Signal Processing
 A Mathematical Approach

Second Edition

Charles L. Byrne

Signal Processing
 A Mathematical Approach

Second Edition

MONOGRAPHS AND RESEARCH NOTES IN MATHEMATICS

Series Editors

John A. Burns

Thomas J. Tucker
Miklos Bona
Michael Ruzhansky
Chi-Kwong Li

Published Titles

Iterative Optimization in Inverse Problems, Charles L. Byrne
Signal Processing: A Mathematical Approach, Second Edition, Charles L. Byrne Modeling and Inverse Problems in the Presence of Uncertainty, H. T. Banks, Shuhua Hu, and W. Clayton Thompson
Sinusoids: Theory and Technological Applications, Prem K. Kythe
Blow-up Patterns for Higher-Order: Nonlinear Parabolic, Hyperbolic Dispersion and Schrödinger Equations, Victor A. Galaktionov, Enzo L. Mitidieri, and Stanislav Pohozaev
Set Theoretical Aspects of Real Analysis, Alexander B. Kharazishvili
Special Integrals of Gradshetyn and Ryzhik: the Proofs - Volume I, Victor H. Moll

Forthcoming Titles

Stochastic Cauchy Problems in Infinite Dimensions: Generalized and Regularized Solutions, Irina V. Melnikova and Alexei Filinkov
Monomial Algebra, Second Edition, Rafael Villarreal
Groups, Designs, and Linear Algebra, Donald L. Kreher
Geometric Modeling and Mesh Generation from Scanned Images, Yongjie Zhang
Difference Equations: Theory, Applications and Advanced Topics, Third Edition, Ronald E. Mickens
Method of Moments in Electromagnetics, Second Edition, Walton C. Gibson
The Separable Galois Theory of Commutative Rings, Second Edition, Andy R. Magid
Dictionary of Inequalities, Second Edition, Peter Bullen
Actions and Invariants of Algebraic Groups, Second Edition, Walter Ferrer Santos and Alvaro Rittatore
Practical Guide to Geometric Regulation for Distributed Parameter Systems, Eugenio Aulisa and David S. Gilliam
Analytical Methods for Kolmogorov Equations, Second Edition, Luca Lorenzi
Handbook of the Tutte Polynomial, Joanna Anthony Ellis-Monaghan and lain Moffat
Application of Fuzzy Logic to Social Choice Theory, John N. Mordeson, Davendar Malik and Terry D. Clark
Microlocal Analysis on R^n and on NonCompact Manifolds, Sandro Coriasco

Forthcoming Titles (continued)

Cremona Groups and Icosahedron, Ivan Cheltsov and Constantin Shramov
Special Integrals of Gradshetyn and Ryzhik: the Proofs - Volume II, Victor H. Moll
Symmetry and Quantum Mechanics, Scott Corry
Lineability and Spaceability in Mathematics, Juan B. Seoane Sepulveda, Richard W. Aron, Luis Bernal-Gonzalez, and Daniel M. Pellegrinao
Line Integral Methods and Their Applications, Luigi Brugnano and Felice laverno
Reconstructions from the Data of Integrals, Victor Palamodov
Lineability: The Search for Linearity in Mathematics, Juan B. Seoane Sepulveda
Partial Differential Equations with Variable Exponents: Variational Methods and Quantitative Analysis, Vicentiu Radulescu

Complex Analysis: Conformal Inequalities and the Bierbach Conjecture, Prem K. Kythe

Signal Processing A Mathematical Approach

 Second EditionCharles L. Byrne

University of Massachusetts Lowell
Lowell, Massachusetts, USA

CRC Press
Taylor \& Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2015 by Taylor \& Francis Group, LLC
CRC Press is an imprint of Taylor \& Francis Group, an Informa business
No claim to original U.S. Government works
Printed on acid-free paper
Version Date: 20140730
International Standard Book Number-13: 978-1-4822-4184-6 (Hardback)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

The Open Access version of this book, available at www.taylorfrancis.com, has been made available under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Byrne, Charles L., 1947-
Signal processing : a mathematical approach / Charles L. Byrne, Department of Mathematical Sciences, University of Massachusetts Lowell. -- Second edition. pages cm. -- (Monographs and research notes in mathematics)
Includes bibliographical references and index.
ISBN 978-1-4822-4184-6

1. Signal processing--Mathematics. I. Title.

TK5102.9.B96 2015
621.382'20151--dc23

Visit the Taylor \& Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com

> I dedicate this book to Eileen, my wife for forty-four wonderful years.

My thanks to my graduate student Jessica Barker, who read most of this book and made many helpful suggestions.

