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Preface to the Second Edition

More than ten years ago we wrote the first edition of this introduction to geometric
invariant theory, with the intent to draw a bridge between the basic theory of affine algebraic
groups and the more sophisticated theory of the geometric invariant theory à la Mumford.
When the editors of the series “Current Monographs and Research Notes in Mathematics”
by Chapman and Hall/CRC Press suggested the possibility of a new edition, we gladly took
the opportunity in order to introduce some relevant subjects of recent appearance. Moreover,
since the first edition saw the light, some colleagues and we, ourselves, thought that a few
omitted subjects could profitably be introduced; these additions also were implemented. In
both cases we tried to guarantee the stability of the general stylistic conception of the book,
in particular its aspiration of self-containment. Some typos and mistakes have also been
fixed.

The main changes implemented in this second edition are described in the introductions
to the different chapters, especially chapters 7 and 14 — present in the first edition — and
chapters 2, 15 and 16 — that are new chapters.

Below we describe the more relevant changes.

In order to introduce the new topics presented in this second edition, we added some
additional results on the geometry of algebraic varieties, namely the construction of the
Proj variety associated to a graded algebra and the concept of scheme — mainly affine
schemes — and of rational points of an affine scheme — i.e., the categorical perspective
of a scheme. In order to keep the balance of the chapter sizes, we split Chapter 1 into
two: the title of the the first chapter Algebraic geometry: basic definitions and results is
self-explanatory — almost all its results are presented with proofs; in the added chapter
Algebraic varieties, we deal with the finer geometric aspects of this theory, and often we do
not write detailed proofs — although the reader is given precise references for them. It is in
this chapter that we introduce some elements of the theory of schemes, for their use mainly
in the new Chapter 16, Quotient varieties: an introduction to geometric invariant theory.
Also, we added an early introduction in Chapter 7 to the concept of affinized quotient that
will be used to treat the theory of observability in more depth, and that might illustrate
the situation of other more refined quotients. Chapter 14 has also seen many changes and
intended improvements, mainly related to a preparation for the proofs of the results on
observability in Chapter 15, Observable actions of affine algebraic groups — in the next
paragraph we describe this new chapter, which is another addition to this second edition.
But not only: the geometric counterpart of the concept of induced representation — that
of homogeneous fiber bundle — seemed to be a necessary addition to this chapter in order
to wrap up the important examples of quotients that can be dealt within the scope of this
book.

In this second edition, there is the new Chapter 15, dealing in full detail with the subject
of the observability of a general action. This concept of observable action was introduced
recently, and it is a natural generalization of the notion of an observable subgroup. See [147],
[148] where the basic definitions and initial results on observable actions appeared. In the
case that we have an affine algebraic group and a closed subgroup acting by translations,

xiii



xiv Preface to the Second Edition

the action is observable if and only if the subgroup is observable. The interested reader can
look at the introduction of the corresponding chapter for a more detailed description of
the concepts appearing therein. Here we only mention that this new idea of observability
is closely related to the phenomenon of unipotency, and that almost all the results on
observable subgroups as they appear in Chapter 11 can be generalized to this new context
(see, for example, theorems 15.4.2 and 15.5.5).

One of the cornerstones of geometric invariant theory (and its application to moduli
problems, see, for example, [120], [125] and [134]) is the construction of open subsets where
the restriction of a given action has a quotient. An introduction to the subject is presented
in the new Chapter 16. In there we treat the Hilbert–Mumford criterion, and its numerical
counterpart, that permits the identification of the set of semistable and stable points of an
action of a reductive group on a projective variety, in terms of the induced action of the
multiplicative group via the one parameter subgroups of the reductive group. Whereas the
notion of stable point is absolute, the notion of semistable point is relative to an equivariant
closed immersion of the projective variety into a projective space — this immersion is given
by a linearized ample line bundle. Since the full extent of this criterion falls out of the
scope of this book, we present a simplified version in theorems 16.3.54, 16.4.15 and 16.4.21,
which omits the construction of the closed immersion. However, the reader should be aware
that even in this simplified context we have to use the so-called Iwahori decomposition of
a reductive group as well as some results on morphisms from Chapter 2 that are presented
with precise statements but without explicit proofs.
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Preface to the First Edition

A tree that can fill the space
of a man’s arm

Grows from a downy tip;
A terrace nine storeys high

Rises from hodfuls of earth;
A journey of a thousand miles
Starts from beneath one’s feet.

Lao Tzu, Tao Te Ching
Tr. C.C. Lau, Penguin Classics

This book is an introduction to geometric invariant theory understood à la Mumford —
as presented in his seminal book, Geometric Invariant Theory [121]. In this sense, we intend
to draw a bridge between the basic theory of affine algebraic groups (that is inseparable
from considerations related to the geometry of actions) and the more sophisticated theory
mentioned above.

Many problems of invariants of abstract groups become naturally problems of invari-
ants of affine algebraic groups. In fact, the view of an abstract group as a group of linear
transformations of a vector space, or more generally of transformations of a certain set
with additional structure, has been fundamental since the origins of group theory in the
pioneering works of E. Galois and C. Jordan in the nineteenth century. In this situation, it
becomes handy to consider the associated action of the Zariski closure of the group.

Once we are dealing with affine algebraic groups, the use of the geometric structure
adds many useful tools to our workbench. For example, one can linearize the problem by
considering the tangent space at the identity, and view it as a problem in the category of
finite dimensional Lie algebras.

If we are considering actions, it is natural to search for invariants, i.e., for functions
from the original space into a certain set that are constant along the orbits, and if we are
working with affine groups, we ask these functions to be regular. In principle, once we find a
large enough number — but finite following Hilbert’s expectations — of invariant functions,
one can use them to decide whether or not two points are in the same orbit. Thereafter,
one is led to search for natural, e.g., algebraic geometric, structures in the set of orbits. To
deal with this problem, i.e., to study the concept of quotient variety, is one of the main
objectives of this book. In particular, we have paid special attention in chapters 8, 11 and
12 to the relationship between the geometric structure of quotients of the form G/H, i.e.,
of homogeneous spaces, and the interplay between the representations of H and of G.

As we mentioned before, this text was written with the intention of being a reasonably
self-contained introduction to the specialized texts and papers in geometric invariant theory.
This intent of self-containment is specially laborious as, in this theory, techniques from many
different areas of mathematics come into play: commutative algebra and field theory, Hopf
algebra theory, representation theory of groups and algebras, algebraic geometry, Lie algebra
theory.

xv



xvi Preface to the First Edition

Being an introductory text, we added at the end of each chapter a list of exercises that
hopefully will help the reader to acquire a certain expertise in working with the fundamental
concepts. Frequently, examples and parts of the proofs are left as exercises.

Our serious labors start with the theory of affine algebraic groups in Chapter 4, but
we have included in the text two initial chapters. The first of these chapters contains most
of the needed prerequisites in commutative algebra and algebraic geometry. Its results and
definitions are presented sometimes with proofs or sketches of proofs, but always with
precise references. The other chapter deals with the necessary prerequisites in the theory of
semisimple Lie algebras over fields of characteristic zero.

Every chapter has an introductory section with a summary of its contents. We will not
attempt to iterate here that non easy summarizing task. The interested reader may — if
he possesses a certain degree of tenacity — read all these as a global introduction to the
contents of this book.

At the end of the book, in order to minimize notational confusion, we have added an
appendix with some basic definitions from category theory, algebra and topology. Moreover,
in order to help the reader to keep track of the notations and important concepts, we
collected most of them in an exhaustive glossary and a comprehensive subject index.

Concerning other texts dealing with the topics we treat, the reader may consult the
references at the end of the book. Our bibliography is far from being exhaustive; the indus-
trious reader can find an excellent bibliographic job done in some of the books we cite (see,
for example, [144]).

Here and there along the book we have made some amateurish historical comments with
the intention to give the reader a hint of the genesis of some of the subjects; the author
index may help the reader to find these remarks in the text. We dare to expect that these
comments will induce the reader to look at some of the serious books that have recently
appeared dealing with the history of these topics, e.g., [13] and [68].

Our debts to the many contributors to the theory are impossible to record in this
preface, but should be clear to the attentive reader. Many comments about our sources
appear along the text.

We have chosen to avoid, mainly for reasons of space and emphasis, the consideration
of non algebraically closed fields. Concerning this point, the reader should be aware that
not a few of the results we treat are valid, sometimes with small modifications, for general
fields. Furthermore, with the exception of some considerations about proper morphisms,
we deal only with algebraic varieties, avoiding the language of schemes. Even in that case
we restrict mainly to the situation of affine schemes. For a scheme theoretical vision of the
theory the reader can consult, for example, [34] and [121], or the more recent [92].
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Enumeration of items and cross-references

The chapters are enumerated with arabic numerals; the Appendix is not enumerated.
Within each chapter, each section is enumerated with an arabic number.

Within a given section of a given chapter, theorems, lemmas, corollaries, observations,
examples, definitions and notations are enumerated with the same series of numerals. Each
of these items appears labeled with two arabic numbers, the first corresponding to the
section, the second to the specific item.

The few figures and numbered equations that appear are numbered globally for all the
book also with an arabic number. Within each chapter the exercises are enumerated with
only one arabic numeral.

For example, in Chapter 3, one can find Example 2.5 preceded by Definition 2.4 and
followed by Example 2.6, all in Section 2. In Chapter 6 we can find in Section 2, a picture
labeled Figure 1.

When we wish to refer to a theorem, etc., we use the above system of two arabic
numerals provided that the item appears in the same chapter as the reference; otherwise
we use a system of three numerals, adding a first arabic numeral with the indication of the
chapter where the item appears. A similar system, without reference to the section, is used
for exercises.

For example, the first exercise of Chapter 2 would be cited in Chapter 3 as Exercise 2.1
and in Chapter 2 as Exercise 1. The first definition in the second section of Chapter 2 will
be cited in Chapter 3 as Definition 2.2.1 and in Chapter 2 as Definition 2.1.

Some sections are divided into subsections (for example Section 4 of Chapter 1 is divided
into four subsections). Subsections are enumerated within the section to which they belong,
and referred to within the same chapter with two numerals, the first corresponding to the
section and the second to the subsection. When referring to a subsection that is in another
chapter we use a system of three numerals, adding in the first place the numeral of the
chapter where the section and subsection are located.

The enumeration of theorems, etc., does not take into account the subsections.

For the results and the sections of the Appendix we proceed in a slightly different way
— that is self explanatory.

The bibliography is presented in lexicographical order, enumerated with arabic numbers.

Most of the notations used throughout the book are listed — in lexicographical order
— in the Glossary of notations; there we refer to the number of the page where the notation
is introduced. In order to help the reader in an eventual search we have displayed multiple
entries for the same notation. For example, the notation uβ for the Casimir element can be
found listed under the words starting with the letter C or the letter U.

Most of the concepts introduced in the text are referred to in the Index: the reader is
sent to the page where the concept is introduced and to some other parts where we thought

xix



xx Enumeration of items and cross-references

it might be useful for the reader to look. In order to help the reader, we introduce multiple
entries for the same concept.



Chapter 1

Algebraic geometry: basic definitions and
results

1 Introduction

This is the first of two chapters where we deal with most of the background in algebraic
geometry which is needed in the rest of the book.1 Here, we describe the basic foundational
definitions and results of the theory of algebraic varieties. Local algebraic geometry can
be viewed as commutative algebra, and for that reason a few basic aspects of the theory
of commutative rings and fields will also be treated in this chapter — as well as in the
Appendix.

The reader should not expect to find a systematic development neither of the necessary
commutative algebra prerequisites, nor of the more global algebro-geometric concepts.

For reasons of space and emphasis, in this book we have chosen to keep the treatment of
the basic algebraic geometry that lies under the theory of algebraic groups at a minimum;
hence, our presentation will be (most of the time) brief and sketchy. In spite of that, we have
tried to state with precision all the concepts and theorems and to give adequate references
for the proofs we do not present.

At some points we are not consistently brief and some results and/or definitions are
treated with a certain degree of detail. The reasons for this change of pace are manifold:
the lack of an adequate reference for the exact statement we need; our opinion about the
importance of the subject; and many times merely the taste of the authors.

For a thorough treatment of these topics the reader can consult any of the following
textbooks: [3], [17], [42] or [187] and [188] (commutative algebra); [43], [65], [66], [89], [124],
[138], and many others (algebraic geometry).

