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Preface

Innovations in computing technologies have revolutionized healthcare in recent years. The analyt-

ical style of reasoning has not only changed the way in which information is collected and stored

but has also played an increasingly important role in the management and delivery of healthcare. In

particular, data analytics has emerged as a promising tool for solving problems in various healthcare-

related disciplines. This book will present a comprehensive review of data analytics in the field of

healthcare. The goal is to provide a platform for interdisciplinary researchers to learn about the

fundamental principles, algorithms, and applications of intelligent data acquisition, processing, and

analysis of healthcare data. This book will provide readers with an understanding of the vast num-

ber of analytical techniques for healthcare problems and their relationships with one another. This

understanding includes details of specific techniques and required combinations of tools to design

effective ways of handling, retrieving, analyzing, and making use of healthcare data. This book

will provide a unique perspective of healthcare related opportunities for developing new computing

technologies.

From a researcher and practitioner perspective, a major challenge in healthcare is its interdis-

ciplinary nature. The field of healthcare has often seen advances coming from diverse disciplines

such as databases, data mining, information retrieval, image processing, medical researchers, and

healthcare practitioners. While this interdisciplinary nature adds to the richness of the field, it also

adds to the challenges in making significant advances. Computer scientists are usually not trained in

domain-specific medical concepts, whereas medical practitioners and researchers also have limited

exposure to the data analytics area. This has added to the difficulty in creating a coherent body of

work in this field. The result has often been independent lines of work from completely different

perspectives. This book is an attempt to bring together these diverse communities by carefully and

comprehensively discussing the most relevant contributions from each domain.

The book provides a comprehensive overview of the healthcare data analytics field as it stands

today, and to educate the community about future research challenges and opportunities. Even

though the book is structured as an edited collection of chapters, special care was taken during the

creation of the book to cover healthcare topics exhaustively by coordinating the contributions from

various authors. Focus was also placed on reviews and surveys rather than individual research results

in order to emphasize comprehensiveness in coverage. Each book chapter is written by prominent

researchers and experts working in the healthcare domain. The chapters in the book are divided into

three major categories:

• Healthcare Data Sources and Basic Analytics: These chapters discuss the details about

the various healthcare data sources and the analytical techniques that are widely used in the

processing and analysis of such data. The various forms of patient data include electronic

health records, biomedical images, sensor data, biomedical signals, genomic data, clinical

text, biomedical literature, and data gathered from social media.

• Advanced Data Analytics for Healthcare: These chapters deal with the advanced data ana-

lytical methods focused on healthcare. These include the clinical prediction models, temporal

pattern mining methods, and visual analytics. In addition, other advanced methods such as

data integration, information retrieval, and privacy-preserving data publishing will also be

discussed.
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• Applications and Practical Systems for Healthcare: These chapters focus on the applica-

tions of data analytics and the relevant practical systems. It will cover the applications of data

analytics to pervasive healthcare, fraud detection, and drug discovery. In terms of the practi-

cal systems, it covers clinical decision support systems, computer assisted medical imaging

systems, and mobile imaging systems.

It is hoped that this comprehensive book will serve as a compendium to students, researchers,

and practitioners. Each chapter is structured as a “survey-style” article discussing the prominent

research issues and the advances made on that research topic. Special effort was taken in ensuring

that each chapter is self-contained and the background required from other chapters is minimal.

Finally, we hope that the topics discussed in this book will lead to further developments in the field

of healthcare data analytics that can help in improving the health and well-being of people. We be-

lieve that research in the field of healthcare data analytics will continue to grow in the years to come.

Acknowledgment: This work was supported in part by National Science Foundation grant

No. 1231742.
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2 Healthcare Data Analytics

1.1 Introduction

While the healthcare costs have been constantly rising, the quality of care provided to the pa-

tients in the United States have not seen considerable improvements. Recently, several researchers

have conducted studies which showed that by incorporating the current healthcare technologies, they

are able to reduce mortality rates, healthcare costs, and medical complications at various hospitals.

In 2009, the US government enacted the Health Information Technology for Economic and Clinical

Health Act (HITECH) that includes an incentive program (around $27 billion) for the adoption and

meaningful use of Electronic Health Records (EHRs).

The recent advances in information technology have led to an increasing ease in the ability to

collect various forms of healthcare data. In this digital world, data becomes an integral part of health-

care. A recent report on Big Data suggests that the overall potential of healthcare data will be around

$300 billion [12]. Due to the rapid advancements in the data sensing and acquisition technologies,

hospitals and healthcare institutions have started collecting vast amounts of healthcare data about

their patients. Effectively understanding and building knowledge from healthcare data requires de-

veloping advanced analytical techniques that can effectively transform data into meaningful and

actionable information. General computing technologies have started revolutionizing the manner in

which medical care is available to the patients. Data analytics, in particular, forms a critical com-

ponent of these computing technologies. The analytical solutions when applied to healthcare data

have an immense potential to transform healthcare delivery from being reactive to more proactive.

The impact of analytics in the healthcare domain is only going to grow more in the next several

years. Typically, analyzing health data will allow us to understand the patterns that are hidden in

the data. Also, it will help the clinicians to build an individualized patient profile and can accurately

compute the likelihood of an individual patient to suffer from a medical complication in the near

future.

Healthcare data is particularly rich and it is derived from a wide variety of sources such as

sensors, images, text in the form of biomedical literature/clinical notes, and traditional electronic

records. This heterogeneity in the data collection and representation process leads to numerous

challenges in both the processing and analysis of the underlying data. There is a wide diversity in the

techniques that are required to analyze these different forms of data. In addition, the heterogeneity

of the data naturally creates various data integration and data analysis challenges. In many cases,

insights can be obtained from diverse data types, which are otherwise not possible from a single

source of the data. It is only recently that the vast potential of such integrated data analysis methods

is being realized.

From a researcher and practitioner perspective, a major challenge in healthcare is its interdisci-

plinary nature. The field of healthcare has often seen advances coming from diverse disciplines such

as databases, data mining, information retrieval, medical researchers, and healthcare practitioners.

While this interdisciplinary nature adds to the richness of the field, it also adds to the challenges in

making significant advances. Computer scientists are usually not trained in domain-specific medical

concepts, whereas medical practitioners and researchers also have limited exposure to the mathe-

matical and statistical background required in the data analytics area. This has added to the difficulty

in creating a coherent body of work in this field even though it is evident that much of the available

data can benefit from such advanced analysis techniques. The result of such a diversity has often led

to independent lines of work from completely different perspectives. Researchers in the field of data

analytics are particularly susceptible to becoming isolated from real domain-specific problems, and

may often propose problem formulations with excellent technique but with no practical use. This

book is an attempt to bring together these diverse communities by carefully and comprehensively

discussing the most relevant contributions from each domain. It is only by bringing together these

diverse communities that the vast potential of data analysis methods can be harnessed.
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Another major challenge that exists in the healthcare domain is the “data privacy gap” between

medical researchers and computer scientists. Healthcare data is obviously very sensitive because it

can reveal compromising information about individuals. Several laws in various countries, such as

the Health Insurance Portability and Accountability Act (HIPAA) in the United States, explicitly

forbid the release of medical information about individuals for any purpose, unless safeguards are

used to preserve privacy. Medical researchers have natural access to healthcare data because their

research is often paired with an actual medical practice. Furthermore, various mechanisms exist in

the medical domain to conduct research studies with voluntary participants. Such data collection is

almost always paired with anonymity and confidentiality agreements.

On the other hand, acquiring data is not quite as simple for computer scientists without a proper

collaboration with a medical practitioner. Even then, there are barriers in the acquisition of data.

Clearly, many of these challenges can be avoided if accepted protocols, privacy technologies, and

safeguards are in place. Therefore, this book will also address these issues. Figure 1.1 provides an

overview of the organization of the book’s contents. This book is organized into three parts:

1. Healthcare Data Sources and Basic Analytics: This part discusses the details of various

healthcare data sources and the basic analytical methods that are widely used in the pro-

cessing and analysis of such data. The various forms of patient data that is currently being

collected in both clinical and non-clinical environments will be studied. The clinical data will

have the structured electronic health records and biomedical images. Sensor data has been

receiving a lot attention recently. Techniques for mining sensor data and biomedical signal

analysis will be presented. Personalized medicine has gained a lot of importance due to the

advancements in genomic data. Genomic data analysis involves several statistical techniques.

These will also be elaborated. Patients’ in-hospital clinical data will also include a lot of un-

structured data in the form of clinical notes. In addition, the domain knowledge that can be

extracted by mining the biomedical literature, will also be discussed. The fundamental data

mining, machine learning, information retrieval, and natural language processing techniques

for processing these data types will be extensively discussed. Finally, behavioral data captured

through social media will also be discussed.

2. Advanced Data Analytics for Healthcare: This part deals with the advanced analytical meth-

ods focused on healthcare. This includes the clinical prediction models, temporal data mining

methods, and visual analytics. Integrating heterogeneous data such as clinical and genomic

data is essential for improving the predictive power of the data that will also be discussed.

Information retrieval techniques that can enhance the quality of biomedical search will be

presented. Data privacy is an extremely important concern in healthcare. Privacy-preserving

data publishing techniques will therefore be presented.

3. Applications and Practical Systems for Healthcare: This part focuses on the practical ap-

plications of data analytics and the systems developed using data analytics for healthcare

and clinical practice. Examples include applications of data analytics to pervasive healthcare,

fraud detection, and drug discovery. In terms of the practical systems, we will discuss the de-

tails about the clinical decision support systems, computer assisted medical imaging systems,

and mobile imaging systems.

These different aspects of healthcare are related to one another. Therefore, the chapters in each

of the aforementioned topics are interconnected. Where necessary, pointers are provided across

different chapters, depending on the underlying relevance. This chapter is organized as follows.

Section 1.2 discusses the main data sources that are commonly used and the basic techniques for

processing them. Section 1.3 discusses advanced techniques in the field of healthcare data analytics.

Section 1.4 discusses a number of applications of healthcare analysis techniques. An overview of

resources in the field of healthcare data analytics is presented in Section 1.5. Section 1.6 presents

the conclusions.
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1.2 Healthcare Data Sources and Basic Analytics

In this section, the various data sources and their impact on analytical algorithms will be dis-

cussed. The heterogeneity of the sources for medical data mining is rather broad, and this creates

the need for a wide variety of techniques drawn from different domains of data analytics.

1.2.1 Electronic Health Records

Electronic health records (EHRs) contain a digitized version of a patient’s medical history. It

encompasses a full range of data relevant to a patient’s care such as demographics, problems, med-

ications, physician’s observations, vital signs, medical history, laboratory data, radiology reports,

progress notes, and billing data. Many EHRs go beyond a patient’s medical or treatment history and

may contain additional broader perspectives of a patient’s care. An important property of EHRs is

that they provide an effective and efficient way for healthcare providers and organizations to share

with one another. In this context, EHRs are inherently designed to be in real time and they can in-

stantly be accessed and edited by authorized users. This can be very useful in practical settings. For

example, a hospital or specialist may wish to access the medical records of the primary provider. An

electronic health record streamlines the workflow by allowing direct access to the updated records in

real time [30]. It can generate a complete record of a patient’s clinical encounter, and support other

care-related activities such as evidence-based decision support, quality management, and outcomes

reporting. The storage and retrieval of health-related data is more efficient using EHRs. It helps

to improve quality and convenience of patient care, increase patient participation in the healthcare

process, improve accuracy of diagnoses and health outcomes, and improve care coordination [29].

Various components of EHRs along with the advantages, barriers, and challenges of using EHRs

are discussed in Chapter 2.

1.2.2 Biomedical Image Analysis

Medical imaging plays an important role in modern-day healthcare due to its immense capability

in providing high-quality images of anatomical structures in human beings. Effectively analyzing

such images can be useful for clinicians and medical researchers since it can aid disease monitoring,

treatment planning, and prognosis [31]. The most popular imaging modalities used to acquire a

biomedical image are magnetic resonance imaging (MRI), computed tomography (CT), positron

emission tomography (PET), and ultrasound (U/S). Being able to look inside of the body without

hurting the patient and being able to view the human organs has tremendous implications on human

health. Such capabilities allow the physicians to better understand the cause of an illness or other

adverse conditions without cutting open the patient.

However, merely viewing such organs with the help of images is just the first step of the pro-

cess. The final goal of biomedical image analysis is to be able to generate quantitative information

and make inferences from the images that can provide far more insights into a medical condition.

Such analysis has major societal significance since it is the key to understanding biological systems

and solving health problems. However, it includes many challenges since the images are varied,

complex, and can contain irregular shapes with noisy values. A number of general categories of

research problems that arise in analyzing images are object detection, image segmentation, image

registration, and feature extraction. All these challenges when resolved will enable the generation

of meaningful analytic measurements that can serve as inputs to other areas of healthcare data ana-

lytics. Chapter 3 discusses a broad overview of the main medical imaging modalities along with a

wide range of image analysis approaches.
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1.2.3 Sensor Data Analysis

Sensor data [2] is ubiquitous in the medical domain both for real time and for retrospective

analysis. Several forms of medical data collection instruments such as electrocardiogram (ECG),

and electroencaphalogram (EEG) are essentially sensors that collect signals from various parts of the

human body [32]. These collected data instruments are sometimes used for retrospective analysis,

but more often for real-time analysis. Perhaps, the most important use-case of real-time analysis

is in the context of intensive care units (ICUs) and real-time remote monitoring of patients with

specific medical conditions. In all these cases, the volume of the data to the processed can be rather

large. For example, in an ICU, it is not uncommon for the sensor to receive input from hundreds of

data sources, and alarms need to be triggered in real time. Such applications necessitate the use of

big-data frameworks and specialized hardware platforms. In remote-monitoring applications, both

the real-time events and a long-term analysis of various trends and treatment alternatives is of great

interest.

