
Signal Processing: A Mathematical Approach is designed to show 
how many of the mathematical tools the reader knows can be used to 
understand and employ signal processing techniques in an applied 
environment. Assuming an advanced undergraduate- or graduate-
level understanding of mathematics—including familiarity with Fouri-
er series, matrices, probability, and statistics—this Second Edition: 

• Contains new chapters on convolution and the vector DFT, 
plane-wave propagation, and the BLUE and Kalman filters

• Expands the material on Fourier analysis to three new chapters 
to provide additional background information

• Presents real-world examples of applications that demonstrate 
how mathematics is used in remote sensing

Featuring problems for use in the classroom or practice, Signal  
Processing: A Mathematical Approach, Second Edition covers 
topics such as Fourier series and transforms in one and several vari-
ables; applications to acoustic and electro-magnetic propagation 
models, transmission and emission tomography, and image recon-
struction; sampling and the limited data problem; matrix methods, 
singular value decomposition, and data compression; optimization 
techniques in signal and image reconstruction from projections; 
autocorrelations and power spectra; high-resolution methods; de-
tection and optimal filtering; and eigenvector-based methods for  
array processing and statistical filtering, time-frequency analysis, 
and wavelets.
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Preface

In graduate school, and for the first few years as an assistant professor, my
research was in pure mathematics, mainly topology and functional anal-
ysis. Around 1979 I was drawn, largely by accident, into signal process-
ing, collaborating with friends at the Naval Research Laboratory who were
working on sonar. Initially, I felt that the intersection of the mathematics
that I knew and that they knew was nearly empty. After a while, I began
to realize that the basic tools of signal processing are subjects with which
I was already somewhat familiar, including Fourier series, matrices, and
probability and statistics. Much of the jargon and notation seemed foreign
to me, and I did not know much about the particular applications everyone
else was working on. For a while it seemed that everyone else was speaking
a foreign language. However, my knowledge of the basic mathematical tools
helped me gradually to understand what was going on and, eventually, to
make a contribution.

Signal processing is, in a sense, applied Fourier analysis, applied linear
algebra, and some probability and statistics. I had studied Fourier series
and linear algebra as an undergraduate, and had taught linear algebra
several times. I had picked up some probability and statistics as a professor,
although I had never had a course in that subject. Now I was beginning to
see these tools in a new light; Fourier coefficients arise as measured data in
array processing and tomography, eigenvectors and eigenvalues are used to
locate sonar and radar targets, matrices become images and the singular-
value decomposition provides data compression. For the first time, I saw
Fourier series, matrices and probability and statistics used all at once, in the
analysis of the sampled cross-sensor correlation matrices and the estimation
of power spectra.

In my effort to learn signal processing, I consulted a wide variety of
texts. Each one helped me somewhat, but I found no text that spoke di-
rectly to people in my situation. The texts I read were either too hard,
too elementary, or written in what seemed to me to be a foreign language.
Some texts in signal processing are written by engineers for engineering
students, and necessarily rely only on those mathematical notions their
students have encountered previously. In texts such as [116] basic Fourier
series and transforms are employed, but there is little discussion of matri-
ces and no mention of probability and statistics, hence no random models.

xxiii
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I found the book [121] by Papoulis helpful, although most of the exam-
ples deal with issues of interest primarily to electrical engineers. The books
written by mathematicians tend to treat signal processing as a part of
harmonic analysis or of stochastic processes. Books about Fourier analysis
focus on its use in partial differential equations, or explore rigorously the
mathematical aspects of the subject. I was looking for something different.
It would have helped me a great deal if there had been a book addressed to
people like me, people with a decent mathematical background who were
trying to learn signal processing. My hope is that this book serves that
purpose.

There are many opportunities for mathematically trained people to
make a contribution in signal and image processing, and yet few mathemat-
ics departments offer courses in these subjects to their students, preferring
to leave it to the engineering departments. One reason, I imagine, is that
few mathematics professors feel qualified to teach the subject. My message
here is that they probably already know a good deal of signal processing,
but do not realize that they know it. This book is designed to help them
come to that realization and to encourage them to include signal processing
as a course for their undergraduates.