We proceed to the description of the contents of each section.

In Section 2, we collect foundational results in commutative algebra that are needed for
the development of the theory of algebraic varieties, e.g., E. Noether normalization theorem,
Artin–Tate’s lemma, different versions of Hilbert’s Nullstellensatz, etc. Special subsections
are dedicated to the algebraic version of the crucial concepts of separability, flatness and
regularity. Only a few of the proofs are presented and most of the ones we omitted can be
found in the standard references on the subject.

In Section 3 we introduce the Zariski topology of the affine space An = kn; this topology
has as closed sets the algebraic subsets, i.e., the set of zeroes of a family of polynomials in
n variables. We also define the morphisms of algebraic sets completing the definition of the
category where local algebraic geometry is developed.

1In the first edition, these subjects were covered in a single chapter which has been now split into two
halves.
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2 Actions and Invariants of Algebraic Groups

In Section 4 we introduce the first notions of the theory of algebraic varieties. First
we define — in order to equip our objects with the algebras of functions that characterize
the structure — the notion of a sheaf on a topological space, centering our attention on
sheaves of functions. The spectrum and maximal spectrum of a ring are introduced in
order to view abstractly the affine algebraic subsets. Afterwards, algebraic prevarieties are
defined by pasting together these abstract affine pieces. The concept of prevariety is then
strengthened in order to introduce the main geometrical object of study, algebraic varieties.
We first observe that products exist in the category of prevarieties, and then define varieties
as prevarieties that satisfy the so-called “Hausdorff axiom,” i.e., prevarieties X with the
additional property that the diagonal ∆ is closed in the product X × X. We present also
the basic notions of dimension and tangent space.

Unless the contrary is explicitly said, the field k will be algebraically closed of arbitrary
characteristic, and all the rings and k-algebras we consider are unital and commutative.

2 Commutative algebra

2.1 Ring and field extensions

Let k ⊂ K be a field extension. The elements a1, . . . , an ∈ K are algebraically indepen-
dent over k if Ker

(
ε(a1,...,an)

)
= {0}, where ε(a1,...,an) : k[X1, . . . , Xn]→ k is the evaluation

at (a1, . . . , an). In other words, the only polynomial in k[X1, . . . , Xn] which is annihilated
by (a1, . . . , an) is the zero polynomial. A maximal algebraically independent subset of K
is called a transcendence basis. All transcendence basis have the same number of elements;
this number is called the transcendence degree of the extension k ⊂ K and it is denoted
as tr. degkK. In the case that the field K is finitely generated over k, the transcendence
degree is finite.

If R is a finitely generated integral domain k-algebra, then R has finite Krull dimen-
sion κ(R), and κ(R) = tr. degk[R], where [R] is as usual the field of fractions of R (see
Observation 2.7 below).

Definition 2.1. Let R ⊂ S be an extension of commutative rings. An element s ∈ S is
said to be integral over R if there exists a monic polynomial f ∈ R[X] such that f(s) = 0.
The extension is integral if for all s ∈ S, s is integral over R. The integral closure of R in S
is the set of all elements of S integral over R; it is a subring of S containing R. If R is an
integral domain we say that R is integrally closed if it equals its integral closure in [R].

Theorem 2.2. Let R ⊂ S be an extension of commutative rings. If S is finitely gener-
ated as an R-module, then S is integral over R.

Proof. See, for example, [3, Prop. 5.1]. �

The converse of the above theorem is false in general, but we have the following partial
results.

Theorem 2.3. If R ⊂ S is a ring extension with S integral and finitely generated as
an R-algebra, then S is finitely generated as an R-module.

Proof. See, for example, [3, Cor. 5.2]. �

Theorem 2.4 (Artin–Tate’s theorem). Let T ⊂ R ⊂ S be a tower of commutative rings
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and assume that: (1) T is Noetherian; (2) S is finitely generated as a T -algebra; (3) S is
finitely generated as an R-module. Then R is finitely generated as a T -algebra.

Proof. Using (2) and (3) we write S = Rs1 + · · ·+Rsn, s1 = 1, and S = T [s′1, . . . , s
′
m].

Express s′i =
∑
j rijsj for i = 1, . . . ,m, rij ∈ R and sksl =

∑
r′klusu for k, l = 1, . . . , n,

r′klu ∈ R. The original tower extends to T ⊂ R0 ⊂ R ⊂ S, where R0 is the T -subalgebra of
R generated by

{
rij : 1 ≤ i ≤ m, 1 ≤ j ≤ n

}
∪
{
r′klu : 1 ≤ k, l, u ≤ n

}
. As T is Noetherian

and R0 is finitely generated as a T -algebra, using Hilbert’s basis theorem we conclude that
R0 is Noetherian. As R0s1 + · · · + R0sn is a subalgebra of S that contains all the s′i and
also contains T , it follows that R0s1 + · · · + R0sn = S. Then S is a finitely generated
R0-module and thus R is a finitely generated R0-module. Write R = R0p1 + · · · + R0pv
for certain p1, . . . , pv ∈ R. It follows immediately that R is generated by p1, . . . , pv and{
rij : 1 ≤ i ≤ m, 1 ≤ j ≤ n

}
∪
{
r′klu : 1 ≤ k, l, u ≤ n

}
as a T -algebra. �

In particular, we deduce the following corollary.

Corollary 2.5. Let k ⊂ R ⊂ S be an extension of commutative rings where k is a
field. Assume that S is finitely generated as a k-algebra and integral over R. Then R is a
finitely generated k-algebra.

Proof. As S is a finitely generated R-module (see Theorem 2.3), we are in the hy-
pothesis of the Theorem 2.4 and the conclusion follows immediately. �

The following theorem is an algebraic tool of central importance for the manipulation
of algebraic varieties.

Theorem 2.6 (E. Noether’s normalization theorem). Let R be an integral domain that
is finitely generated as a k-algebra, with tr. degk[R] = d. Then there exist k-algebraically
independent elements r1, . . . , rd ∈ R, such that in the tower k ⊂ k[r1, . . . , rd] ⊂ R the top
part k[r1, . . . , rd] ⊂ R is integral.

Proof. In [3, p. 69] a proof is sketched and in [82, Thm. X.1.2] a detailed proof is
presented. In [42] the reader can find a proof for a different (but essentially equivalent)
formulation of this result. �

Observation 2.7. Notice that in accordance with the considerations previous to Def-
inition 2.1, the number d of algebraically independent elements {r1, . . . , rd} coincides with
the Krull dimension of R.

Informally speaking, Noether’s theorem guarantees that a finitely generated integral
domain k-algebra can be viewed as an integral extension of a polynomial algebra over k in
κ(R) variables.

There is a version of Noether normalization theorem that generalizes it to extensions
of integral domains.

Corollary 2.8. Let S ⊂ R be an extension of integral domains with R a finitely gener-
ated S-algebra. Then there exist elements r1, . . . , rd ∈ R that are algebraically independent
over [S], and a nonzero element s ∈ S with the property that in the tower of extensions
Ss ⊂ Ss[r1, . . . , rd] ⊂ Rs, the top part is integral.

Proof. Consider the field extension [S] ⊂ [R] and apply Theorem 2.6 to R′ the [S]-
subalgebra of [R] generated by R. The details are left as an exercise for the reader (see
Exercise 1). �

Observation 2.9. The number d of algebraically independent elements constructed in
Corollary 2.8 equals κ

(
[S]⊗S R

)
.
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Lemma 2.10. Let S ⊂ R be a finitely generated integral ring extension of commutative
integral domains. Then, there exists an element 0 6= s ∈ S with the property that Ss ⊂ Rs
is free.

Proof. From Theorem 2.3 we deduce that R is a finitely generated S-module. Hence,
we can find an S-epimorphism of a finite direct sum of copies of S onto R, φ :

⊕r
1 S →

R. This implies in particular that R admits a finite S-composition series. The following
assertion that will be proved by induction on the length guarantees our result. Let S be a
commutative integral domain and assume that M is a S-module of finite length. Then there
exists an element 0 6= s ∈ S, Ms is a free Ss-module. Consider N a maximal S-submodule
of M and the exact sequence 0→ N →M →M/N → 0. The S-module M/N is simple and
then isomorphic to a module of the form S/P for some maximal ideal P in S. If P = {0}
then M/N ∼= S and then M ∼= N ⊕ S and the proof follows by induction on the length. If
P 6= 0 and we consider 0 6= sP ∈ P , it is clear that (S/P )sP = SsP /PSsP = {0}. Then,
going back to the original exact sequence we deduce that NsP

∼= MsP . By induction we
deduce the existence of s0 ∈ S with the property that Ns0 is free as a Ss0-module. Hence,
Ms0sP is free as a Ss0sP -module. �

The next theorem, which is a consequence of Noether normalization theorem, will be
used in the characterization of affine homogeneous spaces in terms of exactness (see Corol-
lary 12.6.6 and Theorem 12.6.7).

Theorem 2.11. Let S ⊂ R be an extension of commutative integral domains, and
assume that R is a finitely generated S-algebra. Then there exists an element s ∈ S such
that Rs is free as a Ss-module.

Proof. First use Corollary 2.8 in order to find r1, . . . , rd ∈ R that are algebraically
independent over [S] and 0 6= s ∈ S such that in the tower of extensions Ss ⊂ Ss[r1, . . . , rd] ⊂
Rs the top part is integral, with d = κ

(
[S]⊗S R

)
. Next proceed by induction on d. If d = 0

then the extension Ss ⊂ Rs is integral and the result follows from Lemma 2.10.

Without loss of generality and eventually changing notations we may assume that the
result is valid for all extensions of dimension smaller than d and that s = 1. In other words,
we suppose that S ⊂ S′ = S[r1, . . . , rd] ⊂ R, being the top extension integral and R finitely
generated as an S-algebra (observe that S′ is a free S-module).

It follows that R is a S′-module of finite length. The result will be deduced once we
prove the following assertion: let M be a S′ = S[r1, . . . , rn]-module of finite length. Then
there exists an element s ∈ S such that Ms is free as a Ss-module.

We proceed by induction on the length of M . Consider N a maximal S′-submodule of
M and consider the exact sequence: 0→ N →M →M/N → 0. Since M/N is cyclic, there
exists an ideal P ⊂ S′ such that S′/P ∼= M/N . We will consider now three possibilities for
the ideal P . If P = {0}, thenM/N ∼= S′ that is a free S-module, and in this caseM ∼= N⊕S′;
hence the proof follows by induction on the length. If P 6= {0} and P ∩ S 6= {0}, choose
0 6= p ∈ P ∩ S. Then Mp = Np, and the proof follows by induction on the length. The last
alternative for P is that P 6= {0} and P ∩ S = {0}. Consider the injection [S] ⊗S P →
[S]⊗S S′. The image of this map is a prime ideal in [S]⊗S S′ with κ

(
[S]⊗S S′/P

)
< d. By

induction we deduce that there exists an element s ∈ S such that (M/N)s ∼= (S′/P )s is free
as a Ss-module. If we localize with respect to s the sequence 0 → N → M → M/N → 0,
we deduce that 0 → Ns → Ms → (M/N)s → 0. Then, Ms

∼= Ns ⊕ (M/N)s. As the length
of N is smaller than the length of M our proof is finished. �

The theorem that follows is a variation of the usual results of extension of ideals for
integral extension of rings.
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Theorem 2.12. Let R ⊂ S be an integral extension of k-algebras, where k is an al-
gebraically closed field. A k-algebra homomorphism from R into k extends to a k-algebra
homomorphism from S into k.

Proof. See [17, Chap. V, 2.1, Cor. 4]. �

The next lemma will be useful when dealing with the problem of the finite generation
of the rings of invariants in Chapter 13, more particularly in Lemma 13.3.4. Here we only
present a brief sketch of the proof; for the missing details see [17, Chap. V, 3.2].

Lemma 2.13. Let R ⊂ S be an extension of k-algebras that are also integral domains.
Assume that (1) R is a finitely generated k-algebra; (2) the field extension [R] ⊂ [S] is
finite algebraic; (3) S is integral over R. Then S is a finitely generated R-module and also
a finitely generated k-algebra. In particular, if S is the integral closure in [R] of R and R
is a finitely generated k-algebra, then S is also a finitely generated k-algebra.

