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“The book is a pleasure to read and presents a really unique view of 
statistics as a whole and how to measure evidence in particular. … this 
is one of the most important books written recently on the foundations of 
statistics, providing a modern and logical perspective on the reasons for 
good Bayesian statistical practice.”
—David Nott, National University of Singapore

Measuring Statistical Evidence Using Relative Belief provides an over-
view of recent work on developing a theory of statistical inference based 
on measuring statistical evidence. It shows that being explicit about how 
to measure statistical evidence allows you to answer the basic question of 
when a statistical analysis is correct.

The book attempts to establish a gold standard for how a statistical analysis 
should proceed. It discusses the meaning of probability and the various po-
sitions taken on probability. The author discusses the definition of statistical 
evidence, presents a method for measuring statistical evidence, and de-
velops a theory of inference based on this method. He also describes how 
statisticians should choose the ingredients for a statistical problem and how 
these choices are to be checked for their relevance in an application.

Features
•	 Presents a logical, coherent framework for conducting statistical 

analyses that can be implemented in practical and theoretical problems 
•	 Illustrates relative belief theory using many examples
•	 Describes the strengths and weaknesses of the theory
•	 Addresses fundamental statistical issues, including the meaning of 

probability, the role of subjectivity, the meaning of objectivity, the role of 
infinity and continuity, and the relevance of the concept of utility

•	 Explores possible future developments, including the application of the 
theory to large-scale inference problems
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Preface

The concept of statistical evidence is somewhat elusive. Virtually all approaches to

statistical inference refer to the statistical evidence, or the evidence, for something

being true or false. But, to our knowledge, no existing theory defines explicitly what

this evidence is or at least prescribes how it is to be measured. It is argued here that

not to define how to measure evidence is a significant failure for any proposed theory

of statistical inference. After all, the purpose of any statistical analysis is to sum-

marize what the statistical evidence is saying about questions of interest. It seems

paradoxical that we should hope to do this without being explicit about how to mea-

sure statistical evidence.

It is the purpose of this text to provide an overview of recent work on developing

a theory of statistical inference that is based on measuring statistical evidence. Of

course, one might ask why there is any need to do this beyond perhaps the satisfaction

of having a theory that is honest about such a basic concept.

There is a range of approaches to statistical theory from Bayesian theories at

one end of the spectrum, to pure likelihood theory and various frequency-based ap-

proaches at the other. Many statisticians feel comfortable fitting themselves some-

where along this scale and ignore the failure to adequately deal with statistical evi-

dence. Others even see virtue in adopting different approaches for different problems,

as in wearing a Bayesian hat today and a frequentist hat tomorrow. To an extent, these

attitudes are based on issues of practicality as, in the end, a practicing statistician has

to get on with the business of doing statistical analyses. While this is understandable,

this ignores answering the basic question of statistics: what is a correct statistical

analysis? The failure to answer this question is a profound and unacceptable gap in

the subject of statistics. It almost certainly undermines confidence in the subject and,

to an extent, promotes an “almost anything goes” attitude.

Part of the purpose of this book is to show that being explicit about how to mea-

sure statistical evidence allows us to answer the basic question of when a statistical

analysis is correct. In fact, such a definition prescribes how the inference step should

proceed. As one might expect, however, there is more to the story than simply pro-

viding a definition. The approach advocated needs to be judged in its entirety. The

theory must provide a logical, coherent framework for conducting statistical analyses

that can be implemented in problems of practical importance. Furthermore, the the-

ory must be seen to possess properties that add conviction concerning its suitability.