While rapid growth in sensor data offers significant promise to impact healthcare, it also intro-

duces a data overload challenge. Hence, it becomes extremely important to develop novel data ana-

lytical tools that can process such large volumes of collected data into meaningful and interpretable

knowledge. Such analytical methods will not only allow for better observing patients’ physiological

signals and help provide situational awareness to the bedside, but also provide better insights into

the inefficiencies in the healthcare system that may be the root cause of surging costs. The research

challenges associated with the mining of sensor data in healthcare settings and the sensor mining

applications and systems in both clinical and non-clinical settings is discussed in Chapter 4.

1.2.4 Biomedical Signal Analysis

Biomedical Signal Analysis consists of measuring signals from biological sources, the origin

of which lies in various physiological processes. Examples of such signals include the electroneu-

rogram (ENG), electromyogram (EMG), electrocardiogram (ECG), electroencephalogram (EEG),

electrogastrogram (EGG), phonocardiogram (PCG), and so on. The analysis of these signals is vital

in diagnosing the pathological conditions and in deciding an appropriate care pathway. The mea-

surement of physiological signals gives some form of quantitative or relative assessment of the state

of the human body. These signals are acquired from various kinds of sensors and transducers either

invasively or non-invasively.

These signals can be either discrete or continuous depending on the kind of care or severity

of a particular pathological condition. The processing and interpretation of physiological signals is

challenging due to the low signal-to-noise ratio (SNR) and the interdependency of the physiological

systems. The signal data obtained from the corresponding medical instruments can be copiously

noisy, and may sometimes require a significant amount of preprocessing. Several signal processing

algorithms have been developed that have significantly enhanced the understanding of the physi-

ological processes. A wide variety of methods are used for filtering, noise removal, and compact

methods [36]. More sophisticated analysis methods including dimensionality reduction techniques

such as Principal Component Analysis (PCA), Singular Value Decomposition (SVD), and wavelet

transformation have also been widely investigated in the literature. A broader overview of many of

these techniques may also be found in [1, 2]. Time-series analysis methods are discussed in [37, 40].

Chapter 5 presents an overview of various signal processing techniques used for processing biomed-

ical signals.

1.2.5 Genomic Data Analysis

A significant number of diseases are genetic in nature, but the nature of the causality between

the genetic markers and the diseases has not been fully established. For example, diabetes is well
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known to be a genetic disease; however, the full set of genetic markers that make an individual

prone to diabetes are unknown. In some other cases, such as the blindness caused by Stargardt

disease, the relevant genes are known but all the possible mutations have not been exhaustively

isolated. Clearly, a broader understanding of the relationships between various genetic markers,

mutations, and disease conditions has significant potential in assisting the development of various

gene therapies to cure these conditions. One will be mostly interested in understanding what kind

of health-related questions can be addressed through in-silico analysis of the genomic data through

typical data-driven studies. Moreover, translating genetic discoveries into personalized medicine

practice is a highly non-trivial task with a lot of unresolved challenges. For example, the genomic

landscapes in complex diseases such as cancers are overwhelmingly complicated, revealing a high

order of heterogeneity among different individuals. Solving these issues will be fitting a major piece

of the puzzle and it will bring the concept of personalized medicine much more closer to reality.

Recent advancements made in the biotechnologies have led to the rapid generation of large

volumes of biological and medical information and advanced genomic research. This has also led

to unprecedented opportunities and hopes for genome scale study of challenging problems in life

science. For example, advances in genomic technology made it possible to study the complete ge-

nomic landscape of healthy individuals for complex diseases [16]. Many of these research directions

have already shown promising results in terms of generating new insights into the biology of hu-

man disease and to predict the personalized response of the individual to a particular treatment.

Also, genetic data are often modeled either as sequences or as networks. Therefore, the work in

this field requires a good understanding of sequence and network mining techniques. Various data

analytics-based solutions are being developed for tackling key research problems in medicine such

as identification of disease biomarkers and therapeutic targets and prediction of clinical outcome.

More details about the fundamental computational algorithms and bioinformatics tools for genomic

data analysis along with genomic data resources are discussed in Chapter 6.

1.2.6 Clinical Text Mining

Most of the information about patients is encoded in the form of clinical notes. These notes

are typically stored in an unstructured data format and is the backbone of much of healthcare data.

These contain the clinical information from the transcription of dictations, direct entry by providers,

or use of speech recognition applications. These are perhaps the richest source of unexploited in-

formation. It is needless to say that the manual encoding of this free-text form on a broad range of

clinical information is too costly and time consuming, though it is limited to primary and secondary

diagnoses, and procedures for billing purposes. Such notes are notoriously challenging to analyze

automatically due to the complexity involved in converting clinical text that is available in free-text

to a structured format. It becomes hard mainly because of their unstructured nature, heterogeneity,

diverse formats, and varying context across different patients and practitioners.

Natural language processing (NLP) and entity extraction play an important part in inferring

useful knowledge from large volumes of clinical text to automatically encoding clinical information

in a timely manner [22]. In general, data preprocessing methods are more important in these contexts

as compared to the actual mining techniques. The processing of clinical text using NLP methods is

more challenging when compared to the processing of other texts due to the ungrammatical nature

of short and telegraphic phrases, dictations, shorthand lexicons such as abbreviations and acronyms,

and often misspelled clinical terms. All these problems will have a direct impact on the various

standard NLP tasks such as shallow or full parsing, sentence segmentation, text categorization, etc.,

thus making the clinical text processing highly challenging. A wide range of NLP methods and data

mining techniques for extracting information from the clinical text are discussed in Chapter 7.
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1.2.7 Mining Biomedical Literature

A significant number of applications rely on evidence from the biomedical literature. The latter

is copious and has grown significantly over time. The use of text mining methods for the long-term

preservation, accessibility, and usability of digitally available resources is important in biomedical

applications relying on evidence from scientific literature. Text mining methods and tools offer novel

ways of applying new knowledge discovery methods in the biomedical field [21][20]. Such tools

offer efficient ways to search, extract, combine, analyze and summarize textual data, thus supporting

researchers in knowledge discovery and generation. One of the major challenges in biomedical text

mining is the multidisciplinary nature of the field. For example, biologists describe chemical com-

pounds using brand names, while chemists often use less ambiguous IUPAC-compliant names or

unambiguous descriptors such as International Chemical Identifiers. While the latter can be handled

with cheminformatics tools, text mining techniques are required to extract less precisely defined

entities and their relations from the literature. In this context, entity and event extraction methods

play a key role in discovering useful knowledge from unstructured databases. Because the cost

of curating such databases is too high, text mining methods offer new opportunities for their ef-

fective population, update, and integration. Text mining brings about other benefits to biomedical

research by linking textual evidence to biomedical pathways, reducing the cost of expert knowledge

validation, and generating hypotheses. The approach provides a general methodology to discover

previously unknown links and enhance the way in which biomedical knowledge is organized. More

details about the challenges and algorithms for biomedical text mining are discussed in Chapter 8.

1.2.8 Social Media Analysis

The rapid emergence of various social media resources such as social networking sites,

blogs/microblogs, forums, question answering services, and online communities provides a wealth

of information about public opinion on various aspects of healthcare. Social media data can be

mined for patterns and knowledge that can be leveraged to make useful inferences about popula-

tion health and public health monitoring. A significant amount of public health information can

be gleaned from the inputs of various participants at social media sites. Although most individ-

ual social media posts and messages contain little informational value, aggregation of millions of

such messages can generate important knowledge [4, 19]. Effectively analyzing these vast pieces of

knowledge can significantly reduce the latency in collecting such complex information.

Previous research on social media analytics for healthcare has focused on capturing aggregate

health trends such as outbreaks of infectious diseases, detecting reports of adverse drug interactions,

and improving interventional capabilities for health-related activities. Disease outbreak detection is

often strongly reflected in the content of social media and an analysis of the history of the content

provides valuable insights about disease outbreaks. Topic models are frequently used for high-level

analysis of such health-related content. An additional source of information in social media sites

is obtained from online doctor and patient communities. Since medical conditions recur across

different individuals, the online communities provide a valuable source of knowledge about various

medical conditions. A major challenge in social media analysis is that the data is often unreliable,

and therefore the results must be interpreted with caution. More discussion about the impact of

social media analytics in improving healthcare is given in Chapter 9.
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1.3 Advanced Data Analytics for Healthcare

This section will discuss a number of advanced data analytics methods for healthcare. These

techniques include various data mining and machine learning models that need to be adapted to the

healthcare domain.

1.3.1 Clinical Prediction Models

Clinical prediction forms a critical component of modern-day healthcare. Several prediction

models have been extensively investigated and have been successfully deployed in clinical practice

[26]. Such models have made a tremendous impact in terms of diagnosis and treatment of diseases.

Most successful supervised learning methods that have been employed for clinical prediction tasks

fall into three categories: (i) Statistical methods such as linear regression, logistic regression, and

Bayesian models; (ii) Sophisticated methods in machine learning and data mining such as decision

trees and artificial neural networks; and (iii) Survival models that aim to predict survival outcomes.

All of these techniques focus on discovering the underlying relationship between covariate variables,

which are also known as attributes and features, and a dependent outcome variable.

The choice of the model to be used for a particular healthcare problem primarily depends on

the outcomes to be predicted. There are various kinds of prediction models that are proposed in the

literature for handling such a diverse variety of outcomes. Some of the most common outcomes in-

clude binary and continuous forms. Other less common forms are categorical and ordinal outcomes.

In addition, there are also different models proposed to handle survival outcomes where the goal

is to predict the time of occurrence of a particular event of interest. These survival models are also

widely studied in the context of clinical data analysis in terms of predicting the patient’s survival

time. There are different ways of evaluating and validating the performance of these prediction mod-

els. Different prediction models along with various kinds of evaluation mechanisms in the context

of healthcare data analytics will be discussed in Chapter 10.

1.3.2 Temporal Data Mining

Healthcare data almost always contain time information and it is inconceivable to reason and

mine these data without incorporating the temporal dimension. There are two major sources of

temporal data generated in the healthcare domain. The first is the electronic health records (EHR)

data and the second is the sensor data. Mining the temporal dimension of EHR data is extremely

promising as it may reveal patterns that enable a more precise understanding of disease manifesta-

tion, progression and response to therapy. Some of the unique characteristics of EHR data (such as

of heterogeneous, sparse, high-dimensional, irregular time intervals) makes conventional methods

inadequate to handle them. Unlike EHR data, sensor data are usually represented as numeric time

series that are regularly measured in time at a high frequency. Examples of these data are phys-

iological data obtained by monitoring the patients on a regular basis and other electrical activity

recordings such as electrocardiogram (ECG), electroencephalogram (EEG), etc. Sensor data for a

specific subject are measured over a much shorter period of time (usually several minutes to several

days) compared to the longitudinal EHR data (usually collected across the entire lifespan of the

patient).

Given the different natures of EHR data and sensor data, the choice of appropriate temporal data

mining methods for these types of data are often different. EHR data are usually mined using tem-

poral pattern mining methods, which represent data instances (e.g., patients’ records) as sequences

of discrete events (e.g., diagnosis codes, procedures, etc.) and then try to find and enumerate sta-

tistically relevant patterns that are embedded in the data. On the other hand, sensor data are often
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analyzed using signal processing and time-series analysis techniques (e.g., wavelet transform, inde-

pendent component analysis, etc.) [37, 40]. Chapter 11 presents a detailed survey and summarizes

the literature on temporal data mining for healthcare data.

1.3.3 Visual Analytics

The ability to analyze and identify meaningful patterns in multimodal clinical data must be ad-

dressed in order to provide a better understanding of diseases and to identify patterns that could

be affecting the clinical workflow. Visual analytics provides a way to combine the strengths of hu-

man cognition with interactive interfaces and data analytics that can facilitate the exploration of

complex datasets. Visual analytics is a science that involves the integration of interactive visual

interfaces with analytical techniques to develop systems that facilitate reasoning over, and interpre-

tation of, complex data [23]. Visual analytics is popular in many aspects of healthcare data analysis

because of the wide variety of insights that such an analysis provides. Due to the rapid increase of

health-related information, it becomes critical to build effective ways of analyzing large amounts

of data by leveraging human–computer interaction and graphical interfaces. In general, providing

easily understandable summaries of complex healthcare data is useful for a human in gaining novel

insights.

In the evaluation of many diseases, clinicians are presented with datasets that often contain hun-

dreds of clinical variables. The multimodal, noisy, heterogeneous, and temporal characteristics of

the clinical data pose significant challenges to the users while synthesizing the information and ob-

taining insights from the data [24]. The amount of information being produced by healthcare organi-

zations opens up opportunities to design new interactive interfaces to explore large-scale databases,

to validate clinical data and coding techniques, and to increase transparency within different depart-

ments, hospitals, and organizations. While many of the visual methods can be directly adopted from

the data mining literature [11], a number of methods, which are specific to the healthcare domain,

have also been designed. A detailed discussion on the popular data visualization techniques used

in clinical settings and the areas in healthcare that benefit from visual analytics are discussed in

Chapter 12.

1.3.4 Clinico–Genomic Data Integration

Human diseases are inherently complex in nature and are usually governed by a complicated in-

terplay of several diverse underlying factors, including different genomic, clinical, behavioral, and

environmental factors. Clinico–pathological and genomic datasets capture the different effects of

these diverse factors in a complementary manner. It is essential to build integrative models consid-

ering both genomic and clinical variables simultaneously so that they can combine the vital infor-

mation that is present in both clinical and genomic data [27]. Such models can help in the design

of effective diagnostics, new therapeutics, and novel drugs, which will lead us one step closer to

personalized medicine [17].

