
The concept of the Euclidean simplex is important in the study of 

n-dimensional Euclidean geometry. This book introduces for the 

first time the concept of hyperbolic simplex as an important 

concept in n-dimensional hyperbolic geometry. 

Following the emergence of his gyroalgebra in 1988, the author 

crafted gyrolanguage, the algebraic language that sheds natural 

light on hyperbolic geometry and special relativity. Several authors 

have successfully employed the author’s gyroalgebra in their 

exploration for novel results. Françoise Chatelin noted in her book, 

and elsewhere, that the computation language of Einstein 

described in this book plays a universal computational role, which 

extends far beyond the domain of special relativity. 

This book will encourage researchers to use the author's novel 

techniques to formulate their own results. The book provides new 

mathematical tools, such as hyperbolic simplexes, for the study of 

hyperbolic geometry in n dimensions. It also presents a new look 

at Einstein’s special relativity theory. 
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Preface

Analytic hyperbolic geometry in n dimensions is a new interdisciplinary subject 
between hyperbolic geometry of Lobachevsky and Bolyai and the special 
theory of relativity of Einstein. As Duncan MacLaren Young Sommerville 
(1879–1934) emphasized in his 1930 classic An Introduction to the Geometry of 
N Dimensions, when a geometry is extended to higher dimensions, one acquires 
both greater generality and greater succinctness in related expressions. In the 
book, the theory of Einstein’s addition law of relativistically admissible velocities, 
extended to n dimensions, is a rich playground for analytic hyperbolic geometry 
in n dimensions. The book encourages researchers to cross traditional boundaries 
between hyperbolic geometry and special relativity theory.

It is natural to expect that important developments in science will come from 
interdisciplinary research. A merger of analytic hyperbolic geometry and special 
relativity theory stems from the author’s two discoveries in the 1980s:

 1. Einstein’s addition law encodes rich structures that became known as a 
gyrogroup and a gyrovector space; and the resulting

 2. Einstein gyrogroups and gyrovector spaces form the algebraic setting for the 
relativistic model (known as the Beltrami-Klein model) of n-dimensional 
hyperbolic geometry, just as groups and vector spaces form the algebraic 
setting for the standard model of n-dimensional Euclidean geometry.

The binary operation in Einstein gyrogroups and gyrovector spaces, which 
plays the role analogous to vector addition, is Einstein addition, which is 
neither commutative nor associative. Einstein addition, in turn, admits special 
automorphisms called gyroautomorphisms (or gyrations, in short), which come 
to the rescue. Indeed, gyroautomorphisms establish a formalism that remedies the 
breakdown of commutativity and associativity in gyrogroups and gyrovector spaces.

The book demonstrates that when special relativity theory and hyperbolic 
geometry meet, they cross-pollinate ideas from one area to the other. Techniques 
and tools from one area lead to advances in the other. Among outstanding examples 
found in the book are the topics listed in Items 1 and 2 below:

 1. The hyperbolic counterparts of the following tools, commonly used in 
Euclidean geometry,
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 a) Cartesian coordinates;
 b) barycentric coordinates;
 c) trigonometry; and
 d) vector algebra,
  are adapted for use in hyperbolic geometry as well.
 2. The hyperbolic counterparts of the following well-known theorems in 

Euclidean geometry:
 a) the Inscribed Angle Theorem;
 b) the Tangent–Secant Theorem;
 c) the Intersecting Secants Theorem; and
 d) the Intersecting Chords Theorem,

are established in hyperbolic geometry as well.

Furthermore, (1) the relativistic effect known as Thomas precession and (2) the 
relativistic mass emerge in the book as relativistic concepts that possess a natural, 
crucially important hyperbolic geometric interpretation. Indeed,

 1. Thomas precession is extended by abstraction to the gyrator, an operator 
that generates automorphisms called gyrations. Gyrations, in turn, capture 
remarkable analogies that Euclidean and hyperbolic geometry share. In fact, it 
is the incorporation of gyrations that turns Euclidean geometry into hyperbolic 
geometry, as demonstrated in the book.

 2. Relativistic mass of particle systems suggests hyperbolic barycentric 
(gyrobarycentric) coordinates to be introduced as a tool into hyperbolic 
geometry, just as Newtonian mass of particle systems suggests barycentric 
coordinates to be introduced as a tool into Euclidean geometry. Moreover, the 
use of gyrobarycentric coordinates enables interesting results in hyperbolic 
geometry to be discovered, just as the use of barycentric coordinates enables 
interesting results in Euclidean geometry to be discovered.

Due to the novel analogies with vector addition that Einstein addition captures, 
the book provides a new look at Einstein’s special relativity theory, an example of 
which is Einstein’s addition law, which gives rise to a binary operation, ⊕, in the 
ball of all relativistically admissible velocities:

 1. In the same way that vector addition is both commutative and associative, 
Einstein addition, ⊕, is both gyrocommutative and gyroassociative. 
Consequently,

 2. in the same way that vector addition admits scalar multiplication that gives 
rise to vector spaces, Einstein addition admits scalar multiplication, ⊗, that 
gives rise to gyrovector spaces.

The resulting new looks at Einstein’s special relativity theory are best illustrated 
by considering the following novel analogy between classical and relativistic kinetic 
energy that Einstein scalar multiplication captures:



 1. Classically, the kinetic energy, Kcls, of a particle with mass m that moves 
uniformly with velocity v relative to a rest frame Σ0 is given by Kcls = 2

1 mv2, 
where v2 = v.v. It can be viewed as the inner product of the particle “classical 
half-velocity” 2

1 v and its classical momentum mv, that is,

 Kcls = 2
1mv2  = (2

1v).(mv). (*)

 2. Relativistically, the kinetic energy, Krel, of a particle with relativistic mass mγv 
that moves uniformly with relativistically admissible velocity v relative to a 
rest frame Σ0 is given by the well-known equation Krel = c2m(γv − 1). Here, 
c is the speed of light in empty space and γv = (1−v2/c2)−1/2 is the Lorentz 
gamma factor of special relativity. Surprisingly, the relativistic kinetic energy 
Krel satisfi es the identity (Sect. 3.2)

 Krel = c2m(γv − 1) = (2
1⊗v).(mγvv). (**)

  Identity (**) presents a new look at the relativistic kinetic energy. It enables the 
relativistic kinetic energy Krel of a particle to be viewed as the inner product 
of the particle “relativistic half-velocity” 2

1⊗v and its relativistic momentum 
mγvv, in full analogy with its classical counterpart in (*).

The analogies between Identities (*) and (**) that the relativistic scalar 
multiplication, ⊗, captures illustrate the new looks at Einstein’s special relativity 
that the study of analytic hyperbolic geometry provides in the book.

Cayley-Menger matrices and determinants of order (N + 1) × (N + 1) are 
classically assigned to (N − 1)-simplices in higher dimensional Euclidean geometry. 
Hence, of particular interest are analogies with Cayley-Menger matrices that N × 
N gamma matrices and determinants, assigned to (N − 1)-hyperbolic-simplices in 
higher dimensional hyperbolic geometry are captured in the book. Remarkably, 
entries of a gamma matrix are gamma factors of special relativity.

The book demonstrates the power and elegance that emerge when Einstein’s 
special theory of relativity, now a part of classical mechanics, is treated integrally 
with its underlying hyperbolic geometry. As such, the book creates interdisciplinarity 
in the research and in the teaching of hyperbolic geometry and special relativity, 
along with an algebraic language, called gyrolanguage, in which both hyperbolic 
geometry and special relativity fi nd an aesthetically pleasing formulation.

The fi rst chapter of the book is an introductory chapter. By presenting selected 
topics from the book, the introductory chapter describes the way analytic hyperbolic 
geometry evolves in the book from Einstein’s velocity addition law. Each of the 
other chapters of the book ends with a set of exercises, some of which require the 
use of a computer algebra system, like Mathematica or Maple. Computer algebra 
is an indispensable tool in the book, allowing complicated algebraic manipulations 
to yield novel results that capture analogies with familiar results while taking on 
unexpected grace, elegance and simplicity. Indeed, the unexpected grace, elegance 

Preface vii
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and simplicity that the analogies between Identities (*) and (**) exhibit, are just the 
tip of the giant iceberg of analogies with classical results that the book uncovers. 
Thus, putting hyperbolic geometry and special relativity together, the book produces 
a unifi ed, analytic theory of enriched content.

It is assumed familiarity with Euclidean geometry from the point of view of 
vectors and with basic elements of linear algebra. Readers of this book are not 
required to have a prior acquaintance with either hyperbolic geometry, special 
relativity or nonassociative algebra.

North Dakota State University,  Abraham A. Ungar
Fargo, ND, USA
October, 2014
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CHAPTER 1

Introduction

 1.1 Gyrovector Spaces in the Service of Analytic Hyperbolic 1 
Geometry 

 1.2 When Two Counterintuitive Theories Meet 1
 1.3 The Fascinating Rich Mathematical Life of Einstein’s Velocity 4 

Addition Law
 1.4 Matrices Assigned to Simplices and to Gyrosimplices 13
 1.5 Parts of the Book 15

1.1 Gyrovector Spaces in the Service of Analytic Hyperbolic 
Geometry

This introductory chapter indicates the role of analogies that Einstein’s addition law 
of relativistically admissible velocities captures. The story of the book, unfolded 
here, begins in Chapter 2 with the introduction of a new look at Einstein addition 
and the way it gives rise to the novel algebraic structures known as gyrogroups 
and gyrovector spaces. The aim of this introductory chapter is to briefl y illustrate 
the use of gyrovector spaces in the service of analytic hyperbolic geometry [118], 
in full analogy with the common use of vector spaces in the service of analytic 
Euclidean geometry.

1.2 When Two Counterintuitive Theories Meet

Hyperbolic geometry was introduced by Lobachevsky in 1829 and by Bolyai in 
1832 as a counterintuitive geometry that denies the Euclid’s postulate according 
to which there exists in the plane only one line parallel to a given line through a 
given point not on the line. Several decades later, Einstein introduced his special 
theory of relativity in 1905 [29, 30]. This physical theory is counterintuitive as 
well since, for instance, it implies that velocity addition is, in general, neither 
commutative nor associative.



2 Analytic Hyperbolic Geometry in N Dimensions

The counterintuitive hyperbolic geometry of Lobachevsky and Bolyai, and the 
counterintuitive special relativity theory of Einstein were discovered independently. 
However, they met each other in 1908 when Varičak discovered that special 
relativity has a natural interpretation in hyperbolic geometry [130, 139, 140, 141].

In fact, we will see in the book that when hyperbolic geometry and special 
relativity meet, they cross-pollinate ideas from one area to the other, thus producing 
a novel way to study these two disciplines under the same umbrella. Techniques 
and tools in one area lead to advances in the other. Indeed,

 1. Einstein addition law of relativistically admissible velocities encodes the 
novel algebraic structures known as a gyrogroup and a gyrovector space.

 2. The resulting Einstein gyrovector spaces form the algebraic setting for 
hyperbolic geometry, just as vector spaces form the algebraic setting 
for Euclidean geometry. As such, they enable Cartesian and barycentric 
coordinates to be introduced into hyperbolic geometry. The mathematical 
tools that Cartesian and barycentric coordinates provide, commonly used in 
the study of Euclidean geometry, can now be used in the study of hyperbolic 
geometry as well.

 3. Being the geometry that underlies special relativity, hyperbolic geometry, now 
equipped with Cartesian and barycentric coordinates, improves the study of 
special relativity, demonstrating the cross-fertilization of special relativity 
and hyperbolic geometry at work. Special attention is paid to the relativistic 
mass and to the relativistic effect called Thomas precession, since they play 
an important role in analytic hyperbolic geometry.