There are some basic issues that underlie many of the controversies and disagree-

ments in statistics. These include things like the meaning of probability, the role of

subjectivity, the meaning of objectivity, the role of infinity and continuity and the

xv
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relevance of the concept of utility. A fairly strong position is taken in this text on

all of these. For example, it is argued that statistics is essentially subjective simply

because statisticians always make choices in carrying out a statistical analysis. How-

ever, objectivity plays a key role through the data, in assessing the relevance of these

choices. In essence, subjectivity can never be avoided but its effects can be assessed

and to a certain extent controlled. Undoubtedly, the author’s position on subjectiv-

ity and objectivity is in disagreement with those who advocate pure subjectivity and

with those who believe that there is an objective theory of statistics. It is our con-

tention that inferences derived via relative belief, together with checking the model

and prior against the data, place statistics on a much firmer logical foundation with

greater relevance for scientific applications.

One caveat needs to be stated for what is being proposed. The developments in

this text represent an attempt to establish a gold standard for how a statistical analysis

should proceed. A gold standard is something to strive to attain in an application, but,

for various reasons, we may fall short. The result of such a failure does not entirely

invalidate the analysis but it does suggest that the results have to be suitably qualified.

Statisticians are already familiar with making such compromises. Consider the first,

and perhaps most important, part of a statistical investigation, namely, the collection

of the data. The gold standard here is random sampling from populations and the

controlled allocation of values of predictor variables, but this is often not realized.

Yet statistical analyses are conducted and useful information is acquired in spite of

the deficiencies. Any conclusions drawn, however, must be suitably qualified when

there is a failure to attain the highest standard in data collection. The difficulties

entailed in guaranteeing that all the necessary ingredients hold for an application of

a theory do not justify an attitude that the existence of such a theory is irrelevant.

Chapter 1 discusses some basic features of our overall vision, such as the roles

of subjectivity, objectivity, infinity and utility in statistical analyses. In developing a

theory of statistical inference, it is necessary to carefully delineate the problems to

which the theory is to be applied. As such, the domain of application of the theory is

provided, namely, what constitutes a statistical problem and what are the ingredients

that a statistician needs to specify to conduct a statistical analysis. In this chapter a

simple example is presented of a statistical analysis that satisfies our criteria. Chapter

2 considers the meaning of probability and the various positions taken on probabil-

ity. This topic lies at the heart of many disagreements in statistics and the author

contends that there are a number of reasonable ways to think about probability. In-

deed, there is no claim concerning the correctness of one approach to probability

over others. The theory of statistical inference presented here is basically indepen-

dent of these interpretations, although, however probabilities are assigned, they are

considered to be measuring belief. Chapter 3 begins the discussion of the heart of the

matter, namely, attempts to deal with the concept of statistical evidence. This chap-

ter demonstrates that, while many theories of inference make mention of statistical

evidence, they don’t adequately define what it is or, more important, how it is to be

measured. Furthermore, this failure leads to anomalies for these theories. In Chapter

4 a method is provided for measuring statistical evidence and, based on this method,

a theory of inference is developed. This theory is based on the assumption that the
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ingredients chosen for a statistical analysis are correct. Chapter 5 discusses how a

statistician is to go about choosing the ingredients for a statistical problem and how

these choices are to be checked for their correctness in an application. Of course, the

meaning of correct in this context requires considerable discussion. It is a key point

in our development that the theory and application of inference are logically separate

from the checking phase, and these shouldn’t be confounded, as the problems are

quite different. For practical applications Chapter 5 should precede Chapter 4 but the

focus in this text is on measuring statistical evidence. Chapter 6 summarizes the text

and points to further possible developments.

Certainly what is being advocated here is not completely divorced from what

has been discussed by others. In fact, the author would describe the essence of the

relative belief approach to statistical inference as simply being careful about the def-

inition and usage of the Bayes factor. Furthermore, there are many similarities with

pure likelihood theory, and relative belief could be described as filling in, from the

author’s point of view, the logical gaps in that theory. Also, the frequentist approach

plays a key role, not in determining inferences, but in checking the suitability of the

ingredients as well as providing optimality properties of the inferences.