This opportunity has led to an emerging area of integrative predictive models that can be built

by combining clinical and genomic data, which is called clinico–genomic data integration. Clinical

data refers to a broad category of a patient’s pathological, behavioral, demographic, familial, en-

vironmental and medication history, while genomic data refers to a patient’s genomic information

including SNPs, gene expression, protein and metabolite profiles. In most of the cases, the goal of

the integrative study is biomarker discovery which is to find the clinical and genomic factors related

to a particular disease phenotype such as cancer vs. no cancer, tumor vs. normal tissue samples, or

continuous variables such as the survival time after a particular treatment. Chapter 13 provides a

comprehensive survey of different challenges with clinico–genomic data integration along with the

different approaches that aim to address these challenges with an emphasis on biomarker discovery.
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1.3.5 Information Retrieval

Although most work in healthcare data analytics focuses on mining and analyzing patient-related

data, additional information for use in this process includes scientific data and literature. The tech-

niques most commonly used to access this data include those from the field of information retrieval

(IR). IR is the field concerned with the acquisition, organization, and searching of knowledge-based

information, which is usually defined as information derived and organized from observational or

experimental research [14]. The use of IR systems has become essentially ubiquitous. It is estimated

that among individuals who use the Internet in the United States, over 80 percent have used it to

search for personal health information and virtually all physicians use the Internet.

Information retrieval models are closely related to the problems of clinical and biomedical text

mining. The basic objective of using information retrieval is to find the content that a user wanted

based on his requirements. This typically begins with the posing of a query to the IR system. A

search engine matches the query to content items through metadata. The two key components of

IR are: Indexing, which is the process of assigning metadata to the content, and retrieval, which

is the process of the user entering the query and retrieving relevant content. The most well-known

data structure used for efficient information retrieval is the inverted index where each document

is associated with an identifier. Each word then points to a list of document identifiers. This kind

of representation is particularly useful for a keyword search. Furthermore, once a search has been

conducted, mechanisms are required to rank the possibly large number of results, which might have

been retrieved. A number of user-oriented evaluations have been performed over the years looking

at users of biomedical information and measuring the search performance in clinical settings [15].

Chapter 14 discusses a number of information retrieval models for healthcare along with evaluation

of such retrieval models.

1.3.6 Privacy-Preserving Data Publishing

In the healthcare domain, the definition of privacy is commonly accepted as “a person’s right and

desire to control the disclosure of their personal health information” [25]. Patients’ health-related

data is highly sensitive because of the potentially compromising information about individual partic-

ipants. Various forms of data such as disease information or genomic information may be sensitive

for different reasons. To enable research in the field of medicine, it is often important for medical or-

ganizations to be able to share their data with statistical experts. Sharing personal health information

can bring enormous economical benefits. This naturally leads to concerns about the privacy of in-

dividuals being compromised. The data privacy problem is one of the most important challenges in

the field of healthcare data analytics. Most privacy preservation methods reduce the representation

accuracy of the data so that the identification of sensitive attributes of an individual is compromised.

This can be achieved by either perturbing the sensitive attribute, perturbing attributes that serve as

identification mechanisms, or a combination of the two. Clearly, this process required the reduction

in the accuracy of data representation. Therefore, privacy preservation almost always incurs the cost

of losing some data utility. Therefore, the goal of privacy preservation methods is to optimize the

trade-off between utility and privacy. This ensures that the amount of utility loss at a given level of

privacy is as little as possible.

The major steps in privacy-preserving data publication algorithms [5][18] are the identification

of an appropriate privacy metric and level for a given access setting and data characteristics, ap-

plication of one or multiple privacy-preserving algorithm(s) to achieve the desired privacy level,

and postanalyzing the utility of the processed data. These three steps are repeated until the desired

utility and privacy levels are jointly met. Chapter 15 focuses on applying privacy-preserving algo-

rithms to healthcare data for secondary-use data publishing and interpretation of the usefulness and

implications of the processed data.
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1.4 Applications and Practical Systems for Healthcare

In the final set of chapters in this book, we will discuss the practical healthcare applications and

systems that heavily utilize data analytics. These topics have evolved significantly in the past few

years and are continuing to gain a lot of momentum and interest. Some of these methods, such as

fraud detection, are not directly related to medical diagnosis, but are nevertheless important in this

domain.

1.4.1 Data Analytics for Pervasive Health

Pervasive health refers to the process of tracking medical well-being and providing long-term

medical care with the use of advanced technologies such as wearable sensors. For example, wearable

monitors are often used for measuring the long-term effectiveness of various treatment mechanisms.

These methods, however, face a number of challenges, such as knowledge extraction from the large

volumes of data collected and real-time processing. However, recent advances in both hardware

and software technologies (data analytics in particular) have made such systems a reality. These

advances have made low cost intelligent health systems embedded within the home and living envi-

ronments a reality [33].

A wide variety of sensor modalities can be used when developing intelligent health systems,

including wearable and ambient sensors [28]. In the case of wearable sensors, sensors are attached

to the body or woven into garments. For example, 3-axis accelerometers distributed over an individ-

ual’s body can provide information about the orientation and movement of the corresponding body

part. In addition to these advancements in sensing modalities, there has been an increasing interest

in applying analytics techniques to data collected from such equipment. Several practical healthcare

systems have started using analytical solutions. Some examples include cognitive health monitor-

ing systems based on activity recognition, persuasive systems for motivating users to change their

health and wellness habits, and abnormal health condition detection systems. A detailed discussion

on how various analytics can be used for supporting the development of intelligent health systems

along with supporting infrastructure and applications in different healthcare domains is presented in

Chapter 16.

1.4.2 Healthcare Fraud Detection

Healthcare fraud has been one of the biggest problems faced by the United States and costs sev-

eral billions of dollars every year. With growing healthcare costs, the threat of healthcare fraud is

increasing at an alarming pace. Given the recent scrutiny of the inefficiencies in the US healthcare

system, identifying fraud has been on the forefront of the efforts towards reducing the healthcare

costs. One could analyze the healthcare claims data along different dimensions to identify fraud. The

complexity of the healthcare domain, which includes multiple sets of participants, including health-

care providers, beneficiaries (patients), and insurance companies, makes the problem of detecting

healthcare fraud equally challenging and makes it different from other domains such as credit card

fraud detection and auto insurance fraud detection. In these other domains, the methods rely on con-

structing profiles for the users based on the historical data and they typically monitor deviations in

the behavior of the user from the profile [7]. However, in healthcare fraud, such approaches are not

usually applicable, because the users in the healthcare setting are the beneficiaries, who typically are

not the fraud perpetrators. Hence, more sophisticated analysis is required in the healthcare sector to

identify fraud.

Several solutions based on data analytics have been investigated for solving the problem of

healthcare fraud. The primary advantages of data-driven fraud detection are automatic extraction
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of fraud patterns and prioritization of suspicious cases [3]. Most of such analysis is performed

with respect to an episode of care, which is essentially a collection of healthcare provided to a

patient under the same health issue. Data-driven methods for healthcare fraud detection can be

employed to answer the following questions: Is a given episode of care fraudulent or unnecessary?

Is a given claim within an episode fraudulent or unnecessary? Is a provider or a network of providers

fraudulent? We discuss the problem of fraud in healthcare and existing data-driven methods for fraud

detection in Chapter 17.

1.4.3 Data Analytics for Pharmaceutical Discoveries

The cost of successful novel chemistry-based drug development often reaches millions of dol-

lars, and the time to introduce the drug to market often comes close to a decade [34]. The high failure

rate of drugs during this process, make the trial phases known as the “valley of death.” Most new

compounds fail during the FDA approval process in clinical trials or cause adverse side effects.

Interdisciplinary computational approaches that combine statistics, computer science, medicine,

chemoinformatics, and biology are becoming highly valuable for drug discovery and development.

In the context of pharmaceutical discoveries, data analytics can potentially limit the search space

and provide recommendations to the domain experts for hypothesis generation and further analysis

and experiments.

Data analytics can be used in several stages of drug discovery and development to achieve dif-

ferent goals. In this domain, one way to categorize data analytical approaches is based on their

application to pre-marketing and post-marketing stages of the drug discovery and development pro-

cess. In the pre-marketing stage, data analytics focus on discovery activities such as finding signals

that indicate relations between drugs and targets, drugs and drugs, genes and diseases, protein and

diseases, and finding biomarkers. In the post-marketing stage an important application of data an-

alytics is to find indications of adverse side effects for approved drugs. These methods provide a

list of potential drug side effect associations that can be used for further studies. Chapter 18 pro-

vides more discussion of the applications of data analytics for pharmaceutical discoveries including

drug-target interaction prediction and pharmacovigilance.

1.4.4 Clinical Decision Support Systems

Clinical Decision Support Systems (CDSS) are computer systems designed to assist clinicians

with patient-related decision making, such as diagnosis and treatment [6]. CDSS have become a

crucial component in the evaluation and improvement of patient treatment since they have shown to

improve both patient outcomes and cost of care [35]. They can help in minimizing analytical errors

by notifying the physician of potentially harmful drug interactions, and their diagnostic procedures

have been shown to enable more accurate diagnoses. Some of the main advantages of CDSS are

their ability in decision making and determining optimal treatment strategies, aiding general health

policies by estimating the clinical and economic outcomes of different treatment methods and even

estimating treatment outcomes under certain conditions. The main reason for the success of CDSS

are their electronic nature, seemless integration with clinical workflows, providing decision support

at the appropriate time/location. Two particular fields of healthcare where CDSS have been ex-

tremely influential are pharmacy and billing. CDSS can help pharmacies to look for negative drug

interactions and then report them to the corresponding patient’s ordering professional. In the billing

departments, CDSS have been used to devise treatment plans that provide an optimal balance of

patient care and financial expense [9]. A detailed survey of different aspects of CDSS along with

various challenges associated with their usage in clinical practice is discussed in Chapter 19.
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1.4.5 Computer-Aided Diagnosis

Computer-aided diagnosis/detection (CAD) is a procedure in radiology that supports radiolo-

gists in reading medical images [13]. CAD tools in general refer to fully automated second reader

tools designed to assist the radiologist in the detection of lesions. There is a growing consensus

among clinical experts that the use of CAD tools can improve the performance of the radiologist.

The radiologist first performs an interpretation of the images as usual, while the CAD algorithms

is running in the background or has already been precomputed. Structures identified by the CAD

algorithm are then highlighted as regions of interest to the radiologist. The principal value of CAD

tools is determined not by its stand-alone performance, but rather by carefully measuring the incre-

mental value of CAD in normal clinical practice, such as the number of additional lesions detected

using CAD. Secondly, CAD systems must not have a negative impact on patient management (for

instance, false positives that cause the radiologist to recommend unnecessary biopsies and follow-

ups).

From the data analytics perspective, new CAD algorithms aim at extracting key quantitative

features, summarizing vast volumes of data, and/or enhancing the visualization of potentially ma-

lignant nodules, tumors, or lesions in medical images. The three important stages in the CAD data

processing are candidate generation (identifying suspicious regions of interest), feature extraction

(computing descriptive morphological or texture features), and classification (differentiating can-

didates that are true lesions from the rest of the candidates based on candidate feature vectors).

A detailed overview of some CAD approaches to different diseases emphasizing the specific chal-

lenges in diagnosis and detection, and a series of case studies that apply advanced data analytics in

medical imaging applications is presented in Chapter 20.

1.4.6 Mobile Imaging for Biomedical Applications

Mobile imaging refers to the application of portable computers such as smartphones or tablet

computers to store, visualize, and process images with and without connections to servers, the In-

ternet, or the cloud. Today, portable devices provide sufficient computational power for biomedical

image processing and smart devices have been introduced in the operation theater. While many tech-

niques for biomedical image acquisition will always require special equipment, the regular camera

is one of the most widely used imaging modality in hospitals. Mobile technology and smart devices,

especially smartphones, allows new ways of easier imaging at the patient’s bedside and possess the

possibility to be made into a diagnostic tool that can be used by medical professionals. Smartphones

usually contain at least one high-resolution camera that can be used for image formation. Several

challenges arise during the acquisition, visualization, analysis, and management of images in mo-

bile environments. A more detailed discussion about mobile imaging and its challenges is given in

Chapter 21.

1.5 Resources for Healthcare Data Analytics

There are several resources available in this field. We will now discuss the various books, jour-

nals, and organizations that provide further information on this exciting area of healthcare infor-

matics. A classical book in the field of healthcare informatics is [39]. There are several other books

that target a specific topic of work (in the context of healthcare) such as information retrieval [10],

statistical methods [38], evaluation methods [8], and clinical decision support systems [6, 9].

There are a few popular organizations that are primarily involved with medical informatics re-

search. They are American Medical Informatics Association (AMIA) [49], International Medical

Informatics Association (IMIA) [50], and the European Federation for Medical Informatics (EFMI)



An Introduction to Healthcare Data Analytics 15

[51]. These organizations usually conduct annual conferences and meetings that are well attended

by researchers working in healthcare informatics. The meetings typically discuss new technologies

for capturing, processing, and analyzing medical data. It is a good meeting place for new researchers

who would like to start research in this area.

The following are some of the well-reputed journals that publish top-quality research works in

healthcare data analytics: Journal of the American Medical Informatics Association (JAMIA) [41],

Journal of Biomedical Informatics (JBI) [42], Journal of Medical Internet Research [43], IEEE

Journal of Biomedical and Health Informatics [44], Medical Decision Making [45], International

Journal of Medical Informatics (IJMI) [46], and Artificial Intelligence in Medicine [47]. A more

comprehensive list of journals in the field of healthcare and biomedical informatics along with

details is available here [48].