The situations of interest that serve to motivate much of what is dis-
cussed in this book can be summarized as follows: We have obtained data
through some form of sensing; physical models, often simplified, describe
how the data we have obtained relates to the information we seek; there
usually isn’t enough data and what we have is corrupted by noise, mod-
eling errors, and other distortions. Although applications differ from one
another in their details, they often make use of a common core of mathe-
matical ideas. For example, the Fourier transform and its variants play an
important role in remote sensing, and therefore in many areas of signal and
image processing, as do the language and theory of matrix analysis, itera-
tive optimization and approximation techniques, and the basics of proba-
bility and statistics. This common core provides the subject matter for this
text. Applications of the core material to tomographic medical imaging,
optical imaging, and acoustic signal processing are included in this book.

The term signal processing is used here in a somewhat restrictive sense
to describe the extraction of information from measured data. I believe
that to get information out we must put information in. How to use the
mathematical tools to achieve this is one of the main topics of the book.

This text is designed to provide a bridge to help those with a solid math-
ematical background to understand and employ signal processing tech-
niques in an applied environment. The emphasis is on a small number of
fundamental problems and essential tools, as well as on applications. Cer-
tain topics that are commonly included in textbooks are touched on only
briefly or in exercises or not mentioned at all. Other topics not usually
considered to be part of signal processing, but which are becoming increas-
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ingly important, such as iterative optimization methods, are included. The
book, then, is a rather personal view of the subject and reflects the author’s
interests.

The term signal is not meant to imply a restriction to functions of a
single variable; indeed, most of what we discuss in this text applies equally
to functions of one and several variables and therefore to image process-
ing. However, there are special problems that arise in image processing,
such as edge detection, and special techniques to deal with such prob-
lems; we shall not consider such techniques in this text. Topics discussed
include the following: Fourier series and transforms in one and several vari-
ables; applications to acoustic and electro-magnetic propagation models,
transmission and emission tomography, and image reconstruction; sam-
pling and the limited data problem; matrix methods, singular value de-
composition, and data compression; optimization techniques in signal and
image reconstruction from projections; autocorrelations and power spectra;
high-resolution methods; detection and optimal filtering; eigenvector-based
methods for array processing and statistical filtering, time-frequency anal-
ysis, and wavelets.

The ordering of the first eighteen chapters of the book is not random;
these main chapters should be read in the order of their appearance. The
remaining chapters are ordered randomly and are meant to supplement the
main chapters.

Reprints of my journal articles referenced here are available in pdf for-
mat at my website, http://faculty.uml.edu/cbyrne/cbyrne.html.
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2 Signal Processing: A Mathematical Approach

1.1 Chapter Summary

We begin with an overview of applications of signal processing and the
variety of sensing modalities that are employed. It is typical of remote-
sensing problems that what we want is not what we can measure directly,
and we must obtain our information by indirect means. To illustrate that
point without becoming entangled in the details of any particular applica-
tion, we present a marbles-in-bowls model of remote sensing that, although
simple, still manages to capture the dominate aspects of many real-world
problems.

1.2 Aims and Topics

The term signal processing has broad meaning and covers a wide variety
of applications. In this course we focus on those applications of signal pro-
cessing that can loosely be called remote sensing, although the mathematics
we shall study is fundamental to all areas of signal processing.

In a course in signal processing it is easy to get lost in the details
and lose sight of the big picture. My main objectives here are to present
the most important ideas, techniques, and methods, to describe how they
relate to one another, and to illustrate their uses in several applications.
For signal processing, the most important mathematical tools are Fourier
series and related notions, matrices, and probability and statistics. Most
students with a solid mathematical background have probably encountered
each of these topics in previous courses, and therefore already know some
signal processing, without realizing it.

Our discussion here will involve primarily functions of a single real vari-
able, although most of the concepts will have multi-dimensional versions.
It is not our objective to treat each topic with the utmost mathematical
rigor, and we shall seek to avoid issues that are primarily of mathematical
concern.

1.2.1 The Emphasis in This Book

This text is designed to provide the necessary mathematical background
to understand and employ signal processing techniques in an applied en-
vironment. The emphasis is on a small number of fundamental problems
and essential tools, as well as on applications. Certain topics that are com-
monly included in textbooks are touched on only briefly or in exercises or



Introduction 3

not mentioned at all. Other topics not usually considered to be part of
signal processing, but which are becoming increasingly important, such as
matrix theory and linear algebra, are included.

