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Foreword

Over the last two decades, the realism achievable using computer graphics
has increased to the point where it is now impossible, in visual effects
applications, to distinguish computer-generated imagery from reality. Over
the same time period, our ability to capture and re-synthesize the real
world inside the computer has kept pace. These techniques enable us to
quickly and accurately capture 3D objects and scenes with a high degree
of geometric and photometric fidelity.

Examples of such capture systems include active range scanning, most
notably affordable real-time depth cameras such as KinectTM. They also
include passive image-based modeling algorithms, which take as input col-
lections of regular RGB images or videos and produce 3D shape and appear-
ance models. Recent examples of such systems include the research Photo
Tourism system, the consumer-level Photosynth Web service, as well as 3D
image-based capture systems such as 123D R© Catch.

This book, Digital Representations of the Real World: How to Capture,
Model, and Render Visual Reality, contains a comprehensive compendium
of the myriad techniques that enable us to capture, model, and render
the world with a high degree of realism. It reviews the variety of sensors,
such as regular cameras, wide-angle omnidirectional cameras, active range
scanners, and plenoptic (multi-viewpoint) cameras, used to capture 3D
scenes, as well as fundamental algorithms, such as 3D structure and motion
recovery and stereo correspondence, used to process this sensed imagery.

The book also describes 3D modeling techniques, including both generic
object models such as 3D meshes, and more domain-specific models such
as human shape and motion models, needed to efficiently capture and ma-
nipulate 3D scenes. Finally, it describes how these shape and appearance
models can be rendered in a way that meets both speed (e.g., real-time in-
teractivity) and realism requirements, often using techniques such as image-
and video-based rendering and incorporating modern models of visual per-
ception and fidelity.

The scope and breadth of the techniques and systems used to capture,
model, and render realistic simulacra of 3D scenes are quite daunting and

ix



x Foreword

can be a challenge for newcomers. This book provides an excellent intro-
duction to and survey of this diverse field, written by some of the foremost
researchers and practitioners in the field. Whether you are a novice to this
exciting and challenging area, or an experienced veteran working in this
field, you are sure to discover a wealth of useful and inspiring information
in these pages.

Please dive in and enjoy!
Richard Szeliski

Microsoft Research



Preface
Marcus Magnor, Oliver Grau, Olga

Sorkine-Hornung, and Christian Theobalt

Reality: The final frontier. Since the early beginnings of computer graphics,
creating authentic models of real-world objects and achieving visual realism
have been major goals in graphics research. Over the years, ingenious ways
have been devised to represent real objects digitally, to efficiently simulate
and emulate the laws of optics and physics, and to re-create perceptually
authentic appearance. Ever-increasing CPU and GPU performance paved
the way, up to the point where the memory and computational power
available today afford genuine visual realism.

With visual realism within reach of modern hard- and software, intrigu-
ing new computer graphics applications have become possible. By combin-
ing computer graphics methods with video acquisition technology and com-
puter vision algorithms, real-world events can now be interactively explored
and experienced from an arbitrary perspective, almost like a video game.
At the same time, the pursuit of visual realism has created new challenges.
Higher visual realism can be achieved only from more detailed and accurate
scene models. Consequently, the modeling process has become the limiting
factor in attaining visual realism. Following the traditional paradigm, the
manual creation of digital models consisting of 3D object geometry and
texture, surface reflectance characteristics and scene illumination, charac-
ter motion and emotion is a very labor-intensive, tedious process. The cost
of conventionally creating models of sufficient complexity to engage the full
potential of modern graphics hard- and software increasingly threatens to
stall further progress in computer graphics.

To overcome this bottleneck, an increasing number of researchers and
engineers worldwide have started to investigate alternative approaches in
how to create digital models directly and automatically from real-world
objects and scenes, with encouraging results: By now, entire cities are be-
ing digitized using panorama video footage, 3D scanners, and GPS; from
CAD data and measured surface reflectance characteristics, highly realistic

xi



xii Preface

digital mock-ups of prototypes are being created, e.g., for the automotive
industry; algorithms are being developed to create stereoscopic movies from
standard, monocular footage; and live TV sports broadcasts are being aug-
mented in real-time with computer graphics annotations. Other graphics
application areas that work on merging the real with virtual worlds are
special effects production for movies and computer games. In their goal
to construct convincing virtual environments and digital actors, special ef-
fects production companies heavily rely on techniques to capture models
from the real world. Still, a lot of time must be spent on manual post-
processing and modeling. As an alternative approach, the computer graph-
ics and vision communities are working on image- and video-based scene
reconstruction approaches that can capture richer and more complex mod-
els of objects, humans, and entire complex scenes.

The trend toward model capture from real-world examples is also be-
ing pushed by new sensor technologies becoming available at mass-market
prices. Microsoft’s KinectTM depth cameras, Lytro’s light field cameras,
Point Grey’s LadybugTM omni-directional cameras, and other companies’
products offer unprecedented, novel ways to capture the appearance as
well as other attributes of real-world objects and events. Finally, the per-
vasiveness of smartphones containing video chips, GPS, orientation sensors,
and more gadgetry may in the near future lead to new real-world capture
paradigms based on swarms of networked handheld devices.