Due to the privacy of the medical data that typically contains highly sensitive patient informa-

tion, the research work in the healthcare data analytics has been fragmented into various places.

Many researchers work with a specific hospital or a healthcare facility that are usually not willing

to share their data due to obvious privacy concerns. However, there are a wide variety of public

repositories available for researchers to design and apply their own models and algorithms. Due

to the diversity in healthcare research, it will be a cumbersome task to compile all the healthcare

repositories at a single location. Specific health data repositories dealing with a particular healthcare

problem and data sources are listed in the corresponding chapters where the data is discussed. We

hope that these repositories will be useful for both existing and upcoming researchers who do not

have access to the health data from hospitals and healthcare facilities.

1.6 Conclusions

The field of healthcare data analytics has seen significant strides in recent years because of hard-

ware and software technologies, which have increased the ease of the data collection process. The

advancement of the field has, however, faced a number of challenges because of its interdisciplinary

nature, privacy constraints in data collection and dissemination mechanisms, and the inherently un-

structured nature of the data. In some cases, the data may have very high volume, which requires

real-time analysis and insights. In some cases, the data may be complex, which may require special-

ized retrieval and analytical techniques. The advances in data collection technologies, which have

enabled the field of analytics, also pose new challenges because of their efficiency in collecting

large amounts of data. The techniques used in the healthcare domain are also very diverse because

of the inherent variations in the underlying data type. This book provides a comprehensive overview

of these different aspects of healthcare data analytics, and the various research challenges that still

need to be addressed.
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2.1 Introduction

An Electronic Health Record (EHR) is a digital version of a patient’s medical history. It is a

longitudinal record of patient health information generated by one or several encounters in any

healthcare providing setting. The term is often used interchangeably with EMR (Electronic Med-

ical Record) and CPR (Computer-based Patient Record). It encompasses a full range of data rel-

evant to a patient’s care such as demographics, problems, medications, physician’s observations,

vital signs, medical history, immunizations, laboratory data, radiology reports, personal statistics,

progress notes, and billing data. The EHR system automates the data management process of com-

plex clinical environments and has the potential to streamline the clinician’s workflow. It can gener-

ate a complete record of a patient’s clinical encounter, and support other care-related activities such

as evidence-based decision support, quality management, and outcomes reporting. An EHR sys-

tem integrates data for different purposes. It enables the administrator to utilize the data for billing

purposes, the physician to analyze patient diagnostics information and treatment effectiveness, the

nurse to report adverse conditions, and the researcher to discover new knowledge.

EHR has several advantages over paper-based systems. Storage and retrieval of data is obviously

more efficient using EHRs. It helps to improve quality and convenience of patient care, increase

patient participation in the healthcare process, improve accuracy of diagnoses and health outcomes,

and improve care coordination. It also reduces cost by eliminating the need for paper and other

storage media. It provides the opportunity for research in different disciplines. In 2011, 54% of

physicians had adopted an EHR system, and about three-quarters of adopters reported that using an

EHR system resulted in enhanced patient care [1].

Usually, EHR is maintained within an institution, such as a hospital, clinic, or physician’s office.

An institution will contain the longitudinal records of a particular patient that have been collected

at their end. The institution will not contain the records of all the care provided to the patient at

other venues. Information regarding the general population may be kept in a nationwide or regional

health information system. Depending on the goal, service, venue, and role of the user, EHR can

have different data formats, presentations, and level of detail.

The remainder of this chapter is organized as follows. Section 2.2 discusses a brief history

of EHR development and Section 2.3 provides the components of EHRs. Section 2.4 presents a

comprehensive review of existing coding systems in EHR. The benefits of using EHRs are explained

in more detail in Section 2.5, while the barriers for the widespread adoption of EHRs are discussed

in Section 2.6. Section 2.7 briefly explains some of the challenges of using EHR data. The prominent

phenotyping algorithms are described in Section 2.8 and our discussion is concluded in Section 2.9.

2.2 History of EHR

The first known medical record can be traced back to the fifth century B.C. when Hippocrates

prescribed two goals for medical records [2]:

• A medical record should accurately reflect the course of disease.

• A medical record should indicate the probable cause of disease.

Although these two goals are still appropriate, EHR has a lot more to offer. Modern EHR can

provide additional functionalities that could not be performed using paper-based systems.
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Modern-day EHR first began to appear in the 1960s. Early EHRs were developed due to physi-

cians’ concerns about the increasing complexity and size of medical data. Data retrieval was much

faster using digital format. In 1967, Latter Day Saints Hospitals in Utah started using Health Eval-

uation through Logical Programming (HELP) software. HELP is notable for its pioneering logical

decision support features. In 1969, Harvard Medical School developed its own software Computer

Stored Ambulatory Record (COASTER) and Duke University began to develop The Medical Record

(TMR).

In 1970, Lockheed unveiled the Technicon Medical Information Management System/ Techni-

con Data System (TDS). It was implemented at El Camion Hospital in California. It came with a

groundbreaking Computer Provided Order Entry (CPOE) system. In 1979, Judith Faulkner, a com-

puter programmer established Human Services Computing Inc., which developed the Chronicles

data repository. The company later became Epic Systems. It was initially based on a single longi-

tudinal patient record and designed to handle enterprise-wide data from inpatient, ambulatory, and

payer environments.

In 1985, The Department of Veterans Affairs launched the automated data processing system,

Decentralized Hospital Computer Program (DHCP), which includes extensive clinical and admin-

istrative capabilities within its medical facilities. It received the Smithsonian Award for best use

of Information Technology in Medicine in 1995. The current variant of DHCP is VistA (Veterans

Health Information Systems and Technology Architecture). By providing care to over 8 million vet-

erans operating in 163 hospitals, 800 clinics, and 135 nursing homes, VistA manages one of the

largest medical system in the United States [4]. In 1983, Epic Systems launched a patient schedul-

ing software program called Cadence. This application helped clients to improve resource utiliza-

tion and manage patient access. In 1988, Science Application International Corporation (SAIC)

secured a $1.02 billion dollar contract from the U.S. Government to develop a composite healthcare

system. In 1992, Epic Systems introduced the first Windows-based EHR software named Epic-

Care. Allscripts released the first software with an electronic prescribing solution for physicians in

1998.

From 2000 and beyond, EHR software has been increasingly trying to incorporate other func-

tionalities to become an interactive companion for physicians and professionals. In January 2004,

President George W. Bush launched an initiative for the widespread adaptation of EHRs within the

next 10 years. He said in his State of the Union Address, “By computerizing health records, we can

avoid dangerous medical mistakes, reduce costs, and improve care” [5]. In January 2009, in a speech

at George Mason University, President Barack Obama said “[EHRs] will cut waste, eliminate red

tape, and reduce the need to repeat expensive medical tests. It just won’t save billions of dollars

and thousands of jobs – it will save lives by reducing the deadly but preventable medical errors that

pervade our health care system” [6]. The data from a National Ambulatory Medical Care Survey

(NAMCS) and Physicians Workflow mail survey shows that in the year 2011, 54% of the physicians

had adopted an EHR system. About three-quarters of the adopters reported that their system meets

the federal “meaningful use” criteria. Almost half (47%) of the physicians said they were some-

what satisfied, and 38% reported being very satisfied with their system. About three-quarters of the

adopters reported that EHR has resulted in enhanced patient care. Nearly one-half of physicians

without an EHR system at the time of the survey said they had plans for purchasing one within the

next year [1].
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2.3 Components of EHR

The main purpose of EHR is to support clinical care and billing. This also includes other func-

tionalities, such as improving the quality and convenience of patient care, improving the accuracy

of diagnoses and health outcomes, improving care coordination and patient participation, improving

cost savings, and finally, improving the general health of the population. Most modern EHR systems

are designed to integrate data from different components such as administrative, nursing, pharmacy,

laboratory, radiology, and physician’ entries, etc. Electronic records may be generated from any de-

partment. Hospitals and clinics may have a number of different ancillary system providers; in that

case, these systems are not necessarily integrated to the main EHR system. It is possible that these

systems are stand-alone, and different standards of vocabularies have been used. If appropriate inter-

faces are provided, data from these systems can be incorporated in a consolidated fashion; otherwise

a clinician has to open and log into a series of applications to get the complete patient record. The

number of components present may also vary depending on the service provided. Figure 2.1 shows

different components of an EHR system.

2.3.1 Administrative System Components

Administrative data such as patient registration, admission, discharge, and transfer data are key

components of the EHR. It also includes name, demographics, employer history, chief compli-

ant, patient disposition, etc., along with the patient billing information. Social history data such

as marital status, home environment, daily routine, dietary patterns, sleep patterns, exercise pat-

terns, tobacco use, alcohol use, drug use and family history data such as personal health history,

hereditary diseases, father, mother and sibling(s) health status, age, and cause of death can also be

a part of it. Apart from the fields like “comments” or “description,” these data generally contain

<name-value> pairs. This information is used to identify and assess a patient, and for all other

administrative purposes. During the registration process, a patient is generally assigned a unique

identification key comprising of a numeric or alphanumeric sequence. This key helps to link all the

components across different platforms. For example, lab test data can create an electronic record;

and another record is created from radiology results. Both records will have the same identifier key

to represent a single patient. Records of a previous encounter are also pulled up using this key. It is

often referred to as the medical record number or master patient index (MPI). Administrative data

allows the aggregation of a person’s health information for clinical analysis and research.

2.3.2 Laboratory System Components & Vital Signs

Generally, laboratory systems are stand-alone systems that are interfaced to the central EHR sys-

tem. It is a structured data that can be expressed using standard terminology and stored in the form of

a name-value pair. Lab data plays an extremely important part in the clinical care process, providing

professionals the information needed for prevention, diagnosis, treatment, and health management.

About 60% to 70% of medical decisions are based on laboratory test results [7]. Electronic lab data

has several benefits including improved presentation and reduction of error due to manual data en-

try. A physician can easily compare the results from previous tests. If the options are provided, he

can also analyze automatically whether data results fall within normal range or not.

The most common coding system used to represent the laboratory test data is Logical Obser-

vation Identifiers Names and Codes (LOINC). Many hospitals use their local dictionaries as well

to encode variables. A 2009–2010 Vanderbilt University Medical Center data standardization study

found that for simple concepts such as “weight” and “height,” there were more than five internal rep-

resentations. In different places there are different field names for the same feature and the values
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FIGURE 2.1: Various components of EHR.

are stored with different units (e.g., kilograms, grams, and pounds for weight; centimeters, meters,

inches, and feet for height).

Vital signs are the indicators of a patient’s general physical condition. It includes pulse, respi-

ratory rate, blood pressure, body temperature, body mass index (BMI), etc. A typical EHR system

must provide the option to accommodate these kinds of variables.

2.3.3 Radiology System Components

In hospital radiology departments, radiology information systems (RIS) are used for managing

medical imagery and associated data. RIS is the core database to store, manipulate, and distribute pa-

tient radiological data. It uses Current Procedural Terminology (CPT) or International Classification

of Diseases (ICD) coding systems to identify procedures and resources. Generally, an RIS consists

of patient tracking, scheduling, result reporting, and image tracking capabilities. RIS is usually used

along with a picture archiving communications system (PACS), which is a medical technology for
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providing economical storage and convenient access to the digital images. An RIS can generate an

entire patient’s imagery history and statistical reports for patients or procedures. Although many

hospitals are using RIS, it may or may not be integrated with the central EHR system.

2.3.4 Pharmacy System Components

In hospitals and clinics, the pharmacy department’s responsibility is to maintain the inventory,

prescription management, billing, and dispensing medications. The pharmacy component in EHR

will hold the complete medication history of a patient such as drug name, dosage, route, quantity,

frequency, start and stop date, prescribed by, allergic reaction to medications, source of medication,

etc. Pharmacists serve an important public health role by administering immunizations and must

have the capabilities to document these services and share this information with other healthcare

providers and public health organizations. They assure safe and effective medication and support-

ing patient-centered care. Pharmacies are highly automated in large hospitals. Again, it may be

independent of central EHRs. The Food and Drug Administration (FDA) requires all the drugs to

be registered and reported using a National Drug Code (NDC). Coding systems used are NDC,

SNOMED, and RxNorm.

2.3.5 Computerized Physician Order Entry (CPOE)

Computerized Physician Order Entry (CPOE) is a very important part of EHRs. It is a system

that allows a medical practitioner to enter medical orders and instructions for the treatment of a

patient. For example, a doctor can electronically order services to laboratory, pharmacy, and radi-

ology services through CPOE. Then it gets propagated over a network to the person responsible

for carrying out these orders. As a digital system, CPOE has the potential to reduce medication-

related errors. It is possible to add intelligent rules for checking allergies, contradictions, and other

alerts. The primary advantages of CPOE are the following: overcomes the issue of illegibility, fewer

errors associated with ordering drugs with similar names, more easily integrated with decision sup-

port systems, easily linked to drug-drug interaction warning, more likely to identify the prescribing

physician, able to link the adverse drug event (ADE) reporting systems, able to avoid medication

errors like trailing zeros, create data that is available for analysis, point out treatment and drug of

choice, reduce under- and overprescribing, and finally, the prescriptions can reach the pharmacy

quicker. While ordering, a professional can view the medical history, current status report from a

different module, and evidence-based clinical guidelines. Thus, CPOE can help in patient-centered

clinical decision support.