The term signal is not meant to imply a specific context or a restriction
to functions of time, or even to functions of a single variable; indeed, most
of what we discuss in this text applies equally to functions of one and
several variables and therefore to image processing. However, this is in no
sense an introduction to image processing. There are special problems that
arise in image processing, such as edge detection, and special techniques to
deal with such problems; we shall not consider such techniques in this text.

1.2.2 Topics Covered

Topics discussed in this text include the following: Fourier series and
transforms in one and several variables; applications to acoustic and EM
propagation models, transmission and emission tomography, and image re-
construction; sampling and the limited data problem; matrix methods, sin-
gular value decomposition, and data compression; optimization techniques
in signal and image reconstruction from projections; autocorrelations and
power spectra; high-resolution methods; detection and optimal filtering;
eigenvector-based methods for array processing and statistical filtering;
time-frequency analysis; and wavelets.

1.2.3 Limited Data

As we shall see, it is often the case that the data we measure is not
sufficient to provide a single unique answer to our problem. There may
be many, often quite different, answers that are consistent with what we
have measured. In the absence of prior information about what the answer
should look like, we do not know how to select one solution from the many
possibilities. For that reason, I believe that to get information out we must
put information in. How to do this is one of the main topics of the course.
The example at the end of this chapter will illustrate this point.

1.3 Examples and Modalities

There are a wide variety of problems in which what we want to know
about is not directly available to us and we need to obtain information
by more indirect methods. In this section we present several examples of
remote sensing. The term “modality” refers to the manner in which the
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desired information is obtained. Although the sensing of acoustic and elec-
tromagnetic signals is perhaps the most commonly used method, remote
sensing involves a wide variety of modalities: electromagnetic waves (light,
x-ray, microwave, radio); sound (sonar, ultrasound); radioactivity (positron
and single-photon emission); magnetic resonance (MRI); seismic waves; and
a number of others.

1.3.1 X-ray Crystallography

The patterns produced by the scattering of x-rays passing through var-
ious materials can be used to reveal their molecular structure.

1.3.2 Transmission Tomography

In transmission tomography x-rays are transmitted along line segments
through the object and the drop in intensity along each line is recorded.

1.3.3 Emission Tomography

In emission tomography radioactive material is injected into the body
of the living subject and the photons resulting from the radioactive decay
are detected and recorded outside the body.

1.3.4 Back-Scatter Detectors

There is considerable debate at the moment about the use of so-called
full-body scanners at airports. These are not scanners in the sense of a
CAT scan; indeed, if the images were skeletons there would probably be
less controversy. These are images created by the returns, or backscatter, of
millimeter-wavelength (MMW) radio-frequency waves, or sometimes low-
energy x-rays, that penetrate only the clothing and then reflect back to the
machine.

The controversies are not really about safety to the passenger being
imaged. The MMW imaging devices use about 10, 000 times less energy
than a cell phone, and the x-ray exposure is equivalent to two minutes
of flying in an airplane. At present, the images are fuzzy and faces are
intentionally blurred, but there is some concern that the images will get
sharper, will be permanently stored, and eventually end up on the net.
Given what is already available on the net, the market for these images
will almost certainly be non-existent.
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1.3.5 Cosmic-Ray Tomography

Because of their ability to penetrate granite, cosmic rays are being used
to obtain transmission-tomographic three-dimensional images of the inte-
riors of active volcanos. Where magma has replaced granite there is less
attenuation of the rays, so the image can reveal the size and shape of the
magma column. It is hoped that this will help to predict the size and oc-
currence of eruptions.

In addition to mapping the interior of volcanos, cosmic rays can also be
used to detect the presence of shielding around nuclear material in a cargo
container. The shielding can be sensed by the characteristic scattering by
it of muons from cosmic rays; here neither we nor the objects of interest
are the sources of the probing. This is about as “remote” as sensing can
be.

1.3.6 Ocean-Acoustic Tomography

The speed of sound in the ocean varies with the temperature, among
other things. By transmitting sound from known locations to known re-
ceivers and measuring the travel times we can obtain line integrals of the
temperature function. Using the reconstruction methods from transmission
tomography, we can estimate the temperature function. Knowledge of the
temperature distribution may then be used to improve detection of sources
of acoustic energy in unknown locations.