Contents

Preface xxiii
1 Introduction 1
1.1 Chapter Summary 2
1.2 Aims and Topics 2
1.2.1 The Emphasis in This Book 2
1.2.2 Topics Covered 3
1.2.3 Limited Data 3
1.3 Examples and Modalities 3
1.3.1 X-ray Crystallography 4
1.3.2 Transmission Tomography 4
1.3.3 Emission Tomography 4
1.3.4 Back-Scatter Detectors 4
1.3.5 Cosmic-Ray Tomography 5
1.3.6 Ocean-Acoustic Tomography 5
1.3.7 Spectral Analysis 5
1.3.8 Seismic Exploration 6
1.3.9 Astronomy 6
1.3.10 Radar 6
1.3.11 Sonar 6
1.3.12 Gravity Maps 7
1.3.13 Echo Cancellation 7
1.3.14 Hearing Aids 7
1.3.15 Near-Earth Asteroids 8
1.3.16 Mapping the Ozone Layer 8
1.3.17 Ultrasound Imaging 8
1.3.18 X-ray Vision? 8
1.4 The Common Core 8
1.5 Active and Passive Sensing 9
1.6 Using Prior Knowledge 10
1.7 An Urn Model of Remote Sensing 12
1.7.1 An Urn Model 12
1.7.2 Some Mathematical Notation 13
1.7.3 An Application to SPECT Imaging 14
1.8 Hidden Markov Models 15
2 Fourier Series and Fourier Transforms 17
2.1 Chapter Summary 17
2.2 Fourier Series 18
2.3 Complex Exponential Functions 20
2.4 Fourier Transforms 21
2.5 Basic Properties of the Fourier Transform 22
2.6 Some Fourier-Transform Pairs 23
2.7 Dirac Deltas 25
2.8 Convolution Filters 27
2.9 A Discontinuous Function 29
2.10 Shannon's Sampling Theorem 29
2.11 What Shannon Does Not Say 31
2.12 Inverse Problems 31
2.13 Two-Dimensional Fourier Transforms 33
2.13.1 The Basic Formulas 33
2.13.2 Radial Functions 34
2.13.3 An Example 35
2.14 The Uncertainty Principle 36
2.15 Best Approximation 38
2.15.1 The Orthogonality Principle 38
2.15.2 An Example 39
2.15.3 The DFT as Best Approximation 40
2.15.4 The Modified DFT (MDFT) 40
2.15.5 The PDFT 42
2.16 Analysis of the MDFT 43
2.16.1 Eigenvector Analysis of the MDFT 43
2.16.2 The Eigenfunctions of S_{Γ} 44
3 Remote Sensing 47
3.1 Chapter Summary 48
3.2 Fourier Series and Fourier Coefficients 48
3.3 The Unknown Strength Problem 49
3.3.1 Measurement in the Far Field 49
3.3.2 Limited Data 50
3.3.3 Can We Get More Data? 51
3.3.4 Measuring the Fourier Transform 51
3.3.5 Over-Sampling 52
3.3.6 The Modified DFT 53
3.3.7 Other Forms of Prior Knowledge 54
3.4 Generalizing the MDFT and PDFT 55
3.5 One-Dimensional Arrays 56
3.5.1 Measuring Fourier Coefficients 56
3.5.2 Over-Sampling 59
3.5.3 Under-Sampling 59
3.6 Resolution Limitations 60
3.7 Using Matched Filtering 61
3.7.1 A Single Source 61
3.7.2 Multiple Sources 61
3.8 An Example: The Solar-Emission Problem 62
3.9 Estimating the Size of Distant Objects 63
3.10 The Transmission Problem 65
3.10.1 Directionality 65
3.10.2 The Case of Uniform Strength 65
3.10.2.1 Beam-Pattern Nulls 69
3.10.2.2 Local Maxima 69
3.11 The Laplace Transform and the Ozone Layer 70
3.11.1 The Laplace Transform 70
3.11.2 Scattering of Ultraviolet Radiation 70
3.11.3 Measuring the Scattered Intensity 70
3.11.4 The Laplace Transform Data 71
3.12 The Laplace Transform and Energy Spectral Estimation 71
3.12.1 The Attenuation Coefficient Function 72
3.12.2 The Absorption Function as a Laplace Transform 72
4 Finite-Parameter Models 73
4.1 Chapter Summary 73
$4.2 \quad$ Finite Fourier Series 74
4.3 The DFT and the Finite Fourier Series 76
4.4 The Vector DFT 76
4.5 The Vector DFT in Two Dimensions 78
4.6 The Issue of Units 80
4.7 Approximation, Models, or Truth? 81
4.8 Modeling the Data 81
4.8.1 Extrapolation 81
4.8.2 Filtering the Data 82
4.9 More on Coherent Summation 83
4.10 Uses in Quantum Electrodynamics 83
4.11 Using Coherence and Incoherence 84
4.11.1 The Discrete Fourier Transform 84
4.12 Complications 86
4.12.1 Multiple Signal Components 87
4.12.2 Resolution 87
4.12.3 Unequal Amplitudes and Complex Amplitudes 87
4.12.4 Phase Errors 88
4.13 Undetermined Exponential Models 88
4.13.1 Prony's Problem 88
4.13.2 Prony's Method 88
5 Transmission and Remote Sensing 91
5.1 Chapter Summary 91
5.2 Directional Transmission 91
5.3 Multiple-Antenna Arrays 92
5.3.1 The Array of Equi-Spaced Antennas 92
5.3.2 The Far-Field Strength Pattern 93
5.3.3 Can the Strength Be Zero? 94
5.3.4 Diffraction Gratings 98
5.4 Phase and Amplitude Modulation 99
5.5 Steering the Array 100
5.6 Maximal Concentration in a Sector 100
5.7 Scattering in Crystallography 101
6 The Fourier Transform and Convolution Filtering 103
6.1 Chapter Summary 103
6.2 Linear Filters 104
6.3 Shift-Invariant Filters 104
6.4 Some Properties of a SILO 104
6.5 The Dirac Delta 106
6.6 The Impulse-Response Function 106
6.7 Using the Impulse-Response Function 106
6.8 The Filter Transfer Function 107
6.9 The Multiplication Theorem for Convolution 107
6.10 Summing Up 108
6.11 A Question 109
6.12 Band-Limiting 109
7 Infinite Sequences and Discrete Filters 111
7.1 Chapter Summary 111
7.2 Shifting 111
7.3 Shift-Invariant Discrete Linear Systems 112
7.4 The Delta Sequence 112
7.5 The Discrete Impulse Response 112
7.6 The Discrete Transfer Function 113
7.7 Using Fourier Series 114
7.8 The Multiplication Theorem for Convolution 114
7.9 The Three-Point Moving Average 115
7.10 Autocorrelation 116
7.11 Stable Systems 117
7.12 Causal Filters 118
8 Convolution and the Vector DFT 119
8.1 Chapter Summary 119
8.2 Nonperiodic Convolution 120
8.3 The DFT as a Polynomial 120
8.4 The Vector DFT and Periodic Convolution 121
8.4.1 The Vector DFT 121
8.4.2 Periodic Convolution 122
8.5 The vDFT of Sampled Data 124
8.5.1 Superposition of Sinusoids 124
8.5.2 Rescaling 124
8.5.3 The Aliasing Problem 125
8.5.4 The Discrete Fourier Transform 125
8.5.5 Calculating Values of the DFT 126
8.5.6 Zero-Padding 126
8.5.7 What the vDFT Achieves 126
8.5.8 Terminology 127
8.6 Understanding the Vector DFT 127
8.7 The Fast Fourier Transform (FFT) 128
8.7.1 Evaluating a Polynomial 129
8.7.2 The DFT and Vector DFT 129
8.7.3 Exploiting Redundancy 130
8.7.4 The Two-Dimensional Case 131
9 Plane-Wave Propagation 133
9.1 Chapter Summary 133
9.2 The Bobbing Boats 134
9.3 Transmission and Remote Sensing 136
9.4 The Transmission Problem 136
9.5 Reciprocity 138
9.6 Remote Sensing 138
9.7 The Wave Equation 138
9.8 Plane-Wave Solutions 140
9.9 Superposition and the Fourier Transform 140
9.9.1 The Spherical Model 141
9.10 Sensor Arrays 141
9.10.1 The Two-Dimensional Array 141
9.10.2 The One-Dimensional Array 142
9.10.3 Limited Aperture 142
9.11 Sampling 143
9.12 The Limited-Aperture Problem 143
9.13 Resolution 144
9.13.1 The Solar-Emission Problem Revisited 145
9.13.2 Other Limitations on Resolution 146
9.14 Discrete Data 147
9.14.1 Reconstruction from Samples 148
9.15 The Finite-Data Problem 148
9.16 Functions of Several Variables 149
9.16.1 A Two-Dimensional Far-Field Object 149
9.16.2 Limited Apertures in Two Dimensions 149
9.17 Broadband Signals 150
10 The Phase Problem 151
10.1 Chapter Summary 151
10.2 Reconstructing from Over-Sampled Complex FT Data 152
10.3 The Phase Problem 154
10.4 A Phase-Retrieval Algorithm 154
10.5 Fienup's Method 156
10.6 Does the Iteration Converge? 156
11 Transmission Tomography 159
11.1 Chapter Summary 159
11.2 X-ray Transmission Tomography 160
11.3 The Exponential-Decay Model 160
11.4 Difficulties to Be Overcome 161
11.5 Reconstruction from Line Integrals 162
11.5.1 The Radon Transform 162
11.5.2 The Central Slice Theorem 163
11.6 Inverting the Fourier Transform 164
11.6.1 Back Projection 164
11.6.2 Ramp Filter, then Back Project 164
11.6.3 Back Project, then Ramp Filter 165
11.6.4 Radon's Inversion Formula 166
11.7 From Theory to Practice 167
11.7.1 The Practical Problems 167
11.7.2 A Practical Solution: Filtered Back Projection 167
11.8 Some Practical Concerns 168
11.9 Summary 168
12 Random Sequences 169
12.1 Chapter Summary 169
12.2 What Is a Random Variable? 170
12.3 The Coin-Flip Random Sequence 171
12.4 Correlation 172
12.5 Filtering Random Sequences 173
12.6 An Example 174
12.7 Correlation Functions and Power Spectra 174
12.8 The Dirac Delta in Frequency Space 176
12.9 Random Sinusoidal Sequences 176
12.10 Random Noise Sequences 177
12.11 Increasing the SNR 178
12.12 Colored Noise 178
12.13 Spread-Spectrum Communication 178
12.14 Stochastic Difference Equations 179
12.15 Random Vectors and Correlation Matrices 181
12.16 The Prediction Problem 182
12.17 Prediction Through Interpolation 182
12.18 Divided Differences 183
12.19 Linear Predictive Coding 185
12.20 Discrete Random Processes 187