If used properly, CPOE decreases delay in order completion, reduces errors related to hand-

writing or transcriptions, allows order entry at point-of-care or off-site, provides error checking for

duplicate or incorrect doses or tests, and simplifies inventory and positing of charges. Studies have

shown that CPOE can contribute to shortened length of stay and reduction of cost [8]. There are

some risks involved in adopting CPOE as well. It may slow down interpersonal communication in

an emergency situation. If each group of professionals (e.g., physicians and nurses) works alone in

their workstations, it may create ambiguity about the instructions. These factors led an increase in

mortality rate by 2.8%–6.5% in the Children’s Hospital of Pittsburgh’s Pediatric ICU when a CPOE

system was introduced [8]. Frequent alerts and warnings may also interrupt workflow. The adapta-

tion rate of CPOE is slow. It may be partly due to physicians’ doubt about the value of CPOE and

clinical decision support.
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2.3.6 Clinical Documentation

A clinical document contains the information related to the care and services provided to the

patient. It increases the value of EHR by allowing electronic capture of clinical reports, patient

assessments, and progress reports. A clinical document may include [9]

• Physician, nurse, and other clinician notes

• Relevant dates and times associated with the document

• The performers of the care described

• Flow sheets (vital signs, input and output, and problems lists)

• Perioperative notes

• Discharge summaries

• Transcription document management

• Medical records abstracts

• Advance directives or living wills

• Durable powers or attorney for healthcare decisions

• Consents (procedural)

• Medical record/chart tracking

• Release of information (including authorizations)

• Staff credentialing/staff qualification and appointments documentations

• Chart deficiency tracking

• Utilization management

• The intended recipient of the information and the time the document was written

• The sources of information contained within the document

Clinical documents are important because documentation is critical for patient care, serves as a

legal document, quality reviews, and validates the patient care provided. Well-documented medical

records reduce the re-work of claims processing, compliance with CMS (Centers for Medicare and

Medicaid Services), Tricare and other payer’s regulations and guidelines, and finally impacts coding,

billing, and reimbursement. A clinical document is intended for better communication with the

providers. It helps physicians to demonstrate accountability and may ensure quality care provided

to the patient. A clinical document needs to be patient centered, accurate, complete, concise, and

timely to serve these purposes.

The clinical document architecture (CDA) [10] is an XML-based electronic standard developed

by the Health Level 7 International (HL7) to define the structure. It can be both read by human eyes

and processed by automatic software.
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2.4 Coding Systems

Standards play an important role in enhancing the interoperability of health information systems

and the purposeful use of EHR systems. Collecting and storing information following standard cod-

ing systems provide better and accurate analysis of the data, seamless exchange of information,

improved workflow, and reduced ambiguity. A complete healthcare system is complex and requires

various EHR products. Different vendors have implemented standards in their own way. This prac-

tice has resulted in a significant variation in the coding practices and implemented methods for

which systems cannot interoperate. To create an interoperable EHR, standardization is critical in

the following four major areas:

• Applications interaction with the users

• System communication with each other

• Information processing and management

• Consumer device integration with other systems and application

Interoperability between the different EHR systems is a crucial requirement in the “meaningful use

of certified EHR technology” to receive incentives. That is why conforming to a standard coding

system is very important. In a practical EHR, we need standards for

• Clinical vocabularies

• Healthcare message exchanges

• EHR ontologies

There are three organizations mainly responsible for developing the related standards: Health Level

Seven (HL7), Comité Europeen de Normalisation-Technical Committee (CEN-TC), and the Amer-

ican Society of Testing and Materials (ASTM). HL7 develops healthcare-related standards that are

widely used in North America. CEN-TC is a prominent standard developing organization working

in 19 member states in Europe. Both HL7 and CEN-TC collaborate with ASTM. Along with the

standards developed by these organizations, EHR systems must comply with the Health Insurance

Portability and Accountability (HIPAA) Act [11] to conserve the security and privacy of patient

information.

2.4.1 International Classification of Diseases (ICD)

ICD stands for International Classification of Diseases, which is the United Nations-sponsored

World Health Organization’s (WHO) official coding standard for diseases, diagnoses, health man-

agement, and clinical purposes [12]. It first appeared as the International List of Causes of Death

in 1893, adopted by the International Statistical Institute. Since then it has been revised according

to advancements in medical science and healthcare. Since the creation of WHO in 1948, WHO has

maintained ICD. WHO published ICD-6 in 1949, and it was the first coding system in which mor-

bidity was incorporated [13]. It also included mental disorders for the first time. The U.S. Public

Health Services issued International Classification of Diseases, Adapted for Indexing of Hospitals

Records and Operation Classification (ICDA) in 1959. It was revised regularly and used to classify

diseases and mortality until WHO published the ninth revision of ICD.

The 1967 WHO Nomenclature Regulations specified that the member nations should use the

most recent ICD version for mortality and morbidity statistics. Along with the storage and retrieval
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of epidemiological and clinical information, it allows for the compilation of morbidity statistics for

more than 100 WHO member nations. About 70% of the world’s health expenditure in reimburse-

ment and resource allocation is also done using ICD codes [14]. It is used to classify diseases and

related problems, and provides a system of codes for a wide variety of diseases, signs, symptoms,

abnormal findings, complaints, social circumstances, and external causes of injury or disease. It

is the global foundation for providing common language in disease and health-related information

and statistics exchange. ICD is comprehensive and organizes information into standard groups that

allows for the following [15]:

• Easy storage, retrieval, and analysis of health information for evidence-based decision-

making.

• Sharing and comparing health information between hospitals, regions, and countries.

• Data comparison in the same location across different time periods.

2.4.1.1 ICD-9

ICD ninth revision is the most popular coding system published by WHO in 1978. It was de-

signed to promote comparability of classification, collection, processing, and presentation of mortal-

ity statistics. Its clinical modification, ICD-9-CM, was published by the U.S. Public Health Services

in the following year to meet the statistical needs. The modified version had expanded the number

of diagnostic codes and developed a procedure coding system. It has more than 13,000 codes and

uses more digits representing the codes compared to ICD-9. It is the system that is used to encode

all the diagnoses for healthcare services in the United States. It is maintained by the National Center

for Health Statistics (NCHS) and the Center for Medicare and Medicaid Services (CMS). Both the

departments are part of the federal department of Health and Human Services. The ICD-9-CM code

set is organized in three volumes and consists of tabular lists and alphabetical indices.

• Volume 1: Disease and Injuries Tabular List

• Volume 2: Disease and Injuries Alphabetical Index

• Volume 3: Procedures Tabular List and Alphabetic Index

ICD-9-CM is updated every year to keep up-to-date with medical trends and diseases. NCHS has

the responsibility to update Volumes 1 and 2, and CMS maintains Volume 3. Concerned parties

from both the public and private sectors can propose changes to it. The major updates take effect

on October 1 every year and minor updates occur on April 1. It is a statistical tool that converts the

diagnoses and procedures into number codes. Its primary applications are

• Reporting and research

• Monitoring the quality of patient care

• Communication and transactions

• Reimbursement

• Administrative uses
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2.4.1.2 ICD-10

The tenth version was endorsed by WHO in 1990 during the 43rd World Health Assembly.

The first full version of ICD-10 was released in 1994. The first step of implementing ICD-10 was

taken by NCHS awarding a contract to the Center for Health Policy Studies (CHPS) to evaluate

ICD-10 for morbidity purposes within the United States. A prototype of clinically modified ICD-10

was developed after a thorough evaluation of ICD-10 by a technical advisory panel. After strong

recommendations, NCHS proceeded with implementing a revised version of ICD-10-CM. During

1995–1996, further work on the enhancement of ICD-10-CM was done incorporating experiences

from ICD-9-CM and through collaborating with many speciality groups like American Association

of Dermatology, American Academy of Neurology, American Association of Oral and Maxillo-

facial Surgeons, American Academy of Orthopedic Surgeons, American Academy of Pediatrics,

American College of Obstetricians and Gynecologists, American Urology Institution, and National

Association of Children hospitals and other related institutions. In 1999, ICD-10 was implemented

in the United States for mortality reporting. Death statistics and data regarding leading causes of

death for the years 1999 and 2000 were published using ICD-10 [16]. In October 2002, ICD-10

was published in 42 languages. In June/July 2003, the American Health Information Management

Association (AHIMA) and American Hospital Association (AHA) jointly conducted a pilot study

to test ICD-10-CM. In their study, they have compared ICD-9-CM and ICD-10-CM and the initial

results indicated ICD-10-CM is an improvement over ICD-9-CM; and ICD-10-CM is more applica-

ble in non-hospital environments compared to ICD-9-CM. Canada, Australia, Germany, and others

countries have their own revision of ICD-10 by adding country specific codes. The revisions are

ICD-10-CA, ICD-10-AM, ICD-10-GM, and so on. The standard for procedure codes ICD-10-PCS

was also developed during the same time frame to replace the Volume 3 of ICD-9-CM. The first

revision of it was released in 1998.

ICD-9-CM is around thirty years old. Many of its categories are full, and there have been

changes in technology. Some of them are also not descriptive enough. A newer coding system is

needed, which would enhance reimbursement, better facilitate evaluation of medical processes and

outcomes, and be flexible enough to incorporate emerging diagnoses and procedures. For exam-

ple, in a scenario where a patient had a fractured left wrist and, after a month a fractured right

wrist, ICD-9-CM cannot identify left versus right; additional information is required. However,

ICD-10-CM can report distinguishing left from right. It can also characterize initial and subsequent

encounters. Further, it can describe routine healing, delayed healing, nonunion, or malunion.

The major differences between ICD-10 and ICD-9-CM are [17]

• ICD-10 has 21 categories of diseases; while ICD-9-CM has only 19 categories.

• ICD-10 codes are alphanumeric; while ICD-9-CM codes are only numeric.

• ICD-9-CM diagnoses codes are 3–5 digits in length, while ICD-10-CM codes are 3–7 char-

acters in length.

• Total diagnoses codes in ICD-9-CM is over 14,000; while ICD-10-CM has 68,000.

• ICD-10-PCS procedure codes are 7 characters in length; while ICD-9-CM procedure codes

are 3–4 numbers in length.

• ICD-10-PCS total number of codes is approximately 87,000. The number of procedure codes

in ICD-9-CM is approximately 4,400.

The Center for Medicare and Medicaid Services (CMS) guidelines mandated a conversion from

ICD-9-CM to ICD-10-CM by October 1, 2014 in the United States. Adopting a new coding system

will have the following benefits:
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• Improve patient care. The increased detail in the coding system will improve the measurement

of quality, safety, and efficacy of care, which will ultimately lead to improved patient care.

• Determine the severity of illness and prove medical necessity. ICD-10 codes are more granular

and provide option to input the level of sickness along with complexity of disease of a patient

in a code-based system.

• Improve research. The better and more accurate organization of code will be able to more

precisely classify diseases and injuries, and correlate them with the cause, treatment, and out-

come. The collected data will be less ambiguous and such a better-defined structure of the

information will make data analysis easier. Information processing will be easier with newer

coding system and it will open new opportunities for developing an intelligent prediction sys-

tem. It will also allow the United States. to conduct comparative research with other countries

that are already using ICD-10.

• Lend insight to the setting of health policy. With improved data analytics made possible

through ICD-10, policy makers will be able to make informed policy decisions.

• Facilitate improved public health reporting and tracking. The comprehensive coding structure

will allow concerned agencies to track public health risks and trends in greater detail.

• Improve clinical, financial, and administrative performance and resource allocation. The qual-

ity of data can reveal essential insights. It will allow the administrators to track time and work-

force spent for procedures. This will help administrators to allocate resources more efficiently

and achieve positive financial and managerial outcomes.

• Increase the accuracy of payment and reduce the risk that claims will be rejected for incorrect

coding. Reduced number of claim denials is expected due to higher specificity of ICD-10. It

will also create a better electronic record of evidence to receive proper payment from govern-

ment payers, insurers, hospitals, health systems, and others.

• Make room for new procedures and techniques. The adaptation ability of ICD-9-CM is lim-

ited, where all the codes are already utilized and has no more room for new codes. The ex-

panded coding of ICD-10 will be able to accommodate new procedures.

• It will have other facilities like reduced hassle of audits, help preventing and detecting health-

care fraud and abuse.

2.4.1.3 ICD-11

The World Health Organization is currently working on the eleventh revision of ICD. The final

publication of ICD-11 is expected by 2017 [18]. The beta draft [19] was made public online for

initial comments and feedback in May 2012. This development of ICD-11 revisions is taking place

in a web-based platform called iCAT, where all the concerned parties collaborate. For interested

groups or people, there are options to give structured input and field testing of revised editions. It

will be available in multiple languages and free to download for personal use. In ICD-11, disease

entries will have definitions and descriptions of the entry and category in human readable forms.

The current version ICD-10 has only the title headings. There are 2,400 codes in ICD-11 that are

different in the ICD-10 code set, where 1,100 codes are related to external causes and injury [20].

Although the beta version does not support any social network platforms, the support of web-

sites such as Wikipedia, Facebook, Social Reader, LinkedIn, etc. is in the plan. The structure of

definitions and other contents related to diseases and procedures will be defined more accurately. It

will be more compatible with EHRs and other technologies.
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2.4.2 Current Procedural Terminology (CPT)

Current Procedural Terminology (CPT) is a set of medical codes developed, maintained, and

copyrighted by the American Medical Association (AMA). CPT codes are a list of descriptive terms,

guidelines, and identifying codes of medical, surgical, and diagnostic services designed to provide

uniform communication language among physicians, coders, patients, accreditation organizations,

and payers for administrative, financial, and analytic purposes.

It was first created by the AMA in 1966. The first edition contained mainly surgical codes. A

significant development took place for the second edition, which was published in 1970. The sec-

ond edition contained 5 digits instead of 4 digits, and it included lab procedures. In 1983, the Health

Claim Financial Administration (HCFA), which is now known as the Center for Medicine and Med-

icaid Services (CMS), merged its own Common Procedure Coding System (HCPCS) with CPT and

mandated CPT would be used for all Medicare billing. Every year the new version is released in

October. The Healthcare Common Procedures Coding System (HCPCS, often pronounced as “hick

picks”) is another set of codes developed by AMA based on CPT. Although the CPT coding system

is similar to ICD-9 and ICD-10, it describes the treatment and diagnostic services provided while

ICD codes describe the condition or the disease being treated. CPT is used only in inpatient settings.