Proof. First, one proves that it can be assumed that S is integrally closed. Then, using
Theorem 2.6 one can assume that R is a polynomial ring over k and that [R] is the field of
rational functions in n-variables. Moreover, the extension [R] ⊂ [S] can be considered as a
composition of a purely inseparable extension with a Galois extension. Each of these cases
can be treated using standard methods in the theory of field extensions. �

The following classical theorem will be presented without proof.

Theorem 2.14 (Krull’s principal ideal theorem). Suppose that R is a finitely generated
integral domain k-algebra. Let r ∈ R be a fixed element and P a minimal prime ideal
containing r, i.e., an isolated prime ideal of rR. Then tr. degk[R/P ] = tr. degk[R]− 1.

Proof. See, for example, [188]. �

2.2 Hilbert’s Nullstellensatz

Hilbert’s Nullstellensatz is one of the basic building blocks of the theory of algebraic
varieties, and should be considered as a deep generalization of the so-called fundamental
theorem of algebra. In our presentation the theorem appears initially as a result concerning
extensions of k-algebra homomorphisms with values in algebraically closed fields. We start
by defining the category of algebras that are the algebras of functions for affine algebraic
varieties.

Definition 2.15. A commutative k-algebra A is said to be an affine k-algebra if it is
finitely generated and has no nilpotent elements.

Theorem 2.16. Let k be an algebraically closed field and assume that R is a commu-
tative finitely generated k-algebra. If R 6= {0}, there exists a k-algebra homomorphism from
R into k.

Proof. In accordance to Theorem 2.6, there exist elements r1, . . . , rd ∈ R such that in
the tower of extensions k ⊂ k[r1, . . . , rd] ⊂ R, the lower part is isomorphic to a polynomial
ring and the top part is an integral extension. The existence of a k-algebra morphism
from k[r1, . . . , rd] into k is evident. The extension from k[r1, . . . , rd] to R of the morphism
previously constructed can be deduced from Theorem 2.12. �

We are ready to prove an abstract version of the Nullstellensatz.

Theorem 2.17. Assume that k is an algebraically closed field and R a commutative
finitely generated k-algebra with no nonzero nilpotent. If r 6= s ∈ R, then there exists a
k-algebra homomorphism φ : R→ k such that φ(r) 6= φ(s).
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Proof. We may assume that s = 0. In this case we consider a prime ideal P ∈ R
such that r 6∈ P — to guarantee the existence of such an ideal, one uses a standard fact
in commutative ring theory that asserts that in this situation the set of nilpotent elements
coincides with the intersection of all prime ideals of the ring (see Appendix, Section 3). In
the ring R/P , the element r = r + P 6= 0 is not nilpotent, and the k-algebra (R/P )r is
finitely generated and nonzero. Using Theorem 2.16 we deduce the existence of a morphism
γ : (R/P )r → k and as r is invertible in the localization, it follows that γ(r) 6= 0. The map
φ : R→ k defined by the commutativity of the diagram

R //

φ

��

R/P

��
k (R/P )rγ
oo

is a k-algebra homomorphism that sends r into a nonzero element. �

Next it follows a more classical version of the Nullstellensatz that is known as the weak
Nullstellensatz.

Theorem 2.18 (Weak Nullstellensatz). Let k be an algebraically closed field.

(1) If R = k[r1, . . . , rn] is a finitely generated ring extension of k that is also a field, then
R = k.

(2) An ideal M ⊂ k[X1, . . . , Xn] is maximal if and only if M = 〈X1 − a1, . . . , Xn − an〉,
with a1, . . . , an ∈ k.

Proof. (1) Assume that one of the ri’s is not zero, say r1, and consider the mor-
phism φ : k[r1, . . . , rn] → k that sends r1 into a nonzero element (see Theorem 2.17). As
k[r1, . . . , rn] is a field, it follows that φ is injective, so that if we compute φ

(
r1−φ(r1)1

)
= 0

we deduce that r1 ∈ k and then by an evident iteration that R = k.

(2) Let M be a maximal ideal in k[X1, . . . , Xn]. Then k[X1, . . . , Xn]/M is a field and by
what we just proved it has to coincide with k. If we fix i, 1 ≤ i ≤ n, then there exists ai ∈ k
with the property that Xi−ai1 ∈M . It follows that the ideal 〈X1−a1, . . . , Xn−an〉 ⊂M .
Moreover, all the ideals of the form 〈X1 − a1, . . . , Xn − an〉 are maximal as these ideals
are of the form Ker

(
ε(a1,...,an)

)
where ε(a1,...,an) : k[X1, . . . , Xn] → k is the evaluation at

(a1, . . . , an). Hence, 〈X1 − a1, . . . , Xn − an〉 = M . �

Theorem 2.19 (Hilbert’s Nullstellensatz). Let I ( k[X1, . . . , Xn] be a proper ideal,
where k is an algebraically closed field. Then, there exists a point (a1, . . . , an) ∈ kn such
that f(a1, . . . , an) = 0 for all f ∈ I.

Proof. Let M be a maximal ideal of k[X1, . . . , Xn] that contains I and write M =
〈X1−a1, . . . , Xn−an〉. If f ∈ I, then there exist gi ∈ k[X1, . . . , Xn], i = 1, . . . , n, such that
f = g1(X1 − a1) + · · ·+ gn(Xn − an). It follows that f(a1, . . . , an) = 0. �

Observation 2.20. It is clear that the Nullstellensatz (Theorem 2.19) implies the weak
Nullstellensatz (Theorem 2.18).

Theorem 2.21. Assume that k is an algebraically closed field and let I ( k[X1, . . . , Xn]
be a proper ideal. Then

√
I =

⋂{
M ⊂ k[X1, . . . , Xn] : I ⊂M , M maximal ideal

}
.
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Proof. Clearly if M is maximal and I ⊂M , then
√
I ⊂
√
M = M , so that

√
I ⊂

⋂{
M ⊂ k[X1, . . . , Xn] : I ⊂M , M maximal ideal

}
.

Conversely, suppose that f ∈ M for all maximal ideals M that contain I, and let
J =

〈
I ∪{1−Xn+1f(X1, . . . , Xn)}

〉
⊂ k[X1, . . . , Xn, Xn+1] be the ideal generated by I and

the polynomial 1 − Xn+1f(X1, . . . , Xn). Consider a common zero (a1, . . . , an+1) ∈ kn+1

of the polynomials in J . Then h(a1, . . . , an) = 0 for all h ∈ I and this means that I ⊂
〈X1 − a1, . . . , Xn − an〉 (see Exercise 3). As f is inside all maximal ideals that contain I, it
follows that f ∈ 〈X1 − a1, . . . , Xn − an〉 and then that f(a1, . . . , an) = 0. As (a1, . . . , an+1)
is a zero of the polynomial 1−Xn+1f(X1, . . . , Xn), we obtain a contradiction.

Therefore, the ideal J has no common zeroes and from Theorem 2.19 we deduce that
J = k[X1, . . . , Xn+1]. Hence, we can find g1, . . . , gs, g ∈ k[X1, . . . , Xn+1] and f1, . . . , fs ∈
I ⊂ k[X1, . . . , Xn] such that 1 = g1f1 + · · · + gsfs + g(1 − Xn+1f). Writing Xn+1 =
1/f(X1, . . . , Xn) we obtain the following equality in k(X1, . . . , Xn):

1 = g1

(
X1, . . . , Xn, 1/f(X1, . . . , Xn)

)
f1(X1, . . . , Xn) + · · ·

· · ·+ gs
(
X1, . . . , Xn, 1/f(X1, . . . , Xn)

)
fs(X1, . . . , Xn).

Eliminating denominators the above equality is transformed in: fm = h1f1 + · · ·+hsfs,
with hi ∈ k[X1, . . . , Xn] and m a conveniently chosen exponent. Then fm ∈ I and thus
f ∈
√
I. �

2.3 Separability

In this paragraph the fields we consider are not necessarily algebraically closed.

Definition 2.22. Let k ⊂ K be an algebraic field extension. An element a ∈ K is
separable over k if there exists a polynomial f ∈ k[X] with simple roots and such that
f(a) = 0. The extension is separable if all the elements of K are separable over k.

An element of a ∈ K is purely inseparable over k if the only separable elements in
k ⊂ k(a) are those belonging to k. The extension is purely inseparable if all the elements of
K are purely inseparable over k.

Concerning non algebraic extensions the notion of separability is defined in a different
manner. The next result is the basis for this definition.

Theorem 2.23. If k ⊂ K is a fixed field extension, then the following conditions are
equivalent.

(1) If V is a K-vector space and D : k → V is a derivation, then there exists a derivation
D′ : K → V that extends D, i.e., D′

∣∣
k = D (see Appendix, Definition 3.17).

(2) For an arbitrary field K ′ that extends k, the tensor product K ⊗k K
′ has no nonzero

nilpotent.

In the case that the fields are of characteristic p, the above conditions are equivalent to:

(3) If X ⊂ K is a k-linearly independent set, then Xp = {xp : x ∈ X} is also a k-linearly
independent set.

Proof. See, for example, [82, Chap. III]. �

Definition 2.24. A field extension k ⊂ K is separable if the equivalent conditions
(1),(2) or (3) (this last in the case of positive characteristic) of Theorem 2.23 are satisfied.
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Observation 2.25. (1) It is not hard to prove that in characteristic zero all extensions
are separable.

(2) A purely transcendental extension is separable.

(3) In the case of algebraic extensions both definitions of separability coincide. Indeed,
assume that a ∈ K is algebraic over k and separable in the sense of Definition 2.22. Let
V be a K-space and endow it with a k[X]-module structure as follows, for g ∈ k[X] and
v ∈ V , then g · v = g(a)v.

Extend an arbitrary derivation D : k → V to D′ : k[X] → V by the rule: D′(X) =
−
(∑

D(ai)a
i/f ′(a)

)
, where f =

∑
aiX

i is the minimal polynomial of a with coefficients
in the base field k. It is easy to prove that D′(f) = 0 and, hence, that D′ factors to a
derivation D′′ : k(a)→ V .

Conversely, if we call f = Irr(a,k) ∈ k[X], we want to prove that f ′(a) 6= 0. If f ′(a) = 0
we deduce that f divides f ′, and this may only happen if f ′ = 0, i.e., if for some polynomial
g ∈ k[X], f(X) = g(Xp). This means that the elements 1, ap, . . . , ap(d−1) are linearly
dependent over k, where d = [k(a) : k]. But this contradicts the fact that 1, a, . . . , ad−1 are
linearly independent and Definition 2.24.

In the case of a separable extension, one can find a transcendence basis with special
properties. The proof of this classical result will be omitted.

Theorem 2.26. Assume that the extension k ⊂ K is separable and finitely generated.
Then there exists a finite transcendence basis B such that the tower of extensions k ⊂ k(B) ⊂
K has the lower part purely transcendental and the top part separable algebraic.

Proof. See [187, Chap. II, Thm. 30]. �

The next theorem relates the transcendence degree of a separable finitely generated
extension with the dimension of the space of derivations Dk(K).

Theorem 2.27. Assume that the extension k ⊂ K is separable and finitely generated.
Then tr. degkK = dimK Dk(K).

Proof. See, for example, [82, Chap. III]. �

The next lemma will be presented without proof.

Lemma 2.28. Let k be an algebraically closed field and S ⊂ R be an extension of integral
domain k-algebras and assume that R is finitely generated as an S-algebra. If 0 6= r ∈ R,
there exists an element 0 6= t ∈ S with the property that every homomorphism of k-algebras
α : S → k such that α(t) 6= 0 extends to a homomorphism of k-algebras from R into k, such
that α(r) 6= 0.

Proof. See, for example, [82, Thm. II.3.3]. �

The result that follows will be used when dealing with the structure of homogeneous
spaces in Chapter 8.

Lemma 2.29. Let S ⊂ R be an extension of k-algebras that are also integral domains
and assume that R is finitely generated over k. Assume that an element r ∈ R has the
following property: if α, β : R→ k is a pair of k-algebra homomorphisms that coincide over
S, then α(r) = β(r). Then r ∈ R is algebraic and purely inseparable over [S].