Robust methods to unobtrusively capture comprehensive digital models
of the real-world are one important part for attaining visual realism in com-
puter graphics. Still, model reconstruction from real-world captured data
remains, in general, an ill-posed problem that is prone to errors and failure
cases. Insight into our human visual perception, however, allows for de-
veloping new model-adaptive, perception-aware rendering approaches that
are able to perceptually mask and conceal modeling error–induced visual
artifacts. Investigating how to best integrate new capture modalities, re-
construction approaches, and visual perception into the computer graphics
pipeline, or how to alter the traditional graphics pipeline to make optimal
use of the many new possibilities, has become a top priority in computer
graphics.

The following 23 chapters present the state-of-the-art of how to cre-
ate visual realism in computer graphics from the real world. A total of
48 authors from all over the world have joined up to compile a compre-
hensive overview, covering in 5 parts the entire pipeline from acquisition,
reconstruction, and modeling to realistic rendering and applications. While
editing the book, we tried to strike a balance between a general, comprehen-
sive introduction to this exciting new research area and a practical guide
that shows how to get started on re-implementing and using many of the
most frequently encountered methods. We hope that it will be helpful to
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graduate students as well as researchers in academia and industry who are
working in computer graphics, computer vision, multimedia, or image com-
munications and who want to start their own research experiments in the
challenging new field of real-world visual computing.

For MATLAB R© and Simulink R© product information, please contact:
The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com
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Camera Sensor Pipeline

Jan Kautz, Hendrik P.A. Lensch, Céline

Loscos, and Philippe Bekaert

1.1 Introduction

The very first step of most real-world visual computing applications is the
acquisition of images or video. However, acquiring meaningful image and
video data is surprisingly challenging. This stems from the fact that real-
world cameras and sensors are far from perfect concerning sampling or
measuring and a substantial amount of processing needs to be applied be-
fore the data can be used. The different sensor types will be discussed, in
particular with regard to how they affect the quality of data, how mea-
surement noise affects image acquisition, and how to create dense color
samples from sparse samples as they are acquired by most cameras. In
order to characterize a given camera, it has to be calibrated in terms of
radiometry and color as well as lens and geometric calibration. Applying
all these steps results in well-calibrated and meaningful images.

1.2 Sensor Technology

Most digital imaging sensors operate based on the inner photoelectric effect.
In the depletion area of the p-n junction of a photo diode an incoming
photon of sufficient energy will create an electron-hole pair producing a
photo current. In principle, every photon of sufficient energy (wavelength)
can contribute to the effect, but the specific quantum efficiency depends on
the wavelength. For a silicon photo diode the response covers the visible
and the near infrared spectrum (400-1000nm).

The photoelectric effect produces a current that is linearly proportional
to the radiant power, i.e., it can be used for physical measurements for all
practical considerations inside a camera. Only at very strong illumination
non-linear effects might occur [Anisimov et al. 77].

The light sensitive part of a pixel on a sensor typically is a photo diode.
Besides photo diodes cameras might otherwise employ photo transistors
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with the added benefit of preventing further exposure by electronically
closing the gate.

The charge collected during exposure needs to be stored, amplified and
finally converted to a digital value. The design of a sensor allocates re-
sources for these steps. The well capacity indicates how many electrons
can be accumulated in one exposure, the scale indicates how much the
photo current is amplified, and the bit rate is correlated to the number of
discernible intensity values.

There are two fundamentally different approaches on how the charge is
transfered to the A/D unit. In charge coupled devices (CCD) the charge
is transported pixel by pixel to the end of each row, and the pixels in the
last row are successively piped through a single amplifier and converter.
Transfer between pixels can be carried out with hardly any loss. The main
benefit of a CCD is that the information gathered by all pixels is basically
processed by the same amplifier and converter. They undergo the same
transformation. As a draw-back, a CCD can only read out rectangular
regions. The speed of a CCD is also limited by the frequency of the A/D
unit. As quality is typically decreasing with speed, reading off a multi-
megapixel CCD at highest quality can take up to a couple of seconds. The
process can be accelerated by providing multiple A/D units and splitting
the sensor plane into tabs. This, on the other hand, leads to difficult to
control conversion settings which are independent for each tab. In video
cameras often interlaced read-out is used to provide higher frame rate.
Each frame contains only half the rows, specifically every other row. Two
subsequent frames alternate between the two sets of rows. The process of
de-interlacing then performs a spatio-temporal interpolation between these
to half-frames.

The second approach often employed is based on CMOS technology with
the ability to group more electronic processing close to each pixel. Similar
to random access memory, pixels can be addressed per row or individually.
From just reading off a few pixels one can for example quickly sample an
image histogram. Each pixel is equipped with a small amplifier which in
the early days led to rather noisy CMOS images as each pixel is amplified
individually. The additional electronics per pixel reduces the space available
for the photo-sensitive part, lowering the fill factor. A lens on top of each
pixel can counteract this loss in fill factor. Benefits of CMOS sensors are
the flexibility of addressing and lower production cost.

