is prime. To show that it is irreducible, suppose that p has been
factored: p = ab. Then p|ab, and so (without loss of generality) p|a. Thus, a = px, and
so p = pxb. But then 1 = xb, and so both x and b can only be ±1. This shows that the
factorization p = ab is trivial, as required.

Conversely, suppose that p is irreducible, and p|ab. We will suppose also that p does not
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divide a. We thus must prove that p does divide b. Suppose that d is a positive common
divisor of p and a. Then, because p is irreducible, d must be p or 1. Because p doesn’t divide
a, it must be that gcd(p, a) = 1. So by the GCD identity 2.4, there exist x and y with
1 = ax + py. But then b = abx + bpy, and because p clearly divides both abx and bpy it
thus divides b, as required. 2

Again, it may seem strange to have both of the terms ‘prime’ and ‘irreducible’, because
for Z we have proved that they amount to the same thing. But we will later discover more
general contexts where these concepts are distinct.

We now prove half of the Fundamental Theorem of Arithmetic:

Theorem 2.8 Every non-zero integer (other than ±1) is either irreducible or a product of
irreducibles.

Proof: Let n be an integer other than ±1, which we may as well suppose is positive. We
proceed by induction on n. We know that n 6= 1, and if n = 2, then it is irreducible. Now
suppose the theorem holds true for all m < n. If n is irreducible already, we are done. If
not, then n = bc, where, without loss of generality, both factors are positive and greater
than 1. But then by the induction hypothesis both b and c can be factored as a product of
irreducibles, and thus so can their product n. 2

For example, we can factor the integer 120 as 2 · 2 · 2 · 3 · 5. Now (−5) · 2 · (−2) · 3 · 2 is
a distinct factorization of 120 into irreducibles, but it is clearly essentially the same, where
we disregard order and factors of −1. The uniqueness half of the Fundamental Theorem
of Arithmetic asserts that all distinct factorizations into irreducibles of a given integer are
essentially the same, in this sense. To prove this we use the fact that irreducible integers
are prime.

Theorem 2.9 Unique Factorization Theorem for Integers
If an integer x = a1a2 · · · an = b1b2 · · · bm where the ai and bj are all irreducible, then n = m
and the bj may be rearranged so that ai = ±bi, for i = 1, 2, · · · , n.

Proof: We use induction on n. If n = 1, the theorem follows easily.

� Quick Exercise. Check this. �

So we assume n > 1. By the primeness property of the irreducible a1, a1 divides one of
the bj . By renumbering the bj if necessary, we may assume a1 divides b1. So, because b1 is
irreducible, a1 = ±b1. Therefore, by dividing both sides by a1, we have

a2a3 · · · an = ±b2 · · · bm.

(Because b2 is irreducible, so is −b2, and we consider ±b2 as an irreducible factor.) We now
have two factorizations into irreducibles, and the number of ai factors is n − 1. So by the
induction hypothesis n− 1 = m− 1, and by renumbering the bj as necessary, ai = ±bi for
i = 1, 2, · · · , n. This proves the theorem. 2

2.5 A Geometric Interpretation

As we have indicated already, both Euclid’s Algorithm and the Fundamental Theorem of
Arithmetic have their origins in the work of the Greek geometer Euclid. It is important to
note that Euclid viewed both of these theorems as geometric statements about line segments.
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To understand this requires a definition: A line segment AB measures a line segment
CD, if there is a positive integer n, so that we can use a compass to lay exactly n copies
of AB next to one another, to make up the segment CD. In modern language, we would
say that the length of CD is n times that of AB, but this notion of length was foreign to
Euclid.

Euclid’s Algorithm can now be viewed in the following geometric way: Given two line
segments AB and CD, can we find a line segment EF , which measures both AB and CD?
In the diagram below, we see by example how Euclid’s Algorithm accomplishes this.

AB
CD CD CD E1F1

CD
E1F1 E2F2

E1F1

E2F2E2F2

We can recapitulate this geometry in algebraic form, which makes the connection with
Euclid’s Algorithm clear:

AB = 3CD + E1F1,

CD = 1E1F1 + E2F2,

E1F1 = 2E2F2.

Thus, AB and CD are both measured by E2F2. In fact, CD = 3E2F2 and AB = 11E2F2.
In modern language, we would say that the ratio of the length of AB to the length of CD
is 11/3. Note that in this context Euclid’s Algorithm halts only in case this ratio of lengths
is a rational number (that is, a ratio of integers). In fact, it is possible to prove that the
ratio of the diagonal of a square to one of the sides is irrational, by showing that in this
case Euclid’s Algorithm never halts (see Exercises 14 and 15).

Euclid’s proposition that is closest to the Fundamental Theorem of Arithmetic says
that if a number be the least that is measured by prime numbers, it will not be measured
by any other prime number except those originally measuring it. This seems much more
obscure than our statement, in part because of the geometric language that Euclid uses.
Euclid’s proposition does assert that if a number is a product of certain primes, it is then
not divisible by any other prime, which certainly follows from the Fundamental Theorem,
and is indeed the most important idea contained in our theorem. However, Euclid lacked
both our flexible notation, and the precisely formulated tool of Mathematical Induction, to
make his statement clearer and more modern. It wasn’t until the eighteenth century, with
such mathematicians as Euler and Legendre, that a modern statement was possible, and
a careful proof in modern form did not appear until the work of Gauss, in the early 19th
century.