2.4.3 Systematized Nomenclature of Medicine Clinical Terms (SNOMED-CT)

Systematized Nomenclature of Medicine Clinical Terms (SNOMED-CT) is a comprehensive,

computer-processible, multilingual clinical and healthcare terminology, originally created by the

College of American Pathologists (CAP). SNOMED was started as Systematic Nomenclature of

Pathology (SNOP) in 1965 [21]. It was enhanced further and SNOMED was created in 1974. It

had two major revisions in 1979 and 1993. In 1999, SNOMED-CT was created by the merger of

SNOMED Reference Terminology (SNOMED-RT) developed by the CAP and Clinical Terms Ver-

sion 3 (CTV3) developed by the National Health Services of the United Kingdom. This merged

version was first released in 2002. SNOMED-RT had a vast coverage of medical specialities with

over 12,000 concepts. It was designed for the retrieval and aggregation of healthcare information

produced by multiple organizations or professionals. The strong suit of CTV3 was its coverage

of terminologies for general practice. With more than 200,000 concepts, it was used to store pri-

mary care encounter information and patient-based records [22]. Currently SNOMED has more

than 311,000 concepts with logic-based definitions organized into a hierarchy. In July 2003, the

National Library of Medicine (NLM) on behalf of the U.S. Department of Health and Human Ser-

vices signed a contract with CAP to make SNOMED-CT available for users. Since April 2007, it

has been owned, maintained, and distributed by a newly formed Denmark-based nonprofit organiza-

tion named International Health Terminology Standards Development Organization (IHTSDO) [9].

CAP collaborates with IHTSDO and continues to provide support for SNOMED-CT operations.

More than 50 countries use SNOMED-CT.

SNOMED-CT is a valuable part of EHR. Its main purpose is to encode medical and healthcare-

related concepts and support recording of data. It provides a consistent way to store, index, retrieve,

and aggregate clinical data across different sites. It also helps to organize data in a more meaningful

way and reduce the variability of the data collection and management process. Its extensive coverage

includes clinical findings, symptoms, diagnoses, procedures, body structures, organisms and other

etiologies, substances, pharmaceuticals, devices, and specimens [23].

SNOMED-CT has a logical and semantic relationship between concepts. It has a multiaxial

hierarchy, which allows different level of details of information. Its extensible design permits the

integration of national, local, and vendor specific requirements. It primarily consists of four compo-

nents.

• Concept Codes: numerical codes to identify terms
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• Descriptions: textual descriptions of the concept codes

• Relationships: represents relationships between the concept codes

• Reference Sets: used for grouping concept codes or descriptions. Supports cross mapping to

other classification standards.

SNOMED-CT can be mapped to other well-known terminologies like ICD-9-CM, ICD-10, and

LOINC. Renowned standards like ANSI, DICOM, HL7, and ISO are supported by it. In a joint

project with WHO, it is providing insights for the upcoming ICD-11.

SNOMED-CT has some fundamental differences from ICD. It is mainly a terminology system

while ICD is a classification system. SNOMED-CT is designed to encode and represent data for

clinical purposes [24]. Information coded with ICD is used for statistical analysis, epidemiology,

reimbursement, and resource allocation. SNOMED-CT facilitates the information input into the

EHR and provides standardization for primary data purposes while ICD codes enable retrieval for

secondary data purposes.

2.4.4 Logical Observation Identifiers Names and Codes (LOINC)

Logical Observation Identifiers Names and Codes (LOINC) is a universal code system for iden-

tifying laboratory observations and clinical test results. In response to the demand for electronic

clinical data, it was created in 1994 by Regenstrief Institute Inc., an Indianapolis-based nonprofit

research organization affiliated with Indiana University. It was originally called Laboratory Ob-

servations, Identifiers, Names, and Codes and the development was sponsored by NLM and other

government and private agencies. Original sources of information include the following [25]:

• Silver book for International Union of Pure and Applied Chemistry

• International Federation of Clinical Chemistry

• Textbooks of Pathology

• EuCliD (European Clinical Database)

• Expertise and work of the LOINC members

LOINC coding system helps to improve the communication of information. In January 2009, Re-

genstrief Institute released a Windows operating system-based mapping software called Regenstrief

LOINC Mapping Assistant (RELMA) where codes can be searched and local codes can be mapped

to a LOINC database. The current version of LOINC is LOINC 2.46 released in December 2013.

With more than 600 new users per month, it has 27,000 users from 158 different countries. LOINC

vocabulary continues to grow till today.

Each LOINC record represents a single test result. A record consists of six fields [26].

• Component: what is measured and evaluated (e.g., glucose, hemoglobin)

• Kind of property: characteristics of the component that is measured (e.g., mass, length, con-

centration, volume, time stamp, etc.)

• Time: observation period of the measurement

• System: the specimen or the substance, in context of which the measurement was done (e.g.,

blood, urine)

• Scale: the measurement scale (e.g., quantitative, nominal, ordinal, or narrative)
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• Method (optional): the procedure performed for measurement

Certain parameters and descriptors related to the test are explicitly excluded in LOINC from obser-

vation name. They are made as fields of test/observation report message [25]. These fields are

• The instrument used for testing

• Fine details of the sample or the site of collection

• The priority of the test

• Who verified the result

• Size of the sample

• Place of testing

LONIC’s overall organization is divided into four categories: laboratory, clinical, attachments, and

surveys. The laboratory component is further divided into subcategories such as chemistry, hema-

tology, serology, microbiology (includes parasitology and virology), and toxicology. The clinical

attributes are vital signs, hemodynamics, intake/output, EKG, obstetric ultrasound, cardiac echo,

urologic imaging, gastroendoscopic procedures, pulmonary ventilator management, and other clin-

ical observations [25]. It also contains information about nursing diagnoses and nursing interven-

tions.

2.4.5 RxNorm

RxNorm is a drug vocabulary maintained and distributed by the National Library of Medicine

[27]. It assigns standard names to the clinical drugs and drug delivery devices available in the United

States. It is used as a basis for the capture and presentation of drug-related information in EHRs. In

2001, NLM started to develop RxNorm for modeling clinical drugs in the Unified Medical Language

System (UMLS) in consultation with the HL7 vocabulary technical committee and the Veterans

Administration [28]. It was developed to standardize the medication terminology that would reduce

the missed synonymy in clinical drugs [29]. Additional goals were to facilitate electronic capture

of related data, improve interoperability by supporting information exchange across platforms and

systems, develop clinical decision support, and provide opportunity for research.

RxNorm follows a standard for naming drugs. The normalized name of a drug include the fol-

lowing components [28]:

• IN: Ingredient of the drug.

• DF: Dose form of the drug.

• SCDC: Semantic clinical drug component. It represents the ingredients and strength.

• SCDF: Semantic clinical drug form. It represents the ingredient and dose form.

• SCD: Semantic clinical drug. It represents the ingredient, strength, and dose form.

• BN: Brand name. This is the formal name for a group of drugs containing a specific active

ingredient.

• SDBC: Semantic branded drug component. It represents the branded ingredient and strength.

• SBDF: Semantic branded drug form. It represents the branded ingredient and dose form.

• SDB: Semantic branded drug. It represents the branded ingredient, strength, and dose form.



Electronic Health Records: A Survey 35

RxNorm organizes drugs by concept. A concept is a set of names with similar meaning at a specific

level of abstraction. It can distinguish similar drugs from different providers using concepts. The

concepts and relationships between each other form a semantic network.

2.4.6 International Classification of Functioning, Disability, and Health (ICF)

The International Classification of Functioning, Disability, and Health, commonly known as

ICF, is a classification of health-related components of function and disability. ICF concentrates on

the functionality and body structure of people with a given health condition or disability rather than

diagnosis or diseases. It does not account for the cause of disability. It is a unified and standard

framework first developed by the World Health Organization (WHO) in 1980 [30]; initially it was

known as International Classification of Impairments, Disabilities, and Handicaps (ICIDH). After

years of coordinated revision, in May 2001, the 191 member states of WHO agreed to adopt ICF

as the standard coding method of functioning and disability. In June 2008, the American Physical

Therapy Association (APTA) joined WHO for endorsing ICF. ICF is the only method of its kind. It

has been developed and tested for applicability in more than 40 countries.

Body functions and disability can be viewed as interactions between health condition and per-

sonal and environmental factors. ICF has mainly two parts: Functioning and disability, and Con-

textual factors. It can be categorized into further subparts. The components of ICF are listed below

[31]:

• Functioning and disability

– Body functions

* Mental functions

* Sensory functions and pain

* Voice and speech functions

* Functions of the cardiovascular, hematological, immunological, and respiratory

systems

* Genitourinary and reproductive functions

* Neuromusculoskeletal and movement-related functions

* Functions of the skin and related structures

– Body structures

* Structure of the nervous system

* The eye, ear, and related structures

* Structures involved in voice and speech

* Structures related to cardiovascular, immunological, and respiratory systems

* Structures related to digestive, metabolic, and endocrine systems

* Structures related to genitourinary and reproductive systems

* Structures related to movement

* Skin and related structures

– Activities and participation

* Learning and applying knowledge

* General tasks and demands

* Communication

* Self-care

* Domestic life
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* Interpersonal interactions and relationships

* Major life areas

* Community, social, and civic life

• Contextual factors

– Environmental factors

* Products of technology

* Natural environment and human-made changes to the environment

* Support and relationships

* Attitudes

* Service, systems, and policies

– Personal factors

* Gender

* Age

* Coping styles

* Social background

* Education

* Profession

* Past and current experience

* Overall behavior pattern

* Character and other factors

ICF complements WHO’s classification of disease scheme, ICD-10. ICD contains diagnosis and

health condition-related information, but not functional status. Together they constitute the WHO

Family of International Classifications (WHO-FIC) shown in Figure 2.2.

FIGURE 2.2: WHO Family of International Classifications taken from [32].
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Diagnosis is used to define cause and prognosis of diseases, but by itself it does not predict

service needs, length of hospitalization, or level of care of functional outcomes. Nor can it accurately

provide support for disability. ICF allows incorporating all aspects of a person’s life. The current

ICF creates a more understandable and comprehensive profile of health forming of a person instead

of focusing on a health condition [33]. It is used as a clinical, statistical, research, social policy, and

educational tool. A common misconception about ICF is that it deals with only the disabled people.

However, ICF has some limitations regarding the ability to classify the functional characteristics of

developing children [34].

2.4.7 Diagnosis-Related Groups (DRG)

Diagnosis-Related Groups (DRG) are a patient classification scheme that group related patients

and relate these groups with the costs incurred by the hospital. DRGs divide diagnosis and illness

into 467 categories identified in ICD-9-CM [35]. The 467th group is “ungroupable.” The classifica-

tion is based on a patient’s principal diagnosis, ICD diagnoses, gender, age, sex, treatment proce-

dure, discharge status, and the presence of complications or comorbidities. The goals of developing

DRGs were to reduce healthcare cost, and improve quality of care and efficiency of the hospitals.

DRGs are by far the most important cost control and quality improvement tool developed [36].

It was first created at Yale University with the support from the Health Care Financing Admin-

istration, now known as the Center for Medicine and Medicaid Service (CMS). In 1980, it was first

implemented in a small number of hospitals in New Jersey [37]. It is used to define the reimburse-

ment amount of hospitals from Medicare. Medicare pays hospitals per patient and efficient hospitals

receive better incentives. DRGs help to decide the efficiency of the hospital.

2.4.8 Unified Medical Language System (UMLS)

The Unified Medical Language System (UMLS) is a collection of comprehensive biomedical

concepts and ontologies. It was developed by the U.S. National Library of Medicine (NLM) in 1986.

It provides the development of computer-based systems that can behave as through they understand

the biomedical and health concepts [38]. It is intended to be mainly used by medical informat-

ics professionals. NLM maintains and distributes UMLS knowledge sources (database) and related

software tools for developers to build enhanced electronic information system that can create pro-

cess, retrieve, integrate, and/or aggregate health and biomedical-related information. The knowledge

sources of UMLS are as follows [39]:

• Metathesaurus

– Source Vocabularies

– Concepts

• Relationships, Attributes

– Semantic Network

– Semantic Types (categories)

– Semantic Relationships

• Lexical Resources

– SPECIALIST Lexicon

– Lexical Tools
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Metathesaurus is a very large, multipurpose, and multilingual vocabulary database. It contains health

and biomedical-related concepts of their various names and the relationships among them. It has

126 vocabularies in 17 languages [27]. It clusters similar terms into a concept. The semantic net-

work provides consistent categorization of concepts defined in Metathesaurus. The network contains

information regarding basic semantic types/categories that may be assigned to concepts and rela-

tionships between semantic types. In the semantic network, the semantic types are nodes and the

relationships are links between them. In the current version of semantic network, there are 135 se-

mantic types and 54 relationships [38]. The SPECIALIST Lexicon provides the lexical information

needed for the SPECIALIST natural language processing tool.

2.4.9 Digital Imaging and Communications in Medicine (DICOM)

The Digital Imaging and Communications in Medicine (DICOM) is a medical imaging standard.

It determines the data exchange protocol, digital image format, and file structure for biomedical

images and related information [40]. DICOM was developed by the American College of Radiology

(ACR) and National Electric Manufacturers Association (NEMA). The first version ACR/NEMA

300 was released in 1985. DICOM is generally used in the following application areas [40]

• Network image management

• Network image interpretation management

• Network print management

• Imaging procedure management

• Offline storage media management

DICOM allows the integration of scanners, servers, workstations, printers, and network hardware

into a Picture Archiving and Communication Systems (PACS). It has been extensively used by the

hospitals and other organizations. It provides a widely accepted foundation for medical imaging

standards. It promotes interoperability between radiology systems.