More exotic sensors include for example back-illuminated CCDs where
the support structure is thinned and the illumination is provided from
the back-side avoiding photons being blocked by the electronic wires. For
light sensitive applications this approach is typically combined with elec-
tron multiplying CCD (EMCCD) that employ solid-state impact ionization
to multiply the number of generated photo-electrons. On the CMOS side
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Figure 1.1: Rolling Shutter. In a rolling-shutter sensor each row will start
exposure at a slightly different time. This results in distortion of moving
parts. A vertical line moved to the right will be sheared.

so-called scientific CMOS sensors provide high-quality imaging by a more
elaborate design of the per-pixel amplifiers.

Another important factor on sensors is how the entire image is read
off the chip. Some CCD sensors provide a shielded area for storing the
accumulated charge of one exposure while the sensor still is illuminated.
As this electronic shutter transfer is synchronous one obtains the same
global shutter for all pixels.

This is in contrast to the cheaper and faster rolling shutter most often
found in CMOS chips where some rows are read out while others are still
being exposed (Figure 1.1). In order to guarantee the same exposure dura-
tion, the exposure and read out of the rows is staggered. As a consequence
the different rows will capture the scene at different moments in time.
Special care is necessary when employing rolling shutter cameras for 3D
reconstruction in dynamic environments as each camera (each row) poten-
tially captures a different slice of the space time volume. Even though two
cameras expose synchronously the same scene feature might be recorded at
different times depending on its position in the respective camera image.

1.3 Noise

Inherent to digital imaging are a number of noise sources that affect every
captured image. Reibel et al. [Reibel et al. 03] discerns two major classes:
temporal and non-temporal noise.

The temporal noise sources vary with the scene brightness, and the
temperature of the sensor. A fundamental limit to the accuracy of photo-
graphic measurements is the photon shot noise. Any source of light creates
photons according to a temporal Poisson random process, i.e., the rate at
which photons arrive at the sensor fluctuates. The variance of the pho-
ton shot noise is linearly correlated to the light intensity. Therefore, the
standard deviation and at the same time the signal-to-noise ratio increases
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with the square root of the signal (SNR = N/
√

(N) =
√

(N) for N pho-
tons). Similarly, heat can knock electrons loose in the silicon, producing a
so-called dark current. The effect is independent of the actual signal, but
the dark current can limit the maximum exposure duration when exceed-
ing the well capacity. Dark current enters the subsequent amplification and
A/D conversion step. Thus, these electrons are indistinguishable from photo
electrons. Cooling the camera reduces the effect of the dark current shot
noise as the noise doubles every 5 − 8◦ Celsius. Another temporal source
of noise is the amplification and conversion step where thermal noise and
a frequency-dependent flicker noise in the amplifier as well as quantization
in the digitization step degrade the signal.

Non-temporal noise occurs due to static defects of the sensor. Due to
slight irregularities, the area of the photo-sensitive part might vary and
the properties of the per-pixel electronics might differ. The amount of
dark current varies from pixel to pixel, resulting in a fixed pattern per-
pixel bias independent of the signal. Similarly, the effect of photo-response
non-uniformity corresponds to the amplifier gain being different per pixel.
Some pixels reach saturation earlier than others, a problem mainly found
in CMOS sensors. Finally, the actual amplification might not be perfectly
linear, corrupting the direct linear relationship between photons and elec-
trons. For HDR imaging, therefore, the actual photon transfer curve needs
to be estimated (see Section 1.5).

The individual noise sources co-occur all at the same time during image
capture and cannot always be disentangled. If accurate photometric cali-
bration is required, cooling and taking a number of calibration images can
improve image quality and allows to quantify the potential variance [Grana-
dos et al. 10, Hasinoff et al. 10]. Most common is to capture and average
a series of dark frames with the same exposure time as the intended shot
but leaving the cover on the lens. This way, the dark current and its spatial
non-uniformity can be characterized. The variance of the readout noise can
be captured by a bias frame, an image of zero exposure time. In order to
quantify the photo-response non-uniformity, i.e., the per-pixel bias, a flat
field is needed, a picture taken without a lens where each pixel receives
exactly the same exposure. A practical difficulty is to ensure a really uni-
form illumination on the sensor. Perfect would be a large homogeneous area
light source such as a monitor with added diffusor or a quite distant point
light source. In a similar way a flat field captured with the lens can correct
for vignetting. Considering all these measures, Granados et al. [Granados
et al. 10] developed a noise-optimal pipeline for combining multi-exposure
photos into a single HDR image.
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Figure 1.2: Example of the common Bayer color filter array (CFA).

1.4 Demosaicing and Noise Reduction

Most digital cameras are single sensor cameras, i.e., only a single sensor
measures the incoming light. However, a pixel in a CCD or CMOS sensor
cannot sense the wavelength of the incoming light, but only its power. To
enable color imaging, a color filter array (CFA) is overlaid on the sensor
pixels: each pixel now senses only light within a specific wavelength range,
typically corresponding to red, green, and blue wavelengths. The most com-
mon pattern is the Bayer pattern, with one red pixel, two green pixels, and
one blue pixel in each 2× 2 block of pixels (Figure 1.2). The use of a CFA
leads to colors being sensed sparsely and missing color information needs
to be filled in. This process is commonly called demosaicing, and many
different techniques have been proposed over the years [Li et al. 08].