Chapter Summary

In this chapter we examined division and factorization in Z. We proved the Division Theorem
by induction and then used it to obtain Euclid’s Algorithm and the GCD identity. We defined
the notions of primeness and irreducibility and showed that they are equivalent. We then
proved the Fundamental Theorem of Arithmetic, which asserts that all integers other than
0, 1,−1 are irreducible or can be factored uniquely into a product of irreducibles.
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Warm-up Exercises

a. Find the quotient and remainder, as guaranteed by the Division Theorem 2.1, for 13
and −120, −13 and 120, and −13 and −120.

b. What are the possible remainders when you divide by 3, using the Division Theorem
2.1? Choose one such remainder, and make a list describing all integers that give this
remainder, when dividing by 3.

c. What are the possible answers to gcd(a, p), where p is prime, and a is an arbitrary
integer?

d. Let m be a fixed integer. Describe succinctly the integers a where

gcd(a,m) = m.

e. Give the prime factorizations of 92, 100, 101, 102, 502, and 1002.

f. Suppose that we have two line segments. One has length 11/6 units, and the other
has length 29/15. What length is the longest segment that measures both?

g. We proved the GCD identity 2.4 twice. Explain the different approaches of the two
proofs to finding the appropriate linear combination. Which is easier to describe in
words? Which is computationally more practical?

Exercises

1. (a) Find the greatest common divisor of 34 and 21, using Euclid’s Algorithm. Then
express this gcd as a linear combination of 34 and 21.

(b) Now do the same for 2424 and 772.

(c) Do the same for 2007 and 203.

(d) Do the same for 3604 and 4770.

2. (a) Prove that gcd(a, b) divides a− b. This sometimes provides a short cut in finding
gcds.

(b) Use this to find gcd(1962, 1965).

(c) Now find gcd(1961, 1965).

(d) Find the gcds in Exercise 1 using this short cut.

3. Prove that the set of all linear combinations of a and b are precisely the multiples of
gcd(a, b).

4. Two numbers are said to be relatively prime if their gcd is 1. Prove that a and b
are relatively prime if and only if every integer can be written as a linear combination
of a and b.

5. Prove Theorem 2.6. That is, use induction to prove that if the prime p divides
a1a2 · · · an, then p divides ai, for some i.

6. Suppose that a and b are positive integers. If a+ b is prime, prove that gcd(a, b) = 1.
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7. (a) A natural number greater than 1 that is not prime is called composite. Show
that for any n, there is a run of n consecutive composite numbers. Hint: Think
factorial.

(b) Therefore, there is a string of 5 consecutive composite numbers starting where?

8. Prove that two consecutive members of the Fibonacci sequence are relatively prime.

9. Notice that gcd(30, 50) = 5 gcd(6, 10) = 5 · 2. In fact, this is always true; prove that if
a 6= 0, then gcd(ab, ac) = a · gcd(b, c).

10. Suppose that two integers a and b have been factored into primes as follows:

a = pn1
1 pn2

2 · · · pnrr

and
b = pm1

1 pm2
2 · · · pmrr ,

where the pi’s are primes, and the exponents mi and ni are non-negative integers. It
is the case that

gcd(a, b) = ps11 p
s2
2 · · · psrr ,

where si is the smaller of ni and mi. Show this with a = 360 = 23325 and b = 900 =
223252. Now prove this fact in general.

11. The least common multiple of natural numbers a and b is the smallest positive
common multiple of a and b. That is, if m is the least common multiple of a and b,
then a|m and b|m, and if a|n and b|n then n ≥ m. We will write lcm(a, b) for the
least common multiple of a and b. Find lcm(20, 114) and lcm(14, 45). Can you find a
formula for the lcm of the type given for the gcd in the previous exercise?

12. Show that if gcd(a, b) = 1, then lcm(a, b) = ab. In general, show that

lcm(a, b) =
ab

gcd(a, b)
.

13. Prove that if m is a common multiple of both a and b, then lcm(a, b)|m.

14. Prove that
√

2 is irrational.

15. This problem outlines another proof that
√

2 is irrational. We show that Euclid’s
Algorithm never halts if applied to a diagonal d and side s of a square. The first step
of the algorithm yields

d = 1 · s+ r,

as shown in the picture below:

P•

• •

• •

s

s

d

r

A

D

B

C
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(a) Now find the point E by intersecting the side CD with the perpendicular to the
diagonal AC at P . It is obvious that the length of segment EC is

√
2r. (Why?)

Now prove that the length of segment DE is r, by showing that the triangle
DEP is an isosceles triangle.

P
•

• •

• •

s

r

A

D

B

C•
r

E
√

2 rr

Why does this mean that the next step in Euclid’s Algorithm yields

s = 2r + (
√

2− 1)r?

(b) Argue that the next step of the algorithm yields

r = 2(
√

2− 1)r + (
√

2− 1)2r.

Conclude that this algorithm never halts, and so there is no common measure
for the diagonal and side of the square.

16. State Euclid’s version of the Fundamental Theorem of Arithmetic in modern language,
and prove it carefully as a Corollary of the Fundamental Theorem.