12.20.1 Wide-Sense Stationary Processes 187
12.20.2 Autoregressive Processes 188
12.20.3 Linear Systems with Random Input 189
12.21 Stochastic Prediction 190
12.21.1 Prediction for an Autoregressive Process 190
13 Nonlinear Methods 193
13.1 Chapter Summary 194
13.2 The Classical Methods 194
13.3 Modern Signal Processing and Entropy 194
13.4 Related Methods 195
13.5 Entropy Maximization 196
13.6 Estimating Nonnegative Functions 197
13.7 Philosophical Issues 197
13.8 The Autocorrelation Sequence $\{r(n)\}$ 199
13.9 Minimum-Phase Vectors 200
13.10 Burg's MEM 200
13.10.1 The Minimum-Phase Property 202
13.10.2 Solving $R a=\delta$ Using Levinson's Algorithm 203
13.11 A Sufficient Condition for Positive-Definiteness 204
13.12 The IPDFT 206
13.13 The Need for Prior Information in Nonlinear Estimation 207
13.14 What Wiener Filtering Suggests 208
13.15 Using a Prior Estimate 211
13.16 Properties of the IPDFT 212
13.17 Illustrations 213
13.18 Fourier Series and Analytic Functions 213
13.18.1 An Example 214
13.18.2 Hyperfunctions 217
13.19 Fejér-Riesz Factorization 219
13.20 Burg Entropy 220
13.21 Some Eigenvector Methods 221
13.22 The Sinusoids-in-Noise Model 221
13.23 Autocorrelation 222
13.24 Determining the Frequencies 223
13.25 The Case of Non-White Noise 224
14 Discrete Entropy Maximization 225
14.1 Chapter Summary 225
14.2 The Algebraic Reconstruction Technique 226
14.3 The Multiplicative Algebraic Reconstruction Technique 226
14.4 The Kullback-Leibler Distance 227
14.5 The EMART 228
14.6 Simultaneous Versions 228
14.6.1 The Landweber Algorithm 229
14.6.2 The SMART 229
14.6.3 The EMML Algorithm 229
14.6.4 Block-Iterative Versions 230
14.6.5 Convergence of the SMART 230
15 Analysis and Synthesis 233
15.1 Chapter Summary 233
15.2 The Basic Idea 234
15.3 Polynomial Approximation 234
15.4 Signal Analysis 235
15.5 Practical Considerations in Signal Analysis 236
15.5.1 The Discrete Model 237
15.5.2 The Finite-Data Problem 238
15.6 Frames 239
15.7 Bases, Riesz Bases, and Orthonormal Bases 240
15.8 Radar Problems 241
15.9 The Wideband Cross-Ambiguity Function 243
15.10 The Narrowband Cross-Ambiguity Function 244
15.11 Range Estimation 245
15.12 Time-Frequency Analysis 246
15.13 The Short-Time Fourier Transform 246
15.14 The Wigner-Ville Distribution 247
16 Wavelets 249
16.1 Chapter Summary 249
16.2 Background 249
16.3 A Simple Example 250
16.4 The Integral Wavelet Transform 252
16.5 Wavelet Series Expansions 252
16.6 Multiresolution Analysis 254
16.6.1 The Shannon Multiresolution Analysis 254
16.6.2 The Haar Multiresolution Analysis 255
16.6.3 Wavelets and Multiresolution Analysis 255
16.7 Signal Processing Using Wavelets 256
16.7.1 Decomposition and Reconstruction 257
16.7.1.1 The Decomposition Step 258
16.7.1.2 The Reconstruction Step 258
16.8 Generating the Scaling Function 258
16.9 Generating the Two-Scale Sequence 259
16.10 Wavelets and Filter Banks 260
16.11 Using Wavelets 262
17 The BLUE and the Kalman Filter 265
17.1 Chapter Summary 265
17.2 The Simplest Case 266
17.3 A More General Case 267
17.4 Some Useful Matrix Identities 270
17.5 The BLUE with a Prior Estimate 270
17.6 Adaptive BLUE 272
17.7 The Kalman Filter 272
17.8 Kalman Filtering and the BLUE 273
17.9 Adaptive Kalman Filtering 275
17.10 Difficulties with the BLUE 275
17.11 Preliminaries from Linear Algebra 276
17.12 When Are the BLUE and the LS Estimator the Same? 277
17.13 A Recursive Approach 278
18 Signal Detection and Estimation 281
18.1 Chapter Summary 281
18.2 The Model of Signal in Additive Noise 281
18.3 Optimal Linear Filtering for Detection 283
18.4 The Case of White Noise 285
18.4.1 Constant Signal 285
18.4.2 Sinusoidal Signal, Frequency Known 285
18.4.3 Sinusoidal Signal, Frequency Unknown 285
18.5 The Case of Correlated Noise 286
18.5.1 Constant Signal with Unequal-Variance Uncorre- lated Noise 287
18.5.2 Sinusoidal Signal, Frequency Known, in Corre- lated Noise 287
18.5.3 Sinusoidal Signal, Frequency Unknown, in Corre- lated Noise 288
18.6 Capon's Data-Adaptive Method 288
19 Inner Products 291
19.1 Chapter Summary 291
19.2 Cauchy's Inequality 291
19.3 The Complex Vector Dot Product 292
19.4 Orthogonality 293
19.5 Generalizing the Dot Product: Inner Products 294
19.6 Another View of Orthogonality 295
19.7 Examples of Inner Products 297
19.7.1 An Inner Product for Infinite Sequences 297
19.7.2 An Inner Product for Functions 297
19.7.3 An Inner Product for Random Variables 298
19.7.4 An Inner Product for Complex Matrices 298
19.7.5 A Weighted Inner Product for Complex Vectors 298
19.7.6 A Weighted Inner Product for Functions 299
19.8 The Orthogonality Principle 299
20 Wiener Filtering 303
20.1 Chapter Summary 303
20.2 The Vector Wiener Filter in Estimation 304
20.3 The Simplest Case 304
20.4 A More General Case 304
20.5 The Stochastic Case 306
20.6 The VWF and the BLUE 306
20.7 Wiener Filtering of Functions 308
20.8 Wiener Filter Approximation: The Discrete Stationary Case 308
20.9 Approximating the Wiener Filter 310
20.10 Adaptive Wiener Filters 312
20.10.1 An Adaptive Least-Mean-Square Approach 312
20.10.2 Adaptive Interference Cancellation (AIC) 313
20.10.3 Recursive Least Squares (RLS) 313
21 Matrix Theory 315
21.1 Chapter Summary 315
21.2 Matrix Inverses 316
21.3 Basic Linear Algebra 316
21.3.1 Bases and Dimension 316
21.3.2 Systems of Linear Equations 318
21.3.3 Real and Complex Systems of Linear Equations 319
21.4 Solutions of Under-determined Systems of Linear Equa- tions 321
21.5 Eigenvalues and Eigenvectors 322
21.6 Vectorization of a Matrix 323
21.7 The Singular Value Decomposition of a Matrix 324
21.7.1 The SVD 324
21.7.2 An Application in Space Exploration 325
21.7.3 Pseudo-Inversion 326
21.8 Singular Values of Sparse Matrices 326
21.9 Matrix and Vector Differentiation 329
21.10 Differentiation with Respect to a Vector 329
21.11 Differentiation with Respect to a Matrix 330
21.12 Eigenvectors and Optimization 333
22 Compressed Sensing 335
22.1 Chapter Summary 335
22.2 An Overview 336
22.3 Compressed Sensing 337
22.4 Sparse Solutions 338
22.4.1 Maximally Sparse Solutions 339
22.4.2 Minimum One-Norm Solutions 341
22.4.3 Minimum One-Norm as an LP Problem 341
22.4.4 Why the One-Norm? 342
22.4.5 Comparison with the PDFT 342
22.4.6 Iterative Reweighting 343
22.5 Why Sparseness? 344
22.5.1 Signal Analysis 344
22.5.2 Locally Constant Signals 345
22.5.3 Tomographic Imaging 346
22.6 Compressed Sampling 346
23 Probability 349
23.1 Chapter Summary 349
23.2 Independent Random Variables 350
23.3 Maximum Likelihood Parameter Estimation 350
23.3.1 An Example: The Bias of a Coin 350
23.3.2 Estimating a Poisson Mean 351
23.4 Independent Poisson Random Variables 351
23.5 The Multinomial Distribution 352
23.6 Characteristic Functions 353
23.7 Gaussian Random Variables 355
23.7.1 Gaussian Random Vectors 355
23.7.2 Complex Gaussian Random Variables 356
23.8 Using A Priori Information 356
23.9 Conditional Probabilities and Bayes' Rule 357
23.9.1 An Example of Bayes' Rule 357
23.9.2 Using Prior Probabilities 357
23.10 Maximum A Posteriori Estimation 359
23.11 MAP Reconstruction of Images 360
23.12 Penalty-Function Methods 360
23.13 Basic Notions 360
23.14 Generating Correlated Noise Vectors 361
23.15 Covariance Matrices 361
23.16 Principal Component Analysis 362
24 Using the Wave Equation 365
24.1 Chapter Summary 365
24.2 The Wave Equation 365
24.3 The Shallow-Water Case 370
24.4 The Homogeneous-Layer Model 371
24.5 The Pekeris Waveguide 373
24.6 The General Normal-Mode Model 375
24.6.1 Matched-Field Processing 375
25 Reconstruction in Hilbert Space 377
25.1 Chapter Summary 377
25.2 The Basic Problem 377
25.3 Fourier-Transform Data 378
25.4 The General Case 380
25.5 Some Examples 381
25.5.1 Choosing the Inner Product 381
25.5.2 Choosing the Hilbert Space 381
25.6 Summary 382
26 Some Theory of Fourier Analysis 383
26.1 Chapter Summary 383
26.2 Fourier Series 383
26.3 Fourier Transforms 385
26.4 Functions in the Schwartz Class 386
26.5 Generalized Fourier Series 388
26.6 Wiener Theory 388
27 Reverberation and Echo Cancellation 391
27.1 Chapter Summary 391
27.2 The Echo Model 391
27.3 Finding the Inverse Filter 392
27.4 Using the Fourier Transform 393
27.5 The Teleconferencing Problem 394
Bibliography 397
Index 409