1.3.7 Spectral Analysis

In our detailed discussion of transmission and remote sensing we shall,
for simplicity, concentrate on signals consisting of a single frequency. Never-
theless, there are many important applications of signal processing in which
the signal being studied has a broad spectrum, indicative of the presence
of many different frequencies. The purpose of the processing is often to
determine which frequencies are present, or not present, and to determine
their relative strengths. The hotter inner body of the sun emits radiation
consisting of a continuum of frequencies. The cooler outer layer absorbs
the radiation whose frequencies correspond to the elements present in that
outer layer. Processing these signals reveals a spectrum with a number of
missing frequencies, the so-called Fraunhofer lines, and provides informa-
tion about the makeup of the sun’s outer layers. This sort of spectral anal-
ysis can be used to identify the components of different materials, making
it an important tool in many applications, from astronomy to forensics.
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1.3.8 Seismic Exploration

Oil companies want to know if it is worth their while drilling in a partic-
ular place. If they go ahead and drill, they will find out, but they would like
to know what is the chance of finding oil without actually drilling. Instead,
they set off explosions and analyze the signals produced by the seismic
waves, which will tell them something about the materials the waves en-
countered. Explosive charges create waves that travel through the ground
and are picked up by sensors. The waves travel at different speeds through
different materials. Information about the location of different materials in
the ground is then extracted from the received signals.

1.3.9 Astronomy

Astronomers know that there are radio waves, visible-light waves, and
other forms of electro-magnetic radiation coming from the sun and distant
regions of space, and they would like to know precisely what is coming
from which regions. They cannot go there to find out, so they set up large
telescopes and antenna arrays and process the signals that they are able to
measure.

1.3.10 Radar

Those who predict the weather use radar to help them see what is going
on in the atmosphere. Radio waves are sent out and the returns are analyzed
and turned into images. The location of airplanes is also determined by
radar. The radar returns from different materials are different from one
another and can be analyzed to determine what materials are present.
Synthetic-aperture radar is used to obtain high-resolution images of regions
of the earth’s surface. The radar returns from different geometric shapes
also differ in strength; by avoiding right angles in airplane design stealth
technology attempts to make the plane invisible to radar.

1.3.11 Sonar

Features on the bottom of the ocean are imaged with sonar, in which
sound waves are sent down to the bottom and the returning waves are
analyzed. Sometimes near or distant objects of interest in the ocean emit
their own sound, which is measured by sensors. The signals received by the
sensors are processed to determine the nature and location of the objects.
Even changes in the temperature at different places in the ocean can be
determined by sending sound waves through the region of interest and
measuring the travel times.
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1.3.12 Gravity Maps

The pull of gravity varies with the density of the material. Features on
the surface of the earth, such as craters from ancient asteroid impacts, can
be imaged by mapping the variations in the pull of gravity, as measured by
satellites.

Gravity, or better, changes in the pull of gravity from one location to
another, was used in the discovery of the crater left behind by the asteroid
strike in the Yucatan that led to the extinction of the dinosaurs. The rocks
and other debris that eventually filled the crater differ in density from
the surrounding material, thereby exerting a slightly different gravitational
pull on other masses. This slight change in pull can be detected by sensitive
instruments placed in satellites in earth orbit. When the intensity of the
pull, as a function of position on the earth’s surface, is displayed as a two-
dimensional image, the presence of the crater is evident.

Studies of the changes in gravitational pull of the Antarctic ice between
2002 and 2005 revealed that Antarctica is losing 36 cubic miles of ice each
year. By way of comparison, the city of Los Angeles uses one cubic mile of
water each year. While this finding is often cited as clear evidence of global
warming, it contradicts some models of climate change that indicate that
global warming may lead to an increase of snowfall, and therefore more ice,
in the polar regions. This does not show that global warming is not taking
place, but only the inadequacies of some models [119].

1.3.13 Echo Cancellation

In a conference call between locations A and B, what is transmitted
from A to B can get picked up by microphones in B, transmitted back
to speakers in A and then retransmitted to B, producing an echo of the
original transmission. Signal processing performed at the transmitter in
A can reduce the strength of the second version of the transmission and
decrease the echo effect.