17. (a) As with many algorithms, one can easily write a recursive version of Euclid’s
Algorithm. This version is for nonnegative a and b. (The symbol← is the assign-
ment symbol and a mod b is the remainder when dividing a by b.)

function gcd(a, b);

if b = 0 then gcd ← a else gcd← gcd(b, a mod b)

endfunction.

Try this version on 2424 and 772 and a couple of other pairs of your choice.

(b) One can also write a recursive extended gcd algorithm that returns the linear
combination guaranteed by the GCD identity. This procedure again assumes that
both a and b are non-negative. When the initial call returns, g will be the gcd of
a and b and g = ax+ by.

procedure extgcd(a, b, g, x, y);

if b = 0 then

g ← a; x← 1; y ← 0;

else

extgcd(b, a mod b, g, x, y);

temp← y;

y ← x− ba/bcy;

x← temp;

endprocedure.

(Here, bxc is the floor function. That is, bxc = the greatest integer less than or
equal to x.) Try this procedure on 285 and 255, then 2424 and 772, and a pair
of your choice.
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18. (a) Show that in Euclid’s Algorithm, the remainders are at least halved after two
steps. That is, ri+2 < 1/2 ri.

(b) Use part (a) to find the maximum number of steps required for Euclid’s Algo-
rithm. (Figure this in terms of the maximum of a and b.)

19. Recall from Exercise 1.14 the definition of the binomial coefficient
(
n
k

)
. Suppose that

p is a positive prime integer, and k is an integer with 1 ≤ k ≤ p − 1. Prove that p
divides binomial coefficient

(
p
k

)
.



Chapter 3

Modular Arithmetic

In this chapter we look again at the content of the Division Theorem 2.1, only this time plac-
ing our primary interest on the remainders obtained. By adopting a slightly more abstract
point of view, we will be able to obtain some new insight into the arithmetic of Z.

3.1 Residue Classes

For any positive integer m and integer a, the residue of a modulo m is the remainder
one obtains when dividing a by m in the Division Theorem. (We will frequently write ‘mod
m’ for ‘modulo m’.)

Example 3.1

The residue of 8 (mod 5) is 3. The residue of −22 (mod 6) is 2.

Of course, many integers have the same residue (mod m). Given an integer a, the set of
all integers with the same residue (mod m) as a is called the residue class (mod m) of
a and denoted [a]m.

Example 3.2

For instance,
[3]5 = {. . . ,−12,−7,−2, 3, 8, . . .},

and
[−22]6 = {. . . ,−22,−16,−10,−4, 2, . . .}.

If [a]m = [b]m we say that a and b are congruent modulo m, and write a ≡ b (mod m).
We simplify this notation to a ≡ b, if it is clear what modulus m is being used.

Our intention in this chapter is to define addition and multiplication on these residue
classes to give us interesting new number systems. Before doing this we will explore more
about the classes themselves.

Notice that [3]5 consists of the list of every fifth integer, which includes 3. That is,

[3]5 = {. . . , 3 + (−3)5, 3 + (−2)5, 3 + (−1)5, 3 + (0)5, 3 + (1)5, . . .}.

And similarly, [−22]6 consists of the list of every sixth integer, which includes −22. Our
first theorem asserts that this is always true.

Theorem 3.1 [a]m = {a+ km : k ∈ Z}.

25
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Proof: We must show that two infinite sets are in fact equal. Our strategy is to show that
each of these sets is a subset of the other. For that purpose, suppose that

x ∈ {a+ km : k ∈ Z}.

Then x = a+ k0m for some k0 ∈ Z. Suppose the residue (mod m) of a is r. That is, when
we divide a by m, we have remainder r. But then a = qm + r, where 0 ≤ r < m and q is
some integer. Then

x = a+ k0m = qm+ r + k0m = (k0 + q)m+ r.

But this means that the residue of x modulo m is r, and so x ∈ [a]m. Thus,

{a+ km : k ∈ Z} ⊆ [a]m.

Now let x ∈ [a]m. In other words, x has the same residue (mod m) as a. Suppose that
the common residue of x and a modulo m is r, and so x = q1m+ r and a = q2m+ r. Then
r = a− q2m and so

x = q1m+ a− q2m = (q1 − q2)m+ a.

That is, x ∈ {a+ km : k ∈ Z}, proving the theorem. 2

As our examples above suggest, this theorem says that elements in a given residue class
(mod m) occur exactly once every m integers. So, if x ∈ [a]m, the next larger element
in [a]m is x + m. Hence, any m consecutive integers will contain exactly one element of
[a]m. Thus, there are exactly m residue classes (mod m), and we can choose representatives
from each class simply by picking any set of m consecutive integers. For example, we could
certainly choose the m integers 0, 1, 2, · · · ,m − 1 (which are of course exactly the possible
remainders from division by m). Indeed, with this conventional and convenient choice of
representatives we can specify the m distinct residue classes as [0], [1], . . . , [m− 1]. These m
residue classes then partition the integers, meaning that each integer belongs to exactly
one of these classes, and if distinct classes intersect, they are in fact equal. Alternatively,
this means that

Z = [0] ∪ [1] ∪ [2] ∪ · · · ∪ [m− 1],

and the sets in this union are disjoint from one another pairwise.
In particular, we have that

Z = [0]4 ∪ [1]4 ∪ [2]4 ∪ [3]4

= {. . . ,−4, 0, 4, 8, . . .} ∪ {. . . ,−3, 1, 5, 9, . . .} ∪
{. . . ,−2, 2, 6, 10, . . .} ∪ {. . . ,−1, 3, 7, 11, . . .}.