The author is solely responsible for all errors and omissions. Thanks are owed

to many. In particular, Luai Al-Labadi, Zeynep Baskurt, Shelly Cao, Zvi Gilula, Ir-

win Guttman, Gun Ho Jang, Shaocheng Liu, Hadas Moshonov, Saman Muthuku-

marana, Mohammed Shakhatreh, Tim Swartz and Tianli Zou were all co-authors on

publications connected with the contents of this text and made key contributions.

Irwin Guttman introduced me to Bayesian inference and this has had a major influ-

ence. Gun Ho Jang contributed numerous ingenious solutions to technical problems.

Many readers of the manuscript provided valuable input, including students Stephen

Marsh and Yang Guan Jian Guo. Keith O’Rourke made many useful suggestions.

The reviewers also provided valuable feedback and the author would especially like

to thank Jay Kadane and David Nott. My interest in problems concerned with the

foundations of statistical inference was stimulated by Professor D. A. S. Fraser and

I am grateful for that and also for instilling in me the belief that these problems are

resolvable.





Chapter 1

Statistical Problems

1.1 Introduction

This book is about measuring statistical evidence. More precisely, a definition of

statistical evidence is proposed based on the ingredients of a statistical problem as

specified by the statistician. A direct consequence of this definition is a theory of

statistical inference that has some unique and appealing features.

It may come as a surprise to the lay reader that exactly how one is to measure

statistical evidence is not well-resolved in the scientific literature. Most reasonably

numerate individuals have encountered the notions of p-values, standard errors, etc.,

and understand that these concepts are central to how to reason in statistical problems

and that they have something to do with characterizing statistical evidence. Yet it is a

fact that experienced, professional statisticians can disagree quite dramatically about

the right way to reason in statistical contexts.

On examining the various approaches to inference, it will be seen that they com-

monly fail to precisely define what statistical evidence is. This can be regarded as a

significant omission. In fact, it is our view that any valid theory of statistical inference

must specify exactly what is meant by statistical evidence. A definition of statistical

evidence should serve as a core of the theory of statistical inference and basically dic-

tate how statistical problems are to be solved, namely, the statistical evidence should

tell us what the solution to a problem is.

Our proposal for a definition of statistical evidence is provided in Chapter 4. Any

such definition is based upon the ingredients of a statistical problem as specified by a

statistician. So the current chapter is concerned with discussing exactly what is meant

by a statistical problem and what ingredients need to be specified by the statistician.

This leads us to exclude certain problems and ingredients that others might prefer

to be included. Our defence for this is that our approach covers the vast majority of

practically meaningful statistical problems and that by being exclusionary, a lot of

unnecessary complexity and ambiguity is eliminated. Above all, our goal is a logical

and complete theory of statistical inference that has practical relevance rather than

some kind of mathematical generality. In fact, our view is that attempts at mathemat-

ical generality often mislead as to what is appropriate statistical reasoning.

Probability is a key concept in any theory of statistical inference. This is of such

importance that the entirety of Chapter 2 is devoted to this topic.

1



2 STATISTICAL PROBLEMS

1.2 Statistical Problems

The first question to be answered is: what is a statistical problem? The following

example characterizes what could be called the archetypal statistical problem. The

discussion in this text is restricted to the consideration of such problems and close

relatives. We argue that such restrictions are necessary and moreover apply in the

vast majority of applications.

Example 1.2.1 The Archetypal Statistical Problem.