1.3.14 Hearing Aids

Makers of digital hearing aids include signal processing to enhance the
quality of the received sounds, as well as to improve localization, that is,
the ability of the hearer to tell where the sound is coming from. When a
hearing aid is used, sounds reach the ear in two ways: first, the usual route
directly into the ear, and second, through the hearing aid. Because that part
that passes through the hearing aid is processed, there is a slight delay. In
order for the delay to go unnoticed, the processing must be very fast. When
hearing aids are used in both ears, more sophisticated processing can be
used.
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1.3.15 Near-Earth Asteroids

An area of growing importance is the search for potentially damaging
near-earth asteroids. These objects are initially detected by passive op-
tical observation, as small dots of reflected sunlight; once detected, they
are then imaged by active radar to determine their size, shape, rotation,
path, and other important parameters. Satellite-based infrared detectors
are being developed to find dark asteroids by the heat they give off. Such
satellites, placed in orbit between the sun and the earth, will be able to
detect asteroids hidden from earth-based telescopes by the sunlight.

1.3.16 Mapping the Ozone Layer

Ultraviolet light from the sun is scattered by ozone. By measuring the
amount of scattered UV at various locations on the earth’s surface, and with
the sun in various positions, we obtain values of the Laplace transform of
the function describing the density of ozone, as a function of elevation.

1.3.17 Ultrasound Imaging

While x-ray tomography is a powerful method for producing images
of the interior of patients’ bodies, the radiation involved and the expense
make it unsuitable in some cases. Ultrasound imaging, making use of back-
scattered sound waves, is a popular method of inexpensive preliminary
screening for medical diagnostics, and for examining a developing fetus.

1.3.18 X-ray Vision?

The MIT computer scientist and electrical engineer Dina Katabi and
her students are currently exploring new uses of wireless technologies. By
combining Wi-Fi and vision into what she calls Wi-Vi, she has discovered
a way to detect the number and approximate location of persons within a
closed room and to recognize simple gestures. The scattering of reflected
low-bandwidth wireless signals as they pass through the walls is processed
to eliminate motionless sources of reflection from the much weaker reflec-
tions from moving objects, presumably people.

1.4 The Common Core

The examples just presented look quite different from one another, but
the differences are often more superficial than real. As we begin to use
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mathematics to model these various situations we often discover a common
core of mathematical tools and ideas at the heart of each of these applica-
tions. For example, the Fourier transform and its variants play an impor-
tant role in many areas of signal and image processing, as do the language
and theory of matrix analysis, iterative optimization and approximation
techniques, and the basics of probability and statistics. This common core
provides the subject matter for this book. Applications of the core mate-
rial to tomographic medical imaging, optical imaging, and acoustic signal
processing are among the topics to be discussed in some detail.

Although the applications of interest to us vary in their details, they
have common aspects that can be summarized as follows: the data has been
obtained through some form of sensing; physical models, often simplified,
describe how the data we have obtained relates to the information we seek;
there usually isn’t enough data and what we have is corrupted by noise
and other distortions.

1.5 Active and Passive Sensing

In some signal and image processing applications the sensing is ac-
tive, meaning that we have initiated the process, by, say, sending an x-ray
through the body of a patient, injecting a patient with a radionuclide, trans-
mitting an acoustic signal through the ocean, as in sonar, or transmitting
a radio wave, as in radar. In such cases, we are interested in measuring
how the system, the patient, the quiet submarine, the ocean floor, the rain
cloud, will respond to our probing. In many other applications, the sens-
ing is passive, which means that the object of interest to us provides its
own signal of some sort, which we then detect, analyze, image, or process
in some way. Certain sonar systems operate passively, listening for sounds
made by the object of interest. Optical and radio telescopes are passive,
relying on the object of interest to emit or reflect light, or other electromag-
netic radiation. Night-vision instruments are sensitive to lower-frequency,
infrared radiation.

From the time of Aristotle and Euclid until the middle ages there was an
ongoing debate concerning the active or passive nature of human sight [112].
Those like Euclid, whose interests were largely mathematical, believed that
the eye emitted rays, the extramission theory. Aristotle and others, more
interested in the physiology and anatomy of the eye than in mathematics,
believed that the eye received rays from observed objects outside the body,
the intromission theory. Finally, around 1000 AD, the Arabic mathemati-
cian and natural philosopher Alhazen demolished the extramission theory
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by noting the potential for bright light to hurt the eye, and combined the
mathematics of the extramission theorists with a refined theory of intro-
mission. The extramission theory has not gone away completely, however,
as anyone familiar with Superman’s x-ray vision knows.