The next theorem provides a very useful way of determining when two integers are in the
same residue class. Indeed, we will use this characterization more often than the definition
itself.

Theorem 3.2 Two integers, x and y, have the same residue (mod m) if and only if x−y =
km for some integer k.

Proof: First, suppose x ≡ y (mod m). Then x = k1m + r, and y = k2m + r for some
integers k1 and k2 and 0 ≤ r < m. But then x− y = (k1 − k2)m.

Conversely, suppose x−y = km, for some integer k with x = k1m+r1 and y = k2m+r2,
where 0 ≤ r1 < m and 0 ≤ r2 < m. Then

km = x− y = (k1 − k2)m+ r1 − r2,
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which implies that r1− r2 = (k− k1 + k2)m. Now, because r1 and r2 are both non-negative
integers less than m, the distance between them is less than m. That is, |r1 − r2| < m. So,
−m < r1− r2 < m. But we have just shown that r1− r2 is an integer multiple of m. Hence,
that multiple is 0. Therefore, r1 − r2 = 0 or r1 = r2. 2

Example 3.3

We have [18]7 = [−38]7 because 18− (−38) = 56 = (7)(8).

We now consider the set of all residue classes modulo m. We denote this set by Zm.
That is,

Zm = {[0], [1], [2], · · · , [m− 1]}.

Be careful to note that we are considering here a set of sets: Each element of the finite set
Zm is in fact an infinite set of the form [k]. While this construct seems abstract, you should
take heart from the fact that for the most part, we can focus our attention on particular
representatives of the residue classes, rather than on the entire set.

3.2 Arithmetic on the Residue Classes

We are now ready to define an ‘arithmetic’ on Zm which is directly analogous to (and indeed
inherited from) the arithmetic on Z. By an ‘arithmetic’ we mean operations on Zm that we
call addition and multiplication.

To add two elements of Zm (that is, two mod m residue classes) simply take a repre-
sentative from each class. The sum of the two residue classes is defined to be the residue
class of their sum. For instance, to add [3]5 and [4]5, we pick, say, 8 ∈ [3]5 and 4 ∈ [4]5. But
[8 + 4]5 = [2]5, and so [3]5 + [4]5 = [2]5. Note that any other choice of representatives would
also yield [2]5.

� Quick Exercise. Try some other representatives of these two residue classes, and see
that the same sum is obtained. �

It is vitally important that this definition be independent of representatives chosen, for
otherwise it would be ambiguous and consequently not of much use. We will shortly prove
that this independence of representatives in fact holds. Before we do so, we first observe
that we can define multiplication on Zm in a similar way.

More succinctly, the definition of the operations on Zm are:

[a]m + [b]m = [a+ b]m

[a]m · [b]m = [a · b]m.

Thus, [4]5[3]5 = [12]5 = [2]5.

� Quick Exercise. Try some other representatives of these two residue classes, and see
that the same product is obtained. �

We now check to see that these definitions are well defined. That is, if one picks different
representatives from the residue classes, the result should be the same. You have seen that
this worked in the example above for addition and multiplication in Z5 (at least for the
representatives you tried).
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Proof that operations are well defined: To show addition on Zm is well defined,
consider [a] and [b]. We pick two representatives from [a], say x and y, and two representa-
tives from [b], say r and s. Now we must show that [x+ r] = [y + s]. But x, y ∈ [a] implies
x− y = k1m, for some integer k1. Likewise, r − s = k2m, for some integer k2. So,

x+ r − (y + s) = x− y + r − s = (k1 + k2)m.

In other words, [x+ r] = [y + s], which is what we wanted to show.
The proof that multiplication on Zm is also well defined is similar and is left as Exercise

9. 2

We now have an ‘arithmetic’ defined on Zm. To avoid cumbersome notation, it is common
to write the elements of Zm as simply 0, 1, . . . ,m − 1 instead of [0], [1], . . . , [m − 1]. So, in
Z5, 3 + 4 = 2 and 2 + 3 = 0. (Thus, −2 = 3 and −3 = 2.) Bear in mind that the arithmetic
is really on residue classes. For the remainder of this chapter we will not omit the brackets,
although later we often will.

Example 3.4

A first simple example of this arithmetic is in the case where m = 2. We then have
only two residue classes. In fact, [0]2 is precisely the set of even integers and [1]2 is
the set of odd integers. The addition and multiplication tables for Z2 are given below.
The addition table may be simply interpreted as ‘The sum of an even and an odd is
odd, while the sum of two evens or two odds is even.’ The multiplication table may be
interpreted as ‘The product of two integers is odd only when both integers are odd.’

+ [0] [1]
[0] [0] [1]
[1] [1] [0]

· [0] [1]
[0] [0] [0]
[1] [0] [1]

addition and multiplication tables for Z2

3.3 Properties of Modular Arithmetic

It is illuminating to compare the arithmetic on Zm with that on Z. Later in the book (in
Chapter 6) we will meet a common abstraction of arithmetic on Z and on Zm that will
enable us to pursue this general question in more detail. For now we intend only to suggest
a few of the ideas we will meet more formally later.