Preface

In graduate school, and for the first few years as an assistant professor, my research was in pure mathematics, mainly topology and functional analysis. Around 1979 I was drawn, largely by accident, into signal processing, collaborating with friends at the Naval Research Laboratory who were working on sonar. Initially, I felt that the intersection of the mathematics that I knew and that they knew was nearly empty. After a while, I began to realize that the basic tools of signal processing are subjects with which I was already somewhat familiar, including Fourier series, matrices, and probability and statistics. Much of the jargon and notation seemed foreign to me, and I did not know much about the particular applications everyone else was working on. For a while it seemed that everyone else was speaking a foreign language. However, my knowledge of the basic mathematical tools helped me gradually to understand what was going on and, eventually, to make a contribution.

Signal processing is, in a sense, applied Fourier analysis, applied linear algebra, and some probability and statistics. I had studied Fourier series and linear algebra as an undergraduate, and had taught linear algebra several times. I had picked up some probability and statistics as a professor, although I had never had a course in that subject. Now I was beginning to see these tools in a new light; Fourier coefficients arise as measured data in array processing and tomography, eigenvectors and eigenvalues are used to locate sonar and radar targets, matrices become images and the singularvalue decomposition provides data compression. For the first time, I saw Fourier series, matrices and probability and statistics used all at once, in the analysis of the sampled cross-sensor correlation matrices and the estimation of power spectra.

In my effort to learn signal processing, I consulted a wide variety of texts. Each one helped me somewhat, but I found no text that spoke directly to people in my situation. The texts I read were either too hard, too elementary, or written in what seemed to me to be a foreign language. Some texts in signal processing are written by engineers for engineering students, and necessarily rely only on those mathematical notions their students have encountered previously. In texts such as [116] basic Fourier series and transforms are employed, but there is little discussion of matrices and no mention of probability and statistics, hence no random models.

I found the book [121] by Papoulis helpful, although most of the examples deal with issues of interest primarily to electrical engineers. The books written by mathematicians tend to treat signal processing as a part of harmonic analysis or of stochastic processes. Books about Fourier analysis focus on its use in partial differential equations, or explore rigorously the mathematical aspects of the subject. I was looking for something different. It would have helped me a great deal if there had been a book addressed to people like me, people with a decent mathematical background who were trying to learn signal processing. My hope is that this book serves that purpose.

There are many opportunities for mathematically trained people to make a contribution in signal and image processing, and yet few mathematics departments offer courses in these subjects to their students, preferring to leave it to the engineering departments. One reason, I imagine, is that few mathematics professors feel qualified to teach the subject. My message here is that they probably already know a good deal of signal processing, but do not realize that they know it. This book is designed to help them come to that realization and to encourage them to include signal processing as a course for their undergraduates.

The situations of interest that serve to motivate much of what is discussed in this book can be summarized as follows: We have obtained data through some form of sensing; physical models, often simplified, describe how the data we have obtained relates to the information we seek; there usually isn't enough data and what we have is corrupted by noise, modeling errors, and other distortions. Although applications differ from one another in their details, they often make use of a common core of mathematical ideas. For example, the Fourier transform and its variants play an important role in remote sensing, and therefore in many areas of signal and image processing, as do the language and theory of matrix analysis, iterative optimization and approximation techniques, and the basics of probability and statistics. This common core provides the subject matter for this text. Applications of the core material to tomographic medical imaging, optical imaging, and acoustic signal processing are included in this book.

The term signal processing is used here in a somewhat restrictive sense to describe the extraction of information from measured data. I believe that to get information out we must put information in. How to use the mathematical tools to achieve this is one of the main topics of the book.

This text is designed to provide a bridge to help those with a solid mathematical background to understand and employ signal processing techniques in an applied environment. The emphasis is on a small number of fundamental problems and essential tools, as well as on applications. Certain topics that are commonly included in textbooks are touched on only briefly or in exercises or not mentioned at all. Other topics not usually considered to be part of signal processing, but which are becoming increas-
ingly important, such as iterative optimization methods, are included. The book, then, is a rather personal view of the subject and reflects the author's interests.

The term signal is not meant to imply a restriction to functions of a single variable; indeed, most of what we discuss in this text applies equally to functions of one and several variables and therefore to image processing. However, there are special problems that arise in image processing, such as edge detection, and special techniques to deal with such problems; we shall not consider such techniques in this text. Topics discussed include the following: Fourier series and transforms in one and several variables; applications to acoustic and electro-magnetic propagation models, transmission and emission tomography, and image reconstruction; sampling and the limited data problem; matrix methods, singular value decomposition, and data compression; optimization techniques in signal and image reconstruction from projections; autocorrelations and power spectra; high-resolution methods; detection and optimal filtering; eigenvector-based methods for array processing and statistical filtering, time-frequency analysis, and wavelets.