Suppose there is a population Ω with #(Ω)< ∞, where #(A) denotes the cardinality

of the set A. So Ω is just a finite set of objects. Further suppose that there is a measure-

ment X : Ω → X . A measurement X is a function defined on Ω taking values in the

set X . So X(ω) ∈X is the measurement of object ω ∈ Ω. For example, Ω could be

the set of all students enrolled at a particular school and X(ω) the height in centime-

ters of student ω . So, in this case, X is a subset of R1. As another example, Ω could

be the set of all students enrolled at a particular school and X(ω) = (X1(ω),X2(ω)),
where X1(ω) is the height in centimeters of student ω and X2(ω) is the gender of

student ω , and so, in this case, X can be taken to be a subset of R1 ×{M,F}.
When considering a variable like height, it is common to treat this as possibly

taking on a continuous range of values and to allow the set of possible values to be

unbounded. While this may seem innocuous, as argued in Section 1.4, we need to be

careful when using infinities in discussing statistical problems. As such, because of

the finiteness of Ω, the finite accuracy with which our height measurements are made,

and the fact that the measurements will occur within known bounds, X can be taken

to be the set of all the possible values of X(ω) and this is a finite set. Infinite sets are

introduced in Section 1.4 when considering approximations to statistical problems.

The fundamental object of interest in a statistical problem is then the relative

frequency distribution of X over Ω. For a subset A ⊂ X the relative frequency of A

is given by

rX (A) =
#({ω : X(ω) ∈ A})

#(Ω)
.

So rX (A) is just the proportion of elements in Ω whose X measurement is in A.
Clearly, knowing the relative frequency distribution is equivalent to knowing the rel-

ative frequency function

fX (x) =
#({ω : X(ω) = x})

#(Ω)
,

for x ∈X , as one can be obtained from the other. Notice that the frequency distribu-

tion is defined no matter what the set X is.

If we can conduct a census, where we obtain X(ω) for each ω ∈ Ω, then fX

is known exactly and there is nothing left to do from a statistical perspective. Of

course, statistics exists as a subject precisely because it is, at the very least, generally

uneconomical to conduct a census, and typically it is impossible to do so. Sometimes

statistical problems are expressed as wanting to know about some aspect of fX rather
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than fX itself. For example, if X is real-valued one may be interested to know the

mean

µX = ∑
x∈X

x fX (x)

and variance

σ2
X = ∑

x∈X

(x− µX)
2 fX (x)

of the relative frequency distribution or perhaps some other characteristic of fX . Cer-

tainly there is nothing wrong with focusing on some characteristics of fX , but know-

ing fX represents full statistical information. As such, we will express our discussion

in terms of knowing the true fX .
The fundamental question of statistics is then, based on partial information about

the true fX , how do we make inferences about the true fX ? Of course, it has to be

made clear what is meant by partial information, and subsequent sections will do this,

but as part of any statistical problem there is the observed data x1 = X(ω1), . . . ,xn =
X(ωn) where {ω1, . . . ,ωn} ⊂ Ω is selected, in some fashion, from the population. �

Note that in Example 1.2.1 there are no infinities and everything is defined simply

in terms of counting. Also there is no mention of probability. There is, however, a

major uncertainty in that fX is unknown without conducting a census. This is the

fundamental uncertainty lying at the heart of all of statistical problems.

Undoubtedly Example 1.2.1 seems very restrictive but there are a number of ways

in which it can be generalized without violating its basic characteristic of everything

being finite and obtainable via counting. For example, we can consider several fi-

nite populations Ω1, . . . ,Ωm with respective measurements X1, . . . ,Xm and relative

frequency functions fX1
, . . . , fXm and then discuss making comparisons among them.

Also, the relation of so-called measurement error problems to Example 1.2.1 and the

use of infinities and continuity in statistical modeling are examined in Section 1.4.

Perhaps most important, problems where the interest is with relationships among

variables arise as generalizations of Example 1.2.1. The concept of relationship be-

tween variables is based on the concept of a conditional relative frequency distribu-

tion. Suppose there are two measurements X and Y defined on a population Ω with

(X(ω),Y (ω)) ∈ X . The conditional relative frequency function of Y given X = x is

then defined for (x,y) ∈ X by

fY |X(y |x) =
#({ω : X(ω) = x,Y (ω) = y})

#({ω : X(ω) = x}) =
f(X ,Y )(x,y)

fX (x)

whenever #({ω : X(ω) = x}) 6= 0 or, equivalently, fX (x) 6= 0. Notice that fY |X is

again obtained by simple counting and that it can be obtained from the joint relative

frequency function f(X ,Y ) and the marginal relative frequency function fX . The fol-

lowing makes use of conditional relative frequency and represents the most important

application of statistics.
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Example 1.2.2 Relationships among Variables.