The resulting study of analytic hyperbolic geometry in n dimensions thus 
begins with a new look at the Einstein velocity addition law that Einstein introduced 
in 1905. We employ gyroalgebra, the algebra that Einstein’s relativistic velocity 
addition law encodes, to enrich, enliven, and enhance the study of analytic 
hyperbolic geometry. The sparkling beauty of Einstein’s special relativistic velocity 
addition law manifests itself when it is placed in the framework of hyperbolic 
geometry, giving rise to the story of the book. The hyperbolic space that we use 
is the s-ball Rn

s,

 Rn
s = {v ∈ Rn  : ||v|| < s}, (1.1)

n = 1, 2, 3, . . ., of the Euclidean n-space Rn, where s is an arbitrarily fi xed positive 
constant. In physical applications n = 3, but in geometry n ≥ 1 is any positive integer.

Einstein’s special relativity stems from his addition law of relativistically 
admissible velocities that he introduced in his 1905 paper that founded the 
theory. The resulting Einstein addition, ⊕, is a binary operation in the s-ball Rn

s of 
relativistically admissible velocities, which takes the vectorial form

 u⊕v =
1

1 + u·v
s2

{
u +

1

γu

v +
1

s2

γu

1 + γu

(u·v)u

}
. (1.2)
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Here (i) s > 0 is a constant that, when n = 3, represents the speed of light, 
s = c, in empty space, (ii) the vectors u, v ∈ Rn

s are n-dimensional relativistically 
admissible velocities, (iii) γu is the gamma factor of special relativity,

  γu =
1√

1 − ‖u‖2

s2

≥ 1 , (1.3)

 
and (iv) u.v and ||v|| are the inner product and the norm that the s-ball Rn

s inherits 
from its space Rn

 . Einstein addition in the s-ball Rn
s thus gives rise to pairs (Rn

s, ⊕) 
known as Einstein gyrogroups. In Einstein gyrogroups we defi ne v = –v, so that, 
for instance, v v = v⊕(−v) = 0, u v = u⊕(−v), u⊕v = (−u)⊕v and (u⊕v) = 

u v. The formal defi nitions of the abstract gyrogroup and related algebraic 
structures are presented in Sect. 2.8 on the road from Einstein addition to gyrogroups.

In the non-relativistic limit, when s approaches infi nity, Einstein addition, ⊕, 
in Rn

s and ordinary vector addition, +, in Rn  coalesce.
Here we have to remember that the Euclidean 3-vector algebra was not so 

widely known in 1905 and, consequently, was not used by Einstein. In 1905 [29], 
Einstein calculated the behavior of the velocity components parallel and orthogonal 
to the relative velocity between inertial systems, which is as close as one can get 
without vectors to the vectorial version (1.2) of Einstein addition.

Einstein addition underlies the Lorentz transformation of special relativity 
theory. Being neither commutative nor associative, Einstein addition, ⊕, is 
seemingly structureless, as opposed to the Lorentz transformation of special 
relativity, which enjoys the algebraic structure known as a group. As a result, 
much to Albert Einstein’s chagrin [120], the pristine clarity of Einstein addition 
is obscured behind the cloud of Lorentz transformation. Einstein’s intuition was, 
therefore, left dormant for about 80 years until it was brought back into a new 
mathematical life in 1988 in the author’s article: “The Thomas rotation formalism 
underlying a nonassociative group structure for relativistic velocities” [112] and 
in its predecessor [111].

The pair (Rn
s, ⊕) is a groupoid in the sense that it is a nonempty set, Rn

s, with 
a binary operation, ⊕, and an automorphism of the groupoid (Rn

s, ⊕) is a bijective 
(one-to-one) map f of Rn

s, f : Rn
s → Rn

s, which respects its binary operation ⊕, 
that is, f(a⊕b) = f(a)⊕f(b). The set of all automorphisms of any groupoid (G, ⊕) 
forms a group, denoted Aut(G, ⊕), with group operation given by automorphism 
composition.

Being nonassociative, Einstein addition gives rise to automorphisms of the 
Einstein groupoids (Rn

s, ⊕), called gyrations, gyr[u, v], u, v ∈ Rn
s. For each pair 

(u, v) ∈ Rn
s × Rn

s the gyration gyr[u, v],

 gyr[u, v] : Rn
s → Rn

s, (1.4)

is an automorphism of (Rn
s, ⊕), given by the equation

 gyr[u, v]w = (u⊕v)⊕{u⊕(v⊕w)}, (1.5)
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for any w ∈ Rn
s. Being automorphisms, the gyrations of an Einstein gyrogroup 

(Rn
s, ⊕) form a subset of the automorphism group Aut(Rn

s, ⊕).
The gyrator gyr,

 gyr : Rn
s × Rn

s → Aut(Rn
s, ⊕), (1.6)

is thus an operator that generates the special automorphisms, gyr[u, v], u, v ∈ Rn
s, 

that we call gyrations.
A gyration gyr[u, v] is, in general, nontrivial since the binary operation ⊕ 

is nonassociative. Note that in the special case when the binary operation ⊕ is 
associative, the gyration gyr[u, v] in (1.5) is trivial, that is, gyr[u, v]w = w for all 
w ∈ Rn

s. Accordingly, gyrations gyr[u, v] measure the extent to which the binary 
operation ⊕ deviates from associativity.

Moreover, Einstein addition is noncommutative, satisfying

 u⊕v = gyr[u, v](v⊕u), (1.7)

so that gyrations gyr[u, v] measure the extent to which ⊕ deviates from 
commutativity as well.

1.3 The Fascinating Rich Mathematical Life of Einstein’s Velocity 
Addition Law

Being neither commutative nor associative, Einstein addition is seemingly void of 
mathematical life. However, Einstein addition turns out to be both gyrocommutative 
and gyroassociative, signifying rich mathematical life, as the identities in (1.8) 
below indicate.

The gyrations to which Einstein addition gives rise in (1.4)–(1.6) regulate 
Einstein addition in a powerful and elegant way, giving rise to the following laws 
and properties for all relativistically admissible velocities u, v, w, a, b ∈ Rn

s:

u⊕v = gyr[u, v](v⊕u)   Gyrocommutative Law 
u⊕(v⊕w) = (u⊕v)⊕gyr[u, v]w Left Gyroassociative Law 
(u⊕v)⊕w = u⊕(v⊕gyr[v, u]w) Right Gyroassociative Law
gyr[u⊕v, v] = gyr[u, v]  Gyration Left Reduction Property
gyr[u, v⊕u] = gyr[u, v]  Gyration Right Reduction Property
gyr[ u, v] = gyr[u, v]  Gyration Even Property
(gyr[u, v])−1 = gyr[v, u]  Gyration Inversion Law
a.b = gyr[u, v]a.gyr[u, v]b  Inner Product Gyroinvariance.
 (1.8)

The reduction properties of gyrations in (1.8) trigger a remarkable reduction in 
complexity, as we will see in Chapter 2. Following the algebraic properties in (1.8), 
Einstein addition can be interpreted as a peculiar vector addition in the s-ball Rn

s, 
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whose departure from commutativity and associativity is controlled by gyrations 
which, in turn, possess their own rich structure.

We thus see that Einstein addition, ⊕, is the gem of special relativity theory 
that cries out to be admired and studied with gyroalgebra theoretic techniques, as 
we do in the book.

The coincidences involved in the gyrocommutative-gyroassociative laws of 
Einstein addition in (1.8) cry for explanation and application. Indeed, explanation 
in terms of group theoretic techniques is available in [40, 41], and application is 
provided by the resulting gyroalgebra that we use extensively in the book. These 
coincidences are amazing, compelling the reader to ask: why? How can it be that the 
same gyration, gyr[u, v], that remedies the breakdown of commutativity in Einstein 
addition, remedies the breakdown of associativity in Einstein addition as well? 
Seeing the gyrocommutative-gyroassociative laws for the fi rst time is like watching 
a magician pull a rabbit out of a hat. After studying the resulting gyrogroups and 
gyrovector spaces since 1988 [111, 112], the author still has that reaction.

Indeed, the mere introduction of gyrations turns Euclidean geometry into 
hyperbolic geometry, where Einstein addition is regulated by gyrations, playing the 
role of vector addition. Accordingly, Einstein addition is the hyperbolic analog of 
vector addition. It is more complex than vector addition, but much richer in structure.

As the reader has noted, in gyroalgebra we prefi x a gyro to any term that 
describes a concept in Euclidean geometry and in associative algebra to mean 
the analogous concept in hyperbolic geometry and nonassociative algebra. The 
prefi x “gyro” stems from “gyration”, which is the mathematical abstraction of 
the special relativistic effect known as “Thomas precession”, studied in Chapter 
13. The resulting group-like structure to which Einstein addition gives rise is thus 
naturally called a gyrocommutative gyrogroup. Interestingly, Einstein addition can 
be complexifi ed, giving rise to nongyrocommutative gyrogroups [100].

The rich structure of Einstein addition is not limited to its gyrocommutative 
gyrogroup structure. Indeed, Einstein addition admits scalar multiplication, giving 
rise to Einstein gyrovector spaces. The latter, in turn, form the algebraic setting for 
the relativistic velocity model of hyperbolic geometry, just as vector spaces form 
the algebraic setting for the standard model of Euclidean geometry.

In order to extract Einstein scalar multiplication, ⊗, from Einstein addition, 
⊕, let k⊗v = v⊕v . . . ⊕v (k terms) be the Einstein addition of k copies of v ∈ Rn

s, 
defi ned inductively as

 (k + 1)⊗v = v⊕(k⊗v),       1⊗v = v, (1.9)

for any v ∈ Rn
s. Then,

 k⊗v = s

(
1 +

‖v‖
s

)k

−
(

1 − ‖v‖
s

)k

(
1 +

‖v‖
s

)k

+

(
1 − ‖v‖

s

)k

v

‖v‖ , (1.10) 
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as one can readily check.
The defi nition of scalar multiplication in an Einstein gyrovector space requires 

analytically continuing k off the positive integers, obtaining from (1.10) the Einstein 
scalar multiplication, ⊗. It is given by the equation

r⊗v = s

(
1 +

‖v‖
s

)r

−
(

1 − ‖v‖
s

)r

(
1 +

‖v‖
s

)r

+

(
1 − ‖v‖

s

)r
v

‖v‖ = s tanh(r tanh−1 ‖v‖
s

)
v

‖v‖ , (1.11)

 

where r is any real number, r ∈ R, v ∈ Rn
s, v  0, and r⊗0 = 0, and with which 

we use the notation v⊗r = r⊗v. Thus, for instance, the Einstein half is given by 
(3.20), p. 78,

 1
2⊗v =

γ
v

1 + γ
v

v ,  (1.12)

enabling one to recast the relativistic kinetic energy into a novel form that captures 
remarkable analogies with its classical counterpart, as shown in (3.22)–(3.23), p. 78.

The gyrodistance d⊕(A, B) between two points A, B ∈ Rn
s in an Einstein 

gyrovector space (Rn
s, ⊕, ⊗) is the gyrolength of the gyrovector A⊕B,

 d⊕(A, B) = || A⊕B||, (1.13)

illustrated in Fig. 1.1, just as the distance d+(A, B) between two points A, B ∈ Rn  
in a Euclidean space Rn  is the length of the vector −A + B,

 d+(A, B) = || − A + B||, (1.14)

illustrated in Fig. 1.2.
Interestingly, the gyrodistance function obeys the gyrotriangle inequality

 d⊕(A, C) ≤ d⊕(A, B)⊕d⊕(B, C) (1.15)

for any A, B, C ∈ Rn
s, just as the distance function obeys the triangle inequality

 d+(A, C) ≤ d+(A, B) + d+(B, C) (1.16)

 
for any A, B, C ∈ Rn.