Proof. We prove first that r is algebraic over [S]. Assume that this is not the case, and
consider S[r] ⊂ R. Using Lemma 2.28 we deduce that there exists an element 0 6= t ∈ S[r]
with the property that every k-algebra homomorphism γ : S[r] → k such that γ(t) 6= 0
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extends to R, with γ(r) 6= 0. Write t = s0 + s1r + · · · + snr
n with si ∈ S and sn 6= 0.

Using the Nullstellensatz 2.17 we deduce the existence of a homomorphism of k-algebras
γ̂ : R → k such that γ̂(sn) 6= 0, and by restriction to S we obtain a homomorphism of
k-algebras γ0 : S → k with the same property. It is clear that in order to extend γ0 to S[r]
all we have to do is to assign a value to r. Assume that γ1 is an extension of γ0 and such
that γ1(t) = 0. Then 0 = γ0(s0) + γ0(s1)γ1(r) + · · · + γ0(sn)γ1(r)n. Hence, if we assign a
value to γ1(r) that is not a root of the above polynomial, we obtain an extension of the
original morphism not vanishing at t. There are then infinite extensions of γ0 to R and this
contradicts the hypothesis about r.

The proof that r is purely inseparable is similar. Call p the characteristic exponent
of the base field, and assume that r is not purely inseparable over [S]. Then for some
exponent m > 0 the element rp

m

is separable, algebraic over [S] and does not belong to [S].
After eliminating denominators we can find 0 6= s ∈ S such that if we call t = srp

m

, then
f = Irr

(
t, [S]

)
∈ S[X], with deg(f) = n > 1.

Proceeding as before we can find u = s0 + s1t+ · · ·+ slt
l, where sl 6= 0, and l < n, with

the property that all k-algebra homomorphisms γ : S[t]→ k that do not annihilate u can be
extended to R. Call g = s0 +s1X+ · · ·+slX

l ∈ S[X]. As f, g, as well as f, f ′, are relatively
prime over[S], there exist polynomials h, k, q, w ∈ S[X] and nonzero elements e, e′ ∈ S such
that hf+kg = e, qf+wf ′ = e′. We use the Nullstellensatz to construct β : S → k, such that
β(ee′) 6= 0. Given an arbitrary polynomial in z ∈ S[X] we call z1 ∈ k[X] the polynomial
obtained by applying β to the coefficients of z. It is clear in the above construction that
(z1)′ = (z′)1 and that if z is monic the degree of z1 coincides with the degree of z. Then,
h1f1 + k1g1 = β(e), q1f1 + w1f

′
1 = β(e′). Hence, the polynomials f1 and g1 are relatively

prime and the same happens with f1 and f ′1.

Then, f1 has n roots in k and none of these roots is a root of g1, and in this way we can
obtain n different extensions of β to algebra homomorphisms from S[t] into k and none of
them annihilates u. Hence, all these extensions extend further to R. This is a contradiction:
if β′ is such an extension, then β′(t) = β(s)β′(r)p

m

and all the values of β′(r) should be
equal by hypothesis. �

Theorem 2.30. If K is a field and G is a group of field automorphisms of K, then the
extension GK ⊂ K is separable.

Proof. See, for example, [82, Thm. III.2.3] or [12, Prop. AG.2.4]. �

2.4 Faithfully flat ring extensions

Definition 2.31. A commutative ring extension S ⊂ R is said to be faithfully flat
if for all sequences of S-modules: E : 0 → M → N → T → 0, E is exact if and only if
E ⊗S R : 0→M ⊗S R→ N ⊗S R→ T ⊗S R→ 0 is exact.

Note that if the extension S ⊂ R is free, i.e., if R is free as an S-module, then it is
faithfully flat.

Observation 2.32. In the situation of Definition 2.31, S ⊂ R is a faithfully flat ring
extension if and only if:

(1) for all injective morphisms α : M → N of S-modules, the morphism of R-modules,
id⊗α : R⊗S M → R⊗S N is injective;

(2) if M is an S-module such that R⊗S M = {0}, then M = {0}.
See Exercise 4.
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Lemma 2.33. Let S ⊂ R be a finitely generated commutative ring extension of integral
domains. Suppose we can find s1, . . . , sn ∈ S such that: (1) the elements s1, . . . , sn generate
the unit ideal of S; (2) Rsi is faithfully flat as an Ssi-module. Then R is faithfully flat as
an S-module.

Proof. We use here Observation 2.32. First suppose that M is a S-module such that
M ⊗S R = 0. Then M ⊗S R ⊗R Rsi = 0 or equivalently M ⊗S Rsi = 0. Therefore, M ⊗S
Ssi ⊗Ssi Rsi = 0 and from the hypothesis we conclude that M ⊗S Ssi = 0. Hence, for an
arbitrary m ∈ M there exists an exponent q such that for all 1 ≤ i ≤ n, sqim = 0. As
the ideal generated by {sq1, . . . , sqn} is also the unit ideal, we conclude that m = 0. Hence,
M = 0.

Assume that α : M → N is an injective morphism of S-modules. Then id⊗α : Ssi ⊗S
M → Ssi ⊗S N is injective and so is

id⊗ id⊗α : Rsi ⊗Ssi Ssi ⊗S M → Rsi ⊗Ssi Ssi ⊗S N.

Hence, the morphism id⊗α : Rsi⊗SM → Rsi⊗SN is injective. Looking at the diagram

R⊗S M
id⊗α //

��

R⊗S N

��
Rsi ⊗S M id⊗α

// Rsi ⊗S N

we deduce that if an element
∑
rk⊗mk ∈ R⊗SM satisfies that 0 =

∑
rk⊗α(mk) ∈ R⊗SN ,

then 0 =
∑
rk ⊗mk ∈ Rsi ⊗S M for all i = 1, . . . , n. From Exercise 4 (d), we deduce that

0 =
∑
rk ⊗mk ∈ R⊗S M . �

2.5 Regular local rings

In this section we deal with the algebraic version of the concept of non singular point
(see Definition 2.4.1 below). The relevant idea is the concept of regular local ring.

Let R be a commutative integral Noetherian local ring and M its maximal ideal. It
follows from general results in dimension theory of commutative rings (see, for example, [3,
p. 119]) that the cardinality of an arbitrary set of generators of M as an R-module is larger
than or equal to the Krull dimension of R.

Definition 2.34. In the above situation, we say that the ring R is regular if M has a
set of R-module generators of cardinality κ(R), the Krull dimension of R.

The following basic result will be interpreted in geometric terms in Theorem 2.4.8.

Theorem 2.35. Let R be a Noetherian regular local ring. Then R is an integral domain
that is also integrally closed in its field of fractions.

Proof. See, for example, [3, Lemma 11.23] or [82, Cor. XI.4.2]. �

In the case of rings of Krull dimension 1, i.e., in the case of curves, there is an easy
criterion for regularity.

Theorem 2.36. Assume that R is a Noetherian local integral domain of dimension 1.
Then the following conditions are equivalent:

(1) R is a discrete valuation ring;
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(2) R is integrally closed;

(3) R is a regular local ring;

(4) the maximal ideal of R is principal.

Proof. See [3, Chap. I. Prop. 9.2.]. �

3 Algebraic subsets of the affine space

From now on we assume that k is an algebraically closed field.

3.1 Basic definitions

Definition 3.1. Consider the map V from the family of subsets of k[X1, . . . , Xn] to
the family of subsets of kn,

V(S) =
{

(a1, . . . , an) ∈ kn : f(a1, . . . , an) = 0,∀ f ∈ S
}
,

where S ⊂ k[X1, . . . , Xn]. The image of the map V is the family of closed sets of a topology
of kn, called the Zariski topology. The set kn when endowed with the Zariski topology will
be denoted as An and called the affine space. An algebraic set is a Zariski closed subset of
An, for some n ≥ 0. If S ⊂ An is a subset, the Zariski topology of S is the topology induced
by the Zariski topology of An.

The above is the basic construction for developing the local theory of algebraic varieties
over a field k.

Observation 3.2. In the situation above we have that:

(1) The map V is determined by the values it takes on the ideals of the algebra k[X1, . . . , Xn].
Indeed, if S is an arbitrary subset of the polynomial ring and 〈S〉 is the ideal generated by
S then V(S) = V

(
〈S〉
)

= V
(√
〈S〉
)
.

(2) If I and J are ideals in the polynomial ring, and
√
I =
√
J , then V(I) = V(J) = V

(√
I
)
.

(3) An arbitrary algebraic subset of kn is always the set of zeroes of a finite number of
polynomials. Indeed, if X ⊂ kn is algebraic, then X = V(I) for some ideal I in the corre-
sponding polynomial ring. As I = 〈f1, . . . , fm〉 for a finite set of polynomials (see Appendix,
Theorem 3.10), we have that X = V(f1, . . . , fm).

Next we reverse the above construction and associate to an arbitrary subset of An an
ideal in the polynomial ring k[X1, . . . , Xn].

Definition 3.3. Let X ⊂ An be an arbitrary subset. Call

I(X) =
{
f ∈ k[X1, . . . , Xn] : f

∣∣
X

= 0
}
⊂ k[X1, . . . , Xn].

Notice that I(X) is an ideal of k[X1, . . . , Xn].

Below we list — and leave as an exercise for the reader to prove — the basic properties
of the maps I and V. See Exercise 6.
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Lemma 3.4. Consider an algebraically closed field k and the maps V and I defined
above.

(1) If S ⊂ T ⊂ k[X1, . . . , Xn], then V(T ) ⊂ V(S). Also, V
(
{0}
)

= An and

V
(
k[X1, . . . , Xn]

)
= ∅.

(2) If {Sα}α is a family of subsets of k[X1, . . . , Xn], then V
(⋃

α Sα
)

=
⋂
α V(Sα).

(3) If I, J ⊂ k[X1, . . . , Xn] are ideals, then V(IJ) = V(I ∩ J) = V(I) ∪ V(J).

(4) If X ⊂ Y ⊂ An, then I(Y ) ⊂ I(X). I(∅) = k[X1, . . . , Xn] and I(An) = {0}.
(5) If X,Y ⊂ An, then I(X ∪ Y ) = I(X) ∩ I(Y ).

(6) If {Xα}α are closed subsets of An, then I
(⋂

αXα

)
=
∑
α I(Xα).

(7) If X ⊂ An, then X ⊂ V
(
I(X)

)
.

(8) If I is an ideal in k[X1, . . . , Xn], then I ⊂
√
I ⊂ I

(
V(I)

)
.

(9) The image of I consists of radical ideals.

Observation 3.5. In accordance with Lemma 3.4 parts (7) and (8), if X ⊂ An, then
X ⊂ V

(
I(X)

)
and if I ⊂ k[x1, . . . , xn] is an ideal, then I ⊂ I

(
V(I)

)
. These inclusions are

not necessarily equalities: take, for example, X = k \ {0} ⊂ k, and I = 〈x2〉 ⊂ k[X] and
perform the explicit computations.

Lemma 3.6. If X ⊂ An is an arbitrary subset of the affine space and X denotes its
closure, then X = V

(
I(X)

)
.

Proof. The proof of this lemma is left as an exercise (see Exercise 7). �

Lemma 3.7. Let X ⊂ An be an arbitrary subset. Then

I(X) =
⋂

(a1,...,an)∈X

〈X1 − a1, . . . , Xn − an〉.

Proof. If f ∈ I(X), then f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ X, and thus f ∈
〈X1 − a1, . . . , Xn − an〉 for all (a1, . . . , an) ∈ X (see Exercise 3). Conversely, if f ∈ 〈X1 −
a1, . . . , Xn − an〉, it is clear that f(a1, . . . , an) = 0. �

Another version of Hilbert’s Nullstellensatz guarantees that the equality
√
I = I

(
V(I)

)
holds. This result is due to D. Hilbert (see [70], [71]).

Theorem 3.8 (Hilbert’s Nullstellensatz). Let I be an ideal in the polynomial ring I ⊂
k[X1, . . . , Xn]. Then

√
I = I

(
V(I)

)
.

Proof. Recall that (see Theorem 2.21)

√
I =

⋂{
M ⊂ k[X1, . . . , Xn] : I ⊂M,M maximal ideal

}
.

If M is maximal, then M = 〈X1−a1, . . . , Xn−an〉 for some a1, . . . , an ∈ k (see Theorem
2.18). Clearly, I ⊂ 〈X1− a1, . . . , Xn− an〉 if and only if f(a1, . . . , an) = 0 for all f ∈ I, i.e.,
if and only if (a1, . . . , an) ∈ V(I). Thus, we conclude that

√
I =

⋂{
〈X1 − a1, . . . , Xn − an〉 ⊂ k[X1, . . . , Xn] : (a1, . . . , an) ∈ V(I)

}
.