Suppose there is a measurement (X ,Y ) : Ω → X and our interest is in whether or

not there is a relationship between the variables X and Y. There is a basic definition

of what it means for variables to be related.

Definition 1.2.1 Variables X and Y, defined on population Ω, are related variables

if for some x1,x2 such that fX (x1) 6= 0 and fX (x2) 6= 0, then fY |X (· |x1) 6= fY |X(· |x2).

So two variables are related whenever changing the conditioning variable can result

in a change in the conditional distribution of the other variable. Note that it is clearly

the case that there is no relationship when all the conditional distributions are the

same; in fact, this is equivalent to the statistical independence of the variables. In

general, the form of the relationship is given by how fY |X (· |x) changes as x changes.

From a practical viewpoint, formally at least, most variables are related by this defini-

tion, as it seems unlikely that these conditional distributions will always be the same.

But the relationship between X and Y can be very weak and the changes deemed to

be irrelevant for the application at hand.

It is common in statistical applications for various assumptions to be made about

the form of fY |X (· |x). For example, a regression assumption says that, for a real-

valued Y, at most the conditional means

µY (x) = ∑
y∈{Y (ω):X(ω)=x}

y fY |X(y |x))

are changing as we change x. Often a linear regression assumption is also made

where it is assumed that µY is in some finite linear span of functions of x, namely,

µY ∈ L{v1, . . . ,vk} where the vi are real-valued functions defined on {X(ω) : ω ∈Ω}.
Of course, these are assumptions and the methods of Chapter 5 are needed to see if

these makes sense in an application. Actually, the regression assumptions make the

most sense when Y is allowed to take on a continuous range of values, as discussed

in Section 1.4. �

Although we will often express concepts in terms of the archetypal statistical

problem, it will be seen that these apply much more generally. Section 1.3 is partic-

ularly relevant in this regard.

1.3 Statistical Models

The fundamental problem in statistics arises because a census cannot be conducted

and so relative frequency distributions such as fX in Example 1.2.1 cannot be known

exactly. Note that, because Ω is finite and because each component of X is bounded

and measured to finite accuracy, there are only finitely many possibilities for fX . For

example, if #(Ω) = 104,X(ω) is height recorded in centimeters and all heights are in

(0,300], then fX is in a finite set of cardinality considerably less than 104×300. The

important point here is that the set of possibilities for fX is finite.

In many statistical problems, the statistician is willing to assume that fX is in

a restricted set of possible relative frequency functions. We index these possible

functions by a variable θ , called the model parameter, taking values in a set Θ,
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called the model parameter space, to obtain the statistical model { fθ : θ ∈ Θ}. So

fX ∈ { fθ : θ ∈ Θ} and note that, at this point, Θ is finite. Accordingly, instead of the

true relative frequency function, we can speak equivalently about the true value of

the model parameter since by assumption there is a unique value θtrue ∈ Θ such that

fθtrue
= fX .

More generally, we can define a parameter ψ of the model as ψ = Ψ(θ ) where

Ψ : Θ
onto→ Ψ, and for convenience we use the Ψ symbol for both the function and its

range. So there is a true value for ψ given by ψtrue = Ψ(θtrue). In general, we want

to make inferences about a parameter of interest ψ (which could be θ if we take Ψ
to be the identity) and refer to all aspects of θ that distinguish values in Ψ−1{ψ} as

nuisance parameters. We provide a simple example.