The simplest method is to simply take all the samples for a given color
channel and to bilinearly interpolate from the nearest neighbors [Longere
et al. 02]. As one might expect, this yields artifacts across edges and in
areas with high-frequency texture content, since correlation between color
channels is not taken into account. For instance, if there is a strong dis-
continuity between two neighboring green pixels, there is a high chance
that there is a discontinuity also in the red and blue channels, but simple
per-channel bilinear interpolation cannot reproduce this.

Quality can be increased with gradient-based methods, which typi-
cally estimate a local gradient direction followed by filtering along esti-
mated edge directions and not across, thus avoiding the issues discussed
above. The well-known Malvar–He–Cutler demosaicer (the default method
in MATLAB R©) falls into this category [Malvar et al. 04]. It still performs
bilinear interpolation, but corrects it with a local gradient estimate using
a 5× 5 pixel window. This yields much improved results but can still lead
to “zippering” artifacts, i.e., a visible high-frequency pixel pattern along
high-frequency edges.
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The best quality can be achieved by exploiting image self-similarity
[Zhang et al. 11]. Instead of trying to estimate local image features across
sparsely sampled color channels, self-similarity is used to derive the missing
information. The LDI-NLM algorithm (and the very similar LDI-NAT),
works as follows [Zhang et al. 11]. First, a standard directional interpolation
method as described above is used to create an initial estimate of the
green-channel. The green channel is then enhanced by running non-local
means (NLM) [Buades et al. 05] on it. NLM will find similar patches for
each pixel and compute a weighted average of those patches, which in
turn is likely to improve the interpolated samples as additional data is
being used. Following the reconstruction of the green channel, an initial
estimate of the R and B channels are created (using information from the
now complete green channel). Then, NLM is again run on the initial red
and green channels. The LDI-NAT version proceeds similarly but uses soft
thresholding in a sparse transform domain (similar to the BM3D denoising
algorithm [Dabov et al. 07]). LDI-NLM and LDI-NAT achieve excellent
results and outperform most other methods.

Noise Reduction It is important to note that these demosaicing meth-
ods assume noise-free input data. Of course, this is not usually the case.
Applying these methods to noisy input data, however, often emphasizes
color noise. Subsequent denoising (e.g., using the state-of-the-art BM3D
denoiser [Dabov et al. 07]) of the demosaiced images is then necessary.
Joint demosaicing and denoising is possible, but only little research has
been conducted in this area to date [Chatterjee et al. 11].

1.5 Radiometry and Color

Sensing Radiance

As described in Section 1.2, the A/D unit converts the charge of each pixel
to a digital value. This conversion is directly proportional to the charge, i.e.,
linear in the number of photoelectrons that have reached the sensor pixel
(discounting noise). Most professional cameras allow the user to access this
raw data, i.e., without any post-processing such as white-balancing, gamma
correction, noise reduction, and so forth. If the raw data cannot be accessed
on a particular camera, it is still possible to calibrate the response curve of
the camera.

Color

Different sensors use different color filter arrays and different manufacturing
processes, which leads to device-dependent color measurements. To output
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physically meaningful and device-independent color coordinates, such as
CIEXYZ or CIELAB, the camera must be calibrated. This process is often
called device characterization and requires two components [Johnson 02]:
1) calibration: determining the device’s color space; and 2) characteriza-
tion: finding a mapping between the device color space and the device-
independent color space, e.g., CIE tristimulus values.

Suppose a color target is being captured. In discretized form, the trichro-
matic response value [R,G,B] of a specific pixel on the sensor is given as
the sum of the product of the spectral power distribution (irradiance) of
the light source P (λ), the surface reflectance of the imaged object S(λ),
and the spectral sensitivies of the color filters Dr/g/b(λ):

R =
∑
λ

P (λ)S(λ)Dr(λ)∆λ, (1.1)

G =
∑
λ

P (λ)S(λ)Dg(λ)∆λ, (1.2)

B =
∑
λ

P (λ)S(λ)Db(λ)∆λ, (1.3)

where the summation is over the visible spectrum. Now this is very similar
to the computation of device-independent color values, such as CIEXYZ:

X =
∑
λ

P (λ)S(λ)x̄(λ)∆λ, (1.4)

Y =
∑
λ

P (λ)S(λ)ȳ(λ)∆λ, (1.5)

Z =
∑
λ

P (λ)S(λ)z̄(λ)∆λ, (1.6)

where x̄(λ), ȳ(λ), and z̄(λ) are the CIE color matching functions. So
the only difference is the device-dependent color Dr,g,b vs. the device-
independent functions x̄, ȳ, z̄.

Many characterization techniques have been proposed. They largely fall
into two categories: reflectance-based characterization, and characterization
based on monochromatic light. Reflectance-based characterization usually
requires a color target with known reflectances and a suitable sampling of
the color space, such as a GretagMacbeth ColorChecker, of which a picture
is taken. A direct mapping between the (raw) images RGB-values and the
known XYZ values of the color target can be derived via linear regression.
While these techniques are very easy to use, they are only valid for the
current illumination condition as the illuminant P (λ) is “baked in.” The
most common monochromator-based method uses a hollow white sphere,
which is illuminated by a monochromator with an adjustable wavelength.
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An image is taken for a number of wavelengths, which allows for a direct
mapping between the device’s color coordinates and CIEXYZ tristimulus
values. While this is a time-consuming and expensive calibration method,
it is vertically accurate.