The ordering of the first eighteen chapters of the book is not random; these main chapters should be read in the order of their appearance. The remaining chapters are ordered randomly and are meant to supplement the main chapters.

Reprints of my journal articles referenced here are available in pdf format at my website, http://faculty.uml.edu/cbyrne/cbyrne.html.

Chapter 1

Introduction

1.1 Chapter Summary 2
1.2 Aims and Topics 2
1.2.1 The Emphasis in This Book 2
1.2.2 Topics Covered 3
1.2.3 Limited Data 3
1.3 Examples and Modalities 3
1.3.1 X-ray Crystallography 4
1.3.2 Transmission Tomography 4
1.3.3 Emission Tomography 4
1.3.4 Back-Scatter Detectors 4
1.3.5 Cosmic-Ray Tomography 5
1.3.6 Ocean-Acoustic Tomography 5
1.3.7 Spectral Analysis 5
1.3.8 Seismic Exploration 6
1.3.9 Astronomy 6
1.3.10 Radar 6
1.3.11 Sonar 6
1.3.12 Gravity Maps 7
1.3.13 Echo Cancellation 7
1.3.14 Hearing Aids 7
1.3.15 Near-Earth Asteroids 8
1.3.16 Mapping the Ozone Layer 8
1.3.17 Ultrasound Imaging 8
1.3.18 X-ray Vision? 8
1.4 The Common Core 8
1.5 Active and Passive Sensing 9
1.6 Using Prior Knowledge 10
1.7 An Urn Model of Remote Sensing 12
1.7.1 An Urn Model 12
1.7.2 Some Mathematical Notation 13
1.7.3 An Application to SPECT Imaging 14
1.8 Hidden Markov Models 15

1.1 Chapter Summary

We begin with an overview of applications of signal processing and the variety of sensing modalities that are employed. It is typical of remotesensing problems that what we want is not what we can measure directly, and we must obtain our information by indirect means. To illustrate that point without becoming entangled in the details of any particular application, we present a marbles-in-bowls model of remote sensing that, although simple, still manages to capture the dominate aspects of many real-world problems.

1.2 Aims and Topics

The term signal processing has broad meaning and covers a wide variety of applications. In this course we focus on those applications of signal processing that can loosely be called remote sensing, although the mathematics we shall study is fundamental to all areas of signal processing.

In a course in signal processing it is easy to get lost in the details and lose sight of the big picture. My main objectives here are to present the most important ideas, techniques, and methods, to describe how they relate to one another, and to illustrate their uses in several applications. For signal processing, the most important mathematical tools are Fourier series and related notions, matrices, and probability and statistics. Most students with a solid mathematical background have probably encountered each of these topics in previous courses, and therefore already know some signal processing, without realizing it.

Our discussion here will involve primarily functions of a single real variable, although most of the concepts will have multi-dimensional versions. It is not our objective to treat each topic with the utmost mathematical rigor, and we shall seek to avoid issues that are primarily of mathematical concern.

1.2.1 The Emphasis in This Book

This text is designed to provide the necessary mathematical background to understand and employ signal processing techniques in an applied environment. The emphasis is on a small number of fundamental problems and essential tools, as well as on applications. Certain topics that are commonly included in textbooks are touched on only briefly or in exercises or
not mentioned at all. Other topics not usually considered to be part of signal processing, but which are becoming increasingly important, such as matrix theory and linear algebra, are included.

The term signal is not meant to imply a specific context or a restriction to functions of time, or even to functions of a single variable; indeed, most of what we discuss in this text applies equally to functions of one and several variables and therefore to image processing. However, this is in no sense an introduction to image processing. There are special problems that arise in image processing, such as edge detection, and special techniques to deal with such problems; we shall not consider such techniques in this text.

1.2.2 Topics Covered

Topics discussed in this text include the following: Fourier series and transforms in one and several variables; applications to acoustic and EM propagation models, transmission and emission tomography, and image reconstruction; sampling and the limited data problem; matrix methods, singular value decomposition, and data compression; optimization techniques in signal and image reconstruction from projections; autocorrelations and power spectra; high-resolution methods; detection and optimal filtering; eigenvector-based methods for array processing and statistical filtering; time-frequency analysis; and wavelets.

1.2.3 Limited Data

As we shall see, it is often the case that the data we measure is not sufficient to provide a single unique answer to our problem. There may be many, often quite different, answers that are consistent with what we have measured. In the absence of prior information about what the answer should look like, we do not know how to select one solution from the many possibilities. For that reason, I believe that to get information out we must put information in. How to do this is one of the main topics of the course. The example at the end of this chapter will illustrate this point.

1.3 Examples and Modalities

There are a wide variety of problems in which what we want to know about is not directly available to us and we need to obtain information by more indirect methods. In this section we present several examples of remote sensing. The term "modality" refers to the manner in which the
desired information is obtained. Although the sensing of acoustic and electromagnetic signals is perhaps the most commonly used method, remote sensing involves a wide variety of modalities: electromagnetic waves (light, x-ray, microwave, radio); sound (sonar, ultrasound); radioactivity (positron and single-photon emission); magnetic resonance (MRI); seismic waves; and a number of others.

1.3.1 X-ray Crystallography

The patterns produced by the scattering of x-rays passing through various materials can be used to reveal their molecular structure.

1.3.2 Transmission Tomography

In transmission tomography x-rays are transmitted along line segments through the object and the drop in intensity along each line is recorded.

1.3.3 Emission Tomography

In emission tomography radioactive material is injected into the body of the living subject and the photons resulting from the radioactive decay are detected and recorded outside the body.

1.3.4 Back-Scatter Detectors

There is considerable debate at the moment about the use of so-called full-body scanners at airports. These are not scanners in the sense of a CAT scan; indeed, if the images were skeletons there would probably be less controversy. These are images created by the returns, or backscatter, of millimeter-wavelength (MMW) radio-frequency waves, or sometimes lowenergy x-rays, that penetrate only the clothing and then reflect back to the machine.

The controversies are not really about safety to the passenger being imaged. The MMW imaging devices use about 10, 000 times less energy than a cell phone, and the x-ray exposure is equivalent to two minutes of flying in an airplane. At present, the images are fuzzy and faces are intentionally blurred, but there is some concern that the images will get sharper, will be permanently stored, and eventually end up on the net. Given what is already available on the net, the market for these images will almost certainly be non-existent.

1.3.5 Cosmic-Ray Tomography

Because of their ability to penetrate granite, cosmic rays are being used to obtain transmission-tomographic three-dimensional images of the interiors of active volcanos. Where magma has replaced granite there is less attenuation of the rays, so the image can reveal the size and shape of the magma column. It is hoped that this will help to predict the size and occurrence of eruptions.

In addition to mapping the interior of volcanos, cosmic rays can also be used to detect the presence of shielding around nuclear material in a cargo container. The shielding can be sensed by the characteristic scattering by it of muons from cosmic rays; here neither we nor the objects of interest are the sources of the probing. This is about as "remote" as sensing can be.

1.3.6 Ocean-Acoustic Tomography

The speed of sound in the ocean varies with the temperature, among other things. By transmitting sound from known locations to known receivers and measuring the travel times we can obtain line integrals of the temperature function. Using the reconstruction methods from transmission tomography, we can estimate the temperature function. Knowledge of the temperature distribution may then be used to improve detection of sources of acoustic energy in unknown locations.