1.6 Using Prior Knowledge

An important point to keep in mind when doing signal processing is
that, while the data is usually limited, the information we seek may not be
lost. Although processing the data in a reasonable way may suggest other-
wise, other processing methods may reveal that the desired information is
still available in the data. Figure 1.1 illustrates this point.

The original image on the upper right of Figure 1.1 is a discrete rect-
angular array of intensity values simulating the distribution of the x-ray-
attenuating material in a slice of a head. The data was obtained by taking
the two-dimensional discrete Fourier transform of the original image, and
then discarding, that is, setting to zero, all these spatial frequency values,
except for those in a smaller rectangular region around the origin. Recon-
structing the image from this limited data amounts to solving a large system
of linear equations. The problem is under-determined, so a minimum-norm
solution would seem to be a reasonable reconstruction method. For now,
“norm” means the Euclidean norm.

The minimum-norm solution is shown on the lower right. It is calcu-
lated simply by performing an inverse discrete Fourier transform on the
array of modified discrete Fourier transform values. The original image has
relatively large values where the skull is located, but the least-squares re-
construction does not want such high values; the norm involves the sum
of squares of intensities, and high values contribute disproportionately to
the norm. Consequently, the minimum-norm reconstruction chooses instead
to conform to the measured data by spreading what should be the skull
intensities throughout the interior of the skull. The minimum-norm recon-
struction does tell us something about the original; it tells us about the
existence of the skull itself, which, of course, is indeed a prominent feature
of the original. However, in all likelihood, we would already know about
the skull; it would be the interior that we want to know about.

Using our knowledge of the presence of a skull, which we might have ob-
tained from the minimum-norm reconstruction itself, we construct the prior
estimate shown in the upper left. Now we use the same data as before, and
calculate a minimum-weighted-norm reconstruction, using as the weight
vector the reciprocals of the values of the prior image. This minimum-
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FIGURE 1.1: Extracting information in image reconstruction.

weighted-norm reconstruction, also called the PDFT estimator, is shown
on the lower left; it is clearly almost the same as the original image. The
calculation of the minimum-weighted-norm solution can be done iteratively
using the ART algorithm [143].

When we weight the skull area with the inverse of the prior image,
we allow the reconstruction to place higher values there without having
much of an effect on the overall weighted norm. In addition, the reciprocal
weighting in the interior makes spreading intensity into that region costly,
so the interior remains relatively clear, allowing us to see what is really
present there.

When we try to reconstruct an image from limited data, it is easy to
assume that the information we seek has been lost, particularly when a
reasonable reconstruction method fails to reveal what we want to know. As
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this example, and many others, show, the information we seek is often still
in the data, but needs to be brought out in a more subtle way.

1.7 An Urn Model of Remote Sensing

Most of the signal processing that we shall discuss in this book is re-
lated to the problem of remote sensing, which we might also call indirect
measurement. In such problems we do not have direct access to what we are
really interested in, and must be content to measure something else that is
related to, but not the same as, what interests us. For example, we want
to know what is in the suitcases of airline passengers, but, for practical
reasons, we cannot open every suitcase. Instead, we x-ray the suitcases. A
recent paper [137] describes progress in detecting nuclear material in cargo
containers by measuring the scattering, by the shielding, of cosmic rays;
you can’t get much more remote than that. Before we get into the mathe-
matics of signal processing, it is probably a good idea to consider a model
that, although quite simple, manages to capture many of the important
features of remote-sensing applications. To convince the reader that this is
indeed a useful model, we relate it to the problem of image reconstruction
in single-photon emission computed tomography (SPECT). There seems to
be a tradition in physics of using simple models or examples involving
urns and marbles to illustrate important principles. In keeping with that
tradition, we have here two examples, both involving urns of marbles, to
illustrate various aspects of remote sensing.

1.7.1 An Urn Model

Suppose that there is a box containing a large number of small pieces
of paper, and on each piece is written one of the numbers from j = 1
to j = J . I want to determine, for each j = 1, ..., J , the probability of
selecting a piece of paper with the number j written on it. Unfortunately,
I am not allowed to examine the box. I am allowed, however, to set up a
remote-sensing experiment to help solve my problem.