CIEXYZ is the basis from which one can convert to many other common
color spaces, such as sRGB. sRGB is notable because it has found wide-
spread use, as it was designed for typical home viewing conditions and not
darker environments that are used by professionals for color matching. It is
a non-linear color space, with an overall gamma of about 2.2 but consisting
of a linear plus a non-linear part.

HDR Imaging

High-dynamic range (HDR) imaging allows for the representation of a
larger range of intensities than conventional images [Reinhard et al. 08,
Reinhard et al. 10]. It is widely used by photographers and supported
by software1 to avoid saturated areas or under-exposed pixels. It is also
used to acquire more precise illuminant information of the real world when
modeling objects, or to guide image compositing for coherent common il-
lumination when mixing real and virtual content.

Conventional camera sensors typically digitize luminance with 8 to 16
bits. Even when digitized with 16-bit accuracy natural scenes can still easily
exceed the dynamic range of the sensor. There are many definitions of
what is high-dynamic range. Some consider that non-linearly representing
the range of luminance using 8 bits qualifies for HDR. Others consider
HDR to be the full variation of the physical luminance of the real world
that the human visual system is capable of adapting to, thus 10 orders
of magnitude. Recently, a group of experts2 came to the consensus that
high-dynamic range should represent the perceptual range of intensities
simultaneously perceivable by the human eye, thus 6 orders of magnitude,
which can be stored on a 20-bit image.

There exist two main procedures to capture HDR content: by merging
conventional camera images, or by providing enhanced hardware capabil-
ity. In order to create an HDR image with a conventional camera, images
are taken with different time exposures in order to capture different ranges
of luminance. Combining these images requires two steps: radiometric cal-
ibration and merging values into HDR data. Radiometric calibration is
necessary mostly if RAW sensor data are not available or very noisy. It
consists of finding a linear color mapping from one image to another that
are taken with different exposures. Merging values into HDR data consists
of carefully selecting pixels from all images to form a coherent HDR image.

1e.g., Adobe Photoshop - http://www.adobe.com/fr/products/photoshop.html
2HDRi - COST Action IC1005 - http://www.ic1005-hdri.com/
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Enhancing hardware capabilities corresponds to increasing the dynamic
range of sensors. SpheronVR,3 for example, provides cameras (photographic
and video) with sensors capable pf covering 8 orders of magnitude. These
cameras are not aimed at the general public, and some of them are at
the stage of prototypes, limited by streaming and storage facilities. Other
technologies involve using beam splitters [Aggarwal and Ahuja 04, Tocci
et al. 11] to capture data at different intensities with a single camera and
a single shot. Merging is done in a similar way as for sequential multi-
exposure images. Finally, it is possible to adapt a mask in front of the sens-
ing array with a pattern to reduce the incoming light to different degrees,
and to produce spatially varying exposures [Nayar and Mitsunaga 00].
Beam splitter-based approaches as well as spatially varying exposure ap-
proaches provide the advantage that they can be directly applied to dy-
namic, time varying scenes since all images represent the same instant.
These types of approaches, though, are limited in the captured range by
their beam splitter capability and the spatially varying exposures respec-
tively.

Radiometric Calibration Displays and cameras employ a response function
to modify measured luminance to create pleasant overall colors when per-
ceived by the human eye. For color image processing, radiometric calibra-
tion needs to be performed. In the case of high-dynamic range images, we
need to find the inverse response function of the camera to linearize pixel
color relations. Ideally, inter-image relation should lead to the radiometric
relation for a 3D point that projects to the same image coordinates (x, y)
of two images I0 taken at exposure time t0 and I1 taken at exposure time
t1, linking the radiance E arriving at sensors and stored in images as RGB
values:

EI0/t0 = EI1/t1 (1.7)

RAW sensor information can be used directly with this equation to trans-
form pixel color values to coherent radiance values in all images. However,
depending on the camera, this is not always true, and even more when no
access to RAW data is possible. There is a need to find the inverse cam-
era function g = f−1, with f non-linearly transforming the radiance values
to color. Inverting the function is possible because values monotonically
increase. Several methods have been proposed [Mann and Picard 95, Mit-
sunaga and Nayar 99, Grossberg and Nayar 04, Debevec and Malik 97].
They all fit a curve to selected values and therefore are approximative.
However, this is generally sufficient, and remaining small errors can be
compensated in the HDR reconstruction phase.

3https://www.spheron.com/home.html
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HDR Reconstruction HDR Reconstruction is the process of merging values
coming from different images into one coherent HDR value. The general
equation for N images and the pixel colors Ei(x, y) of each image i at
coordinates (x, y) is:

E(x, y) =

∑N
i=0 ω(Ipi)

g(Ei(x,y))
ti∑N

i=0 ω(Ipi)
(1.8)

The difficulty here is to chose the weights ω(Ipi) associated with the pixel
Ipi of image i. They are used to enhance or reduce the impact of pixel
colors in the final HDR result [Granados et al. 10]. The weight function
excludes under- and over-saturated pixels [Debevec and Malik 97] but can
also be based on signal-to-noise ratio [Mitsunaga and Nayar 99].