1.3.7 Spectral Analysis

In our detailed discussion of transmission and remote sensing we shall, for simplicity, concentrate on signals consisting of a single frequency. Nevertheless, there are many important applications of signal processing in which the signal being studied has a broad spectrum, indicative of the presence of many different frequencies. The purpose of the processing is often to determine which frequencies are present, or not present, and to determine their relative strengths. The hotter inner body of the sun emits radiation consisting of a continuum of frequencies. The cooler outer layer absorbs the radiation whose frequencies correspond to the elements present in that outer layer. Processing these signals reveals a spectrum with a number of missing frequencies, the so-called Fraunhofer lines, and provides information about the makeup of the sun's outer layers. This sort of spectral analysis can be used to identify the components of different materials, making it an important tool in many applications, from astronomy to forensics.

1.3.8 Seismic Exploration

Oil companies want to know if it is worth their while drilling in a particular place. If they go ahead and drill, they will find out, but they would like to know what is the chance of finding oil without actually drilling. Instead, they set off explosions and analyze the signals produced by the seismic waves, which will tell them something about the materials the waves encountered. Explosive charges create waves that travel through the ground and are picked up by sensors. The waves travel at different speeds through different materials. Information about the location of different materials in the ground is then extracted from the received signals.

1.3.9 Astronomy

Astronomers know that there are radio waves, visible-light waves, and other forms of electro-magnetic radiation coming from the sun and distant regions of space, and they would like to know precisely what is coming from which regions. They cannot go there to find out, so they set up large telescopes and antenna arrays and process the signals that they are able to measure.

1.3.10 Radar

Those who predict the weather use radar to help them see what is going on in the atmosphere. Radio waves are sent out and the returns are analyzed and turned into images. The location of airplanes is also determined by radar. The radar returns from different materials are different from one another and can be analyzed to determine what materials are present. Synthetic-aperture radar is used to obtain high-resolution images of regions of the earth's surface. The radar returns from different geometric shapes also differ in strength; by avoiding right angles in airplane design stealth technology attempts to make the plane invisible to radar.

1.3.11 Sonar

Features on the bottom of the ocean are imaged with sonar, in which sound waves are sent down to the bottom and the returning waves are analyzed. Sometimes near or distant objects of interest in the ocean emit their own sound, which is measured by sensors. The signals received by the sensors are processed to determine the nature and location of the objects. Even changes in the temperature at different places in the ocean can be determined by sending sound waves through the region of interest and measuring the travel times.

1.3.12 Gravity Maps

The pull of gravity varies with the density of the material. Features on the surface of the earth, such as craters from ancient asteroid impacts, can be imaged by mapping the variations in the pull of gravity, as measured by satellites.

Gravity, or better, changes in the pull of gravity from one location to another, was used in the discovery of the crater left behind by the asteroid strike in the Yucatan that led to the extinction of the dinosaurs. The rocks and other debris that eventually filled the crater differ in density from the surrounding material, thereby exerting a slightly different gravitational pull on other masses. This slight change in pull can be detected by sensitive instruments placed in satellites in earth orbit. When the intensity of the pull, as a function of position on the earth's surface, is displayed as a twodimensional image, the presence of the crater is evident.

Studies of the changes in gravitational pull of the Antarctic ice between 2002 and 2005 revealed that Antarctica is losing 36 cubic miles of ice each year. By way of comparison, the city of Los Angeles uses one cubic mile of water each year. While this finding is often cited as clear evidence of global warming, it contradicts some models of climate change that indicate that global warming may lead to an increase of snowfall, and therefore more ice, in the polar regions. This does not show that global warming is not taking place, but only the inadequacies of some models [119].

1.3.13 Echo Cancellation

In a conference call between locations A and B , what is transmitted from A to B can get picked up by microphones in B , transmitted back to speakers in A and then retransmitted to B , producing an echo of the original transmission. Signal processing performed at the transmitter in A can reduce the strength of the second version of the transmission and decrease the echo effect.

1.3.14 Hearing Aids

Makers of digital hearing aids include signal processing to enhance the quality of the received sounds, as well as to improve localization, that is, the ability of the hearer to tell where the sound is coming from. When a hearing aid is used, sounds reach the ear in two ways: first, the usual route directly into the ear, and second, through the hearing aid. Because that part that passes through the hearing aid is processed, there is a slight delay. In order for the delay to go unnoticed, the processing must be very fast. When hearing aids are used in both ears, more sophisticated processing can be used.

1.3.15 Near-Earth Asteroids

An area of growing importance is the search for potentially damaging near-earth asteroids. These objects are initially detected by passive optical observation, as small dots of reflected sunlight; once detected, they are then imaged by active radar to determine their size, shape, rotation, path, and other important parameters. Satellite-based infrared detectors are being developed to find dark asteroids by the heat they give off. Such satellites, placed in orbit between the sun and the earth, will be able to detect asteroids hidden from earth-based telescopes by the sunlight.

1.3.16 Mapping the Ozone Layer

Ultraviolet light from the sun is scattered by ozone. By measuring the amount of scattered UV at various locations on the earth's surface, and with the sun in various positions, we obtain values of the Laplace transform of the function describing the density of ozone, as a function of elevation.

1.3.17 Ultrasound Imaging

While x-ray tomography is a powerful method for producing images of the interior of patients' bodies, the radiation involved and the expense make it unsuitable in some cases. Ultrasound imaging, making use of backscattered sound waves, is a popular method of inexpensive preliminary screening for medical diagnostics, and for examining a developing fetus.

1.3.18 X-ray Vision?

The MIT computer scientist and electrical engineer Dina Katabi and her students are currently exploring new uses of wireless technologies. By combining Wi-Fi and vision into what she calls Wi-Vi, she has discovered a way to detect the number and approximate location of persons within a closed room and to recognize simple gestures. The scattering of reflected low-bandwidth wireless signals as they pass through the walls is processed to eliminate motionless sources of reflection from the much weaker reflections from moving objects, presumably people.

1.4 The Common Core

The examples just presented look quite different from one another, but the differences are often more superficial than real. As we begin to use
mathematics to model these various situations we often discover a common core of mathematical tools and ideas at the heart of each of these applications. For example, the Fourier transform and its variants play an important role in many areas of signal and image processing, as do the language and theory of matrix analysis, iterative optimization and approximation techniques, and the basics of probability and statistics. This common core provides the subject matter for this book. Applications of the core material to tomographic medical imaging, optical imaging, and acoustic signal processing are among the topics to be discussed in some detail.

Although the applications of interest to us vary in their details, they have common aspects that can be summarized as follows: the data has been obtained through some form of sensing; physical models, often simplified, describe how the data we have obtained relates to the information we seek; there usually isn't enough data and what we have is corrupted by noise and other distortions.

1.5 Active and Passive Sensing

In some signal and image processing applications the sensing is active, meaning that we have initiated the process, by, say, sending an x-ray through the body of a patient, injecting a patient with a radionuclide, transmitting an acoustic signal through the ocean, as in sonar, or transmitting a radio wave, as in radar. In such cases, we are interested in measuring how the system, the patient, the quiet submarine, the ocean floor, the rain cloud, will respond to our probing. In many other applications, the sensing is passive, which means that the object of interest to us provides its own signal of some sort, which we then detect, analyze, image, or process in some way. Certain sonar systems operate passively, listening for sounds made by the object of interest. Optical and radio telescopes are passive, relying on the object of interest to emit or reflect light, or other electromagnetic radiation. Night-vision instruments are sensitive to lower-frequency, infrared radiation.