Having Einstein addition and scalar multiplication in hand, we explore 
graphically in Fig. 1.1 the minimizing gyrolength curve

 A⊕( A⊕B)⊗t, (1.17)

t ∈ R, where A and B are two distinct points in an Einstein gyrovector plane (R2
s, 

⊕, ⊗). The graph of the function of t in (1.17) is a hyperbolic geodesic line, called 
a gyroline, shown in Fig. 1.1 for 0 ≤ t ≤ 1. Figures. 1.1 and 1.2 indicate that the 
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Figure 1.2. The Euclidean line. This fi gure depicts the vector space approach to the Euclidean line, and 
is presented as the Euclidean counterpart of Fig. 1.1. The line A + (−A + B)t, t ∈ R, that passes through 
the points A and B in a Euclidean vector plane is shown. The points A and B correspond to t = 0 and t 
= 1, respectively. The point P is a generic point on the line through the points A and B lying between 
these points. The sum, +, of the distance from A to P and from P to B equals the distance from A to B. 
The point mA,B is the midpoint of the points A and B, corresponding to t = 1/2.

Figure 1.1. Gyroline, the hyperbolic line. The gyroline LAB = A⊕( A⊕B)⊗t, t ∈ R, that passes through 
the points A and B in an Einstein gyrovector plane is a geodesic line in the Beltrami-Klein disk model 
of hyperbolic geometry, fully analogous to the straight line A + (−A + B)t, t ∈ R, in a Euclidean plane. 
The points A and B correspond to t = 0 and t = 1, respectively. The point P is a generic point on the 
gyroline through the points A and B lying between these points. The gyrosum, ⊕, of the gyrodistance 
from A to P and from P to B equals the gyrodistance from A to B. The point mA,B is the gyromidpoint of 
the points A and B, corresponding to t = 1/2. The analogies between lines and gyrolines, as illustrated 
in Figs. 1.2 and 1.1, are obvious.

A

B

m
A,B

P

d⊕(A, P )⊕d⊕(P, B) = d⊕(A, B)

A⊕(�A⊕B)⊗t

−∞ ≤ t ≤ ∞

m
A,B

= A⊕(�A⊕B)⊗ 1
2

d⊕(A, B) = ‖A�B‖

d⊕(A, m
A,B

) = d⊕(B, m
A,B

)

A

B

m
A,B

P

d+(A, P ) + d+(P, B) = d+(A, B)

A + (−A + B)t

−∞ ≤ t ≤ ∞

m
A,B

= A + (−A + B)1
2

d+(A, B) = ‖A − B‖
d+(A, m

A,B
) = d+(B, m

A,B
)
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gyroline (1.17) is fully analogous to its Euclidean counterpart, the minimizing 
length curve, which is the Euclidean straight line

 A + (−A + B)t, (1.18)

shown graphically in Fig. 1.2 for 0 ≤ t ≤ 1.
The hyperbolic line (1.17) and its Euclidean counterpart (1.18) are presented 

graphically in Figs. 1.1 and 1.2 with respect to unseen Cartesian coordinates. The 
use of Cartesian coordinates in Euclidean geometry is common. Here we see that 
Einstein addition and scalar multiplication allow us to use Cartesian coordinates 
in hyperbolic geometry as well. 

The analogies between lines and gyrolines, described symbolically in (1.18) 
and (1.17), and illustrated graphically in Figs. 1.2 and 1.1, are extended in the book 
to many other analogies including, in particular, analogies

 1. between parameters of triangles and parameters of gyrotriangles, illustrated 
in Figs. 1.3 and 1.4;

 2. between trigonometry and gyrotrigonometry, illustrated in Figs. 1.3 and 1.4, 
and studied in Chapter 7;

Figure 1.3. The index notation for triangle parameters. The barycentric coordinate representation of a 
generic point P with respect to the reference triangle A1A2A3 is shown, the barycentric coordinates of P 
being m1, m2 and m3. Trigonometry is the discipline that studies relationships between a triangle angles 
αi and its side-lengths aij, i, j = 1, 2, 3, i < j. This fi gure sets the stage for its hyperbolic counterpart in 
Fig. 1.4.
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 3. between the parallelogram law of vector addition and the gyroparallelogram 
law of gyrovector addition, illustrated in Figs. 1.5 and 1.6; and

 4. between barycentric coordinates and gyrobarycentric coordinates, studied in 
Chapter 5, and employed in Chapters 5–12.

The formal link between Einstein addition and the differential geometry that 
underlies the Beltrami-Klein model of the hyperbolic geometry of Lobachevsky 
and Bolyai is presented in Sect. 3.4.

Einstein addition, ⊕, in Rn
s comes with a dual binary operation, ⊞ in Rn

s, called 
Einstein coaddition, given by the equation

 u ⊞ v = u⊕gyr[u, v]v. (1.19)

Surprisingly, while Einstein addition is gyrocommutative, Einstein coaddition is 
commutative (and weakly associative in some general sense studied in Sect. 6.4). 
Additionally, while Einstein addition obeys the gyrotriangle inequality (1.15), 
Einstein coaddition obeys a cogyrotriangle inequality that involves a gyration, as 
shown in [129, Eq. (6.19), p. 158].

Figure 1.4. The index notation for gyrotriangle parameters. The gyrobarycentric coordinate 
representation of a generic point P with respect to the reference gyrotriangle A1A2A3 is shown, the 
gyrobarycentric coordinates of P being m1, m2 and m3. Gyrotrigonometry, introduced in Chapter 6, is 
the discipline that studies relationships between a gyrotriangle gyroangles αi and its gyrosides aij, i, j 
= 1, 2, 3, i < j. Gamma factors γij of gyrosides play an important role.
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The presence of Einstein coaddition in Einstein gyrovector spaces, along 
with the presence of Einstein addition, enables us to capture important analogies 
with classical results. Thus, for instance, Einstein addition obeys the following 
cancellation laws, two of which involve Einstein coaddition and cosubtraction:

 u⊕(u⊕v) = v  Left Cancellation Law
 (u ⊞ v) v = u  First Right Cancellation Law  (1.20)
 (u⊕v) ⊟ v = u  Second Right Cancellation Law.

Remarkably, in particular, Einstein coaddition allows us to capture analogies 
between the common parallelogram law in Euclidean geometry and its hyperbolic 
counterpart, the gyroparallelogram law, illustrated in Figs. 1.5 and 1.6.

Gyroparallelograms are hyperbolic parallelograms. At fi rst glance, the term 
hyperbolic parallelogram sounds as a contradiction in terms, since parallelism is 
denied in hyperbolic geometry. However, there is no need to employ parallelism 
in the defi nition of hyperbolic parallelograms. A hyperbolic parallelogram, called 
a gyroparallelogram, is a gyroquadrangle the two gyrodiagonals of which intersect 
at their gyromidpoints, just as a Euclidean parallelogram is a quadrangle the two 
diagonals of which intersect at their midpoints.

Figure 1.5. The Euclidean parallelogram and its addition law in a Euclidean vector plane (R2, +, .). The 
diagonals AD and BC of parallelogram ABDC intersect each other at their midpoints. The midpoints of 
the diagonals AD and BC are, respectively, MAD and MBC, each of which coincides with the parallelogram 
center MABDC. This fi gure shares obvious analogies with its hyperbolic counterpart in Fig. 1.6. As such, 
this fi gure sets the stage for Fig. 1.6.
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For the sake of comparison with its hyperbolic counterpart in Fig. 1.6, Fig. 1.5 
depicts the well-known parallelogram law of vector addition,

 (−A + B) + (−A + C) = (−A + D). (1.21)

In Fig. 1.5 we see arbitrarily selected three noncollinear points A, B, C ∈ R2, 
together with a fourth point D ∈ R2, which satisfi es the parallelogram condition, 
D = B + C − A. The parallelogram condition insures that quadrangle ABDC is a 
parallelogram (that is, the two diagonals of ABDC intersect at their midpoints). 
In parallelogram ABDC three vectors emanate from vertex A. These are the two 
side vectors u = −A + B and v = −A + C and the diagonal vector w = −A + D. The 
diagonal vector turns out to be the resultant of the two side vectors, given by the 
parallelogram law (1.21).

Figure 1.6. The Einstein gyroparallelogram law of gyrovector addition. Let A, B, C ∈ Rn
s be any three 

points of an Einstein gyrovector space (Rn
s, ⊕, ⊗), giving rise to the two gyrovectors u = A⊕B and 

v = A⊕C. Furthermore, let D be a point of the gyrovector space such that ABDC is a gyroparallelogram, 
that is, D = (B ⊞ C) A by Def. 6.2, p. 174, of the gyroparallelogram. Then, Einstein coaddition of 
gyrovectors u and v, u ⊞ v = w, expresses the gyroparallelogram law, where w = A⊕D. Einstein 
coaddition, ⊞, thus gives rise to the gyroparallelogram addition law of Einsteinian velocities, which is 
commutative and fully analogous to the parallelogram addition law of Newtonian velocities. Einsteinian 
velocities are, thus, gyrovectors that add according to the gyroparallelogram law just as Newtonian 
velocities are vectors that add according to the parallelogram law. Like vectors, a gyrovector A⊕B 
in an Einstein gyrovector space (Rn

s, ⊕, ⊗), n = 2, 3, is described  graphically as a straight arrow from 
the tail A to the head B with gyrolength || A ⊕ B||.
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Fig. 1.6 is fully analogous to Fig. 1.5. It depicts the gyroparallelogram law 
of gyrovector addition,

 ( A⊕B) ⊞ ( A⊕C) = ( A⊕D). (1.22)

In Fig. 1.6 we see arbitrarily selected three nongyrocollinear points A, B, C ∈ 
R2

s (that is, the points A, B, C do not lie on the same gyroline), together with a 
fourth point D ∈ R2

s, which satisfi es the gyroparallelogram condition, D = (B ⊞ 
C) A. The gyroparallelogram condition insures that gyroquadrangle ABDC is 
a gyroparallelogram (that is, the two gyrodiagonals of ABDC intersect at their 
gyromidpoints). In gyroparallelogram ABDC three gyrovectors emanate from 
vertex A. These are the two side gyrovectors u = A⊕B and v = A⊕C and the 
gyrodiagonal gyrovector w = A⊕D. The gyrodiagonal gyrovector A⊕D in the 
gyroparallelogram turns out to be the gyroresultant of the two side gyrovectors, 
given by the gyroparallelogram law (1.22).

The parallelogram law for the composition of (Newtonian) velocities was 
known to the ancients, traditionally ascribed to Aristotle [26, p. 21],[67]. Einstein 
addition captures the notion of the Einsteinian velocity vector, u = A⊕B, called 
a velocity gyrovector. Interestingly, it is Einstein coaddition that captures the 
hyperbolic parallelogram (gyroparallelogram) law, u ⊞ v, for the composition of 
Einsteinian velocity gyrovectors. Experimental evidence that supports the physical 
signifi cance of Einstein gyroparallelogram law of velocity addition is provided by 
the relativistic interpretation of the cosmological stellar aberration phenomenon, 
as explained in Sect. 6.3 and, in detail, in [129, Chapter 13].

In Euclidean geometry, the extension of the parallelogram law of addition of 
two vectors to a parallelotope law of addition of more than two vectors is obvious. 
In hyperbolic geometry, however, the extension of the gyroparallelogram law of 
addition of two gyrovectors to a gyroparallelotope law of addition of more than two 
gyrovectors, presented in Chapter 6, is challenging and interesting, demonstrating 
the power and elegance of gyroalgebra. Thus, after over more than two decades of 
development, since 1988 [112], gyroalgebra has been proved to be an important 
tool in the study of analytic hyperbolic geometry.