Example 1.3.1

Consider a population Ω of eligible voters where #(Ω) = 20,000 and X(ω) = 1,
if ω will vote in the next election, and X(ω) = 0, otherwise. So there are in to-

tal exactly 20,001 different possibilities for fX . Suppose further, however, that it

is known that at least 5,000 and no more than 15,000 voters will indeed vote,

where this information is based on historical records of elections. So, noting that

1/20,000 = 5 × 10−5, the statistical model { fθ : θ ∈ Θ} is given by θ ∈ Θ =
{0.25000,0.25005,0.25010, . . .,0.75000} where fθ (1) = θ and fθ (0) = 1−θ .

Rather than the model parameter θ , one might be interested in the odds param-

eter ψ = Ψ(θ ) = θ/(1− θ ) where the range is {0.25/(1− 0.25),0.25005/(1−
0.25005), . . . ,0.75/(1− 0.75)}. In this case Ψ is 1 to 1, so there are no nuisance

parameters. �

Many attempts at developing theories of inference run into problems when consider-

ing inferences for an arbitrary ψ = Ψ(θ ). This is referred to as the nuisance param-

eter problem.

An important point to note about a statistical model is that, unless it includes

all the possible distributions, { fθ : θ ∈ Θ} is an assumption and as such could be

incorrect because fX /∈ { fθ : θ ∈Θ}.As you might expect, when statistical analysis is

based on incorrect assumptions, then we have to question the validity of the analysis.

If so, why not always take { fθ : θ ∈ Θ} to be the set of all possible distributions?

Certainly in Example 1.3.1 it seems simple to avoid any assumptions.

There are several reasons why model assumptions are made. First and foremost

is that there may be definite information about the form of fX and this information

leads to improved inferences when true. Second, and perhaps most common, is that

for very complicated situations, model assumptions are made to simplify the analysis

and it is felt that the error introduced by these simplifications will not have a material

effect on the inferences drawn. For example, in Example 1.2.2 it seems very unlikely

that the regression assumption ever holds exactly. But perhaps the deviation from

this assumption is so small that it is immaterial, while the added simplicity of only

looking at the conditional mean to examine the relationship is of great benefit.

There is the possibility, however, that the model { fθ : θ ∈ Θ} could be grossly

in error. So it is necessary to consider how to assess and deal with this as part of a
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statistical analysis. This is discussed in part in Section 1.5 and is more thoroughly

treated in Chapter 5.

1.4 Infinity and Continuity in Statistics

So far all the sets introduced have been finite. It is our belief that this finiteness holds

in any practical application of statistics. Infinite sets can be used as part of a simpli-

fying approximation but with the awareness that this can bring with it problems of

interpretation that can lead us astray when we are not careful. Consider the following

example.

Example 1.4.1 Likelihood Functions.

A probability density fθ gives rise to a probability measure Pθ on X via integration

of fθ over relevant sets. Suppose it is assumed that data x ∈ X has been generated

from one of the probability distributions in the model { fθ : θ ∈ Θ}. Now we wish to

make an inference about the true θ ∈ Θ. In such a situation, methods based upon the

likelihood function are commonly recommended.

Definition 1.4.1 For observed data x and model { fθ : θ ∈Θ}, the likelihood function

is defined to be the function L(· |x) : Θ → [0,∞) given by L(θ |x) = k fθ (x) for any

fixed k > 0.

In reality the likelihood function is an equivalence class of functions, as the con-

stant k is arbitrary and can be chosen for convenience. This indeterminacy causes

no problems because likelihood inferences only depend on the ratios of likelihood

values.

The motivation behind considering the likelihood function lies in saying that θ1

is at least as preferable (as a guess or inference about the true value of θ ) as θ2 when-

ever the likelihood ratio L(θ1 |x)/L(θ2 |x) ≥ 1. This imposes a complete preference

ordering on Θ. This likelihood preference ordering is natural when each distribution

is discrete because
L(θ1 |x)
L(θ2 |x)

=
k fθ1

(x)

k fθ2
(x)

=
Pθ1

({x})
Pθ2

({x})
is the ratio of the probability of observing x when θ1 is true to the probability of

observing x when θ2 is true. Given that we have observed x, it is natural to prefer

those θ values which give a higher probability to the observed data.