Arithmetic in Z depends heavily on the existence of an additive identity or zero. Zero
has the pleasant property in Z that 0+n = n, for all integers n. Note that in Zm the residue
class [0] plays the same role because [0] + [n] = [0 + n] = [n].

Also, each integer n has an additive inverse −n in Z, an element which when added
to n gives the additive identity 0. This is the formal basis for subtraction, which enables us
to solve equations of the form a+ x = b in Z (by simply adding −a to both sides). Notice
that additive inverses are available in Zm as well. For,

[k] + [m− k] = [k +m− k] = [m] = [0],
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and so [m − k] = [−k] serves as the additive inverse of [k]. Consequently, we can always
solve equations of the form [a] +X = [b], where here X is an unknown in Zm.

� Quick Exercise. Solve the equation [7]12 +X = [4]12 in Z12, by using the appropriate
additive inverse. �

We can conveniently summarize the additive arithmetic in Zm for a particular m in
addition tables. (We have addition tables for m = 5 and m = 6 below.) Note that these
tables reflect the fact that every element of these sets has an additive inverse. (How?)

+ [0] [1] [2] [3] [4]
[0] [0] [1] [2] [3] [4]
[1] [1] [2] [3] [4] [0]
[2] [2] [3] [4] [0] [1]
[3] [3] [4] [0] [1] [2]
[4] [4] [0] [1] [2] [3]

+ [0] [1] [2] [3] [4] [5]
[0] [0] [1] [2] [3] [4] [5]
[1] [1] [2] [3] [4] [5] [0]
[2] [2] [3] [4] [5] [0] [1]
[3] [3] [4] [5] [0] [1] [2]
[4] [4] [5] [0] [1] [2] [3]
[5] [5] [0] [1] [2] [3] [4]

addition tables Z5 and Z6

What about multiplication? In Z the integer 1 serves as a multiplicative identity,
because 1 · n = n for all integers n, and clearly [1] plays the same role in Zm.

� Quick Exercise. Check this. �

A multiplicative inverse in Zm may be defined analogously to the way we have defined an
additive inverse: [a] is the multiplicative inverse of [n] if [a][n] = [1]. The disadvantage
of Z as opposed to Q is that no elements have multiplicative inverses (except 1 and −1).
The consequence is that many equations of the form ax = b are not solvable in the integers.
But what about in Zm? Consider the following multiplication tables for our examples Z5

and Z6.

· [0] [1] [2] [3] [4]
[0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4]
[2] [0] [2] [4] [1] [3]
[3] [0] [3] [1] [4] [2]
[4] [0] [4] [3] [2] [1]

· [0] [1] [2] [3] [4] [5]
[0] [0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4] [5]
[2] [0] [2] [4] [0] [2] [4]
[3] [0] [3] [0] [3] [0] [3]
[4] [0] [4] [2] [0] [4] [2]
[5] [0] [5] [4] [3] [2] [1]

multiplication tables Z5 and Z6

Notice the remarkable fact that in Z5, every element (other than [0]) has a multiplicative
inverse. For example, the multiplicative inverse of [3] is [2], because [3][2] = [1]. Thus, to
solve the equation [3]X = [4] in Z5, we need only multiply both sides of the equation by
the multiplicative inverse of [3] (which is [2]) to obtain

X = [2][3]X = [2][4] = [3].

On the other hand, [3] has no multiplicative inverse in Z6, and there is in fact no solution
to the equation [3]X = [2] in Z6.

� Quick Exercise. Solve the equation [4]X = [10] in Z11. Then argue that this equation
has no solution in Z12. �

We have gone far enough here to illustrate the fact that the arithmetic in Zm shares
similarities with those of Z, but also has some real differences (which depend on the choice
of m).
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Historical Remarks

The great German mathematician Karl Friedrich Gauss (1777-1855) first introduced the idea
of congruence modulo m into the study of integers, in his important book Disquisitiones
Arithmeticae. Gauss made important contributions to almost all branches of mathematics
and did important work in astronomy and physics as well, but number theory (the study
of the mathematical properties of the integers) was his first love. The Disquisitiones was
a landmark work, which systematized and extended the work on number theory done by
Gauss’s predecessors, Fermat and Euler. Gauss’s introduction of the notion of congruence
is a good example of the way in which an effective and efficient notation can revolutionize
the way a mathematical subject is approached.

Chapter Summary

In this chapter we defined the residue class [a]m of a modulo m (for a positive integer m)
and characterized the elements of such classes. We then considered the set Zm of the m
residue classes and defined an arithmetic on this set. We proved the following facts about
this arithmetic:

• Addition and multiplication are well defined;

• Zm has an additive identity [0] and a multiplicative identity [1];

• All elements in Zm have additive inverses, but not all elements have multiplicative
inverses.

Warm-up Exercises

a. Write out the three residue classes modulo 3 (as we did for Z4). Write out the addition
and multiplication tables for Z3. Which elements of Z3 have multiplicative inverses?

b. Does {47, 100,−3, 29,−9} contain a representative from every residue class of Z5?
Does {−14,−21,−10,−3,−2}? Does {10, 21, 32, 43, 54}?

c. What is the additive inverse of [13] in Z28?

d. What is the relationship between ‘clock arithmetic’ and modular arithmetic?

e. (a) What time is it 100 hours after 3 o’clock?