The invention of Cartesian coordinates in the 17th century by René Descartes 
(Latinized name: Cartesius) (1596–1650) and Pierre de Fermat (1601 or 1607/8–
1665) revolutionized mathematics by providing the fi rst systematic link between 
Euclidean geometry and algebra. Using the resulting standard Cartesian model 
of Euclidean geometry, geometric shapes are described by algebraic equations 
involving the Cartesian coordinates of the points lying on the shape. The standard 
Cartesian model of Euclidean geometry is the foundation of analytic Euclidean 
geometry, where Cartesian coordinates play the role of a tool, allowing geometric 
content expressed through them to be studied algebraically [13]. Studying 
Euclidean geometry by its Cartesian model has the advantage of having the whole 
mathematical machinery of algebra and calculus to hand. The task of reviving 
interest in hyperbolic geometry by the adaptation of Cartesian coordinates for use 
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in that geometry, resulting in analytic hyperbolic geometry, has thus begun with 
the appearance of the author’s books since 2001.

According to Klein’s 1871 paper (an English translation of which is available 
in [106, pp. 69–111]), non-Euclidean geometry was encountered by Gauss, who 
coined this term, by Lobachevsky (1829) and by Bolyai (1832). The term hyperbolic 
geometry for non-Euclidean geometry was coined by Klein in his 1871 paper. About 
75 years later, in 1905, Einstein discovered the special theory of relativity [29, 30]. 
Soon later, the link between Einstein’s special theory of relativity and hyperbolic 
geometry was discovered and developed during the period 1908–1912 by Varičak, 
Robb, Wilson and Lewis, and Borel [143]. The subsequent major development that 
followed 1912 appeared about 80 years later, in 2001 [119].

Following the emergence of gyroalgebra since 1988 [111, 112, 113], the 
author has crafted gyrolanguage, the algebraic language that sheds natural light on 
hyperbolic geometry and special relativity, in several books [119, 122, 129, 131, 
133, 134], [144, 89]. Several authors have successfully employed gyroalgebra in 
their explorations, for instance, [2, 3, 4, 5, 87, 99], [24, 25], [32], [33, 34, 35, 36], 
[86], [104], [66,80,147], noting in [16, p. 523] that the computation language that 
Einstein addition encodes plays a universal computational role, which extends far 
beyond the domain of special relativity.

Euclidean geometry is very different from hyperbolic geometry, so that it 
was not clear before 1988 that lessons from Euclidean geometry would routinely 
translate into hyperbolic geometry. About a quarter century later, the gamble has 
paid off owing to the gyrovector space structure that Einstein addition encodes. It 
is now clear that the Einstein gyrovector space approach to relativistic hyperbolic 
geometry is fully analogous to the standard vector space approach to Euclidean 
geometry. The resulting analogies allow, in particular, the adaptation of tools that 
are commonly used in Euclidean geometry for use in hyperbolic geometry as well.

According to Leo Corry [19], Einstein considered Minkowski’s reformulation 
of his special relativity theory in terms of four-dimensional spacetime to be no 
more than “superfl uous erudition”. Einstein could have made a better case for 
his program to adopt his three-dimensional relativistic velocity addition law as 
the primitive notion of special relativity (rather than the Lorentz transformation 
group), had he but known of the fascinating rich mathematical life that his velocity 
addition law possesses.

1.4 Matrices Assigned to Simplices and to Gyrosimplices

The index notation for triangles and gyrotriangles in Figs. 1.3 and 1.4 is naturally 
extended to higher dimensional simplices and gyrosimplices. In the study of higher 
dimensional simplices it proves useful to assign to each (N − 1)-simplex A1 . . . 
AN the so called (N + 1) × (N + 1) Cayley–Menger matrix MN, [38, Sect. 1.4], [10, 
Sect. 9.7.3], (10.462), p. 462, 
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 MN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 . . . 1

1 0 a2
12 . . . a2

1N

1 a2
12 0 . . . a2

2N

...
. . .

1 a2
1N a2

2N . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1.23) 

along with its Cayley–Menger determinant, Det MN, where a2
ij = || − Ai + Aj||2. Here 

we use the notation illustrated in Fig. 1.3.
Analogously, in the study of higher dimensional gyrosimplices it proves useful 

to assign to each (N − 1)-gyrosimplex A1 . . . AN the so called N × N gamma matrix 
ΓN, (10.40), p. 378,

 ΓN =

⎛
⎜⎜⎜⎜⎜⎝

1 γ12 γ13 . . . γ1N

γ12 1 γ23 . . . γ2N

... . . .
γ1N γ2N γ3N . . . 1

⎞
⎟⎟⎟⎟⎟⎠, (1.24)

along with its gamma determinant, Det ΓN, where γij = γaij = γ || Ai⊕Aj||. Here we use 
the notation illustrated in Fig. 1.4.

On fi rst glance it seems that the two determinants, Det MN and Det ΓN, share 
no analogies between Euclidean and hyperbolic geometry that justify viewing each 
of them as the counterpart of the other one. Surprisingly, however, by Theorem 
10.50, p. 463, it turns out that the Cayley–Menger determinant Det MN, commonly 
used in the study of higher dimensional Euclidean geometry, is in some sense the 
Euclidean limit of the gamma determinant Det ΓN, which we use in the study of 
higher dimensional hyperbolic geometry. Indeed, by (10.468), p. 463,

 lim
s→∞

s2(N−1)Det ΓN = − 1

2N−1
Det MN. (1.25)

Accordingly, the gamma determinant, Det ΓN, that we use in the study of 
higher dimensional hyperbolic geometry is the hyperbolic counterpart of the 
well-known Cayley–Menger determinant, Det MN. Yet, undoubtedly, our gamma 
matrix ΓN appears to be more elegant than its Euclidean counterpart, the Cayley–
Menger matrix MN. By discovering the hyperbolic counterpart of Cayley–Menger 
determinant, we pave the road to the study of analytic hyperbolic geometry in n 
dimensions, guided by analogies with the common study of analytic Euclidean 
geometry in n dimensions.

Owing to the advantage of the use of ΓN in hyperbolic geometry over the use 
of MN in Euclidean geometry it is sometimes easy to solve a diffi cult problem in 
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Euclidean geometry by solving the analogous problem in hyperbolic geometry. A 
point in case is the problem of determining the barycentric coordinate representation 
of the tetrahedron circumcenter. The gyrobarycentric coordinate representation of 
the circumgyrocenter of any (N − 1)-gyrosimplex, N ≥ 3, is determined in Theorem 
10.18, p. 396. The special case when N = 4 (gyrotetrahedron) is presented earlier, in 
Sect. 10.1. The barycentric coordinate representation of the tetrahedron circumcenter 
is not determined directly. Rather, it is extracted from the gyrobarycentric coordinate 
representation of the gyrotetrahedron circumgyrocenter.

1.5 Parts of the Book

The book is self-contained. The required background in the theory of gyrogroups 
and gyrovector spaces and in gyrotrigonometry is presented in Parts I and II. More 
about these topics is found in [122, 129, 133, 134].

The book is divided into six parts:

 1. Part I: Einstein Gyrogroups and Gyrovector Spaces. The fi rst part of the 
book reveals the emergence of mathematical beauty and regularity that results 
from decoding the algebraic structures that the Einstein relativistic velocity 
addition law encodes. Part I of the book, Chapters 2–4, presents the Einstein 
velocity addition law of special relativity theory, revealing the novel algebra, 
called gyroalgebra, that it encodes. The resulting gyroalgebra stems from the 
notions of

 a) the gyrogroup, which is a natural generalization of the group concept in 
algebra; and

 b) the gyrovector space, which is a natural generalization of the vector space 
concept in algebra.

  It is demonstrated that gyroalgebra regulates Einstein addition and, hence, 
sheds a natural light on the special relativity theory of Einstein and on its 
underlying hyperbolic geometry of Lobachevsky and Bolyai. As such, 
gyroalgebra is used extensively in the book in the study of analytic hyperbolic 
geometry in n dimensions.

 2. Part II: Mathematical Tools for Hyperbolic Geometry. Part II of the book, 
Chapters 5–7, presents the adaptation of classical tools that are commonly 
used in Euclidean geometry for use in hyperbolic geometry. Specifi cally, the 
classical tools are:

 a) Cartesian coordinates (in Euclidean geometry);
 b) Barycentric coordinates;
 c) trigonometry; and
 d) vector algebra,
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  and their respective hyperbolic counterparts are:
 a) Cartesian coordinates (in hyperbolic geometry);
 b) gyrobarycentric coordinates;
 c) gyrotrigonometry; and
 d) gyrovector gyroalgebra.
 3. Part III: Hyperbolic Triangles and Circles. Part III of the book, Chapters 

8–9, employs the tools developed in Part II for the discovery of properties 
of hyperbolic triangles (gyrotriangles) and hyperbolic circles (gyrocircles). 
Several important, well-known results in Euclidean geometry are translated 
into corresponding results in hyperbolic geometry. Thus, for instance,

 a) the Inscribed Angle Theorem;
 b) the Tangent–Secant Theorem, p. 319;
 c) the Intersecting Secants Theorem, p. 320; and
 d) the Intersecting Chords Theorem, p. 359,
  are translated into their counterparts in hyperbolic geometry. The resulting 

counter-part theorems in hyperbolic geometry, respectively, are:
 a) the Inscribed Gyroangle Theorem, p. 304, 305;
 b) the Gyrotangent–Gyrosecant Theorem, p. 313, 318;
 c) the Intersecting Gyrosecants Theorem, p. 319; and
 d) the Intersecting Gyrochords Theorem, p. 358.

 
 4. Part IV: Hyperbolic Simplices, Hyperplanes and Hyperspheres in n 

Dimensions. In Part IV of the book, Chapters 10–11, the gyrosimplex 
(hyperbolic simplex) is the extension of the gyrotriangle and the gyrotetrahedron 
to higher dimensions. Based on experience about gyrotriangles and 
gyrotetrahedra studied in previous parts of the book, this part presents the study 
of the gyrosimplex circumgyrohypersphere, along with its circumgyrocenter 
and circumgyroradius in higher dimensions, n ≥ 2. Special attention is paid 
to the gyrotetrahedron in Chapter 11.

 5. Part V: Hyperbolic Ellipses and Parabolas. Part V of the book, Chapter 
12, employs the tools developed in Part II for the discovery of properties of 
hyperbolic ellipses (gyroellipses) and hyperbolic parabolas (gyroparabolas).

 6. Part VI: Thomas Precession. Gyrations play an important role, enabling 
analogies that hyperbolic and Euclidean geometry share to be captured. The 
gyration, in turn, is a mathematical abstraction of the special relativistic 
effect known as Thomas precession. Therefore, Part VI of the book, Chapter 
13, is devoted to the study of Thomas precession and its frequency in the 
framework of special relativity theory and its underlying hyperbolic geometry. 
Accordingly, this part of the book illustrates the physical background of 
gyrations in hyperbolic geometry, and the usefulness of the study of special 
relativity theory and hyperbolic geometry under the same umbrella.
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The study of special relativity theory and hyperbolic geometry under the same 
umbrella is rewarding. It reveals, for instance, that the Einstein relativistic, velocity 
dependent mass conforms with the Minkowskian formalism of special relativity 
theory, as explained in Chapter 4. The relativistic, velocity dependent mass plays an 
important role since it enables the adaptation of barycentric coordinates, commonly 
used in Euclidean geometry, for use in hyperbolic geometry.