By Lemma 3.7, I
(
V(I)

)
=
⋂

(a1,...,an)∈V(I)〈X1 − a1, . . . , Xn − an〉. It is then evident

that
√
I = I

(
V(I)

)
. �
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Corollary 3.9. If we fix n and restrict the domain of the map I to the family of alge-
braic subsets of An and the domain of V to the family of radical ideals of k[X1, . . . , Xn] , the
maps V and I are inclusion reversing inverse isomorphisms. Moreover, this correspondence
takes points of An into maximal ideals of k[X1, . . . , Xn].

Proof. The proof of this result follows easily from Hilbert’s Nullstellensatz (Theorem
3.8) and lemmas 3.6 and 3.7. �

Example 3.10. (1) Let k be an algebraically closed field. Then the algebraic subsets
of A1 = k are ∅, A1 and finite subsets of k.

(2) The reader should be aware that many of the above conditions fail drastically for non
algebraically closed fields. For example, the ideal generated by X2 + 1 ∈ R[X] is maximal,
but its zero set in R2 is empty.

3.2 The Zariski topology

Definition 3.11. Let f ∈ k[X1, . . . , Xn] and consider the open subset of An,

Anf = An \ f−1(0) =
{

(a1, . . . , an) ∈ An : f(a1, . . . , an) 6= 0
}
.

If X is an arbitrary algebraic subset of An, and f ∈ k[X1, . . . , Xn] then Xf = X \ f−1(0) =
X ∩ Anf is open in X. The open subsets Xf will be called the basic open subsets of X.

Lemma 3.12. In the situation of Definition 3.11, the family of open sets
{

Anf : f ∈
k[X1, . . . , Xn]

}
forms a basis for the Zariski topology of An. Similarly, the family of the

open subsets
{
Xf : f ∈ k[X1, . . . , Xn]

}
forms a basis for the Zariski topology of X.

Proof. The proof of this result is left as an exercise (see Exercise 8). �

As the reader can easily see in example 3.10, the Zariski topology in general is not
Hausdorff. In fact, an algebraic set is Hausdorff if and only if it is a finite collection of
points (see Exercise 9).

We leave as an exercise the proof that algebraic sets are quasi-compact (see Exercise
10).

Lemma 3.13. The Zariski topology when restricted to an arbitrary algebraic set of an
affine space is Noetherian.

Proof. Clearly it is enough to prove this result for An. The family of all closed, i.e.,
algebraic, subsets of An is in bijection with the family of radical ideals of k[X1, . . . , Xn]. But,
since the polynomial algebra is Noetherian (see Appendix, Theorem 3.10), the ascending
chains of ideals stabilize and hence the same happens with the descending chains of algebraic
subsets of An. �

In an informal sense, the Noetherian property tells us that in the Zariski topology the
open subsets are large (see, for example, Theorem 3.15) and this accounts for the rigidity
of the theory.

Definition 3.14. A topological space X is reducible if it is the union of two proper
closed subsets. It is irreducible if this is not the case. An irreducible component of X is a
maximal irreducible subset of X.

Theorem 3.15. (1) A topological space X is irreducible if and only if any two nonempty
open subsets intersect, i.e., U ∩ V 6= ∅ for all U, V ⊂ X nonempty open subsets.

(2) The closure of an irreducible set is irreducible.
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(3) The irreducible components of a topological space are closed.

Proof. This is an easy exercise in general topology. �

Observation 3.16. The reader must be careful not to confuse irreducibility with con-
nectedness. Clearly an irreducible topological space is connected. Since for a Hausdorff
topological space given two different points we can find two disjoint nonempty open sub-
sets, an irreducible Hausdorff topological space is necessarily a point.

Observation 3.17. If S is an arbitrary irreducible subset of X, then there exists an
irreducible component Z of X that contains S.

Indeed, consider the family FS consisting of all irreducible closed subsets of X that
contain S with the order given by the inclusion. If {Zi}i∈I is a chain in FS , then Z =

⋃
i∈I Zi

is an irreducible closed subset of X that contains S, i.e., Z ∈ FS . To prove this assertion
assume that ∅ = (U ∩ Z) ∩ (V ∩ Z) = U ∩ V ∩ Z, U, V open in X, with U ∩ Z 6= ∅. Then
U ∩ Zi 6= ∅ for some i ∈ I. Thus U ∩ Zj 6= ∅ and U ∩ V ∩ Zj = ∅ for any Zj ⊃ Zi. As
Zj is irreducible, it follows that V ∩ Zj = ∅ for every Zj ⊃ Zi and hence for every j ∈ I,
V ∩ Zj = ∅.

Then, V ∩Z = ∅, and Z is irreducible. Using Zorn’s lemma we conclude that every irre-
ducible subset of X is contained in a maximal irreducible, i.e., in an irreducible component.

Lemma 3.18. Let X be a Noetherian topological space. Then in X there are at most a
finite number of irreducible components. Moreover, X =

⋃n
i=1Xi, where {X1, . . . , Xn} are

the irreducible components of X.

Proof. Let Xj , j ∈ J , be the family of irreducible components of X — as we observed
before this family is nonempty. Since points are irreducible, it follows that X =

⋃
j∈J Xj .

We prove now that an arbitrary nonempty closed subset of X can be written as a finite
union of irreducible subsets. If not, call F the family of the closed subsets of X that cannot
be written as above and take X−∞ a minimal set in this family. If X−∞ is irreducible we
have a contradiction. Contrariwise write X−∞ = X0 ∪ X1, with X0, X1 ( X−∞ closed in
X. Since X0, X1 6∈ F , we have a contradiction.

Assume now that X =
⋃n
i=1Xi, Xi irreducible, and eliminate all redundancies, i.e.,

assume that there are no inclusion relations between the Xi. If Z is an irreducible component
of X we have that Z =

⋃n
i=1(Xi ∩Z); then, using the irreducibility of Z, we conclude that

for some 1 ≤ i ≤ n, Z = Z ∩Xi. Then, Z ⊂ Xi and, hence, Z = Xi. �

Example 3.19. The algebraic subset V(XY ) ⊂ k2 (the union of the two coordinate
axes) is reducible, with irreducible components

V(XY ) =
{

(0, b) : b ∈ k
}
∪
{

(a, 0) : a ∈ k
}
.

It is very easy to see that the lines
{

(0, b) : b ∈ k
}

and
{

(a, 0) : a ∈ k
}

are irreducible.

The irreducibility of an algebraic set can be completely characterized in terms of the
corresponding ideal.

Theorem 3.20. An algebraic set X ⊂ An is irreducible if and only if I(X) is a prime
ideal. In particular, An is irreducible.

Proof. Let X be an irreducible algebraic subset and suppose that f, g ∈ k[X1, . . . , Xn]
are such that fg ∈ I(X). Consider the union V(f) ∪ V(g) = V(fg). Since fg ∈ I(X), it
follows that X ⊂ V(fg). Thus, either X ⊂ V(f) or X ⊂ V(g). We suppose without loss of
generality that X ⊂ V(f). Then

√
(f) ⊂ I(X), and thus f ∈ I(X).
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Suppose now that I(X) is a prime ideal. Let X = Y ∪ Z, with Y = V(I), Z = V(J)
two closed subsets. Then X = V(IJ), and thus I(X) =

√
IJ ⊃ IJ . Suppose there exists

a polynomial f ∈ I \ I(X). Since fg ∈ IJ ⊂ I(X) for any g ∈ J , and I(X) is prime, it
follows that J ⊂ I(X), and thus X ⊂ Z. This concludes the proof. �

Observation 3.21. Let f ∈ k[X1, . . . , Xn] and consider the corresponding function
f : An → k. Then the function f is continuous in the Zariski topology. Indeed, f−1(a) =
V(f − a).

3.3 Polynomial maps. Morphisms

Observation 3.22. Let X ⊂ An be an algebraic set and call kX the algebra of all func-
tions from X into k. Consider the map R : k[X1, . . . , Xn]→ kX , defined by the restriction
of functions, i.e., R(f) = f

∣∣
X

. If I = I(X) is the ideal of X, it is clear that the image of

R is isomorphic to k[X1, . . . , Xn]/I. Observe also that for f ∈ k[X1, . . . , Xn] the function
R(f) : X → k, being the restriction of a continuous function, is also continuous.

Definition 3.23. Let X ⊂ An be an algebraic subset. We say that a function of kX is a
regular function or that it is a polynomial on X if it is the restriction to X of a polynomial
in An, i.e., if it belongs to R

(
k[X1, . . . , Xn]

)
. We denote the set of polynomial functions as

k[X].

Observation 3.24. As k[X] ⊂ kX is R
(
k[X1, . . . , Xn]

)
, it follows that the algebra k[X]

is isomorphic to k[X1, . . . , Xn]/I(X) (see Observation 3.22).

Observation 3.25. If we call CZar(X) the subalgebra of kX consisting of the functions
on X continuous with respect to the Zariski topology, it is clear that k[X] ⊂ CZar(X).
Notice that there exist continuous functions that are not regular. See Exercise 17.

Observation 3.26. Since the ideals of k[X1, . . . , Xn]/I correspond to the ideals of
k[X1, . . . , Xn] that contain I, the closed subsets of X in the Zariski topology correspond to
the ideals in k[X]. In particular, the points in X correspond to the maximal ideals of k[X].
It is also clear that the basis for the Zariski topology of an algebraic set X considered in
Definition 3.11 is

{
Xf : f ∈ k[X]

}
.

Definition 3.27. In the case that X and Y are abstract sets and F : X → Y is a
function, define a k-algebra homomorphism F ] : kY → kX as F ](f) = f◦F .

The following definition of morphism between algebraic sets generalizes and is motivated
by the construction of k[X].

Definition 3.28. Let X ⊂ An, Y ⊂ Am be algebraic sets. A morphism of algebraic
sets F : X → Y is a set theoretical function from X into Y with the property that
F ]
(
k[Y ]

)
⊂ k[X]. Morphisms of algebraic sets are also called regular maps or polynomial

maps.

Observation 3.29. (1) If F : X → Y is a morphism of algebraic sets, we denote the
restriction F ]

∣∣
k[Y ]

also as F ] : k[Y ]→ k[X].

(2) The reader is asked to prove as an exercise (see Exercise 14) that, in the situation of
the above Definition 3.28, if X ⊂ An and Y ⊂ Am, a function F : X → Y is a morphism of
algebraic sets if and only if there exists polynomials f1, . . . , fm ∈ k[X1, . . . , Xn] such that if
we call G = (f1, . . . , fm) : An → Am, then G

∣∣
X

= F (see also the proof of Theorem 3.32). In
other words, the morphisms of algebraic sets are the restrictions of m-uples of polynomials
viewed as maps in the ambient space. In particular the morphisms from An to Am are the
m-uples of polynomials in n variables.
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Lemma 3.30. Let X ⊂ An, Y ⊂ Am be algebraic sets and assume that F : X → Y is a
morphism of algebraic sets. Then, the map F ] : k[Y ]→ k[X] is an algebra homomorphism.

Proof. The proof follows immediately from Definition 3.28. �

Observation 3.31. The reader should be aware that the notation F ] for the map
k[Y ]→ k[X], f 7→ f◦F , is not uniform in the literature; see, for example, [12], [66], [144].

The next theorem shows that the study of the geometry of the algebraic sets can be
considered as a part of commutative algebra.

Theorem 3.32. The contravariant functor

X 7→ k[X] , (F : X → Y ) 7→
(
F ] : k[Y ]→ k[X]

)
is an isomorphism between the category of algebraic sets and morphisms of algebraic sets
and the category of affine k-algebras and morphisms of k-algebras.