For the situation where continuous probability distributions are employed, let us

suppose, for the moment, that X is Euclidean, Nε (x) is an open ball about x of

radius ε and fθ is continuous and positive at x for each θ . Letting Vol(A) denote the

Euclidean volume of A ⊂ X , we have that

Pθ (Nε (x)) =

∫

Nε (x)
fθ (z)dz ∼ fθ (x)Vol(Nε (x))

as ε → 0, since Pθ (Nε (x))/ fθ (x)Vol(Nε (x))→ 1 as ε → 0. So for small ε

L(θ1 |x)
L(θ2 |x)

=
k fθ1

(x)

k fθ2
(x)

≈ Pθ1
(Nε (x))

Pθ2
(Nε (x))
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and again the likelihood ratio can be seen as comparing the probabilities of observing

x. As such, the likelihood preference ordering makes sense in the continuous context

too.

But notice a key assumption in this argument, namely, that fθ is continuous at x

for each θ . If gθ is another integrable function that differs from fθ at most on a set of

volume measure 0, then Pθ (A) =
∫

A fθ (z)dz =
∫

A gθ (z)dz for every Borel set A. So

gθ could just as easily serve as a density for Pθ . As is well known, fθ can be modified

at countably many points to obtain a valid density gθ and it is not necessary to use a

density that is continuous at each x, at least for the computation of probabilities.

Now this anomaly may be considered a minor irritation, but consider a practical

context. In such a situation the value of X is measured to a finite accuracy and as such

every coordinate in x is a rational number. The set of x ∈X with rational coordinates

is necessarily countable and so a density gθ for Pθ can be chosen such that gθ (z) = 0

(or some other constant) for every z with rational coordinates. Therefore, if we use

such a gθ in the definition of the likelihood function, for any actually observed data

x the likelihood is identically 0 and the likelihood preference ordering doesn’t distin-

guish among the θ . Clearly this is absurd, unless you don’t believe in the relevance

of the likelihood preference ordering to inference. �

One way out of the dilemma posed with continuous models in Example 1.4.1 is

to simply demand that the densities in the definition of the likelihood be continuous

at each x ∈ X . But what aspect of an application implies such a restriction? For us

this restriction is imposed by the fact that all sets in a statistical application are finite

and, when an infinite set is used, this is as an approximation to a finite object. If

this approximation aspect is ignored, then absurdities can arise as in the discussion

in Example 1.4.1. If fθ (x) can be arbitrarily defined on a set of measure 0, as is

certainly mathematically acceptable when considering densities just as mathematical

objects, then the notion of an approximation is lost.

Various treatments of statistical theory treat infinite sets as basic ingredients that

represent reality. For the developments here, however, while we want to make use of

the simplicities available with infinite sets, conditions must be placed on such objects

to ensure that they behave appropriately as approximations to entities that are in fact

finite. As such, it is required that a density fθ be defined as a limit. For example, in

Example 1.4.1, for each x ∈ X , it is required that

fθ (x) = lim
ε→0

Pθ (Nε (x))

Vol(Nε (x))
(1.1)

as this ensures that Pθ (Nε (x))≈ fθ (x)Vol(Nε (x)) for small ε. The definition of den-

sities is discussed more generally in Appendix A but it is noted that, if a version

of fθ exists that is continuous at x, then it is given by (1.1). This leads to the usual

representative densities and in general the density calculated by differentiating a dis-

tribution function will satisfy (1.1). Any time density is used it is assumed that it

is a density with respect to the volume measure on the respective space (counting

measure is volume measure on discrete sets) and that the density arises as a limit as

in (1.1); see Appendix A.