(b) What day of the week is it 100 days after Monday?

f. Solve the following equations, or else argue that they have no solutions:

(a) [4] +X = [3], in Z6.

(b) [4]X = [3], in Z6.

(c) [4] +X = [3], in Z9.

(d) [4]X = [3], in Z9.
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Exercises

1. Repeat Warm-up Exercise a for modulo 8.

2. Determine the elements in Z15 that have multiplicative inverses. Give an example of
an equation of the form [a]X = [b] ([a] 6= [0]) that has no solution in Z15.

3. In Exercise c you determined the additive inverse of [13] in Z28. Now determine its
multiplicative inverse.

4. (a) Find an example in Z6 where [a][b] = [a][c], but [b] 6= [c]. How is this example
related to the existence of multiplicative inverses in Z6?

(b) Repeat this in Z10.

5. If gcd(a,m) = 1, then the GCD identity 2.4 guarantees that there exist integers u and
v such that 1 = au + mv. Show that in this case, [u] is the multiplicative inverse of
[a] in Zm.

6. Now use essentially the reverse of the argument from Exercise 5 to show that if [a]
has a multiplicative inverse in Zm then gcd(a,m) = 1.

7. According to what you have shown in Exercises 5 and 6, which elements of Z24 have
multiplicative inverses? What are the inverses for each of those elements? (The answer
is somewhat surprising.)

8. Repeat the previous exercise for Z10. Give the multiplication table for those elements
in Z10 that have multiplicative inverses and find an [n] such that all these elements
are powers of [n].

9. Prove that the multiplication on Zm as defined in the text is well defined, as claimed
in Section 3.2.

10. Prove that if all non-zero elements of Zm have multiplicative inverses, then multiplica-
tive cancellation holds: that is, if [a][b] = [a][c], then [b] = [c].

11. Consider the following alternate definition of addition of residue classes in Zm, by
defining the set

S = {x+ y : x ∈ [a], y ∈ [b]}.
Prove that S = [a] + [b] (as defined in Section 3.2); thus, we could have used the
definition above to define addition in Zm.

12. By way of analogy with Exercise 11, one might try to define the multiplication of
residue classes in Zm by considering the set

M = {xy : x ∈ [a], y ∈ [b]}.

Prove that M ⊆ [a][b]. Then choose particular m, a, b to show by example that this
containment can be proper (that is, M ⊂ [a][b]).

13. In the integers, the equation x2 = a has a solution only when a is a positive perfect
square or zero. For which [a] does the equation X2 = [a] have a solution in Z7? What
about in Z8? What about in Z9?

14. Explain what a ≡ b (mod 1) means.
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Chapter 4

Polynomials with Rational Coefficients

In Chapter 2 we proved that every integer ( 6= 0,±1) can be written as a product of ir-
reducible integers, and this decomposition is essentially unique. These irreducible integers
turn out to be those integers that we call primes. To summarize, in that chapter we proved
the following important theorems:

• The Division Theorem for integers (Theorem 2.1),

• Euclid’s Algorithm (which yields the gcd of two integers) (Theorem 2.3),

• The GCD identity that gcd(a, b) = ax+ by, for some integers x and y (Theorem 2.4),

• Each non-zero integer ( 6= ±1) is either irreducible or a product of irreducibles (Theo-
rem 2.8),

• An integer p is irreducible if and only if p is prime (that is, if p|ab, then either p|a or
p|b) (Theorem 2.7), and

• Each non-zero integer (6= ±1) is uniquely (up to order and factors of −1) the product
of primes (Theorem 2.9).

4.1 Polynomials

In this chapter we turn our attention to another algebraic structure with which you are
familiar – the polynomials (with unknown x) with coefficients from the rational numbers
Q. In this chapter and the next we discover that this set of polynomials obeys theorems
directly analogous to those we have listed above for the integers.

We denote the set of polynomials with rational coefficients by Q[x]. Let’s be careful to
define exactly what we mean by a polynomial. A polynomial f ∈ Q[x] is an expression of
the form

f = a0 + a1x+ a2x
2 + · · ·+ anx

n + · · ·

where ai ∈ Q, and all but finitely many of the ai’s are 0. We call the ai’s the coefficients
of the polynomial. When we write down particular polynomials, we will simply omit a term
if the coefficient happens to be zero. Thus, such expressions as 2 + x, 4

7 + 2x2 − 1
2x

3, and
14 are all elements of Q[x]. Henceforth, when we wish to write down a generic polynomial,
we will usually be content with an expression of the form f = a0 + a1x+ a2x

2 + · · ·+ anx
n.

This means that we’re assuming that am = 0, for all m > n. It may of course be the case
that some of the am for m ≤ n are 0 too.

We say that two polynomials are equal if and only if their corresponding coefficients
are equal. Thus, 2 + 0x− x2, 2− x2 + 0x3, and 2− x2 are all equal polynomials. The first
two polynomials are simply less compact ways of writing the third.
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For the most part we deal with polynomials with rational coefficients, but sometimes
we wish to restrict our attention to those polynomials whose coefficients are integers; we
denote this set by Z[x]. Of course Z[x] is a proper subset of Q[x].