This reconstruction approach assumes that images are perfectly aligned
and that no movement occurred during sequence acquisition. If this is not
the case, weights can also reflect the probability of a pixel to belong to
the background [Khan et al. 06]. For motion registration or non-aligned
cameras, more complicated operations need to be performed to register
pixels before reconstruction can be achieved [Loscos and Jacobs 10, Bon-
nard et al. 13].

Multispectral Imaging

The quantum efficiency of silicon-based camera sensors is by itself a wave-
length-dependent function. The Foveon sensor was able to detect color by
measuring at three different penetration depths in the silicon. However,
this concept has never been extended to more than three wavelength bands.
The most common approaches for capturing more than three color channels
are either to extend the Bayer pattern and include more colors, or to use
a second optically aligned sensor with a Bayer pattern of different base
colors.

If significantly more wavelength bands are required, there are basically
two different approaches:

The first approach captures one wavelength band at a time using a filter
wheel or a tunable filter. Tunable filters employ an electro-optic or acusto-
optic effect to transmit only the selected wavelength band. The drawback
of this filtering approach is that only a small fraction of the overall radiant
power is captured in each band, resulting in a lengthy process to capture
a multispectral image.

The second approach makes use of a prism or diffraction grating to
split up the incoming light into its spectrum. Once spatially separated, the
different wavelengths can be modulated individually and then recombined
onto the sensor [Mohan et al. 08, Kim et al. 12]. The benefit is that the
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entire spectrum can be varied, although not necessarily in the same way
for the entire image plane, rather than selecting only a single wavelength
band. In order to produce a multi-channel image, this optical setup is of-
ten combined with compressed sensing approaches [Mohan et al. 08, Kim
et al. 12].

1.6 Geometric Calibration

Applications such as 3D geometry reconstruction, view interpolation, and
so on require understanding the mapping between 3D real scene points
and image coordinates. The process of determining the actual value of the
parameters that control that mapping is called geometric camera calibra-
tion. In this section, a common model for this mapping is presented, and
the basic principles of lens distortion, intrinsic and extrinsic single-camera
calibration are outlined. The simultaneous calibration of multiple cameras
is explained in Section 2.3.

Camera Calibration Parameters

The geometric camera calibration parameters fall into four categories: sen-
sor-related parameters, lens-related parameters, camera-lens assembly pa-
rameters, and extrinsic parameters.

Sensor-related paramaters include the image width and height in pixels,
and the pixel pitch: the spacing of pixels in each row and between rows.
They are usually known from camera specifications and region of interest
settings.

Lens-related parameters do not depend on the camera the lens is
mounted on, nor its position and orientation in space. They include the
lens image formation model and lens distortion. Most lenses are rectilinear
lenses, ideally mapping straight world lines to straight image lines. They
are characterized by their focal length. Equidistant fish eye (fθ) lenses can
offer greater sharpness and less distortion for wide viewing angles. Also
these lenses are characterized by their focal length f , which has however a
different meaning than for rectilinear lenses. Lens distortion models quan-
tify the deviation of a real lens from the ideal rectilinear or fθ model.

Camera-lens assembly parameters include the principal point, the center
of distortion and effective pixel aspect ratio and skew angle. The principal
point is the image coordinate of the intersection of the optical symmetry
axis of a lens with the camera sensor plane. The center of distortion usually
is equal to the principal point. The effective pixel aspect ratio and skew
angle may deviate slightly from sensor specifications due to mechanical
tolerances in lens and camera housing.
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Table 1.1: Set of geometric camera calibration parameters.

symbol parameter name unit
w,h pixel width and height micrometers
k0, k1, . . . lens distortion coefficients 1/cmκ

xd center of distortion image coordinates
f focal length millimeters
xc principal point image coordinates
a effective aspect ratio dimensionless
θskew effective skew angle degrees
α, β, γ camera orientation Euler angles degrees
C optical center world coordinates

The position and orientation of a camera in 3D real-world space are
called the extrinsic parameters of the camera. Position is always relative
to a particular choice of 3D real world coordinate system. The position
that counts is the optical center: the point in 3D space where rays of light
hiitting the lens would meet, if they were not bent to focus on the sensor.
For humans, orientation is conventiently expressed by means of Euler angles
(note there are 24 different interpretations of Euler angles [Schoemake 94]).
In computations, quaternions, exponential maps, or a rotation matrix will
usually be preferred.

Table 1.1 summarizes a typical set of geometric camera calibration pa-
rameters.

Mapping World Space Points to Image Coordinates

Mapping world space point X to image coordinates x basically takes four
steps:

• mapping world space point X to camera space point Xc;

• application of the image formation model to map Xc to a location xf
on the lens focal plane, relative to the principal point;

• mapping lens focal plane position xf to an ideal (undistorted) image
coordinate x̄;

• applying the lens distortion model to obtain the observable (dis-
torted) image coordinate x.

Lens distortion is part of image formation by the lens in physical reality. In
visual computing, however, it is usually modelled as a correction to ideal
image coordinates as described here.

Mapping image coordinates to world space rays takes the inverse of
these steps, applied in reverse order.



1. Camera Sensor Pipeline 15

The first step, is a simple translation taking the world origin to the
cameras optical center C, and rotation R aligning the view to a canonical
axis system, such as in OpenGL (view direction is negative Z, image right
direction is X, image up direction is Y):

Xc = MX with M =
[
R>| −R>C

]
. (1.9)

The matrix M is called the camera extrinsic matrix.
For rectilinear lenses, the second step is a rescaling of X and Y by

inverse depth −1/Z and focal length f :

xr = f
X

−Z yr = f
Y

−Z r = f tan θ.