2.5 Benefits of EHR

EHRs are transformational tools. The scope of paper-based systems is severely limited. We

need EHRs to improve the quality of patient care and increase productivity and efficiency. In terms

of the overall management and costs, EHRs are a better choice. They also help in complying with

government regulations and other legal issues. The benefits of EHRs are described in this section.

2.5.1 Enhanced Revenue

An EHR system can capture the charges and bills for clinical services provided, laboratory tests,

and medications more accurately. Utilization of electronic systems decrease billing errors [41]. They

also provide a better documentation opportunity for these services that can be used to resolve fi-

nancial disputes. Better management of information yield more accurate evaluation and increase

reimbursements. According to experts, due to inaccurate coding systems, 3%–15% of a healthcare

provider’s total revenue is lost [42]. An EHR system can be programmed or configured to generate

alerts for both patients and doctors when a healthcare service is due. This can aid better manage-

ment of collecting revenue. It can be used to garner more revenues by incorporating services like
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telemedicine, e-visits, virtual office visits, etc. It is true that all kinds of services are not possible

over the Internet or telephone network, but not all diseases will require extensive diagnosis and lab-

oratory testing. Diseases commonly treated through telemedicine include acne, allergies, cold and

flu, constipation, diabetes, fever, gout, headache, joint aches and pains, nausea and vomiting, pink

eye, rashes, sinus infection, sore throat, sunburn and urinary tract infections, anxiety and depression,

etc.

2.5.2 Averted Costs

After adopting electronic systems, some costs associated with the previous way of operating a

business are eliminated. The Center for Information Technology leadership suggested that the use

of EHRs will save a total of $44 billion each year [43]. Adopting EHR has the following averted

costs [44].

• Reduced paper and supply cost: To maintain paper-based health records an organization

will require a lot of paper, printing materials, and other supplies. Adopting EHR will reduce

these costs. After adopting EHRs, one organization estimated a reduction of 90% of paper

usage within a few months [45].

• Improved utilization of tests: In electronic systems, test results are better organized. A

healthcare staff no longer needs to carry the reports from one place to another. Identifying

redundancy or unnecessary tests is easier. This can reduce the loss of information and ensure

improved utilization of tests. A study by Wang et al. [41] reports better utilization of radiology

tests after adopting EHRs.

• Reduced transcription costs: An EHR can reduce transcription costs for manual administra-

tive processes [46, 47]. It utilizes structured flow sheets, clinical templates, and point-of-care

documentation. In a typical outpatient setting, physicians generate about 40 lines of tran-

scription per encounter. For a group of three practicing physicians, treating 12,000 patients

annually at the cost of $0.11 for each transcription line results in over $50,000 per year [46].

A study of fourteen solo or small-group primary care practices in twelve U.S. states reports

the median transcription cost saving to be $10,800, where a minimum saving was $8,500

and a maximum was $12,000 for the year 2004–2005 [47]. Other related research work also

describes saving $1,000–$3,000 per physician, per month [48].

• Improved productivity: EHR helps to improve workflows by utilizing resources more ef-

ficiently and reducing redundancies. As a result, the overall productivity of individuals in-

creases.

• Better availability of information and elimination of chart: In EHR, all the charts are in

digital format. It eliminates the need to pull, route, and re-file paper charts [46]. A significant

amount of effort is spent on creating, filing, searching, and transporting paper charts [49]. A

study estimated that the elimination of paper charts can save $5 per chart pull [41]. It is also

comparatively easier to manage digital charts.

• Improved clinician satisfaction: Electronic technology can save time by reducing the pa-

perwork burden, which can create additional time for patient encounters and delivery of care

[3]. A study reports the use of EHR has reduced the physician’s office visit time by 13%

and a nurse’s pre-exam interview time by 1 minute [50]. This can improve satisfaction for

professionals, which can indirectly enhance revenue.
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2.5.3 Additional Benefits

EHR offers many additional benefits that are discussed in more detail below.

• Improved accuracy of diagnosis and care: EHR provides comprehensive and accurate pa-

tient information to physicians that can help to quickly and systematically identify the correct

problem to treat. EHRs do not just contain the patient information; they have the capability to

perform computation and make suggestions. They can also present comparative results of the

standard measurements. A U.S. national survey of doctors demonstrates the following [51]:

– 94% of the providers report EHR makes records readily available at the point of care.

– 88% report that EHR produces clinical benefits for their practice.

– 75% report that EHR allowed them to deliver better patient care.

The gathered information can guide a physician in the emergency department to take prudent

and safer actions. Such services are unimaginable with paper-based systems. Diagnostic er-

rors are difficult to detect and can be fatal to a patient. A new study suggests that EHR can

help to identify potential diagnostic errors in primary care by using certain types of queries

(triggers) [52].

• Improved quality and convenience of care: EHRs have the potential to improve the qual-

ity of care by embedding options such as Clinical Decision Support (CDS), clinical alerts,

reminders, etc. Research suggests that EHRs are linked to better infection control [53], im-

proved prescribing practices [12], and improved disease management [42] in hospitals. In

such applications, convenience is also an important measure. EHRs greatly reduce the need

for patients to fill out similar (or even sometimes the same) forms at each visit. Patients can

have their e-prescriptions ready even before they leave the facility and can be electronically

sent to a pharmacy. Physicians and staff can process claims insurance immediately. Following

are the results of a study on the effects of e-prescribing reports [54].

– 92% patients were happy with their doctor using e-prescribing.

– 90% reported rarely or only occasionally having prescriptions not ready after going to

the pharmacy.

– 76% reported e-prescribing made obtaining medications easier.

– 63% reported fewer medication errors.

• Improved patient safety: Just like improving the quality of care, clinical decision support

systems (CDSS) and computerized physician order entry (CPOE) have the potential to im-

prove patient safety. Medication errors are common medical mistakes and in the United States

it is responsible for the death of a person every day on average as well as injuring more than a

million annually [55]. Research shows that utilization of CPOE can reduce medication errors

[56, 57]. Medication errors can occur at any stage of the medication administration process

from a physician ordering the drug, followed by the dispensing of the drug by the pharma-

cist, and finally the actual administration of the drug by the nurse. CPOE is a technology

that allows physicians to act on a computerized system that introduces structure and control.

Along with patient information, EHR holds the medication records for a patient. Whenever

a new medication is prescribed, it can check for potential conflicts and allergies related to

the particular medication and alert the physician. The system also can provide the chemi-

cal entities present in the drug and cross-reference allergies, interactions, and other possible

problems related to the specific drug. Introducing technologies such as Barcode Medication

Administration can make the system even more accurate. The Institute of Medicine (IOM)

recommends CPOE and CDS as main information technology mechanisms for increasing

patient safety in the future [58].
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• Improved patient education and participation: In an EHR system, certain features can

provide simplified patient education [42]. EHRs can be used by the provider as a tool to

illustrate procedures and explain a patient’s conditions. It can increase a patient’s participation

by offering follow-up information, self-care instructions, reminders for other follow-up care,

and links to necessary resources. Information technology affects every part of our life. In this

digital era, patients may feel more comfortable with an electronic system.

• Improved coordination of care: EHRs are considered essential elements of care coordi-

nation. The National Quality Forum defines care coordination as the following [59]: “Care

coordination is a function that helps ensure that the patient’s needs and preferences for health

services and information sharing across people, functions, and sites are met over time. Coordi-

nation maximizes the value of services delivered to patients by facilitating beneficial, efficient,

safe and high-quality patient experiences and improved healthcare outcomes.” For a patient

with multiple morbidities, a physician is responsible for providing primary care services and

coordinating the actions of multiple subspecialists [60]. According to a Gallup poll [61], it is

a common scenario for older patients to have multiple doctors: no physician 3%, one physi-

cian 16%, two physicians 26%, three physicians 23%, four physicians 15%, five physicians

6%, and six or more physicians 11%. EHRs allow all clinicians to document services provided

and access up-to-date information about their patient. It streamlines the transition process and

knowledge sharing between different care settings. This facilitates an improved level of com-

munication and coordination [62]. Research suggests that the clinicians having 6+ months use

of EHRs reported better accessing and completeness of information than clinicians without

EHRs. Clinicians having EHRs have also reported to be in agreement on treatment goals with

other involved clinicians [63].

• Improved legal and regulatory compliance: As organizations develop their systems, it is

important to understand and comply with many federal, state, accreditation, and other reg-

ulatory requirements. A health record is the most important legal and business record for a

healthcare organization. The use of an EHR system will provide more security and confiden-

tiality of a patient’s information and thus, comply with regulations like HIPAA, Consumer

Credit Act, etc. Moreover, the Center for Medicare and Medicaid Services (CMS) has fi-

nancial incentive programs for hospitals regarding the meaningful use of health information

technology. To receive the financial reimbursement, professionals have to meet a certain cri-

teria and can get up to $44,000 through Medicare EHR Incentive Program and up to $63,750

through the Medicaid EHR Incentive Program [64]. Adaptation of certified EHR can help

providers get reimbursed.

• Improved ability to conduct research and surveillance: In conjunction with the direct use

of EHR in primary patient care, there is an increasing recognition that secondary use of EHR

data can provide significant insights [65]. Using quantitative analysis of functional values, it

has the potential to identify abnormalities and predict phenotypes. Pakhomov et al. demon-

strated the use of text processing and NLP to identify heart failure patients [66]. EHR data can

be used to predict survival time of patients [67]. Data from different EHRs can be integrated

into a larger database and geo-location specific surveillance is also possible.

• Improved aggregation of data and interoperability: Standards play a crucial role in data

aggregation and interoperability between different systems. EHRs maintain standard proce-

dure and follow defined coding system while collecting data. This accommodates easier ag-

gregation of data and greater interoperability, which offer the following benefits [68].

– Manage increasingly complex clinical care

– Connect multiple locations of care delivery
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– Support team-based care

– Deliver evidence-based care

– Reduce errors, duplications, and delay

– Support ubiquitous care

– Empower and involve citizens

– Enable the move to the Personal Health Paradigm

– Underpin population health and research

– Protect patient privacy

We need high-quality aggregated data from multiple sources in order to make evidence-

based decisions. The level of achievable interoperability using EHRs is unthinkable from

paper-based systems. The American Medical Association recognizes that enhanced interop-

erability of EHRs will further help to attain the nation’s goal of a high-performing healthcare

system.

• Improved business relationships: A healthcare provider organization equipped a with su-

perior EHR system can be in a better bargaining position with insurers and payers compared

with less equipped ones. The next generation of business professionals will expect and de-

mand a state-of-the-art information healthcare technology system.

• Improved reliability: Data is more reliable in a digital format. Due to the reduction of storage

costs, having multiple copies of data is possible.

2.6 Barriers to Adopting EHR

Despite of having great potential of EHRs in medical practice, the adoption rate is quite slow

and faces a range of various obstacles. Many other developed countries are doing far better than

the United States. Four nations (United Kingdom, the Netherlands, Australia, and New Zealand)

have almost universal use (each ∼90%) of EHRs among the general practitioners. In contrast, the

United States and Canada have only around 10–30% of the ambulatory care physicians using EHRs

[69]. Health informatics has been a high priority in other developed nations, while until recently,

the degree of involvement and investment by the U.S. government in EHRs has not been significant.

Major barriers to adopting EHRs are discussed below.

• Financial barriers: Although there are studies that demonstrate financial savings after adopt-

ing EHRs, the reality is that the EHR systems are expensive. Several surveys report that the

monetary aspect is one of the major barriers of adopting EHRs [70, 71, 72, 73, 74, 75, 76].

There are mainly two types of financial costs, start-up and ongoing. A 2005 study suggests

that the average initial cost of setting up an EHR is $44,000 (ranging from a minimum of

$14,000 to a maximum of $63,000) and ongoing costs average about $8,500 per provider per

year [47]. Major start-up costs include purchasing hardware and software. In addition, a sig-

nificant amount of money is also required for system administration, control, maintenance,

and support. Long-term costs include monitoring, modifying, and upgrading the system as

well as storage and maintenance of health records. Besides, after the substantial amount of

investment, physicians are worried that it could take up to several years for the return on the

investment.
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An EHR is not the only electronic system that exists in any healthcare provider like practice

management. There might be other old systems that also need integration into the new system.

It is important that an EHR system is integrated into other systems, and this integration can

sometimes be very expensive. Surveys show that due to the high financial investment required,

EHR adaptation was far higher in large physician practices and hospitals [77].

• Physician’s resistance: To adopt EHRs, physicians have to be shown that new technology

can return financial profits, saves time, and is good for their patients’ well-being. Although

research-based evidence is available, it is difficult to provide concrete proof of those benefits.

As given in a report by Kemper et al. [76], 58% of physicians are without any doubt that EHR

can improve patient care or clinical outcomes. Finally, adopting EHRs in a medical practice

will significantly change the work processes that physicians have developed for years.

Besides, physicians and staffs might have insufficient technical knowledge to deal with EHRs,

which leads them to think EHR systems are overly complex. Many physicians complain about

poor follow-up services regarding technical issues and a general lack of training and support

from EHR system vendors [72]. A study reports that two-thirds of physicians expressed in-

adequate technical support as a barrier to adopting EHRs [75]. Some physicians are also

concerned about the limitation of EHR capabilities. Under certain circumstances or as time

passes, the system may no longer be useful [71, 74]. Besides, all physicians do not perform

the same operations. EHR systems have to be customizable to best serve each purpose. Sur-

veys suggest that one of the reasons for not adopting EHRs is that the physicians cannot find

a system that meets their special requirements [71, 72, 73, 75, 78, 76]. However, an increased

effort and support from vendors may play a role in motivating physicians towards adopting

EHRs.