Proof. Let A be an affine k-algebra; it can be written as A = k[X1, . . . , Xn]/I,
where I is a radical ideal. Call X = V(I) the algebraic subset of An consisting of
the zeroes of I. Clearly k[X] ∼= A. Assume now that X and Y are algebraic subsets
of An and Am, respectively, and that α : k[Y ] → k[X] is a morphism of algebras.
Write k[Y ] = k[Y1, . . . , Ym]/ I(Y ) and k[X] = k[X1, . . . , Xn]/ I(X). Define polynomials
fi ∈ k[X1, . . . , Xn], i = 1, . . . ,m by the formulæ α

(
Yi + I(Y )

)
= fi + I(X), and consider

the map α̂ : k[Y1, . . . , Ym] → k[X1, . . . , Xn] given by extending multiplicatively the map
that sends α̂(Yi) = fi, for i = 1, . . . ,m. Then, the diagram below commutes

k[Y1, . . . , Ym]
α̂ //

��

k[X1, . . . , Xn]

��
k[Y1, . . . , Ym]/I(Y )

α
// k[X1, . . . , Xn]/I(X)

Consider the map F = (f1, . . . , fm) : An → Am. We want to prove that F (X) ⊂ Y
and that F ] = α (see Lemma 3.30). If f ∈ k[Y1, . . . , Ym] then f◦F = f(f1, . . . , fm) =
f
(
α̂(Y1), . . . , α̂(Ym)

)
= α̂(f), i.e., F ] = α̂.

Also, if f ∈ I(Y ), then f◦F ∈ I(X) and hence map F sends X into Y . �

Lemma 3.33. If X ⊂ An is an algebraic set, then the elements of k[X] separate the
points of X. In other words, given x 6= y ∈ X, there exists f ∈ k[X] such that f(x) = 0,
f(y) 6= 0. More generally, if Y ⊂ X is a closed subset and x /∈ Y , then there exists f ∈ I(Y )
such that f(x) 6= 0

Proof. Since x /∈ Y , the maximal ideal Mx does not contain I(Y ). Hence, there exists
f ∈ I(Y ) \Mx. �

Definition 3.34. (1) Let X be an algebraic set, x ∈ X and Ux be an open subset of X
containing x. We say that a function h : Ux → k is regular at x, if there exist an open subset
x ∈ V ⊂ Ux and functions f, g ∈ k[X], such that g(y) 6= 0 for all y ∈ V and h

∣∣
V

= (f/g)
∣∣
V

.

(2) We call OX,x, the local ring of X at x, the ring of functions that are regular at x.

(3) If U is an open subset of X we define the ring of regular functions on an open subset U
as the ring of the functions f : U → k that are regular at every point of U . We denote this
ring as OX(U).
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Observation 3.35. Observe that in the above definition there is no loss of generality
if we ask V to be a basic open subset of X.

Lemma 3.36. (1) Let X be an algebraic set and x ∈ X. Then OX,x ∼= k[X]Mx
where

Mx is the maximal ideal in the ring k[X] corresponding to x.

(2) If X is an irreducible algebraic subset, and 0 6= f ∈ k[X], then k[X]f ∼= OX(Xf ), and
in particular OX(X) = k[X].

Proof. (1) There exists an injective map k[X]Mx
→ OX,x. Indeed, if we consider f/g with

f, g ∈ k[X] and g(x) 6= 0 and take Xg, it is clear that g does not vanish in Xg and then
the quotient f/g represents an element in OX,x. If h ∈ OX,x is an arbitrary element, one
can represent h as the quotient f/g of two polynomials f, g ∈ k[X], with g(x) 6= 0, in a
conveniently chosen neighborhood of x. It follows that the above morphism is surjective.

(2) It is clear that k[X]f injects into OX(Xf ). Consider an element g ∈ OX(Xf ); then
g ∈ OX,x for all x ∈ Xf or equivalently, g ∈ k[X]M for all the ideals M corresponding
to points of Xf . Now, x ∈ Xf if and only if f(x) 6= 0, if and only if f 6∈ M , where
M is the maximal ideal corresponding to the point x. In other words, g ∈ OX(Xf ) if
and only if g ∈ k[X]M for all maximal ideals M ⊂ k[X] such that f 6∈ M , i.e., OX(Xf ) =⋂{

k[X]M : f 6∈M, M ⊂ k[X] is maximal
}

. But, the localization map establishes a bijective
correspondence between the set of maximal ideals of k[X] that do not contain f and the set
of maximal ideals of k[X]f . Moreover, as k[X]M = (k[X]f )Mf

we conclude that OX(Xf ) =⋂{
(k[X]f )

M̃
: M̃ ⊂ k[X]f , M̃ is maximal

}
= k[X]f . For this last equality see Appendix,

Observation 3.15. �

Observation 3.37. If U ⊂ V ⊂ X are open subsets, the restriction of functions from
V to U induces a morphism of k-algebras ρ

V U
: OX(V )→ OX(U).

Given two open subsets U, V ⊂ X, f ∈ OX(U) and g ∈ OX(V ), such that f
∣∣
U∩V

=

g
∣∣
U∩V

, the function h : U ∪ V → k defined as h(x) = f(x) if x ∈ U , h(x) = g(x) if x ∈ V ,

belongs to OX(U ∪ V ).

Then the assignment U 7→ OX(U) together with the restriction maps form a sheaf of
rings in the topological space X (see Section 4.1, and in particular Example 4.6).

Corollary 3.38. (1) Let X be an irreducible algebraic subset and U ⊂ X an open
subset. Then every function f ∈ OX(U) is continuous.

(2) If X and Y are affine algebraic sets and f : X → Y is a morphism of affine algebraic
sets, then for any V open subset of Y the map given by composition with f sends OY (V )
into OX

(
f−1(V )

)
. �

The last assertion of the above Corollary is better interpreted in terms of morphisms
of sheaves (see, for example, Observation 4.40).

4 Algebraic varieties

In this section we continue with the development of algebraic geometry by defining the
category of algebraic varieties.
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4.1 Sheaves on topological spaces

Definition 4.1. A presheaf of rings F on a topological space X associates to each
open subset U ⊂ X a ring F(U) and to each pair of open subsets U ⊂ V ⊂ X a morphism
of rings ρ

V U
: F(V )→ F(U) such that:

(a) F(∅) = {0};
(b) ρ

UU
= idF(U) for all open subsets U ⊂ X;

(c) if U ⊂ V ⊂W ⊂ X are three open subsets, then ρ
WU

= ρ
V U
◦ρ
WV

;

We say that F is a sheaf of rings, or simply a sheaf, if it also satisfies:

(d) for every open subset U ⊂ X, for every cover {Vi}i∈I of U by open subsets, and for
every family si ∈ F(Vi) such that ρ

Vi Vi∩Vj
(si) = ρ

Vj Vi∩Vj
(sj) for all i, j ∈ I, there exists

s ∈ F(U) such that ρ
UVi

(s) = si for all i ∈ I;

(e) if U and {Vi}i∈I are as in (d) and s ∈ F(U) is such that ρ
UVi

(s) = 0 for all i ∈ I, then
s = 0.

For U ⊂ X open, the ring F(U) is called the ring of sections of F on U and the maps
ρ
V U

are called the restriction maps. The elements of F(U) are called the sections of the
sheaf on U .

If F is a sheaf on X, a subsheaf G ⊂ F is a sheaf such that G(U) ⊂ F(U) is a subring,
for all open subsets U ⊂ X.

Observation 4.2. (1) Most of the sheaves used in this book are sheaves of k-algebras
— i.e., the rings F(U) are k-algebras, and the restriction maps are morphisms of k-algebras.
In this context, by a subsheaf we mean a subsheaf such that G(U) is a subalgebra of F(U)
for all U open subset of X.

(2) Usually — and the motivation for this abuse of notation will become clear in what
follows — if U ⊂ V and s ∈ F(V ), we write s

∣∣
U

= ρ
V U

(s).

(3) If X is a topological space a more formal definition of a presheaf on X would be
the following. Consider the topology T as a category — viewing it as an ordered set. A
presheaf on X is a contravariant functor from the topology into the category of rings. In
this interpretation sheaves are functors satisfying certain equalization properties.

Example 4.3. Let X and Z be topological spaces. To each open subset U ⊂ X we
associate the set of continuous functions from U to Z, and if V ⊂ U are open, we consider
the restriction of functions from U to V . Since continuity is a local property, in this manner
we obtain a sheaf. If Z = R, this is a sheaf of R-algebras.

Definition 4.4. Let F be a presheaf of rings on X, and x ∈ X. We define the stalk
Fx of F at x as the direct limit of the directed family of rings{

F(U) : x ∈ U , ρ
V U
, U ⊂ V open in X

}
.

Observation 4.5. (1) Explicitly, Fx is the quotient of the set of pairs
{

(U, s) : s ∈
F(U) , x ∈ U open in X

}
with respect to the equivalence relation: (U, s) ∼ (V, t) if and

only if there exists an open set x ∈W ⊂ V ∩ U such that s
∣∣
W

= t
∣∣
W

.

(2) Notice that for all x ∈ X the fiber Fx is a commutative ring, and a k-algebra if the F
is a presheaf of k-algebras.

(3) If U ⊂ X is an open subset, then the canonical map associated to the direct limit is
a ring homomorphism for all x ∈ U — recall that this canonical map F(U) → Fx sends
s ∈ F(U) into the equivalence class of the pair (U, s).

The image of s in the stalk Fx can be thought as the value of s at x. Thus, the stalk
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Fx represents the germs of the sections of F at x, and a section s ∈ F(U) can be thought
as a function s : U →

⊔
x∈U Fx such that s(x) ∈ Fx — the symbol

⊔
represents the disjoint

union. Notice that not all functions as above produce elements of F(U), as the elements of
F(U) satisfy additional coherence properties.

The following example is central in the development of the theory of algebraic varieties.

Example 4.6 (The sheaf of regular functions). Let X ⊂ An be an algebraic set. In
accordance to Definition 3.34 we associate to each open subset U ⊂ X the algebra of
regular functions OX(U). This, together with the restriction maps, produces a sheaf of
k-algebras on X, called the structure sheaf of X and denoted as OX .

It is more or less obvious that OX satisfies properties (a), (b), (c) and (e) of Definition
4.1. Condition (d) follows from the local character of the definition of regular function.

We leave as an exercise the proof that the stalk of the sheaf OX is what we called OX,x
in Definition 3.34 (see Exercise 23).

Definition 4.7. Let F and G be two presheaves of rings on a topological space X.
A morphism ϕ : F → G consists of a family of ring homomorphisms

{
ϕ(U) : F(U) →

G(U), U ⊂ X,U open
}

such that whenever there is an inclusion U ⊂ V ⊂ X of open
subsets, the following diagram is commutative:

F(V )
ϕ(V ) //

ρF
V U

��

G(V )

ρG
V U

��
F(U)

ϕ(U)
// G(U)

If F and G are sheaves, a morphism of sheaves from F to G is a morphism of presheaves.
The morphisms ϕ(U) will frequently be denoted as ϕU : F(U)→ G(U).

Observation 4.8. (1) A morphism of sheaves ϕ : F → G induces, for all x ∈ X, a ring
homomorphism ϕx : Fx → Gx.

(2) We say that ϕ is injective (resp. surjective) if ϕx is injective (resp. surjective) for all
x ∈ X.

(3) Considering presheaves as functors (see Observation 4.2), the morphisms between
presheaves can be interpreted as natural transformations between the functors.

(4) If the presheaves have additional structure, for example if they are presheaves of k-
algebras, we additionally require in the definition of morphism that for all open sets U of
the base space X, the maps ϕ(U) are morphisms of k-algebras.

Definition 4.9. LetX,Y be topological spaces, F a sheaf of rings onX, and f : X → Y
a continuous function.

We define the direct image sheaf f∗F as the sheaf on Y given as follows: f∗ F(V ) =
F
(
f−1(V )

)
, V ⊂ Y open, with restriction morphisms

ρf∗F
VW

= ρF
f−1(V )f−1(W )

: F
(
f−1(V )

)
→ F

(
f−1(W )

)
.

Observation 4.10. Assume that X and Y are topological spaces and call CX and CY
the sheaves of k-valued continuous functions onX and Y respectively — we endow k with the
Zariski topology. Given a continuous function f : X → Y we define a morphism of sheaves
f ] : CY → f∗CX as follows: if V ⊂ Y is open, then f ]V : CY (V )→ f∗ CX(V ) = CX

(
f−1(V )

)
is given by composition with f .
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More generally, if f : X → Y is a continuous function, a pair of sheaves of contin-
uous k-valued functions FX and FY defined on X and Y , respectively, i.e., subsheaves
of CX and CY respectively, are said to be f -compatible if for all V ⊂ Y open in Y ,
f ]V
(
FY (V )

)
⊂ f∗ FX(V ) = FX

(
f−1(V )

)
. For f -compatible sheaves, the diagram that

follows is commutative

CY
f] // f∗(CX)

FY
?�

OO

f]
// f∗(FX)
?�

OO

In explicit terms, the f -compatibility means that if V ⊂ Y is an arbitrary open subset
of Y and α : V → k is a function on FY (V ), then the function α◦f : f−1(V ) → k belongs
to FX

(
f−1(V )

)
.