The study of analytic hyperbolic geometry in n dimensions, guided by 
analogies with classical results, thus begins with the study of Einstein gyrogroups 
and gyrovector spaces in Part I.
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Einstein Gyrogroups and 
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2.1 Introduction

Einstein’s addition law of three-dimensional relativistically admissible velocities 
is the corner stone [125] of Einstein’s three-vector formalism of the special theory 
of relativity that he founded in 1905 [29, 71]. The resulting binary operation, ⊕, 
called Einstein addition, is employed along with the nonassociative algebraic 
structures that it encodes. These algebraic structures are the gyrocommutative 
gyrogroup structure, studied in this chapter, and the gyrovector space structure, 
studied in Chapter 3. It will turn out that Einstein gyrovector spaces form the 
algebraic setting for the n-dimensional Cartesian-Beltrami-Klein ball model of 
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analytic hyperbolic geometry, just as vector spaces form the algebraic setting for 
the standard n-dimensional Cartesian model of analytic Euclidean geometry.

Connections between the theory of relativity of Einstein and the hyperbolic 
geometry of Lobachevsky and Bolyai were encountered even before the introduction 
of the theory of relativity by Einstein in 1905. Owing mainly to the work of 
Tibor Toró, cited in [62], it is now known that János Bolyai was the forerunner 
of geometrizing physics. According to Kiss [62], Lajos Dávid drew attention in a 
1924 series of articles in Italian journals to the precursory role which János Bolyai 
played in the constructions of Einstein’s relativity theory.

According to A.I. Miller [79, p. 266], one of the fi rst demonstrations that 
non-Euclidean geometry could be used to present concisely results of relativity 
theory was obtained by Sommerfeld in 1909 [101] when he was led to the result 
that relativistically admissible velocities add according to a spherical geometry. 
Sommerfeld’s 1909 work is described by Rosenfeld in his book [94, pp. 270–273]:

Although Sommerfeld established the connections between the formula for 
the addition of velocities in the theory of relativity and the trigonometric 
formulas for hyperbolic functions he was not aware [in 1909; but, see 
our next quotation] that these formulas are formulas of Lobačevskian 
geometry. This was shown by the Yugoslav geometer Vladimir Varičak 
(1865–1942) . . .

From Varičak’s acknowledgment of Sommerfeld’s 1909 paper [101] it appears 
that there was a causal link between the latter paper and Varičak’s 1910 discovery 
in [140] of the role that hyperbolic geometry plays in special relativity theory. 
Thus, it was Sommerfeld’s 1909 paper that sparked Varičak’s non-Euclidean 
program for special relativity; see [94, p. 270]. Ironically, however, not only did 
Sommerfeld employ an imaginary temporal coordinate, following the space-time 
formalism of Minkowski, he deplored the non-Euclidean style in print, as Walter 
noted in [143, p. 114]:

... just after Varičak’s fi rst exposé of the non-Euclidean style ([140], 
1910), Sommerfeld completed his signal work on the four-dimensional 
vector calculus for the Annalen der Physik. In a footnote to his work, 
Sommerfeld remarked that the geometrical relations he presented in terms 
of three real and one imaginary coordinate could be reinterpreted in terms 
of non-Euclidean geometry. The latter approach, Sommerfeld cautioned 
in [102, p. 752], could “hardly be recommended”.

Furthermore, Walter notes in [143] that following the competition between 
the two geometrical approaches to relativity physics:

Minkowski neither mentioned the [Einstein] law of velocity addition, nor 
expressed it in formal terms.

Instead, however [143],
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Minkowski retained the geometric interpretation of the Lorentz 
transformations that had accompanied the now-banished non-Euclidean 
interpretation of velocity vectors. [italics added].

The trend initiated by Minkowski continues today, with the full Einstein 
addition and its associated Thomas precession receiving scant attention, and modern 
texts on relativity physics refl ect this with the only single, outstanding exception 
being the book of Sexl and Urbantke [96], along with the forerunners [119, 122, 
129, 131, 133, 134], of the present book. 

Being neither commutative nor associative, Einstein addition is seemingly 
structureless, as opposed to Lorentz transformations, which form a transformation 
group. The resulting almost forgotten attempt of the famous mathematician É mile 
Borel to “repair” the seemingly “defective” Einstein’s velocity addition law in the 
years following 1912 is described by Walter in [143, p. 117]: “Borel could construct 
a tetrahedron in kinematic space, and determined thereby both the direction and 
magnitude of relative [composite] velocity in a symmetric manner.” Borel has, 
thus, “repaired” the breakdown of commutativity in Einstein addition, but did not 
pay attention to the breakdown of associativity in Einstein addition. Accordingly, 
it seemed appropriate to consider the Lorentz transformation, rather than Einstein 
addition, as a primitive notion in special relativity.

However, in 1988 it was discovered in [111, 114, 115] that Einstein addition 
encodes rich noncommutative and nonassociative algebraic structures. Following 
the 1988 discovery, it is now rewarding to consider Einstein addition, rather than 
Lorentz transformation, as a primitive notion in special relativity, from which the 
Lorentz transformation is derived.

Soon after its introduction by Einstein in 1905 [29] special relativity theory, 
as named by Einstein ten years later, became overshadowed by the appearance 
of general relativity. Subsequently, the study of special relativity followed the 
lines laid down by Minkowski, in which the role of Einstein velocity addition is 
ignored. Following Minkowski, therefore, the general Einstein velocity addition 
law of relativistically admissible velocities that need not be parallel is unheard of 
in most texts on special and general relativity theory. Rather, it is only the special 
case of Einstein addition, corresponding to parallel velocities, which is presented. 
Among outstanding exceptions we note the relativity physics books by Fock [39] 
and by Sexl and Urbantke [96].

2.2 Einstein Velocity Addition

Let s > 0 be any positive constant and let Rn = (Rn, +, .) be the Euclidean 
n-space, n = 1, 2, 3, . . ., equipped with the common vector addition, +, and inner 
product, .. The home of all n-dimensional Einsteinian velocities is the s-ball

 

 Rn
s = {v ∈ Rn : ||v|| < s}. (2.1)
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The s-ball Rn
s is the open ball of radius s, centered at the origin of Rn, consisting 

of all vectors v in Rn with magnitude ||v|| smaller than s.
Einstein velocity addition is a binary operation, ⊕, in the s-ball Rn

s given by 
the equation [119], [96, Eq. 2.9.2], [83, p. 55], [39],

 u⊕v =
1

1 + u·v
s2

{
u +

1

γu

v +
1

s2

γu

1 + γu

(u·v)u

}
, (2.2)

for all u, v ∈ Rn
s, where γu is the Lorentz gamma factor,

 γv =
1√

1 − ‖v‖2

s2

≥ 1, (2.3)

where u.v and ||v|| are the inner product and the norm in the ball, which the ball 
Rn

s inherits from its space Rn, ||v||2 = v.v. A nonempty set with a binary operation 
is called a groupoid so that the pair (Rn

s, ⊕) is an Einstein groupoid.
In analytic hyperbolic geometry the parameter s > 0 plays the role of the 

vacuum speed of light, c, in special relativity theory. In the Euclidean-Newtonian 
limit of large s, s → ∞, the ball Rn

s expands to the whole of its space Rn, as we see 
from (2.1), and Einstein addition ⊕ in Rn

s reduces to the ordinary vector addition 
+ in Rn, as we see from (2.2) and (2.3). 

When the nonzero vectors u and v in the ball Rn
s of Rn are parallel in Rn, u||v, 

that is, u = λv for some λ ∈ R, Einstein addition (2.2) reduces to the Einstein 
addition of parallel velocities,

 u⊕v =
u + v

1 +
1

s2
u·v

, u‖v, (2.4)

 

which was partially confi rmed experimentally by the Fizeau’s 1851 experiment 
[79]. Following (2.4) we have, for instance,

 ‖u‖⊕‖v‖ =
‖u‖ + ‖v‖

1 +
1

s2
‖u‖‖v‖  (2.5)

for all u, v ∈ Rn
s.

The restricted Einstein addition in (2.4) and (2.5) is both commutative and 
associative. Accordingly, the restricted Einstein addition is a group operation, as 
Einstein noted in [29]; see [30, p. 142]. In contrast, Einstein made no remark about 
group properties of his addition (2.2) of velocities that need not be parallel. Indeed, 
the general Einstein addition is not a group operation but, rather, a gyrocommutative 
gyrogroup operation, a structure discovered more than 80 years later, in 1988 [111, 
112, 115], which we will study in Sect. 2.8. 

Einstein addition (2.2) of relativistically admissible velocities, with n = 3, was 
introduced by Einstein in his 1905 paper [29] [30, p. 141] that founded the special 
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theory of relativity, where the magnitudes of the two sides of Einstein addition 
(2.2) are presented. One has to remember here that the Euclidean 3-vector algebra 
was not so widely known in 1905 and, consequently, was not used by Einstein. 
Einstein calculated in [29] the behavior of the velocity components parallel and 
orthogonal to the relative velocity between inertial systems, which is as close as one 
can get without vectors to the vectorial version (2.2) of Einstein addition. Einstein 
was aware of the nonassociativity of his velocity addition law of relativistically 
admissible velocities that need not be collinear. He therefore emphasized in his 
1905 paper that his velocity addition law of relativistically admissible collinear 
velocities forms a group operation [29, p. 907].

We naturally use the abbreviation u v = u⊕(−v) for Einstein subtraction, so 
that, for instance, v v = 0 and

 v = 0 v = −v. (2.6)

Einstein addition and subtraction satisfy the equations

 (u⊕v) = u v (2.7)

and
 

 u⊕(u⊕v) = v (2.8)

for all u, v in the ball Rn
s, in full analogy with vector addition and subtraction in Rn. 

Identity (2.7) is called the gyroautomorphic inverse property of Einstein addition, 
and Identity (2.8) is called the left cancellation law of Einstein addition. We may 
note that Einstein addition does not obey the naive right counterpart of the left 
cancellation law (2.8) since, in general,

 (u⊕v) v  u. (2.9)

However, this seemingly lack of a right cancellation law of Einstein addition is 
repaired in (2.112), p. 49.

Einstein addition and the gamma factor are related by the gamma identity,

 γ
u⊕v

= γ
u
γ
v

(
1 +

u·v
s2

)
, (2.10)

which can be written, equivalently, as

 
γ�u⊕v = γuγv

(
1 − u·v

s2

)
 (2.11)

for all u, v ∈ Rn
s. Here, (2.11) is obtained from (2.10) by replacing u by u = −u 

in (2.10).
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A frequently used identity that follows immediately from (2.3) is

 
v2

s2
=

‖v‖2

s2
=

γ2
v − 1

γ2
v

 (2.12)

and useful identities that follow immediately from (2.10)–(2.11) are

 u·v
s2

= −1 +
γu⊕v

γ
u
γ
v

= 1 − γ�u⊕v

γ
u
γ
v

. (2.13)

It is the gamma identity (2.10) that signaled the emergence of the link between 
hyperbolic geometry and special relativity. It was fi rst studied by Sommerfeld [101] 
and Varičak [139, 140] in terms of rapidities, a term coined by Robb [93]. Indeed, 
if we replace the velocity parameter v/c by the parameter ϕv, called rapidity,

 ϕv = tanh−1 ||v||
s

, (2.14)

then the gamma factor γv of v ∈ Rn
s is related to the rapidity ϕv of v by

cosh ϕv = γv

 sinh ϕv = γv 
||v||
s . (2.15)

The gamma identity plays in hyperbolic geometry a role analogous to the role 
that the law of cosines plays in Euclidean geometry, as we will see in Sect. 7.3, p. 
218. Historically, the gamma identity (2.10) formed the fi rst link between special 
relativity and the hyperbolic geometry of Lobachevsky and Bolyai.