• Loss of productivity: Adoption of an EHR system is a time-consuming process. It requires

a notable amount of time to select, purchase, and implement the system into clinical practice.

During this period physicians have to work at a reduced capacity. Also, a significant amount

of time has to be spent on learning the system. The improvement will depend on the quality

of training, aptitude, etc. The fluent workflow will be disrupted during the transition period,

and there will be a temporary loss of productivity [79].

• Usability issues: EHR software needs to be user-friendly. The contents of the software must

be well-organized so that a user can perform a necessary operation with a minimal number

of mouse clicks or keyboard actions. The interface of software workflow has to be intuitive

enough. In terms of usability, a comprehensive EHR system may be more complex than ex-

pected. It has to support all the functionalities in a provider’s setting. There might be a number

of modules and submodules, so the user might get lost and not find what he is looking for. This

has the potential to hamper clinical productivity as well as to increase user fatigue, error rate,

and user dissatisfaction. Usability and intuitiveness in the system do not necessarily correlate

to the amount of money spent. The Healthcare Information and Management Systems Soci-

ety (HIMSS) has an EHR usability task force. A 2009 survey by the task force reported 1,237

usability problems, and the severity of 80% of them was rated “High” or “Medium” [80].

Apart from the workflow usability issue, other related issues are configuration, integration,

presentation, data integrity, and performance. The task force defined the following principles

to follow for effective usability [81]: simplicity, naturalness, consistency, minimizing cogni-

tive load, efficient interactions, forgiveness and feedback, effective use of language, effective

information presentation, and preservation of context.

• Lack of standards: Lack of uniform and consistent standards hinders the EHR adoption.

Standards play an integral role in enabling interoperability. CMS reimbursement for mean-

ingful use requires EHR systems to demonstrate the ability to exchange information. Many
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of the currently used systems have utility only for certain specific circumstances. Different

vendors have developed systems in different programming languages and database systems.

They do not have any defined best practice or design patterns. This makes the data exchange

difficult or impossible between the systems [73, 74, 78]. This lack of standardization limits

the proliferation of EHRs [82]. While large hospital systems have moved to EHRs, many

others are skeptical about the available systems. They fear that the EHR software they buy

now might not work with standards adopted by the healthcare industry or mandated by the

government later on.

• Privacy and security concerns: Health records contain personal, diagnostics, procedures,

and other healthcare related sensitive information. Due to the immense importance of this

information, an EHR system may be subjected to attack. Some of the medical diagnoses are

considered socially stigmatized, like sexually transmitted disease. Some information relates

to direct life threats, like allergies. Employers as well as insurance companies may be inter-

ested to know more about a patient to make unethical decisions whether to cover a patient

and/or his specific diagnosis. It can also influence some of the hiring decisions. EHRs contain

information like social security numbers, credit card numbers, telephone numbers, home ad-

dresses, etc., which makes EHRs attractive target for attackers and hackers. A patient might

even be motivated to alter his or her medical records to get worker’s compensation or to obtain

access to narcotics. Therefore, it is important that the privacy and security of EHRs are well

maintained. The most used certification for privacy and security is given by the Certification

Commission for Healthcare Information Technology (CCHIT). The CCHIT website claims

that by mid-2009, 75% of EHR products in the marketplace were certified [83]. In addition

to that, the Health Information Technology for Economic and Clinical Health (HITECH) Act

introduced a new certification process sponsored by the Office of the National Coordina-

tion for Health Information Technology (ONC) in 2009. In January 2010, the ONC released

the interim final rule that provides an initial set of standards, implementation specifications,

and certification criteria of EHR technology. Its requirement includes database encryption,

encryption of transmitted data, authentication, data integrity, audit logs, automatic log off,

emergency access, access control, and account of HIPPA release of information [84]. Physi-

cians doubt the level of security of patients’ information and records. According to Simon

et al. [74], physicians are more concerned about this issue than patients. The inappropri-

ate disclosure of information might lead to legal consequences. Testing the security of EHR

products, a group of researchers showed that they were able to exploit a range of common

code-level and design-level vulnerabilities of a proprietary and an open source EHR [85].

These common vulnerabilities could not be detected by 2011 security certification test scripts

used by CCHIT. EHRs pose new challenges and threats to the privacy and security of patient

data. This is a considerable barrier to EHRs proliferation. However, this risk can be mitigated

by proper technology, and maintaining certified standards with the software and hardware

components.

• Legal aspects: Electronic records of medical information should be treated as private and

confidential. Various legal and ethical questions obstruct adoption and use of EHRs. The le-

gal system that relies on the paper-era regulations does not offer proper guidance regarding

the transition to EHRs. EHRs may increase the physicians’ legal responsibility and account-

ability [86]. With computer-based sophisticated auditing, it is easy to track what individuals

have done. The documentation is comprehensive and detailed in EHRs. It can both defend and

expose physicians regarding malpractice. According to a Health Affairs article, malpractice

costs around $55 billion in the United States, which is 2.4% of total healthcare spending [87].

A 2010 research reveals that it was unable to determine whether the use of EHR increases or

decreases malpractice liability overall [86]. HIPAA’s privacy standards also present reason-

able barriers to EHR adaptation.
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2.7 Challenges of Using EHR Data

The primary purpose of EHR data is to support healthcare-related functionalities. As a vast

amount of data is being collected every day, the secondary use of EHR data is gaining increased

attention in research community to discover new knowledge. The main areas of use are clinical

and transitional research, public health, and quality measurement and improvement. Using the EHR

data, we can conduct both patient-oriented and public health research. EHR data can be used for

the early detection of epidemics and spread of diseases, environmental hazards, promotes healthy

behaviors, and policy development. The integration of genetic data with EHRs can open even wider

horizons. But the data does not automatically provide us the knowledge. The quality and accuracy

of the data is an issue to be taken care of. Beyley et al. [88] presents an excellent survey of the

challenges posed by the data quality.

• Incompleteness: Data incompleteness or missingness is a widespread problem while using

EHR data for secondary purpose [88, 89, 90]. Missing data can limit the outcomes to be

studied, the number of explanatory factors to be considered, and even the size of population

included [88]. Incompleteness can occur due to a lack of collection or lack of documentation

[91]. Hersh [92] reports the following reasons for inaccurate reporting by professionals.

– Unaware of legal requirements

– Lack of knowledge of which diseases are reportable

– Do not understand how to report

– Assumption that someone else will report

– Intentional failure for privacy reasons

A pancreatic malignancies study using ICD-9-CM code at the Columbia University Medical

Center found that 48% of the patients had corresponding diagnoses or disease documenta-

tion missing in their pathology reports [93]. Authors also report a significant amount of key

variables missing (see Table 2.1).

Patients’ irregularity of communicating with the health system can also produce incomplete-

ness. Based on the application in hand, type of data and proportion of data that is missing,

certain strategies can be followed to reduce the missingness of data [91].

TABLE 2.1: Percentage of Incompleteness of Variables in a Pancreatic Malignancies Study

Variables Endocrine

Necrosis 20%

Number of Mitoses 21%

Lymph Node Metastasis 28%

Perineural/Lymphovascula Invasion 15%

Differentiation 38%

Size 6%

Chronic Pancreatitis 14%

Smoking—Alcohol 27%–29%

History of Other Cancer 35%

Family History of Cancer 39%

Tumor Markers 46%

Source: Taken from Botsis et al. [93].
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• Erroneous Data: EHR data can be erroneous as well. Data is collected from different service

areas, conditions, and geographic locations. Data is collected by busy practitioners and staff.

Therefore, the data can be erroneous due to human errors. Faulty equipment can also produce

erroneous data. Validation techniques should be used to both identify and correct erroneous

data. Both internal and external validation measures can be applied. Internal validation is a

way to check the believability of the data, e.g., unrealistic blood pressure, BMI values, etc.

Dates can be used to check whether the result generated before a test has taken place. External

validation includes comparing the data with other patients or historical values.

• Uninterpretable Data: The captured EHR data might be uninterpretable to a certain extent.

It is closely related with data incompleteness. It may occur when some part of the data is cap-

tured but the rest is missing. For example, if a specific quantitative or qualitative measurement

unit is not provided with the result value, it will be difficult to interpret.

• Inconsistency: Data inconsistency can heavily affect the analysis or result. Data collection

technologies, coding rules, and standards may change over time and across institutions, which

may contribute to inconsistency. For multi-institutional studies this issue might be common,

especially because different healthcare centers use different vendors for providing apparatus,

softwares, and other technologies [88]. A study in Massachusetts of 3.7 million patients found

that 31% of patients have visited two or more hospitals in the course of five years [94].

• Unstructured Text: In spite of having many defined structures for collecting the data, a large

portion of the EHR data contain unstructured text. These data are present in the form of

documentation and explanation. It is easy to understand them for humans, but in terms of

automatic computational methods, detecting the right information is difficult. Sophisticated

data extraction techniques like Natural Language Processing (NLP) are being used to identify

information from text notes [95].

• Selection Bias: In any hospital, the patient group will mostly be a random collection. It varies

depending on the nature of practice, care unit, and the geographical location of the institution.

It will not contain the diversity of demography. This is an important challenge to overcome.

Therefore, EHR data mining findings will not be generalizable. This problem must be ad-

dressed while working with the secondary use of data.

• Interoperability: Lack of EHR interoperability is a major impediment towards improved

healthcare, innovation, and lowering costs. There are various reasons behind it. EHR software

from commercial vendors are proprietary and closed systems. Most software were not built

to support communication with a third party and developing new interfaces for that purpose

might be a costly undertaking. Absence of standard also contributes to the problem. Many

patients are not lenient towards sharing their information. Besides EHR systems must comply

with the HIPAA Act [11] to ensure the security and privacy of the data.

In a recent JAMIA (Journal of the American Medical Informatics Association) article, the

authors have specified 11 specific areas that present barriers to interoperability of C-CDA

documents by inspecting 91 C-CDA documents from 21 technologies [96]. In June 2014, the

office of the National Coordinator for Health Information Technology (ONC) unveiled a plan

for robust healthcare information sharing and aggregation and interoperability increase by

2024 [97]. Its three-year agenda includes “Send, Receive, Find, and Use Health Information to

Improve Health Care Quality.” Its six-year agenda states “Use Information to Improve Health

Care Quality and Lower Cost,” and finally, its 10-year agenda proposes to achieve a “Learning

Health System.” The mentioned building blocks for attaining the goals are the following:

– Core technical standards and functions

– Certification to support adoption and optimization of health IT products and services
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– Privacy and security protections for health information

– Supportive business, clinical, cultural, and regulatory environments

– Rules of engagement and governance

2.8 Phenotyping Algorithms

Phenotyping algorithms are combinations of multiple types of data and their logical relations to

accurately identify cases (disease samples) and controls (non-disease samples) from EHR as illus-

trated in Figure 2.3 [98]. Based on the structure, EHR data can be broadly divided into two parts,

structured and unstructured data. Structured data exists in a name–value pair while unstructured

data contains narrative and semi-narrative texts regarding descriptions, explanation, comments, etc.

Structured data include billing data, lab values, vital signs, and medication information. Billing and

diagnosis-related data are collected using various coding systems like ICD, CPT, and SNOMED-

CT. These codes are important parts of the phenotyping process. ICD codes generally have high

specificity but low sensitivity [99]. Table 2.2 lists different characteristics of EHR data.

The primary purpose of EHR data is to support healthcare and administrative services. Infor-

mation is produced as a byproduct of routine clinical services. They are not a suitable format for

performing research tasks. They often require further processing to be used for phenotyping al-

gorithms. Within existing EHR systems, querying for a particular diagnosis or lab test across all

patients can be a not-trivial task. An EHR can quickly pull the information related to a patient’s

current medications, and easily find any test results. But combining different data with a temporal

relationship might require manual processing of data. From clinical operational settings, data are

often extracted and reformatted to make them more convenient and suitable for doing research, typ-

ically storing them in relational databases. Researchers have created a number of Enterprise Data

Warehouses (EDWs) for EHR data. Examples include Informatics for Integrating Biology and the

Bedside (i2b2) [100], the Utah Population Database [101], Vanderbilt’s Synthetic Derivative [102],

etc. Commercial EHR vendors are also developing research repositories. For example, EPIC users

can add the “Clarity” module to their system, which will convert the EHR data into SQL-based

database for research purposes.

To build a phenotype algorithm, first we need to select the phenotype of interest, followed by the

identification of key clinical elements that define the phenotype. It may contain billing codes, lab-

oratory and test results, radiology reports, medication history, and NLP-extracted information. The

gathered information may be combined with a machine learning method. For example, in [103], the

authors have applied Support Vector Machine (SVM) to a both naive and well-defined collection of

EHR features to identify rheumatoid arthritis cases. A medication record can be used to increase the

accuracy of case and control identification of phenotyping algorithms. Patients who are believed to

be controls must be having a different medication profile. They may not even have any medications

prescribed to them at all. Sufficient dosage of a particular medication serves the confirmation that a

person is having the disease of interest. For example, a patient treated with either oral or injectable

hypoglycemic agents will be having diabetes. These medications are highly sensitive and specific

for treating diabetes.

Studies have shown that CPT codes can accurately predict an occurrence of a given procedure

[104]. The standard terminology codes for lab tests are LOINC. On the other hand, clinical notes

are in free-text format. To be used for phenotyping algorithms, it has to undergo subsequent text

processing. Certain procedures and test results may also exist in a combination of structured and

unstructured form. For example, an electrocardiogram report typically contains structured interval