4.2 The maximal spectrum

We need to introduce a few elements of the abstract theory of spectra of commutative
rings.

Definition 4.11. Let A be a commutative ring. The prime spectrum of A — denoted
as Sp(A) — is the set

Sp(A) =
{
P ⊂ A : P is a prime ideal of A

}
.

The subset Spm(A) =
{
M ⊂ A : M is a maximal ideal of A

}
is called the maximal

spectrum of A.

Definition 4.12. Let A be a commutative ring and call X = Sp(A). If f ∈ A we define

Xf =
{
P ∈ Sp(A) : f 6∈ P

}
.

If Y = Spm(A), we define

Yf = Xf ∩ Y = Xf =
{
M ∈ Spm(A) : f 6∈M

}
.

The proof of the theorem that follows is an easy exercise in commutative algebra.

Theorem 4.13. Let A be a commutative ring and X = Sp(A) or X = Spm(A). Then
the family of sets

{
Xf : f ∈ A

}
considered in Definition 4.12 is the basis of a topology of

X that is called the Zariski topology. A subset Y ⊂ X is closed in this topology if and only
if Y =

{
Q ∈ X : Q ⊃ I

}
, where I is an ideal of A. �

Observation 4.14. (1) The assignment A 7→ Sp(A) can be extended to a contravariant
functor from the category of commutative rings to the category of topological spaces. If
α : A→ B is a morphism of commutative rings, we define α∗ : Sp(B)→ Sp(A) as α∗(Q) =
α−1(Q) for a prime ideal Q ⊂ B.

(2) If we consider the inclusion Z ⊂ Q, then the maximal ideal {0} ⊂ Q when intersected
with Z is not maximal. Hence, one does not have a natural way to view Spm as a functor
in all the category of commutative rings.

Lemma 4.15. Let A and B be commutative finitely generated k-algebras, α : A → B
a morphism of k-algebras and M ∈ Spm(B). Then α−1(M) ∈ Spm(A). In other words,
α∗
(
Spm(B)

)
⊂ Spm(A).
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Proof. Let M be a maximal ideal in B, consider M ′ = α−1(M) and the map α :
A/M ′ → B/M . As B is a quotient of a polynomial algebra the Nullstellensatz guarantees
that B/M coincides with the base field k. Then, as α is k-linear and injective, we conclude
that A/M ′ is also the field k and hence that M ′ is a maximal ideal. �

The theorem that follows can be viewed as a more formal presentation of Observation
3.26.

Theorem 4.16. Assume that X is an algebraic subset of An and consider Spm
(
k[X]

)
as defined before. Then the map ιX : X → Spm

(
k[X]

)
defined as

ιX(a1, . . . , an) = 〈X1 − a1, . . . , Xn − an〉+ I(X) ⊂ k[X1, . . . , Xn]/ I(X)

is a natural homeomorphism when we endow the domain and codomain with the correspond-
ing Zariski topologies.

Proof. The proof is a direct consequence of the theory developed so far. We only
verify the assertions concerning the topology. Consider f ∈ k[X]; then

ιX(Xf ) =
{
〈X1 − a1, . . . , Xn − an〉+ I(X) : f(a1, . . . , an) 6= 0

}
={

M ⊂ k[X] : f 6∈M maximal
}
. �

The triple (X,k[X], ιX) is an example of the concept of “abstract” affine algebraic
variety (see Definition 4.17).

4.3 Affine algebraic varieties

In order to eliminate the dependency of an algebraic set on the affine ambient space,
we present the following intrinsic definition of affine algebraic variety.

Definition 4.17. Let k be an algebraically closed field. An affine variety over k consists
of a triple (X,A,ϕ), where X is a topological space — the underlying topological space of
the affine variety — A is an affine k-algebra — the algebra of regular functions of the affine
variety — and ϕ : X → Spm(A) is a homeomorphism. If there is no danger of confusion A
is denoted as k[X], or OX(X), and the affine variety (X,A,ϕ) is written as

(
X,k[X]

)
or

even as X.

A morphism of affine algebraic varieties with domain (X,A,ϕ) and codomain (Y,B, ψ)
is a pair (f, f ]), where f : X → Y is a continuous map and f ] : B → A is a morphism of
k-algebras such that f ]

∗
: Spm(A)→ Spm(B) makes the diagram below commutative

X
f //

ϕ

��

Y

ψ

��
Spm(A)

f]
∗
// Spm(B)

In accordance with the standard notations, we denote ϕ(x) = Mx.

Example 4.18. Assume that (X,A,ϕ) is an affine algebraic variety and Y a closed
subset of X. In this case Y also becomes naturally an affine algebraic variety as follows.
The homeomorphism ϕ : X → Spm(A) sends Y onto ϕ(Y ), that is a closed subset, and
then

ϕ(Y ) =
{
M ⊂ A : I ⊂M maximal ideal of A

}
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for some ideal I ⊂ A (see Theorem 4.13).

Consider
(
Y,A/I, ϕ

∣∣
Y

)
; as

Spm(A/I) ∼=
{
M ⊂ A : I ⊂M maximal ideal of A

}
,

it is clear that
(
Y,A/I, ϕ

∣∣
Y

)
is an affine algebraic variety. Moreover, the pair (ι, π) is a

morphism of affine algebraic varieties where ι : Y ⊂ X is the inclusion and π : A→ A/I is
the canonical projection.

Observation 4.19. (1) LetX ⊂ An be an algebraic subset. In accordance with Theorem
4.16 the triple

(
X,k[X], ιX

)
is an affine algebraic variety.

(2) In the Definition 4.17, if x ∈ X, then the k-algebra A/Mx is canonically isomorphic to
k (see Theorem 2.18 and Lemma 4.15).

(3) The elements of A can be interpreted as functions on X as follows. Consider the mor-
phism of k-algebras ιX : A→ kX defined as ιX(a)(x) = a+Mx ∈ A/Mx = k. The map ιX
is injective because if ιX(a) = 0, then a ∈ Mx for all x ∈ X, and it follows from Exercise
5 that a = 0. Hence, A can be identified with a subalgebra of kX , i.e., A is an algebra of
functions on X with values on the base field k. Observe that if a is fixed, then{
x ∈ X : ιX(a)(x) 6= 0

}
=
{
x ∈ X : a 6∈Mx

}
=
{
x ∈ X : a 6∈ ϕ(x)

}
= ϕ−1

((
Spm(A)

)
a

)
,

that is open in X. Hence, the functions of the form ιX(a) are continuous. We call ιX(A) =
k[X].

(4) Viewing the k-algebra A as a subalgebra of kX as before, the map f ] can be visualized
as the composition by f or, in other words, the diagram below is commutative.

B
f] //

ιY
��

A

ιX
��

kY
−◦f
// kX

This will be shown in Lemma 4.22.

Hence, in this situation the map f ] is determined by f .

(5) It follows from the previous definitions above that an affine algebraic variety is isomor-
phic to the affine algebraic variety associated to an algebraic subset of some An.

Indeed, if we have a triple (X,A,ϕ) the affine k-algebra A is isomorphic to a quotient
k[X1, . . . , Xn]/I, where I is a radical ideal. If we call XA the corresponding algebraic subset
of An, and consider

(
XA,k[XA], ιXA

)
, it is easy to show (and left as an exercise for the reader,

see Exercise 24) that the two affine algebraic varieties (X,A,ϕ) and
(
XA,k[XA], ιXA

)
are

isomorphic.

(6) Let (X,A,ϕ) be an affine variety and
(
X1,k[X1], ιX1

)
,
(
X2, k[X2], ιX2

)
be affine varieties

associated to the affine algebraic sets X1 and X2, that are also isomorphic to (X,A,ϕ). Then
the algebraic sets X1 and X2 are isomorphic (see Theorem 3.32 and Definition 3.28).

Observation 4.19 justifies the definition that follows.

Definition 4.20. Let X be an affine variety. Consider an algebraic subset Y isomor-
phic with X, and call ψ : X → Y an isomorphism. We define the structure sheaf of X
as OX(U) = OY

(
ψ(U)

)
, where OY is as usual the structure sheaf of Y . The restriction

morphism is defined in the same manner.
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Observation 4.21. (1) The construction of the structure sheaf above is independent
of the chosen isomorphism ψ; see Observation 4.19, (6).

(2) Referring to the situation of Example 4.18, if we consider the corresponding associated
structure sheaves on X and Y , then the morphism ι] : OX → ι∗(OY ), given by composition
with the inclusion, is surjective. Equivalently, if I is the ideal of k[X] associated to Y , then
for an arbitrary point y ∈ Y the morphism k[X]My

→
(
k[X]/I

)
My/I

is surjective. This

follows immediately from the fact that the projection k[X]→ k[X]/I is surjective.

Given two topological spaces X,Y underlying to affine algebraic varieties, the following
is a criterion to decide if a given continuous map between X and Y is the first component
of a morphism.

Lemma 4.22. Let (X,A,ϕ) and (Y,B, ψ) be affine algebraic varieties and assume that
f : X → Y is a continuous map. Then, f is the first component of a morphism of affine
algebraic varieties if and only if α ◦ f ∈ k[X] ⊂ kX for all α ∈ k[Y ] ⊂ kY . Moreover, f ] is
uniquely determined by f , as asserted in Observation 4.19.

Proof. Assume that f is the first component of the morphism (f, f ]). Then the dia-
gram below is commutative

X
f //

ϕ

��

Y

ψ

��
Spm(A)

f]
∗
// Spm(B)

Given the morphism f ] : B → A, if M is a maximal ideal of A there is an isomorphism
B/(f ])−1(M) ∼= A/M and then, via the identification of both sides with k, we see that
b+(f ])−1(M) = f ](b)+M . It follows that the diagram below commutes (here we are using
the notations of Observation 4.19).

B
f] //

ιY
��

A

ιX
��

kY
−◦f
// kX

Indeed, we have that ιX
(
f ](b)

)
(x) = f ](b) +Mx = b+ (f ])−1(Mx) and ιY (b)

(
f(x)

)
=

b + ψ
(
f(x)

)
= b + (f ])∗(Mx) = b + (f ])−1(Mx). As k[Y ] = ιY (B) and k[X] = ιX(A), the

conclusion follows.

The converse is proved similarly. First observe that if we call EX : X → Spm
(
k[X]

)
the

map defined as EX(x) = Ker(εx), where εx : k[X]→ k is as usual the evaluation at x, the
triangle that follows is commutative

X

ϕ

{{

EX

$$
Spm(A) Spm

(
k[X]

)
ιX
∗

oo

This commutativity follows by explicit computations:

ι∗X
(
EX(x)

)
= ι∗X

(
Ker(εx)

)
= ι−1

X

(
Ker(εx)

)
=
{
a ∈ A : ιX(a) ∈ Ker(εx)

}
={

a ∈ A : ιX(a)(x) = a+ ϕ(x) = 0
}

= ϕ(x).
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We define f ], i.e., the second component of the morphism of affine varieties, by the
commutativity of the diagram

B
f] //

ιY

��

A

ιX

��
k[Y ]

−◦f
// k[X]

Considering the corresponding diagram at the level of the spectra, we obtain another
commutative diagram

Spm
(
k[X]

) (−◦f)∗ //

ι∗X

��

Spm
(
k[Y ]

)
ι∗Y

��
Spm(A)

f]
∗
// Spm(B)

Next consider the diagram

X
f //

ϕ
��

EX

~~

Y

ψ
��

EY

  

Spm(A)
f]
∗
// Spm(B)

Spm
(
k[X]

) i∗X

77

(−◦f)∗
// Spm

(
k[Y ]

)i∗Y

gg

This diagram is formed by two triangular and two quadrangular blocks, and the two
triangles as well as the lower quadrangular block are commutative. Hence, the commuta-
tivity of the central square (that is our thesis) will follow from the commutativity of the
diagram that follows, which is the outer diagram of the above.