My assistant sets up J urns, numbered j = 1, ..., J , each containing mar-
bles of various colors. Suppose that there are I colors, numbered i = 1, ..., I.
I am allowed to examine each urn, so I know precisely the probability that
a marble of color i will be drawn from urn j. Out of my view, my assis-
tant removes one piece of paper from the box, takes one marble from the
indicated urn, announces to me the color of the marble, and then replaces
both the piece of paper and the marble. This action is repeated N times,
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at the end of which I have a long list of colors, i = {i1, i2, ..., iN}, where
in denotes the color of the nth marble drawn. This list i is my data, from
which I must determine the contents of the box.

This is a form of remote sensing; what we have access to is related to,
but not equal to, what we are interested in. What I wish I had is the list of
urns used, j = {j1, j2, ..., jN}; instead I have i, the list of colors. Sometimes
data such as the list of colors is called “incomplete data,” in contrast to
the “complete data,” which would be the list j of the actual urn numbers
drawn from the box.

Using our urn model, we can begin to get a feel for the resolution prob-
lem. If all the marbles of one color are in a single urn, all the black marbles
in urn j = 1, all the green in urn j = 2, and so on, the problem is trivial;
when I hear a color, I know immediately which urn contained that marble.
My list of colors is then a list of urn numbers; i = j. I have the complete
data now. My estimate of the number of pieces of paper containing the
urn number j is then simply the proportion of draws that resulted in urn
j being selected.

At the other extreme, suppose two urns have identical contents. Then I
cannot distinguish one urn from the other and I am unable to estimate more
than the total number of pieces of paper containing either of the two urn
numbers. If the two urns have nearly the same contents, we can distinguish
them only by using a very large N . This is the resolution problem.

Generally, the more the contents of the urns differ, the easier the task
of estimating the contents of the box. In remote-sensing applications, these
issues affect our ability to resolve individual components contributing to
the data.

1.7.2 Some Mathematical Notation

To introduce some mathematical notation, let us denote by xj the pro-
portion of the pieces of paper that have the number j written on them. Let
Pij be the proportion of the marbles in urn j that have the color i. Let yi be
the proportion of times the color i occurs in the list of colors. The expected
proportion of times i occurs in the list is E(yi) =

∑J
j=1 Pijxj = (Px)i,

where P is the I by J matrix with entries Pij and x is the J by 1 column
vector with entries xj . A reasonable way to estimate x is to replace E(yi)

with the actual yi and solve the system of linear equations yi =
∑J

j=1 Pijxj ,
i = 1, ..., I. Of course, we require that the xj be nonnegative and sum to
one, so special algorithms may be needed to find such solutions. In a num-
ber of applications that fit this model, such as medical tomography, the
values xj are taken to be parameters, the data yi are statistics, and the xj
are estimated by adopting a probabilistic model and maximizing the likeli-
hood function. Iterative algorithms, such as the expectation maximization
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maximum likelihood (EMML) algorithm, are often used for such problems;
see Chapter 14 for details.

1.7.3 An Application to SPECT Imaging

In single-photon emission computed tomography (SPECT) the patient
is injected with a chemical to which a radioactive tracer has been attached.
Once the chemical reaches its destination within the body the photons
emitted by the radioactive tracer are detected by gamma cameras outside
the body. The objective is to use the information from the detected photons
to infer the relative concentrations of the radioactivity within the patient.

We discretize the problem and assume that the body of the patient
consists of J small volume elements, called voxels, analogous to pixels in
digitized images. We let xj ≥ 0 be the unknown proportion of the radioac-
tivity that is present in the jth voxel, for j = 1, ..., J . There are I detectors,
denoted {i = 1, 2, ..., I}. For each i and j we let Pij be the known prob-
ability that a photon that is emitted from voxel j is detected at detector
i; these probabilities are usually determined by examining the relative po-
sitions in space of voxel j and detector i. We denote by in the detector
at which the nth emitted photon is detected. This photon was emitted at
some voxel, denoted jn; we wish that we had some way of learning what
each jn is, but we must be content with knowing only the in. After N
photons have been emitted, we have as our data the list i = {i1, i2, ..., iN};
this is our incomplete data. We wish we had the complete data, that is, the
list j = {j1, j2, ..., jN}, but we do not. Our goal is to estimate the frequency
with which each voxel emitted a photon, which we assume, reasonably, to
be proportional to the unknown proportions xj , for j = 1, ..., J .