θ is the angle between the optical axis of the lens and the incident light ray
direction. r is the distance in millimeters (if f is expressed in millimeters)
of the light ray projection on the focus plane, relative to the principal
point. For other lens models, other similar formulae apply (such as r = fθ
for equidistant fish eye lenses). The minus sign is due to our coordinate
system convention (OpenGL-style Z < 0 in front of the camera).

For a rectangular sensor pixel grid, and in absence of distortions causing
pixel grid skew or aspect ratio abberations, the third step is a simple 2D
scaling and translation from sensor plane position in millimeters relative
to the principal point to pixel unit distance with respect to the top-left
image corner or other chosen image coordinate origin. In general, it is a
2D shearing transform taking into account effective aspect ratio and skew
angle.

For rectilinear lenses, steps two and three can be combined into a sin-
gle matrix multiplication, yielding homogeneous undistorted image coordi-
nates. These require perspective division of x̄ and ȳ by z̄ in order to obtain
affine image coordinates (Table 1.1):x̄ȳ

z̄

 = K

Xc

Yc
Zc

 with K =

f̃ −f̃ s̃ −xc
0 −f̃ ã −yc
0 0 −1


f̃ = f/w , s̃ = − tan θskew. , ã = a/ cos θskew

(1.10)

This matrix K is named the intrinsic camera matrix. The minus signs in
the definition of K are due to our coordinate system conventions (OpenGL
style Z < 0 in front of the camera, Y pointing up, image y pointing down
given image coordinate origin in the top-left corner).

For rectilinear lenses, the full mapping from homogeneous world coor-
dinates to homogeneous undistorted image coordinates can be obtained as
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a single matrix-vector product:

x̄ȳ
z̄

 = P


Xw

Yw
Zw
1

 with P = KM (1.11)

The matrix P is called the full camera matrix.
A most common model for lens distortion, the fourth step, is the fol-

lowing [Brown 66, Slama 80, Heikkila and Silven 97, Zhang 00]:

x = xd + L(x̄′) , L(x̄′) = x̄′Lr(r) + Lt(x̄
′)

x̄′ = x̄− xd , r =
√
x̄′2 + ȳ′2

Lr(r) = k0 + k1r
2 + k2r

4 + k3r
6

Lt(x, y) = (p1B(x, y) + p2D(x, y), p2C(x, y) + p1D(x, y))

B(x, y) = 3x2 + y2 , C(x, y) = x2 + 3y2 , D(x, y) = 2xy

. (1.12)

The model consists of a radial part Lr, modifying distance with respect to
the center of distortion xd, and a tangential part Lt.

Lens Distortion Calibration

Lens distortion is calibrated when a set of lens distortion parameter values
has been found that warps a captured image into an image that shows
straight world lines as straight image lines. The distortion parameters are
the distortion coefficients ki, as well as the center of distortion (xd, yd).

Auto-Calibration In order to calibrate lens distortion under uncontrolled
circumstances, one or a few images of scenery exhibiting straight world
lines suffices, such as windows or doors in an image of a building facade.
Lens distortion parameters can be obtained by non-linear optimization,
e.g., with the Levenberg–Marquardt algorithm. In each step of the opti-
mization procedure, edge pixel locations in the input image(s) are warped
using the (inverse) lens distortion model. The quality of the parameter
set is evaluated by measuring to what extent the warped edge pixels form
straight lines [Devernay and Faugeras 01]. A practical tool implementing a
similar approach, is PTLens.4

Lens Distortion from Calibration Grids Often in stereo- or multi-view setups,
lens distortion can be calibrated in controlled lab circumstances. Known
patterns of features are filmed and analyzed. Often used patterns include

4http://epaperpress.com/ptlens/
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planar checkerboard calibration patterns (using saddle-points) and rectan-
gular grids of circular dots (using centroids).

In absense of lens distortion, the relation between the known 2D real
world calibration grid feature positions and their image coordinates, is a
planar perspective transform, also called a 2D homography [Hartley and
Zisserman 03, §2.3]. Distortion parameters can be estimated by iterative
optimization algorithms that minimize the deviation of correspondences
from a 2D homography. The distortion center can also be estimated using
direct techniques [Hartley and Kang 05]. More direct estimation techniques,
based on lifted coordinates are described in [Sturm et al. 11]. These tech-
niques can be generalized to non-rectilinear lenses.

Intrinsic Calibration

Estimating the intrinsic camera calibration parameters is the determina-
tion of camera parameters determining the mapping between (ideal, undis-
torted) image coordinates and camera space ray directions. For rectilinear
cameras, this mapping is governed by the intrinsic camera matrix K (Equa-
tion 1.10).

From camera specifications, pixel aspect ratio a and skew angle θskew
are typically known to sufficient accuracy. Often, pixels are square. When a
camera is equipped with a lens exhibiting lens distortion, the principal point
xc may be taken equal to the lens distortion center xd calculated using above
sketched methods. The main intrinsic parameters to be determined thus
typically are the principal point xc = (xc, yc) for a lens without significant
distortion, and the focal length f .