From the time of Aristotle and Euclid until the middle ages there was an ongoing debate concerning the active or passive nature of human sight [112]. Those like Euclid, whose interests were largely mathematical, believed that the eye emitted rays, the extramission theory. Aristotle and others, more interested in the physiology and anatomy of the eye than in mathematics, believed that the eye received rays from observed objects outside the body, the intromission theory. Finally, around 1000 AD, the Arabic mathematician and natural philosopher Alhazen demolished the extramission theory
by noting the potential for bright light to hurt the eye, and combined the mathematics of the extramission theorists with a refined theory of intromission. The extramission theory has not gone away completely, however, as anyone familiar with Superman's x-ray vision knows.

1.6 Using Prior Knowledge

An important point to keep in mind when doing signal processing is that, while the data is usually limited, the information we seek may not be lost. Although processing the data in a reasonable way may suggest otherwise, other processing methods may reveal that the desired information is still available in the data. Figure 1.1 illustrates this point.

The original image on the upper right of Figure 1.1 is a discrete rectangular array of intensity values simulating the distribution of the x-rayattenuating material in a slice of a head. The data was obtained by taking the two-dimensional discrete Fourier transform of the original image, and then discarding, that is, setting to zero, all these spatial frequency values, except for those in a smaller rectangular region around the origin. Reconstructing the image from this limited data amounts to solving a large system of linear equations. The problem is under-determined, so a minimum-norm solution would seem to be a reasonable reconstruction method. For now, "norm" means the Euclidean norm.

The minimum-norm solution is shown on the lower right. It is calculated simply by performing an inverse discrete Fourier transform on the array of modified discrete Fourier transform values. The original image has relatively large values where the skull is located, but the least-squares reconstruction does not want such high values; the norm involves the sum of squares of intensities, and high values contribute disproportionately to the norm. Consequently, the minimum-norm reconstruction chooses instead to conform to the measured data by spreading what should be the skull intensities throughout the interior of the skull. The minimum-norm reconstruction does tell us something about the original; it tells us about the existence of the skull itself, which, of course, is indeed a prominent feature of the original. However, in all likelihood, we would already know about the skull; it would be the interior that we want to know about.

Using our knowledge of the presence of a skull, which we might have obtained from the minimum-norm reconstruction itself, we construct the prior estimate shown in the upper left. Now we use the same data as before, and calculate a minimum-weighted-norm reconstruction, using as the weight vector the reciprocals of the values of the prior image. This minimum-

FIGURE 1.1: Extracting information in image reconstruction.
weighted-norm reconstruction, also called the PDFT estimator, is shown on the lower left; it is clearly almost the same as the original image. The calculation of the minimum-weighted-norm solution can be done iteratively using the ART algorithm [143].

When we weight the skull area with the inverse of the prior image, we allow the reconstruction to place higher values there without having much of an effect on the overall weighted norm. In addition, the reciprocal weighting in the interior makes spreading intensity into that region costly, so the interior remains relatively clear, allowing us to see what is really present there.

When we try to reconstruct an image from limited data, it is easy to assume that the information we seek has been lost, particularly when a reasonable reconstruction method fails to reveal what we want to know. As
this example, and many others, show, the information we seek is often still in the data, but needs to be brought out in a more subtle way.

1.7 An Urn Model of Remote Sensing

Most of the signal processing that we shall discuss in this book is related to the problem of remote sensing, which we might also call indirect measurement. In such problems we do not have direct access to what we are really interested in, and must be content to measure something else that is related to, but not the same as, what interests us. For example, we want to know what is in the suitcases of airline passengers, but, for practical reasons, we cannot open every suitcase. Instead, we x-ray the suitcases. A recent paper [137] describes progress in detecting nuclear material in cargo containers by measuring the scattering, by the shielding, of cosmic rays; you can't get much more remote than that. Before we get into the mathematics of signal processing, it is probably a good idea to consider a model that, although quite simple, manages to capture many of the important features of remote-sensing applications. To convince the reader that this is indeed a useful model, we relate it to the problem of image reconstruction in single-photon emission computed tomography (SPECT). There seems to be a tradition in physics of using simple models or examples involving urns and marbles to illustrate important principles. In keeping with that tradition, we have here two examples, both involving urns of marbles, to illustrate various aspects of remote sensing.

1.7.1 An Urn Model

Suppose that there is a box containing a large number of small pieces of paper, and on each piece is written one of the numbers from $j=1$ to $j=J$. I want to determine, for each $j=1, \ldots, J$, the probability of selecting a piece of paper with the number j written on it. Unfortunately, I am not allowed to examine the box. I am allowed, however, to set up a remote-sensing experiment to help solve my problem.

My assistant sets up J urns, numbered $j=1, \ldots, J$, each containing marbles of various colors. Suppose that there are I colors, numbered $i=1, \ldots, I$. I am allowed to examine each urn, so I know precisely the probability that a marble of color i will be drawn from urn j. Out of my view, my assistant removes one piece of paper from the box, takes one marble from the indicated urn, announces to me the color of the marble, and then replaces both the piece of paper and the marble. This action is repeated N times,
at the end of which I have a long list of colors, $\mathbf{i}=\left\{i_{1}, i_{2}, \ldots, i_{N}\right\}$, where i_{n} denotes the color of the nth marble drawn. This list \mathbf{i} is my data, from which I must determine the contents of the box.

This is a form of remote sensing; what we have access to is related to, but not equal to, what we are interested in. What I wish I had is the list of urns used, $\mathbf{j}=\left\{j_{1}, j_{2}, \ldots, j_{N}\right\}$; instead I have \mathbf{i}, the list of colors. Sometimes data such as the list of colors is called "incomplete data," in contrast to the "complete data," which would be the list \mathbf{j} of the actual urn numbers drawn from the box.

Using our urn model, we can begin to get a feel for the resolution problem. If all the marbles of one color are in a single urn, all the black marbles in urn $j=1$, all the green in urn $j=2$, and so on, the problem is trivial; when I hear a color, I know immediately which urn contained that marble. My list of colors is then a list of urn numbers; $\mathbf{i}=\mathbf{j}$. I have the complete data now. My estimate of the number of pieces of paper containing the urn number j is then simply the proportion of draws that resulted in urn j being selected.

At the other extreme, suppose two urns have identical contents. Then I cannot distinguish one urn from the other and I am unable to estimate more than the total number of pieces of paper containing either of the two urn numbers. If the two urns have nearly the same contents, we can distinguish them only by using a very large N. This is the resolution problem.

Generally, the more the contents of the urns differ, the easier the task of estimating the contents of the box. In remote-sensing applications, these issues affect our ability to resolve individual components contributing to the data.

1.7.2 Some Mathematical Notation

To introduce some mathematical notation, let us denote by x_{j} the proportion of the pieces of paper that have the number j written on them. Let $P_{i j}$ be the proportion of the marbles in urn j that have the color i. Let y_{i} be the proportion of times the color i occurs in the list of colors. The expected proportion of times i occurs in the list is $E\left(y_{i}\right)=\sum_{j=1}^{J} P_{i j} x_{j}=(P x)_{i}$, where P is the I by J matrix with entries $P_{i j}$ and x is the J by 1 column vector with entries x_{j}. A reasonable way to estimate x is to replace $E\left(y_{i}\right)$ with the actual y_{i} and solve the system of linear equations $y_{i}=\sum_{j=1}^{J} P_{i j} x_{j}$, $i=1, \ldots, I$. Of course, we require that the x_{j} be nonnegative and sum to one, so special algorithms may be needed to find such solutions. In a number of applications that fit this model, such as medical tomography, the values x_{j} are taken to be parameters, the data y_{i} are statistics, and the x_{j} are estimated by adopting a probabilistic model and maximizing the likelihood function. Iterative algorithms, such as the expectation maximization
maximum likelihood (EMML) algorithm, are often used for such problems; see Chapter 14 for details.