X
f //

EX

zz

Y

EY

$$
Spm

(
k[X]

)
(−◦f)∗

// Spm
(
k[Y ]

)
The commutativity of this diagram is a direct computation. �

Observation 4.23. Let X be an affine variety and f ∈ k[X]. Then the basic open
subset Xf ⊂ X can be viewed as an affine variety. In this sense we interpret Xf as the triple(
Xf ,k[X]f , ιf

)
, where ιf : Xf → Spm

(
k[X]f

)
is the map defined by the commutativity of

the diagram

Xf

ιf //
� _

��

Spm
(
k[X]f

)
� _

��
X

ιX
// Spm

(
k[X]

)
In other words, the map ιf is the restriction of the homeomorphism ιX considered in

Theorem 4.16. The reader should verify that if x ∈ X and M is its associated maximal



Algebraic geometry: basic definitions and results 25

ideal, then f(x) 6= 0 if and only if f 6∈ M . This means that the restriction of ιX has the
codomain we need.

We show now how to give in an explicit way an isomorphism between Xf and a closed
subset in an affine space.

Assume that X ⊂ An is irreducible and consider ϕ : Xf → X × A1, ϕ(x) =
(
x, 1

f(x)

)
.

The image of ϕ is the algebraic subset Y ⊂ X × A1 ⊂ An × A1, Y =
{

(x, z) : x ∈ X, z ∈
A1, f(x)z − 1 = 0

}
. It is clear that Y is an algebraic subset of An+1. In Exercise 25 we ask

the reader to prove that k[Y ] ∼= k[X]f and that the diagram below is commutative.

Xf
ϕ //

ιf

��

Y

ιY

��
Spm

(
k[X]f

)
Spm

(
k[Y ]

)
It is clear that the map ϕ : Xf → Y is bijective and its inverse is the restriction to Y

of the projection p1 : X × A1 → X. To prove that ϕ is an homeomorphism we only have to
prove that it is continuous, as its inverse is the projection that is clearly continuous. Take
g ∈ k[Y ]; we want to prove that ϕ−1(Yg) is open in Xf . Now, x ∈ ϕ−1(Yg) if and only if
g
(
x, 1

f(x)

)
6= 0. If we multiply by a large enough power fr, then h(x) = fr(x)g

(
x, 1

f(x)

)
is a

polynomial in X, and then ϕ−1(Yg) = Xf ∩Xh.

Observe that we have constructed Xf as the graph of the function 1
f . One can show in

general that if g : X → Y is a morphism of affine algebraic varieties, then the graph of g is
an affine variety (see Exercise 15).

The next lemma shows how to produce dense affine basic open subsets in the case when
the affine algebraic variety X is not irreducible.

Lemma 4.24. Let X be an affine algebraic variety and X =
⋃n
i=1Xi its decomposition

in irreducible components. Then Xi is affine, and there exists f ∈ k[X] such that for all
i, j = 1. . . . , n, then Xf ∩ Xi 6= ∅ and Xf ∩ Xi ∩ Xj = ∅. In other words, Xf is a dense
open subset of X, and the irreducible components of Xf =

⋃n
i=1Xf ∩Xi are its connected

components.

Proof. Since Xi ⊂ X is a closed subset, it follows from Example 4.18 the Xi is an
affine algebraic variety. We proceed by induction and assume that n = 2. If X1 ∩X2 = ∅,
then we can take f = 1. If X1 ∩ X2 6= set, observe that X1 ∩ X2 ( X1, since otherwise
X1 ⊂ X2 and therefore X1 = X2; anagolously, X1 ∩X2 ( X2.

Let 0 6= f1 ∈ k[X1] be such that f1(X1 ∩ X2) = 0, and consider f̃1 ∈ k[X] such that

f
∣∣
X1

= f1 — the regular function f exists because X1 ⊂ X is a closed subset. If f̃1

∣∣
X2

6= 0,

then we take f = f̃1 and we are done. If f̃1

∣∣
X2

= 0, we consider 0 6= f2 ∈ I(X1) ⊂ k[X], and

let f = f̃1 + f2. Then f
∣∣
X1

= f1 6= 0, and f
∣∣
X2

= f2

∣∣
X2

6= 0 — otherwise f2 = 0 and this is

a contradiction. It is clear that f ∈ I(X1 ∩X2); therefore, f verifies the required property.

We left as an exercise to the reader to complete this proof; see Exercise 18. �

Example 4.25. Assume that A and B are commutative k-algebras. The maximal ideals
of A⊗B are of the form M⊗B+A⊗N for M and N maximal ideals of A and B, respectively.
Hence, as (abstract) sets Spm(A⊗B) and Spm(A)×Spm(B) are isomorphic. See Appendix,
Section 3 and Exercise 19.

Let X and Y be affine varieties. Then
(
X×Y, k[X]⊗k[Y ]

)
is an affine variety, when we



26 Actions and Invariants of Algebraic Groups

endow the set X ×Y with the topology induced by the isomorphism X ×Y = Spm
(
k[X]⊗

k[Y ]
)
. This topology in general is not the product topology (see Exercise 19). Moreover, if

X is an algebraic subset of An and Y of Am, we can consider in a natural way X × Y as
a subset of An+m and as such it is also an affine algebraic set. In Exercise 19 we ask the
reader to prove that in this case both structures of affine algebraic varieties coincide. In
particular the element

∑
fi ⊗ gi ∈ k[X] ⊗ k[Y ] can be viewed as the function on X × Y

given by
(∑

fi ⊗ gi
)
(x, y) =

∑
fi(x)gi(y).

In this context, it is instructive to describe explicitly the topology on X×Y . A basis for
the topology of X × Y is given as follows: for arbitrary regular functions f1, . . . , fn ∈ k[X],
g1, . . . , gn ∈ k[Y ], define

Uf1,...,fn,g1,...,gn =
{

(x, y) ∈ X × Y :

n∑
i=1

fi(x)gi(y) 6= 0
}
.

Then, the family of subsets Uf1,...,fn,g1,...,gn is a basis for the topology of X×Y . Indeed,
if
∑
fi ⊗ gi a generic element of k[X] ⊗ k[Y ], it follows from Observation 4.23 that (X ×

Y )∑ fi⊗gi is isomorphic to the affine variety Spm
(
k[X]⊗ k[Y ]

)∑
fi⊗gi

. Moreover, it is clear

that (X × Y )∑ fi⊗gi = Uf1,...,fn,g1,...,gn .

Lemma 4.26. Let X be an affine algebraic variety. Then the diagonal map ∆ : X →
X×X, ∆(x) = (x, x) is a morphism of affine varieties. Moreover, ∆(X) is closed in X×X.

Proof. The composition of a regular function α =
∑
fi⊗gi : X×X → k with ∆ yields

the function α◦∆ =
∑
figi : X → k. Using Lemma 4.22 we conclude that ∆ is a morphism

of affine varieties. Moreover, the image of ∆ can be described as ∆(X) = V
({
f ⊗ 1− 1⊗ f :

f ∈ k[X]
})

. Indeed, the elements of k[X] separate the points of X (see Lemma 3.33); thus,
given (x, y) ∈ X ×X with x 6= y, there exists f ∈ k[X] such that f(x) = 0 and f(y) 6= 0.
Then, (f ⊗ 1− 1⊗ f)(x, y) = f(x)− f(y) 6= 0. �

4.4 Algebraic varieties

Definition 4.27. Assume that X is a topological space and that U and V are open
subsets of X such that each of them supports a structure of affine algebraic k-variety. We
say that U and V are compatible affine charts, if for all W ⊂ U ∩ V open in X, then
OU (W ) = OV (W ) ⊂ kW (see Observation 4.19 and Definition 4.20).

Definition 4.28. Let X be a topological space. An affine k-atlas for X — or simply
an affine atlas — is a covering of X by open subsets Ui, i ∈ I, such that each Ui is equipped
with a structure of affine algebraic k-variety, in such a way that Ui and Uj are compatible
for every i, j ∈ I. Two atlases are said to be equivalent if their union is also an atlas. A
finite atlas is an atlas with a finite number of affine charts.

Lemma 4.29. Let X be a topological space that admits an affine k-atlas {Ui}i∈I . There
exists a unique sheaf of k-algebras on X (denoted OX) such that OX(Ui) = OUi(Ui) for all
i ∈ I. Moreover, if x ∈ X, then the stalk OX,x is a local ring.

Proof. Given an open subset U ⊂ X we define OX(U) as the k-algebra of all the
functions f : U → k such that for all i ∈ I, f

∣∣
U∩Ui

∈ OUi(U ∩ Ui).

It is clear that OX is a sheaf, and it follows from the very definition that OX(Ui) =
OUi(Ui).

The uniqueness is also clear and the assertion about the stalks follows from the fact
that locally we are dealing with affine varieties whose stalks are local rings. �
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Observation 4.30. (1) If there is no danger of confusion we omit the reference to the
base field k, and refer to affine atlas and algebraic varieties instead of affine k-atlas and
algebraic k-varieties.

(2) If there is no danger of confusion we omit the subscript X in the structure sheaf of the
algebraic variety and in the notation for the stalk. Hence the variety will be denoted as
(X,O) and the stalk as Ox.

(3) It is important to observe (see the proof of the above lemma) that the structure sheaf
is a subsheaf of the sheaf of continuous functions on the topological space X with values in
k. The continuity follows immediately from the local definition of the sheaf.

(4) The stalk Ox is also an augmented k-algebra. The augmentation map is called εx :
Ox → k and is the evaluation at x. The kernel of this augmentation map is the maximal
ideal of Ox that is denoted as Mx.

Observation 4.31. If X is a topological space which admits an affine atlas Ui, i ∈ I,
then the covering {Ui : i ∈ I} induces a covering Ui × Uj of X × X, and thus the open
subsets of the affine variety Ui ×Uj are a basis for a topology in X ×X. For this topology,
Ui × Uj is an affine atlas (see Exercise 19).

First we define prevarieties that are obtained by pasting together affine algebraic vari-
eties. Then we add a “Hausdorff” separability condition to obtain the general definition of
algebraic variety.

Definition 4.32. A structure of algebraic k-prevariety on a topological space X is a
equivalence class of finite k-atlases. If the (set theoretical) diagonal morphism ∆ : X →
X × X has closed image (for the topology on X × X considered in Observation 4.31) we
say that the above is a structure of algebraic k-variety.

An algebraic k-prevariety is a pair (X,OX), where X is as above and OX is the corre-
sponding structure sheaf — similarly for an algebraic k-variety.

Observation 4.33. If Ui, i ∈ I, is an atlas for the topological space X, it is easy
to show that the preceding closedness condition is equivalent to the condition that for all
i, j ∈ I, ∆(Ui ∩ Uj) is closed in Ui × Uj .

Observation 4.34. In the more general context of schemes, the condition of the diag-
onal being closed in the product is called the separability condition. Exercise 29 gives some
insight on the way this condition is used in algebraic geometry; see also Lemma 2.2.7.

The main example of a non affine algebraic variety is the projective space.

Example 4.35. Let n ∈ N, and consider in An+1 \ {0} the equivalence relation defined
as x ∼ y if and only if for some λ ∈ k∗, x = λy — in geometric terms x ∼ y if and only if x
and y belong to the same straight line through the origin.

The projective space Pn(k) (or P(kn), or even Pn) is defined (set theoretically) as the
quotient

(
An \ {0}

)
/ ∼. It is customary to denote the equivalence class of (x0, . . . , xn) ∈

An+1 \{0} as [x0 : · · · : xn]. If V ∼= kn is a finite dimensional k-space, then P(V ) is identified
with P(kn). We endow Pn with the quotient topology.

To describe explicitly the topology of Pn first observe that even though for an arbitrary
polynomial p ∈ k[X0, . . . , Xn] we cannot evaluate it at a point in Pn, if p is homogeneous,
then the expression p

(
[a0 : · · · : an]

)
= 0 is meaningful. In a similar way than for subsets of

An, we can define the map V from homogeneous ideals to subsets:

V(I) =
{

[a0 : · · · : an] ∈ Pn : pi
(
[a0 : · · · : an]

)
= 0 , i = 1, . . . ,m

}
,

where {pi : i = 1, . . . ,m} is a set of homogeneous generators of I.