This problem is completely analogous to the urn problem previously
discussed. Any mathematical method that solves one of these problems
will solve the other one. In the urn problem, the colors were announced;
here the detector numbers are announced. There, I wanted to know the
urn numbers; here I want to know the voxel numbers. There, I wanted to
estimate the frequency with which the jth urn was used; here, I want to
estimate the frequency with which the jth voxel is the site of an emission,
which is assumed to be equal to the proportion of the radionuclide within
the jth voxel. In the urn model, two urns with nearly the same contents are
hard to distinguish unless N is very large; here, two neighboring voxels will
be very hard to distinguish (i.e., to resolve) unless N is very large. But in
the SPECT case, a large N means a high dosage, which will be prohibited
by safety considerations. Therefore, we have a built-in resolution problem
in the SPECT case.

Both problems are examples of probabilistic mixtures, in which the mix-
ing probabilities are the xj that we seek. The maximum likelihood (ML)
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method of statistical parameter estimation can be used to solve such prob-
lems. The interested reader should consult the text [42].

1.8 Hidden Markov Models

In the urn model we just discussed, the order of the colors in the list is
unimportant; we could randomly rearrange the colors on the list without
affecting the nature of the problem. The probability that a green marble
will be chosen next is the same, whether a blue or a red marble was just
chosen the previous time. This independence from one selection to another
is fine for modeling certain physical situations, such as emission tomogra-
phy. However, there are other situations in which this independence does
not conform to reality.

In written English, for example, knowing the current letter helps us,
sometimes more, sometimes less, to predict what the next letter will be.
We know that, if the current letter is a “q”, then there is a high probability
that the next one will be a “u”. So what the current letter is affects the
probabilities associated with the selection of the next one.

Spoken English is even tougher. There are many examples in which
the pronunciation of a certain sound is affected, not only by the sound or
sounds that preceded it, but by the sound or sounds that will follow. For
example, the sound of the “e” in the word “bellow” is different from the
sound of the “e” in the word “below”; the sound changes, depending on
whether there is a double “l” or a single “l” following the “e”. Here the
entire context of the letter affects its sound.

Hidden Markov models (HMM) are increasingly important in speech
processing, optical character recognition, and DNA sequence analysis. They
allow us to incorporate dependence on the context into our model. In this
section we illustrate HMM using a modification of the urn model.

Suppose, once again, that we have J urns, indexed by j = 1, ..., J and
I colors of marbles, indexed by i = 1, ..., I. Associated with each of the
J urns is a box, containing a large number of pieces of paper, with the
number of one urn written on each piece. My assistant selects one box, say
the j0th box, to start the experiment. He draws a piece of paper from that
box, reads the number written on it, call it j1, goes to the urn with the
number j1 and draws out a marble. He then announces the color. He then
draws a piece of paper from box number j1, reads the next number, say
j2, proceeds to urn number j2, etc. After N marbles have been drawn, the
only data I have is a list of colors, i = {i1, i2, ..., iN}.
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The transition probability that my assistant will proceed from the urn
numbered k to the urn numbered j is bjk, with

∑J
j=1 bjk = 1. The num-

ber of the current urn is the current state. In an ordinary Markov chain
model, we observe directly a sequence of states governed by the transition
probabilities. The Markov chain model provides a simple formalism for de-
scribing a system that moves from one state into another, as time goes on.
In the hidden Markov model we are not able to observe the states directly;
they are hidden from us. Instead, we have indirect observations, the colors
of the marbles in our urn example.

The probability that the color numbered i will be drawn from the urn
numbered j is aij , with

∑I
i=1 aij = 1, for all j. The colors announced

are the visible states, while the unannounced urn numbers are the hidden
states.

There are several distinct objectives one can have, when using HMM.
We assume that the data is the list of colors, i.

• Evaluation: For given probabilities aij and bjk, what is the proba-
bility that the list i was generated according to the HMM? Here, the
objective is to see if the model is a good description of the data.

• Decoding: Given the model, the probabilities, and the list i, what
list j = {j1, j2, ..., jN} of urns is most likely to be the list of urns
actually visited? Now, we want to infer the hidden states from the
visible ones.

• Learning:We are told that there are J urns and I colors, but are not
told the probabilities aij and bjk. We are given several data vectors i
generated by the HMM; these are the training sets. The objective is
to learn the probabilities.

Once again, the ML approach can play a role in solving these problems [68].
The Viterbi algorithm is an important tool used for the decoding phase (see
[149]).
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