1.7.3 An Application to SPECT Imaging

In single-photon emission computed tomography (SPECT) the patient is injected with a chemical to which a radioactive tracer has been attached. Once the chemical reaches its destination within the body the photons emitted by the radioactive tracer are detected by gamma cameras outside the body. The objective is to use the information from the detected photons to infer the relative concentrations of the radioactivity within the patient.

We discretize the problem and assume that the body of the patient consists of J small volume elements, called voxels, analogous to pixels in digitized images. We let $x_{j} \geq 0$ be the unknown proportion of the radioactivity that is present in the j th voxel, for $j=1, \ldots, J$. There are I detectors, denoted $\{i=1,2, \ldots, I\}$. For each i and j we let $P_{i j}$ be the known probability that a photon that is emitted from voxel j is detected at detector i; these probabilities are usually determined by examining the relative positions in space of voxel j and detector i. We denote by i_{n} the detector at which the nth emitted photon is detected. This photon was emitted at some voxel, denoted j_{n}; we wish that we had some way of learning what each j_{n} is, but we must be content with knowing only the i_{n}. After N photons have been emitted, we have as our data the list $\mathbf{i}=\left\{i_{1}, i_{2}, \ldots, i_{N}\right\}$; this is our incomplete data. We wish we had the complete data, that is, the list $\mathbf{j}=\left\{j_{1}, j_{2}, \ldots, j_{N}\right\}$, but we do not. Our goal is to estimate the frequency with which each voxel emitted a photon, which we assume, reasonably, to be proportional to the unknown proportions x_{j}, for $j=1, \ldots, J$.

This problem is completely analogous to the urn problem previously discussed. Any mathematical method that solves one of these problems will solve the other one. In the urn problem, the colors were announced; here the detector numbers are announced. There, I wanted to know the urn numbers; here I want to know the voxel numbers. There, I wanted to estimate the frequency with which the j th urn was used; here, I want to estimate the frequency with which the j th voxel is the site of an emission, which is assumed to be equal to the proportion of the radionuclide within the j th voxel. In the urn model, two urns with nearly the same contents are hard to distinguish unless N is very large; here, two neighboring voxels will be very hard to distinguish (i.e., to resolve) unless N is very large. But in the SPECT case, a large N means a high dosage, which will be prohibited by safety considerations. Therefore, we have a built-in resolution problem in the SPECT case.

Both problems are examples of probabilistic mixtures, in which the mixing probabilities are the x_{j} that we seek. The maximum likelihood (ML)
method of statistical parameter estimation can be used to solve such problems. The interested reader should consult the text [42].

1.8 Hidden Markov Models

In the urn model we just discussed, the order of the colors in the list is unimportant; we could randomly rearrange the colors on the list without affecting the nature of the problem. The probability that a green marble will be chosen next is the same, whether a blue or a red marble was just chosen the previous time. This independence from one selection to another is fine for modeling certain physical situations, such as emission tomography. However, there are other situations in which this independence does not conform to reality.

In written English, for example, knowing the current letter helps us, sometimes more, sometimes less, to predict what the next letter will be. We know that, if the current letter is a "q", then there is a high probability that the next one will be a "u". So what the current letter is affects the probabilities associated with the selection of the next one.

Spoken English is even tougher. There are many examples in which the pronunciation of a certain sound is affected, not only by the sound or sounds that preceded it, but by the sound or sounds that will follow. For example, the sound of the "e" in the word "bellow" is different from the sound of the "e" in the word "below"; the sound changes, depending on whether there is a double "l" or a single "l" following the "e". Here the entire context of the letter affects its sound.

Hidden Markov models (HMM) are increasingly important in speech processing, optical character recognition, and DNA sequence analysis. They allow us to incorporate dependence on the context into our model. In this section we illustrate HMM using a modification of the urn model.

Suppose, once again, that we have J urns, indexed by $j=1, \ldots, J$ and I colors of marbles, indexed by $i=1, \ldots, I$. Associated with each of the J urns is a box, containing a large number of pieces of paper, with the number of one urn written on each piece. My assistant selects one box, say the j_{0} th box, to start the experiment. He draws a piece of paper from that box, reads the number written on it, call it j_{1}, goes to the urn with the number j_{1} and draws out a marble. He then announces the color. He then draws a piece of paper from box number j_{1}, reads the next number, say j_{2}, proceeds to urn number j_{2}, etc. After N marbles have been drawn, the only data I have is a list of colors, $\mathbf{i}=\left\{i_{1}, i_{2}, \ldots, i_{N}\right\}$.

The transition probability that my assistant will proceed from the urn numbered k to the urn numbered j is $b_{j k}$, with $\sum_{j=1}^{J} b_{j k}=1$. The number of the current urn is the current state. In an ordinary Markov chain model, we observe directly a sequence of states governed by the transition probabilities. The Markov chain model provides a simple formalism for describing a system that moves from one state into another, as time goes on. In the hidden Markov model we are not able to observe the states directly; they are hidden from us. Instead, we have indirect observations, the colors of the marbles in our urn example.

The probability that the color numbered i will be drawn from the urn numbered j is $a_{i j}$, with $\sum_{i=1}^{I} a_{i j}=1$, for all j. The colors announced are the visible states, while the unannounced urn numbers are the hidden states.

There are several distinct objectives one can have, when using HMM. We assume that the data is the list of colors, \mathbf{i}.

- Evaluation: For given probabilities $a_{i j}$ and $b_{j k}$, what is the probability that the list \mathbf{i} was generated according to the HMM? Here, the objective is to see if the model is a good description of the data.
- Decoding: Given the model, the probabilities, and the list i, what list $\mathbf{j}=\left\{j_{1}, j_{2}, \ldots, j_{N}\right\}$ of urns is most likely to be the list of urns actually visited? Now, we want to infer the hidden states from the visible ones.
- Learning: We are told that there are J urns and I colors, but are not told the probabilities $a_{i j}$ and $b_{j k}$. We are given several data vectors \mathbf{i} generated by the HMM; these are the training sets. The objective is to learn the probabilities.

Once again, the ML approach can play a role in solving these problems [68]. The Viterbi algorithm is an important tool used for the decoding phase (see [149]).

Chapter 2

Fourier Series and Fourier Transforms

2.1 Chapter Summary 17
2.2 Fourier Series 18
2.3 Complex Exponential Functions 20
2.4 Fourier Transforms 21
2.5 Basic Properties of the Fourier Transform 22
2.6 Some Fourier-Transform Pairs 23
2.7 Dirac Deltas 25
2.8 Convolution Filters 27
$2.9 \quad$ A Discontinuous Function 29
2.10 Shannon's Sampling Theorem 29
2.11 What Shannon Does Not Say 31
2.12 Inverse Problems 31
2.13 Two-Dimensional Fourier Transforms 33
2.13.1 The Basic Formulas 33
2.13.2 Radial Functions 34
2.13.3 An Example 35
2.14 The Uncertainty Principle 36
2.15 Best Approximation 38
2.15.1 The Orthogonality Principle 38
2.15.2 An Example 39
2.15.3 The DFT as Best Approximation 40
2.15.4 The Modified DFT (MDFT) 40
2.15.5 The PDFT 42
2.16 Analysis of the MDFT 43
2.16.1 Eigenvector Analysis of the MDFT 43
2.16.2 The Eigenfunctions of S_{Γ} 44

2.1 Chapter Summary

We begin with Fourier series and Fourier transforms, which are essential tools in signal processing. In this chapter we give the formulas for