Instrinsic camera parameters can be auto-calibrated from observations
of orthogonal world lines and/or planes, or determined from 2D homogra-
phies relating a planar calibration grid with its image taken at different
angles [Zhang 00].

These observations impose linear constraints on a particular symmet-

ric 3 × 3 matrix ω =
(
KK>

)−1
, called the image of the absolute conic

(IAC). Consider, for instance, the vanishing points v1 and v2 of two (bun-
dles of) orthogonal lines with direction vectors D1 = (X1, Y1, Z1, 0) and
D2 = (X2, Y2, Z2, 0). Since the homogeneous component is zero, the rela-
tion between vanishing point v and affine direction vector d = (X,Y, Z),
is:

v = PD = K
[
R>| −R>C

] 
X
Y
Z
0

 = KR>

XY
Z

 ⇔ d = RK−1v.

(1.13)
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Since the direction vectors d1 and d2 are orthogonal,

0 = d1
>d2 = v1

>K−>R>RK−1v2 = v1
>K−>K−1v2 = v1

>ωv2. (1.14)

Such constraints on the IAC ω are stacked together into a homogenous lin-
ear system. This linear system is solved using singular value decomposition
(SVD), with proper preconditioning. The thus found IAC is decomposed
as ω = UU>, U being an upper-triangular matrix, using Cholesky fac-
torization. K is obtained as U−1, and then decomposed into f , xc, a and
θskew, if required, and refined using Levenberg–Marquardt iterative opti-
mization [Hartley and Zisserman 03, §8.6].

Extrinsic Calibration

Extrinsic calibration is the process of determining the location C and ori-
entation R of a camera, or a set of cameras, with respect to a 3D world
space coordinate system of choice.

The most straightforward way to find the location of fixed cameras is
to measure them with a simple ruler or other distance measuring device.
However, the exact location that matters is the optical center, which is the
imaginary point in 3D space where the rays of light hitting the lens would
meet if they were not bent to focus on the sensor. Its position relative to
the camera body can be estimated typically only up to a few-centimeter
precision.

Sometimes, location and/or orientation tracker devices, are used to mea-
sure camera positions and orientations. These devices can be based on
mechanical, electrical, optical, magnetic, micro-electromechanical (MEM),
electro-magnetic (EM, radio waves), or other principles [Danette Allen
et al. 01]. GPS allows outdoor localization to an accuracy of about 1 me-
ter, and update rate of one second typically. Compasses measure absolute
orientation with respect to the earth magnetic field. For indoor use, optical
tracking systems are often used, and regularly in combination with iner-
tial tracking (with MEM devices). In all cases, it pays off to combine such
measurements with visual tracking (Section 2.3).

Planar Calibration Grids The orientation R and location C of the camera,
relative to a planar calibration grid, are easily obtained from a 2D homog-
raphy H, relating the grid with its image, and the intrinsic matrix K.

Assume the calibration grid is in the world XY-plane (Z = 0).
Let p1,p2,p3,p4 denote the columns of the full camera matrix P. Im-
age points x are related with their corresponding calibration grid points
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X = (X,Y, 0, 1), as follows:

x = PX =
[
p1 p2 p3 p4

] 
X
Y
0
1

 =
[
p1 p2 p4

] XY
1


Therefore, H

.
=
[
p1 p2 p4

]
, and since P = K

[
R>| −R>C

]
:

H
.
= K

[
r1 r2 t

]
. (1.15)

Apart from sign and normalization, the first two columns r1 and r2 of
K−1H provide the first two rows of R. The third row is the cross product
r1 × r2. The optical center follows as C = −Rt. The fourfold ambiguity is
resolved by testing each possible solution against the actual data.

This method is used in the popular camera calibration approach by
Zhang [Zhang 00] and implemented in the camera calibration toolbox of
Bouguet,5 which is available in MATLAB and OpenCV.

3D Ground Control Points There is no straightforward way to estimate pose
(position and orientation) of a camera relative to a set of world space points
with known coordinates from their image projections. The full camera ma-
trix P , however, can be estimated from 3D-2D correspondences as follows.
When intrinsics are known, pose then can be obtained after full matrix
estimation, as M = K−1P.

x
.
= PX ⇐⇒


kx = p1X

ky = p2X

kw = p3X

=⇒
{(
wp1 − xp3

)
X = 0(

wp2 − yp3
)

X = 0

k makes the scale ambiguity in x
.
= PX explicit. pi denotes the i-th row of

P. Cross-multiplication of the first two equations with the third, yields the
right-most form.

Equation pairs resulting from each given correspondence are stacked
together into a homogeneous linear system. The solution is as usual ob-
tained from SVD of the system matrix, with proper preconditioning, as
the right-singular vector corresponding with the smallest singular value,
and refined using Levenberg–Marquardt iterative optimization [Hartley and
Zisserman 03, §7]. This is the basis of the often used calibration method of
Tsai [Tsai 87], which among other things, also iterates the above sketched
approach with lens distortion optimization.

In practice, the POSIT algorithm [DeMenthon and Davis 95] allows
more efficient and robust pose estimation, when other camera parameters

5http://www.vision.caltech.edu/bouguetj/calib doc/