Note that x is a formal symbol, not a variable or an indeterminate element of Q. This
is probably different from the way you are used to thinking of a polynomial, which is as a
function from Q to Q (or from R to R). This is not how we think of them here – we think
of a polynomial as a formal expression. In fact, if we consider polynomials with coefficients
taken not from Q but some other number system, two of these new polynomials can be
equal as functions but not as polynomials.

� Quick Exercise. Consider polynomials with coefficients from Z2 – denoted by Z2[x],
naturally. Show that the three different polynomials x2 + x+ 1, x4 + x3 + x2 + x+ 1, and
1 are indeed the same function from Z2 to Z2. (Two functions are equal if they have the
same value at all points in their domain.) �

We will nearly always think of polynomials in the formal sense. To emphasize this point
of view, when we speak of a particular polynomial we will denote it by a letter like f , rather
than writing f(x). The one time we wish to consider a polynomial as a function in this
chapter will be made explicit, and then we will refer to it as a polynomial function.

The degree of a polynomial is the largest exponent with corresponding non-zero coeffi-
cient. So, a polynomial of degree 0 means the polynomial can be considered an element of
Q (sometimes called a scalar). Of course, the zero polynomial has no non-zero coefficients.
To cover this special case conveniently, we say that its degree is −∞. We will denote the
degree of a polynomial f by deg(f).

4.2 The Algebra of Polynomials

We can add, subtract, and multiply polynomials in the ways with which you are already
familiar: If f = a0 + a1x+ · · ·+ anx

n and g = b0 + b1x+ · · ·+ bmx
m (let’s suppose n > m),

then

f + g = (a0 + b0) + (a1 + b1)x+ · · ·
+(am + bm)xm + am+1x

m+1 + · · ·+ anx
n.

The difference, f − g, is similarly defined. The definition of product is more difficult to
write down abstractly; the following definition actually captures your previous experience
in multiplying polynomials:

f · g = a0b0 + (a0b1 + a1b0)x+ · · ·+
∑
i+j=k

(aibj)x
k + · · ·+ (anbm)xn+m.

That is, the coefficient of xk is the sum of all the products of the coefficients of xi in f with
the coefficients of xj in g where i and j sum to k.

Example 4.1

If f = 3 + x4 − 2x5 + x6 + 2x7 and g = −1 + 3x+ x2 + 4x6, then the coefficient of x6

in f · g is 3 · 4 + 1 · 1 + (−2) · 3 + 1 · (−1) = 6.
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How is degree affected when we add or multiply polynomials? Your previous experience
with polynomials suggests the right answer, which is contained in the following theorem.

Theorem 4.1 Let f, g ∈ Q[x]. Then

a. deg(fg) = deg(f) + deg(g), where it is understood that −∞ added to anything is −∞.

b. deg(f + g) is less than or equal to the larger of the degrees of f and g.

Proof: We prove part (a) first. We consider first the case where one of the polynomials
is the zero polynomial. Now, it is evident that 0g = 0, for any polynomial g. Thus,

−∞ = deg(0) = deg(0g) = −∞+ deg(g),

as required.
We thus may as well assume that neither f nor g is the zero polynomial; suppose that

deg(f) = n and deg(g) = m. Then f = anx
n+f1, where an 6= 0 and deg(f1) < n. Similarly,

g = bmx
m + g1, where bm 6= 0 and deg(g1) < m. By the definition of multiplication of

polynomials, the coefficient on xn+m is anbm, and this is not zero because neither factor is.
But all remaining terms in the product have smaller degree than n+m, and so

deg(fg) = n+m = deg(f) + deg(g),

as required.

� Quick Exercise. You prove part (b). Also show by example that the degree of a
sum of polynomials can be strictly smaller than the larger of the degrees. Hint: Take two
polynomials with the same degree. � 2

An important particular case of the first part of this theorem is this: If a product of two
polynomials is the zero polynomial, then one of the factors is the zero polynomial.

� Quick Exercise. Prove this, using the theorem. �

4.3 The Analogy between Z and Q[x]

We will now begin to prove the theorems analogous to those proved about natural numbers
and integers and summarized above. (Actually, in this chapter, you will do some of the
proving.) You should notice, as you proceed through this chapter and the next, that not
only are the theorems similar, but so are the proofs. (You will probably even be able to
anticipate some theorems.) This suggests that the integers share properties with Q[x] that
give rise to these theorems – in particular, unique factorization. Later, we will be able to
identify these properties and prove unique factorization in a more general setting. This
process of generalization is indeed a common theme in mathematics – one sees that A and
B both have property C. What is shared by A and B that forces property C on both? For
now, we are content to consider the concrete example of Q[x] and try to build more insight
before getting abstract.

Before starting, recall that the proof technique used for most of the important theo-
rems for natural numbers is induction. When considering polynomials, we also frequently
use induction, but on the degree of the polynomial. Note that since the set of degrees of
polynomials is {−∞, 0, 1, 2, . . .}, which is well ordered, induction may be used.

We now start, as with the integers, with the Division Theorem.
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Theorem 4.2 Division Theorem for Q[x] Let f, g ∈ Q[x] with f 6= 0. Then there
are unique polynomials q and r, with deg(r) < deg(f), such that g = fq + r.