Einstein addition is noncommutative. Indeed, while Einstein addition is 
commutative under the norm, 

 ||u⊕v|| = ||v⊕u||, (2.16)

in general,

 u⊕v  v⊕u, (2.17)

u, v ∈ Rn
s. Moreover, Einstein addition is also nonassociative since, in general,

 (u⊕v)⊕w  u⊕(v⊕w), (2.18)

u, v, w ∈ Rn
s.

As an application of the gamma identity (2.10), we prove the Einstein 
gyrotriangle inequality.

Theorem 2.1 (Gyrotriangle Inequality, I).

 ||u⊕v|| ≤ ||u||⊕||v|| (2.19)

for all u, v in an Einstein groupoid (Rn
s, ⊕).
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Proof. By the gamma identity (2.10) and by the Cauchy-Schwarz inequality [76], 
we have

 

γ‖u‖⊕‖v‖ = γuγv

(
1 +

‖u‖‖v‖
s2

)

≥ γ
u
γ
v

(
1 +

u·v
s2

)

= γu⊕v

= γ‖u⊕v‖

 (2.20)

 

for all u, v in an Einstein groupoid (Rn
s, ⊕). But γx = γ||x|| is a monotonically 

increasing function of ||x||, 0 ≤ ||x|| < s. Hence (2.20) implies

 ||u⊕v|| ≤ ||u||⊕||v|| (2.21)

for all u, v ∈ Rn
s.                   

Remark 2.2 (Einstein Addition Domain Extension). Einstein addition u⊕v in 
(2.2) involves the gamma factor γu of u, while it is free of the gamma factor γv of 
v. Hence, unlike u, which must be restricted to the ball Rn

s in order to insure the 
reality of a gamma factor, v need not be restricted to the ball. Hence, the domain 
of v can be extended from the ball Rn

s to the whole of the space Rn. Moreover, 
also the gamma identity (2.10) remains valid for all u ∈ Rn

s and v ∈ Rn under 
appropriate choice of the square root of negative numbers. If 1 + u.v/s = 0, then 
u⊕v is undefi ned, and, by (2.10), γu⊕v = 0, so that ||u⊕v|| = ∞.

2.3 Einstein Addition for Computer Algebra

Various identities that involve Einstein addition play important role, but the detailed 
proof of some of these identities is left to the interested reader. In general, the proof 
of these identities is lengthy, but straightforward, so that the use of a computer 
software that facilitates symbolic mathematics, like Mathematica [145] or Maple, 
is required. For the use of computer algebra in proving algebraic identities that 
involve Einstein addition, it is convenient to rewrite Einstein addition as a linear 
combination of two vectors. Indeed, following (2.2), Einstein addition in Rn

s can 
be written as

 u⊕v = Au,vu + Bu,vv, (2.22a)

where

 Au,v =
1

1 + u·v
s2

(
1 +

1

s2

γ
u

1 + γu

u·v
)

 (2.22b)



28 Analytic Hyperbolic Geometry in N Dimensions

and

 Bu,v =
1

1 + u·v
s2

1

γu

.  (2.22c)

 

The form (2.22) of Einstein addition is convenient for use in computer algebra. 
Readers who wish to obtain their own proof, by computer algebra, of many identities 
that appear in the book, particularly in Problem Sections, are likely to employ 
Einstein addition in the form (2.22).

As an illustrative example for the use of (2.22) in computer algebra for proving 
identities that involve Einstein addition, we present and prove the following 
interesting theorem.

Theorem 2.3 (Cocycle Equation). The cocycle form

 S(u,v) =
γu⊕v

γ
u
γ
v

= 1 +
u·v
s2

, (2.23)

which appears as a factor in Einstein’s velocity addition law, satisfi es the functional 
equation and the normalization conditions

F(u, v⊕w)F(v, w) = F(v⊕u, w)F(u, v)

  F(u, 0) = F(0, v) = 1  (2.24)

in Rn
s.

Proof. By means of (2.22), we have

 

u·(v⊕w) = Av,wu·v + Bv,wu·w

=
1

1 + v·w
s2

{
(1 +

1

s2

γ
v

1 + γv

v·w)u·v +
1

γv

u·w
}

 (2.25)

 

and

 

w·(v⊕u) = Av,uv·w + Bv,uu·w

=
1

1 + u·v
s2

{
(1 +

1

s2

γ
v

1 + γv

u·v)v·w +
1

γv

u·w
}

. (2.26)

 
With the defi nition of the cocycle form S(u, v) in (2.23) we have from (2.25) 

and (2.26) (taking s = 1 without loss of generality)
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S(u,v⊕w)S(v,w)

= {1 + u·(v⊕w)} (1 + v·w)

=

(
1 +

1

1 + v·w
{

(1 +
γv

1 + γv

v·w)u·v +
1

γv

u·w
})

(1 + v·w)

= 1 + v·w +

(
1 +

γ
v

1 + γv

v·w
)

u·v +
1

γv

u·w

 (2.27)

and

S(v⊕u,w)S(u,v)

= {1 + w·(v⊕u)} (1 + u·v)

=

(
1 +

1

1 + u·v
{

(1 +
γ
v

1 + γv

u·v)v·w +
1

γv

u·w
})

(1 + u·v)

= 1 + u·v +

(
1 +

γ
v

1 + γ
v

u·v
)

v·w +
1

γ
v

u·w

 (2.28)

 
implying

 S(u, v⊕w)S(v, w) = S(v⊕u, w)S(u, v) (2.29)

so that S(u, v) in (2.23) satisfi es the functional equation (2.24) as desired.         
Applications of the Einstein cocycle equation (2.29) and the Einstein cocycle 

form (2.23) to the Lorentz transformation of special relativity theory are studied 
in [119].

2.4 Thomas Precession Angle

Let u, v ∈ Rn
s ⊂ Rn be two relativistically admissible velocities such that u  −v, 

so that u⊕v  0, and let θ, 0 ≤ θ < 2π, be the angle between u and v. Furthermore, 
let ε be the angle between the two Einstein sums u⊕v and v⊕u. Then,

 cos θ =
u·v

‖u‖‖v‖ =
γ
u
γ
v√

γ2
u − 1

√
γ2
v − 1

u·v
c2 , (2.30)

 
by (2.12), and

 cos ε =
(u⊕v)·(v⊕u)

‖u⊕v‖2
, (2.31)
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noting that ||u⊕v|| = ||v⊕u||, as explained in (2.16). The angle ε, 0 ≤ ε < π, is the 
rotation angle of Thomas precession, called the Thomas precession angle generated 
by u and v. Suggestively, in the context of Thomas precession, we call θ the 
generating angle that generates the Thomas precession angle ε. These two angles 
are depicted in Fig. 13.2, p. 567, in the study of Thomas precession in Chapter 11.

In this section we employ Einstein addition in the form (2.22) to express 
Thomas precession angle ε in terms of its generating angle θ. For this sake we 
defi ne the velocities parameter ρ > 1 by the equation

 ρ =

√
γu + 1

γ
u
− 1

γv + 1

γ
v
− 1

,  (2.32)

noting the useful identity

 ρ
√

γ2
u
− 1

√
γ2
v
− 1 = (γ

u
+ 1)(γ

v
+ 1). (2.33)

Employing Einstein addition in the form (2.22), which is suitable for computer 
algebra, one can readily check by computer algebra that, following (2.30)–(2.33), 
the Thomas precession angle ε is related to its generating angle θ by the fi rst 
equation in (2.34) below,

 

cos ε =
(ρ + cos θ)2 − sin2 θ

(ρ + cos θ)2 + sin2 θ

sin ε =
−2(ρ + cos θ) sin θ

(ρ + cos θ)2 + sin2 θ
. (2.34)

 
The second equation in (2.34) is determined from the fi rst by the trigonometric 

identity sin ε = ± 1– cos2 ε. The ambiguous sign for sin ε is selected in (2.34) 
such that ε and θ have opposite signs. The selection of the physically correct sign 
for sin ε is important, as explained in Chapter 11. The graphs of cos ε and −sin ε 
as functions of θ, 0 ≤ θ ≤ 2π, for several values of the velocities parameter ρ, are 
presented in Figs. 13.3–13.4, pp. 569–570. 

Thomas precession angle ε possesses the exclusion property: ε  π. Indeed, by 
(2.34), the equation cos ε = −1 implies ρ + cos θ = 0, which results in a contradiction 
since ρ > 1 while | cos θ| ≤ 1.

2.5 Einstein Addition with Respect to Cartesian Coordinates

Like any physical law, Einstein velocity addition law (2.2) is coordinate 
independent. Indeed, it is presented in (2.2) in terms of vectors, noting that one 
of the great advantages of vectors is their ability to express results independent of 
any coordinate system.

However, in order to generate numerical and graphical demonstrations of laws 
in physics and results in geometry, we need coordinates. Accordingly, we introduce 
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Cartesian coordinates into the Euclidean n-space Rn and its ball Rn
s, with respect to 

which we generate the graphical presentations. Introducing the Cartesian coordinate 
system Σ into Rn and Rn

s, each point P ∈ Rn is given by an n-tuple

    P = (x1, x2, . . ., xn), x2
1 + x2

2 + . . . + x2
n < ∞,      (2.35)

of real numbers, which are the coordinates, or components, of P with respect to Σ. 
Similarly, each point P ∈ Rn

s is given by an n-tuple

 P = (x1, x2, . . ., xn), x2
1 + x2

2 + . . . + x2
n < s2,  (2.36)

of real numbers, which are the coordinates, or components of P with respect to Σ.
Equipped with a Cartesian coordinate system Σ and its standard vector addition 

given by component addition, along with its resulting scalar multiplication, Rn 
forms the standard Cartesian model of n-dimensional Euclidean geometry. In full 
analogy, equipped with a Cartesian coordinate system Σ and its Einstein addition, 
along with its resulting scalar multiplication (to be studied in Sect. 3.3, p. 79), the 
ball Rn

s forms the Cartesian-Beltrami-Klein ball model of n-dimensional hyperbolic 
geometry (as we will see in Chapter 3, particularly, in (3.39)–(3.40), pp. 83–84).

As an illustrative example, we present below the Einstein velocity addition 
law (2.2) in Rs

3 with respect to a Cartesian coordinate system.
Let Rs

3 be the s-ball of the Euclidean 3-space, equipped with a Cartesian 
coordinate system Σ,

 R
3
s =

⎧⎨
⎩

⎛
⎝x1

x2

x3

⎞
⎠ ∈ R

3 :

∥∥∥∥∥∥
⎛
⎝x1

x2

x3

⎞
⎠

∥∥∥∥∥∥ =
√

x2
1 + x2

2 + x2
3 < s

⎫⎬
⎭. (2.37)

 
Accordingly, each point of the ball is represented by its coordinates (x1, x2, 

x3)t (exponent t denotes transposition) with respect to Σ, satisfying the condition 
x1

2 + x2
2 + x3

2 < s2.
Furthermore, let u, v, w ∈ Rs

3 be three points in Rs
3 ⊂ R3 given by their 

coordinates with respect to Σ,

 u =

⎛
⎝u1

u2

u3

⎞
⎠ , v =

⎛
⎝v1

v2

v3

⎞
⎠ , w =

⎛
⎝w1

w2

w3

⎞
⎠,  (2.38)

where

 w = u⊕v. (2.39)

The dot (inner) product of u and v is given in Σ by the equation

 u.v = u1v1 + u2v2 + u3v3, (2.40) 

and the squared norm ||v||2 = v.v of v is given by the equation

 ||v||2 = v2
1 + v2

2 + v2
3. (2.41)
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Hence, it follows from the coordinate free, vector representation (2.2) of 
Einstein addition that the coordinate Einstein addition (2.39) with respect to the 
Cartesian coordinate system Σ takes the form
⎛
⎝w1

w2

w3

⎞
⎠ =

⎛
⎝u1

u2

u3

⎞
⎠ ⊕

⎛
⎝v1

v2

v3

⎞
⎠ =

1

1 +
u1v1 + u2v2 + u3v3

s2

×
⎧⎨
⎩[1 +

1

s2

γu

1 + γu

(u1v1 + u2v2 + u3v3)]

⎛
⎝u1

u2

u3

⎞
⎠ +

1

γu

⎛
⎝v1

v2

v3

⎞
⎠

⎫⎬
⎭, 

(2.42)

 

where

 γ
u

=
1√

1 − u2
1 + u2

2 + u2
3

s2

. (2.43)

Note that (i) γu is real if and only if ||u|| < s, (ii) γu = ∞ if and only if ||u|| = s, and 
(iii) γu is purely imaginary if and only if ||u|| > s.

The three components of Einstein addition (2.39) are w1, w2 and w3 in (2.42). 
For a two-dimensional illustration of Einstein addition (2.42) one may impose the 
condition u3 = v3 = 0, implying w3 = 0. An illustrative example in two dimensions 
is presented in Example 2.4 below.

In the Newtonian-Euclidean limit, s → ∞, the ball Rs
3 expands to the Euclidean 

3-space R3, and Einstein addition (2.42) reduces to the common vector addition 
in R3,

 

⎛
⎝w1

w2

w3

⎞
⎠ =

⎛
⎝u1

u2

u3

⎞
⎠ +

⎛
⎝v1

v2

v3

⎞
⎠. (2.44)

We will fi nd that Einstein addition plays in the Cartesian model of the Beltrami-
Klein ball model of hyperbolic geometry the same role that vector addition plays in 
the Cartesian model of Euclidean geometry. Suggestively, the Cartesian-Beltrami-
Klein ball model of hyperbolic geometry is also known as the relativistic velocity 
model [2, 5].

Vector equations and identities are represented by coordinate free expressions, 
like Einstein addition in (2.2). For numerical and graphical presentations, however, 
these must be converted into a coordinate dependent form relative to a Cartesian 
coordinate system that must be introduced. The latter, in turn, can be presented 
relative to Cartesian coordinates numerically and graphically, as we do in the 
generation of fi gures. In general, Cartesian coordinates are not shown in fi gures. 
For the sake of demonstration, however, they are shown in Figs. 3.3 and 3.4, p. 87.
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Example 2.4 As an illustrative example of a 2-dimensional Einstein addition with 
respect to a Cartesian coordinate system, we employ (2.42) to calculate the elegant 
result of the Einstein sum (0, b)t⊕(x, b)t in the relativistic velocity plane

 R
2
s =

{(
x
y

)
∈ R

2 :

∥∥∥∥
(

x
y

)∥∥∥∥ =
√

x2 + y2 < s

}
 (2.45)

 
of 2-dimensional relativistically admissible velocities, equipped with the Cartesian 
coordinate system Σ = (x, y). Following (2.42) we have

 

�
(

0
b

)
⊕

(
x
b

)
=

(
0
−b

)
⊕

(
x
b

)

=
1

1 − b2

s2

{
(1 − γb

1 + γb

b2

c2
)

(
0
−b

)
+

1

γb

(
x
b

)}

= γ2
b

{
(1 − γb

1 + γb

γ2
b − 1

γ2
b

)

(
0
−b

)
+

1

γb

(
x
b

)}

= γ2
b

{
1

γb

(
0
−b

)
+

1

γb

(
x
b

)}

= γb

(
x
0

)
,

 (2.46)

so that 

 
∥∥∥∥�

(
0
b

)
⊕

(
x
b

)∥∥∥∥ = γb |x|. (2.47)

2.6 Einstein Addition vs. Vector Addition

Vector addition, +, in Rn is both commutative and associative, satisfying

      u + v = v + u                 Commutative Law
  u + (v + w) = (u + v) + w      Associative Law  (2.48)

for all u, v, w ∈ Rn. In contrast, Einstein addition, ⊕, in Rn
s is neither commutative 

nor associative.
Gyrations gyr[u, v] ∈ Aut(Rs

3, ⊕), u, v ∈ Rs
3, are defi ned in terms of Einstein 

addition by the equation

 gyr[u, v]w = (u⊕v)⊕{u⊕(v⊕w)} (2.49)
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for all u, v, w ∈ Rs
3. Equation (2.49) presents the application to w of the gyration 

gyr[u, v] generated by u and v. Gyrations turn out to be automorphisms of the 
Einstein groupoid (Rs

3, ⊕).
An automorphism of a groupoid (S, ⊕) is a bijective map f of S onto itself that 

respects the binary operation, that is, f(a⊕b) = f(a)⊕f(b) for all a, b ∈ S. The set of 
all automorphisms of a groupoid (S, ⊕) forms a group, denoted by Aut(S, ⊕), where 
the group operation is given by automorphism composition. To emphasize that 
the gyrations of an Einstein groupoid (Rs

3, ⊕) are automorphisms of the groupoid, 
gyrations are also called gyroautomorphisms.

A gyration gyr[u, v], u, v ∈ Rs
3, is trivial if gyr[u, v]w = w for all w ∈ Rs

3. 
Thus, for instance, the gyrations gyr[0, v], gyr[v, v]  and gyr[v, v] are trivial for 
all v ∈ Rs

3, as we see from (2.49). More generally, gyrations gyr[u, v] are trivial 
when u, v ∈ Rn

s ⊂ Rn are parallel in Rn.
Possessing their own rich structure, gyrations measure the extent to which 

Einstein addition deviates from commutativity and associativity as we see from 
the following list of identities [119, 122, 129]:

u⊕v = gyr[u, v](v⊕u)   Gyrocommutative Law 
u⊕(v⊕w) = (u⊕v)⊕gyr[u, v]w Left Gyroassociative Law 
(u⊕v)⊕w = u⊕(v⊕gyr[v, u]w) Right Gyroassociative Law
gyr[u⊕v, v] = gyr[u, v]  Gyration Left Reduction Property
gyr[u, v⊕u] = gyr[u, v]  Gyration Right Reduction Property
gyr[ u, v] = gyr[u, v]  Gyration Even Property
(gyr[u, v])−1 = gyr[v, u]  Gyration Inversion Law  (2.50)

for all u, v, w ∈ Rn
s.

It is clear from (2.50) that the departure of Einstein addition, ⊕, from 
commutativity and associativity is strictly controlled by gyrations. The reduction 
properties in (2.50) present important gyration identities. One of them, the left 
reduction property, will soon demonstrate its power and elegance in solving the 
gyrogroup equation x⊕a = b in (2.105) and (2.107), p. 47.

Einstein addition plays in hyperbolic geometry the role that vector addition 
plays in the vector space approach to Euclidean geometry. Einstein addition is 
more complex than vector addition, but richer in structure. Hence, a computer 
algebra system, like Mathematica or Maple, is an indispensable tool. Indeed, the 
identities in (2.50) can be verifi ed by lengthy, but straightforward algebra that 
can be handled easily by employing the computer algebra system Mathematica 
[145], as explained in Sect. 2.3 and illustrated in Sect. 2.4. Related details are 
found in Prob. 2.5, p. 71.
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In the wide area of nonassociativity in physics and mathematics [65] the 
gyroassociative law of Einstein addition in (2.50) is the most marvelous law of both

 1. the special theory of relativity of Einstein and
 2. the hyperbolic geometry of Lobachevsky and Bolyai.

This marvelous law, along with its associated gyrocommutative law, enables 
the Einstein addition law of relativistically admissible velocities to be employed 
as the hyperbolic vector (gyrovector) addition in Cartesian models of hyperbolic 
geometry. Thus, in particular, it is the 1988 discovery [111, 112, 113] of the most 
marvelous law, the gyroassociative law of Einstein addition, that enables vector 
algebra and Cartesian coordinates to be adapted for use in hyperbolic geometry.

The concept of the gyration is a mathematical abstraction of the relativistic 
effect known as Thomas precession [129, Sect. 10.3], [136], which we will study 
in Chapter 13. An excellent description of the 3-space rotation which, since 1926, 
is named after Thomas [108] can be found in Silberstein’s 1914 book [97]. In 1914 
the Thomas precession did not have a name, and Silberstein calls it in his 1914 
book a “certain space-rotation” [97, p. 169]. An early study of Thomas rotation, 
made by the famous mathematician É mile Borel in 1913, is described in his 1914 
book [12] and, more recently, in [105]. According to Belloni and Reina [8] and 
Malykin [74], Sommerfeld’s route to the Thomas precession dates back to 1909.

Following the gyrocommutative-gyroassociative laws, Einstein addition and 
the gyrations to which it gives rise are inextricably linked.

2.7 Gyrations

Owing to its nonassociativity, Einstein addition gives rise in (2.49) to gyrations,

 gyr[u, v] : Rn
s → Rn

s, (2.51)

of an Einstein groupoid (Rn
s, ⊕) for any u, v ∈ Rn

s. Gyrations, in turn, regulate 
Einstein addition, ⊕, endowing it with the rich structure of a gyrocommutative 
gyrogroup, as we will see in Sect. 2.8, and a gyrovector space, as we will see in 
Sect. 3.3.

In the formal approach to gyrogroups in Def. 2.14, p. 39, the left reduction 
property is elevated to the Reduction Axiom. The gyration left reduction axiom is 
also known as the left loop property. The more revealing term, reduction axiom, was 
coined by F. Chatelin in [15] since it triggers remarkable reduction in complexity 
as, for instance, in (2.107), p. 47.

Gyrations are defi ned in (2.49) in terms of Einstein addition. An explicit 
presentation of the gyrations of Einstein groupoids (Rn

s, ⊕) in terms of vector 
addition rather than Einstein addition is given by the equation

 gyr[u, v]w = w + 
Au + Bv

D ,  (2.52)
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where

 

A = − 1

s2

γ2
u

(γ
u

+ 1)
(γ

v
− 1)(u·w) +

1

s2
γ
u
γ
v
(v·w)

+
2

s4

γ2
u
γ2
v

(γ
u

+ 1)(γ
v

+ 1)
(u·v)(v·w)

B = − 1

s2

γ
v

γ
v

+ 1
{γ

u
(γ

v
+ 1)(u·w) + (γ

u
− 1)γ

v
(v·w)}

D = γ
u
γ
v
(1 +

u·v
s2

) + 1 = γ
u⊕v

+ 1 ≥ 2

 (2.53)

 

for all u, v, w ∈ Rn
s.

Remark 2.5 (Gyration Domain Extension). The domain of u, v ∈ Rn
s ⊂ Rn  in 

(2.52)–(2.53) is restricted to Rn
s in order to insure the reality of the gamma factors 

of u and v in (2.53). However, while the expressions in (2.52)–(2.53) involve gamma 
factors of u and v, they involve no gamma factors of w. Hence, the domain of w in 
(2.52)–(2.53) can be extended from Rn

s to Rn. Indeed, extending in (2.52)–(2.53) 
the domain of w from Rn

s to Rn, gyrations gyr[u, v] are expanded from maps of Rn
s 

to linear maps of Rn for any u, v ∈ Rn
s, gyr[u, v] : Rn → Rn.

In each of the three special cases when (i) u = 0, or (ii) v = 0, or (iii) u and v are 
parallel in Rn, u||v, we have Au + Bv = 0 so that gyr[u, v] is trivial. Thus, we have

   gyr[0, v]w = w
   gyr[u, 0]w = w (2.54)
   gyr[u, v]w = w,  u||v,  

for all u, v ∈ Rn
s, u||v in the third equation, and all w ∈ Rn.