Before proving this theorem, we look at an example.
The actual computation for producing q and r, for given polynomials f and g, is just

long division. For example, let f = x2 + 2x− 1 and g = x4 + x2 − x+ 2.

x2 − 2x + 6

x2 + 2x − 1 x4 + x2 − x + 2
x4 + 2x3 − x2

−2x3 + 2x2 − x + 2
−2x3 − 4x2 + 2x

6x2 − 3x + 2
6x2 + 12x − 6

− 15x + 8
Hence, q = x2 − 2x+ 6 and r = −15x+ 8. That is,

x4 + x2 − x+ 2 = (x2 + 2x− 1)(x2 − 2x+ 6) + (−15x+ 8).

� Quick Exercise. Find q and r as guaranteed by the Division Theorem for g = x5+x−1
and f = x2 + x. �

Proof of the Division Theorem: We first prove the existence of q and r, using induction
on the degree of g. The base case for induction in this proof is deg(g) < deg(f). If this is
the case, then g = f · 0 + g. So, q = 0 and r = g satisfy the requirements of the theorem.

We now assume that f = a0 + a1x + · · · + anx
n and g = b0 + b1x + · · · + bmx

m, and
m = deg(g) ≥ deg(f) = n. Our induction hypothesis says that we can find a quotient and
remainder whenever the dividend has degree less than m.

Let h = g−(bm/an)xm−nf . This makes sense because m ≥ n. Note that the largest non-
zero coefficient of g has been eliminated in h, so deg(h) < deg(g). Hence, by the induction
hypothesis, h = fq′ + r, where deg(r) < deg(f). But then,

g = fq′ + r + (bm/an)xm−nf

= f(q′ + (bm/an)xm−n) + r.

Thus, q = q′ + (bm/an)xm−n and r serve as the desired quotient and remainder.
Now we prove the uniqueness of q and r by supposing that g = fq+ r = fq′+ r′, where

deg(r) < deg(f) and deg(r′) < deg(f). We will show that q = q′ and r = r′.
So, because fq+ r = fq′ + r′, we have that f(q− q′) = r′ − r. Because deg(f) > deg(r)

and deg(f) > deg(r′), we have deg(f) > deg(r′ − r). But deg(f(q − q′)) ≥ deg(f), unless
f(q− q′) = 0. Hence, deg(f(q− q′)) > deg(r′ − r) unless both are the zero polynomial. But
this must be the case, and so f(q − q′) = 0, forcing q − q′ = 0 and r′ − r = 0, proving
uniqueness. 2

4.4 Factors of a Polynomial

We now make some definitions analogous to those we made for Z. We say a polynomial
f divides a polynomial g if g = fq for some polynomial q. In this case we say that f is
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a factor of g, and write f |g. In the context of the Division Theorem, f |g means that the
remainder obtained is 0. For example, (x2 + 1)|(2x3 − 3x2 + 2x− 3), because

2x3 − 3x2 + 2x− 3 = (x2 + 1)(2x− 3).

Notice that any polynomial divides the zero polynomial because 0 = (f)(0).
Suppose now that a is a non-zero constant polynomial, and f = a0 + a1x + · · ·+ anx

n

is any other polynomial. Then a necessarily divides f because

f = (a)
(a0
a

+
a1
a
x+

a2
a
x2 + · · ·+ an

a
xn
)
.

In Exercise 11 you will prove that the converse of this statement is true.

4.5 Linear Factors

In practice, it may be very difficult to find all the factors of a given polynomial. However,
the following theorem shows how to determine factors of the form x− a, where a ∈ Q.

Note carefully that the next theorem and its corollary are the only times in this chapter
where we think of a polynomial as a function. For f ∈ Q[x] and a ∈ Q, we define f(a) to be
the result that ensues when we replace x in f by a, and then apply the ordinary operations
of arithmetic in Q to simplify the result. Thus, if f = 1

3x
2 − 2x+ 1 and a = 2, then

f(2) =
1

3
(2)2 − 2(2) + 1 = −5

3
.

This definition obviously gives us a function f(x) which is defined for all rational numbers.
Of particular interest to us is the case when f(a) = 0. We say a ∈ Q is a root of f ∈ Q[x]

if f(a) = 0. Thus, 2
3 is a root of g = 3x3 + 19x2 − 11x− 2, because g

(
2
3

)
= 0.

Theorem 4.3 Root Theorem If f is a polynomial in Q[x] and a ∈ Q, then x− a
divides f if and only if a is a root of f .

Proof: If x− a divides f , then f = (x− a)q, and so

f(a) = (a− a)q(a) = 0.

Conversely, suppose f(a) = 0. Using the Division Theorem 4.2, we write f = (x−a)q+r
where deg(r) < deg(x − a) = 1. But deg(r) < 1 means deg(r) = 0 or −∞; that is, r ∈ Q.
Thus, when we view r as a function, it is a constant function. We might as well call this
constant r. Hence, f(a) = (a− a)q(a) + r. But, the left-hand side is 0 while the right-hand
side is r. Hence, r = 0, and so x− a divides f . 2

Example 4.2

Consider the polynomial
f = x4 + 2x3 + x2 + x− 2.

We can conclude that f has a factor of x + 2 because f(−2) = 0. We need not go
through the trouble of long division to verify the fact.