It follows from (2.52) by straightforward algebra that

 gyr[v, u](gyr[u, v]w) = w (2.55) 

for all u, v ∈ Rn
s, w ∈ Rn, or equivalently,

 gyr[v, u]gyr[u, v] = I (2.56)

for all u, v ∈ Rn
s, where I denotes the trivial map, also called the identity map.

Hence, gyrations are invertible linear maps of Rn, the inverse, gyr−1[u, v], of 
gyr[u, v] being gyr[v, u]. We thus have the gyration inversion property

 gyr−1[u, v] = gyr[v, u] (2.57)

for all u, v ∈ Rn
s.

Gyrations keep the inner product of elements of the ball Rn
s invariant, that is,

 gyr[u, v]a.gyr[u, v]b = a.b (2.58)
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for all a, b, u, v ∈ Rn
s. Hence, gyr[u, v] is an isometry of Rn

s, keeping the norm of 
elements of the ball Rn

s invariant,

 ||gyr[u, v]w|| = ||w||. (2.59)

Accordingly, gyr[u, v] represents a rotation of the ball Rn
s about its origin for 

any u, v ∈ Rn
s.

The invertible map gyr[u, v] of Rn
s respects Einstein addition in Rn

s,

 gyr[u, v](a⊕b) = gyr[u, v]a⊕gyr[u, v]b (2.60)

for all a, b, u, v ∈ Rn
s, so that gyr[u, v] is an automorphism of the Einstein groupoid 

(Rn
s, ⊕).

Example 2.6 As an example that illustrates the use of the invariance of the norm 
under gyrations, we note that

 || u⊕v|| = ||u v|| = || v⊕u||. (2.61)

Indeed, we have the following chain of equations, which are numbered for 
subsequent derivation,

 

(1)︷︸︸︷
=== ‖�(�u⊕v)‖
(2)︷︸︸︷
=== ‖u�v‖
(3)︷︸︸︷
=== ‖gyr[u,�v](�v⊕u)‖
(4)︷︸︸︷
=== ‖�v⊕u‖

‖�u⊕v‖

 (2.62)

 

for all u, v ∈ Rn
s. Derivation of the numbered equalities in (2.62) follows:

 1) Follows from the result that w = −w, so that || w|| = || − w|| = ||w|| for all 
w ∈ Rn

s.
 2) Follows from the automorphic inverse property (2.7), p. 25, of Einstein 

addition.
 3) Follows from the gyrocommutative law of Einstein addition.
 4) Follows from the result that, by (2.59), gyrations keep the norm invariant.

Let z ∈ Rn be a vector perpendicular to both u and v in Rn
s ⊂ Rn, n ≥ 3, that is,

u.z = v.z = 0. Then, by (2.52)–(2.53) with w = z,

 gyr[u, v]z = z. (2.63)

Motivated by the special case when n = 3, following (2.63) we say that the 
gyration axis in Rn of the gyration gyr[u, v] : Rn → Rn, generated by u, v ∈ Rn

s, 
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is parallel to the vector z. The gyration angle ε of the gyration gyr[u, v] of Rn is 
given by the equation

 cos ε = 
x.gyr[u, v]x

||x||2
 (2.64)

for any x ∈ Rn that lies on the plane spanned by u, v ∈ Rn
s ⊂ Rn, that is,

 x = cuu + cvv, (2.65)

x  0, for any coeffi cients cu, cv ∈ R, excluding cu = cv = 0.
As expected, the angle ε in (2.64) is independent of the choice of x in (2.65). 

Moreover, we have the following result.

Theorem 2.7 (Gyration–Thomas Precession Angle). Let u, v, x ∈ Rn
s be 

relativistically admissible velocities such that u  −v (so that u⊕v  0). Then,

 cos ε ≔ 
x.gyr[u, v]x

||x||2
 = 

(u⊕v).(v⊕u)
||u⊕v||2

 (2.66)

Proof. The proof of the identity in (2.66) is obtained straightforwardly by computer 
algebra, (i) where Einstein addition is expressed by (2.22), pp. 27–28, and (ii) 
where the application gyr[u, v]x of gyration gyr[u, v] to x is expressed by 
(2.52)–(2.53).                                                                                                   

Theorem 2.7 states that the gyration angle ε in (2.64) and the Thomas precession 
angle ε in (2.31), p. 29, coincide.

Special attention to three dimensional gyrations, which are of interest in 
physical applications, is paid in Chapter 13 in the study of Thomas precession.

2.8 From Einstein Velocity Addition to Gyrogroups

Guided by analogies with groups, the key features of Einstein groupoids (Rn
s, ⊕), 

n = 1, 2, 3, . . ., suggest the formal gyrogroup defi nition in which gyrogroups form 
a most natural generalization of groups. Accordingly, defi nitions related to groups 
and gyrogroups follow.

Defi nition 2.8 (Binary Operations). A binary operation + in a set S is a function 
+ : S × S → S. We use the notation a + b to denote +(a, b) for any a, b ∈ S.

Defi nition 2.9 (Groupoids, Automorphisms). A groupoid (S, +) is a nonempty 
set, S, with a binary operation, +. An automorphism ϕ of a groupoid (S, +) is a 
bijective self-map of S which respects its groupoid operation, that is, ϕ(a + b) = 
ϕ(a) + ϕ(b) for all a, b ∈ S.

Defi nition 2.10 (Groups). A groupoid (G, +) is a group if its binary operation 
satisfi es the following axioms. In G there is at least one element, 0, called a left 
identity, satisfying 
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(G1)  0 + a = a

for all a ∈ G. There is an element 0 ∈ G satisfying axiom (G1) such that for each 
a ∈ G there is an element −a ∈ G, called a left inverse of a, satisfying

(G2)  −a + a = 0.

Moreover, the binary operation obeys the associative law 

(G3)  (a + b) + c = a + (b + c)

for all a, b, c ∈ G.

Groups are classifi ed into commutative and noncommutative groups.

Defi nition 2.11 (Commutative Groups). A group (G, +) is commutative if its 
binary operation obeys the commutative law

(G6)  a + b = b + a

for all a, b ∈ G.

Defi nition 2.12 (Subgroups). A subset H of a group (G, +) is a subgroup of G if 
it is nonempty, and H is closed under group compositions and inverses in G, that 
is, x, y ∈ H implies x + y ∈ H and −x ∈ H.

Theorem 2.13 (The Subgroup Criterion). A subset H of a group (G, +) is a 
subgroup of G if and only if (i) H is nonempty, and (ii) x, y ∈ H implies x − y ∈ H.

For a proof of the Subgroup Criterion see any book on group theory.

Defi nition 2.14 (Gyrogroups). A groupoid (G, ⊕) is a gyrogroup if its binary 
operation satisfi es the following axioms. In G there is at least one element, 0, called 
a left identity, satisfying

(G1)  0⊕a = a

for all a ∈ G. There is an element 0 ∈ G satisfying axiom (G1) such that for each 
a ∈ G there is an element a ∈ G, called a left inverse of a, satisfying 

(G2)  a⊕a = 0.

Moreover, for any a, b, c ∈ G there exists a unique element gyr[a, b]c ∈ G such 
that the binary operation obeys the left gyroassociative law

(G3)  a⊕(b⊕c) = (a⊕b)⊕gyr[a, b]c.

The map gyr[a, b] : G → G given by c ↦ gyr[a, b]c is an automorphism of the 
groupoid (G, ⊕), that is,

(G4)  gyr[a, b] ∈ Aut(G, ⊕),
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and the automorphism gyr[a, b] of G is called the gyroautomorphism, or the 
gyration, of G generated by a, b ∈ G. The operator gyr : G × G → Aut(G, ⊕) is 
called the gyrator of G. Finally, the gyroautomorphism gyr[a, b] generated by any 
a, b ∈ G possesses the left reduction property

(G5)  gyr[a, b] = gyr[a⊕b, b],

called the reduction axiom.

The gyrogroup axioms (G1)–(G5) in Defi nition 2.14 are classifi ed into three classes:

 1. The fi rst pair of axioms, (G1) and (G2), is a reminiscent of the group axioms.
 2. The last pair of axioms, (G4) and (G5), presents the gyrator axioms. 
 3. The middle axiom, (G3), is a hybrid axiom linking the two pairs of axioms 

in (1) and (2).

As in group theory, we use the notation a b = a⊕( b) in gyrogroup theory 
as well.

In full analogy with groups, gyrogroups are classifi ed into gyrocommutative 
and nongyrocommutative gyrogroups.

Definition 2.15 (Gyrocommutative Gyrogroups). A gyrogroup (G, ⊕) is 
gyrocommutative if its binary operation obeys the gyrocommutative law

(G6)  a ⊕ b = gyr[a, b](b ⊕ a)

for all a, b ∈ G.

The abstract gyrocommutative gyrogroup is an algebraic structure tailor made 
to suit Einstein velocity addition of relativistically admissible velocities. Indeed, 
the Einstein groupoid (Rn

s, ⊕) is a gyrocommutative gyrogroup. Gyrogroups, both 
gyrocommutative and nongyrocommutative, abound in group theory as shown in 
[40] and [41]. A fi nite, nongyrocommutative gyrogroup of order 16, K16, is presented 
in [119, Figs. 2.1-2.2, p. 41]. 

Einstein addition in the real ball Rn
s can straightforwardly be extended to the 

complex ball Cn
s, giving rise to the complex Einstein groupoid (Cn

s, ⊕). The latter 
turns out to be a nongyrocommutative gyrogroup, studied in [100, 121, 128, 36].

2.9 Gyrogroup Cooperation (Coaddition)

Our plan to capture analogies with groups dictates the introduction into the abstract 
gyrogroup (G, ⊕) a second binary operation, ⊞, called the gyrogroup cooperation, 
or coaddition.
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Definition 2.16 (Gyrogroup Cooperation (Coaddition)). Let (G, ⊕) be a 
gyrogroup. The gyrogroup cooperation (or, coaddition), ⊞, is a second binary 
operation in G related to the gyrogroup operation (or, addition), ⊕, by the equation

 a ⊞ b = a⊕gyr[a, b]b (2.67)

for all a, b ∈ G.

Naturally, we use the notation a ⊟ b = a ⊞ ( b) where b = −b, so that

 a ⊟ b = a gyr[a, b]b. (2.68)

The gyrogroup cooperation is commutative if and only if the gyrogroup 
operation is gyrocommutative, as we will see in Theorem 2.45, p. 63.

Hence, in particular, Einstein coaddition ⊞ is commutative since Einstein 
addition ⊕ is gyrocommutative.

Indeed, let us calculate, as a concrete example of (2.67), the Einstein coaddition ⊞. By substituting into (2.67) both

 1. Einstein addition in (2.2), p. 24, and
 2. Einstein gyration gyr[u, v]w in (2.49), p. 33,

lengthy, but straightforward, algebra (that can be handled easily by employing a 
computer algebra system like Mathematica) reveals the following important result:

Einstein coaddition ⊞ is given explicitly by the equation

 

u � v =
γ
u

+ γ
v

γ2
u

+ γ2
v

+ γ
u
γ
v
(1 + u·v

s2 ) − 1
(γ

u
u + γ

v
v)

= 2⊗γuu + γvv

γu + γv

 (2.69)

 

for all u, v ∈ Rn
s where, by defi nition, 2⊗v = v⊕v. Einstein coaddition (2.69) of two 

summands will be extended to k summands, k ≥ 2 in (6.23), p. 180, and (6.84), p. 194.

2.10 First Gyrogroup Properties

While it is clear how to defi ne a right identity and a right inverse in a gyrogroup, 
the existence of such elements is not presumed. Indeed, the existence of a unique 
identity and a unique inverse, both left and right, is a consequence of the gyrogroup 
axioms, as the following theorem shows, along with other immediate results about 
gyrogroups.


