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This valuable book provides comprehensive coverage on the latest developments of 
research in the ever-expanding area of polymers and advanced materials and their 
applications to broad scientific fields spanning physics, chemistry, biology, materials, and 
more.

This new book: 
• provides physical principles in explaining and rationalizing polymeric phenomena
• features classical topics that are conventionally considered as part of chemical 

technology
•  covers the chemical principles from a modern point of view
•  analyzes theories to formulate and prove the polymer principles 
• presents future outlooks on applications of bioscience in chemical concepts
• focuses on topics with more advanced methods

The book will be ideal for academic and industrial chemists with peripheral or focused 
interests in chemistry and chemical engineering.
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Polymers have played a significant part in the existence of humans. They have a 
role in every aspect of modern life, including health care, food, information tech-
nology, transportation, energy industries, etc. The speed of developments within 
the polymer sector is phenomenal and, at the same, time, crucial to meet demands 
of today’s and future life. Specific applications for polymers range from using 
them in adhesives, coatings, painting, foams, and packaging to structural materi-
als, composites, textiles, electronic and optical devices, biomaterials and many 
other uses in industries and daily life. Polymers are the basis of natural and syn-
thetic materials. They are macromolecules, and in nature are the raw material for 
proteins and nucleic acids, which are essential for human bodies.

Cellulose, wool, natural rubber and synthetic rubber, plastics are well-known 
examples of natural and synthetic types. Natural and synthetic polymers play a 
massive role in everyday life, and a life without polymers really does not exist. A 
correct understanding of polymers did not exist until 1920s. In 1922, Staudinger 
published his idea that polymers were long chain molecules with normal chemi-
cal bonds holding them together. But for nearly 10 years this idea did not attract 
much attention. Around this period other researchers like Carothers who tended 
towards Staudinger’s idea, discovered a type of synthetic material, which could 
be produced by its constituent monomers. Later on it was shown that as well as 
addition reaction, polymers could be prepared through condensation mechanism.

Previously it was believed that polymers could only be prepared through ad-
dition polymerization. The mechanism of the addition reaction was also unknown 
and hence there was no sound basis of proposing a structure for the polymers. This 
lack of information was the main controversy existed between Staudinger and his 
critics. The studies by Carothers and other researchers resulted in theorizing the 
condensation polymerization. It became clear that difunctional molecules like di-
hydric alcohols and dicarboxylic acids could react repeatedly with the release of 
water to form polyesters of high molecular mass. This mechanism became well 
understood and the structure of the resultant polyester could be specified with 
greater confidence.

In 1941/42 the world witnessed the infancy of polyethylene terephthalate 
or better known as the polyester. A decade later for the first time polyester/cot-
ton blends introduced. In those days Terylene and Dacron (commercial names 
for polyester fibers) were miracle fibers but still overshadowed by nylon. Not 
many would have predicted those decades later, polyester would have become the 
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world’s inexpensive, general purpose fibers as well as becoming a premium fiber 
for special functions in engineering textiles, fashion and many other technical 
end-uses. From the time nylon and polyester were first used there have been an 
amazing technological advances which have made them so cheap to manufacture 
and widely available.

These developments have made the polymers such as polyesters to contribute 
enormously in today’s modern life. One of the most important applications is 
the furnishing sector (home, office, cars, aviation industry, etc.), which benefits 
hugely from the advances in technology. There are a number of requirements for 
a fabric to function in its chosen end use, for example, resistance to pilling and 
abrasion, as well as, dimensional stability. Polyester is now an important part of 
the upholstery fabrics. The shortcomings attributed to the fiber in its early days 
have mostly been overcome. Now it plays a significant part in improving the life 
span of a fabric, as well as its dimensional stability, which is due to its heat-setting 
properties.

About half century has passed since synthetic leather a composite material 
completely different from conventional ones came to the market. Synthetic leath-
er was originally developed for end-uses such as, the upper of shoes. Gradually 
other uses like clothing steadily increased the production of synthetic leather and 
suede. Synthetic leathers and suede have a continuous ultrafine porous structure 
comprising a three-dimensional entangled nonwoven fabric and an elastic ma-
terial principally made of polyurethane. Polymeric materials consisting of the 
synthetic leathers are polyamide and polyethylene terephthalate for the fiber and 
polyurethanes with various soft segments, such as aliphatic polyesters, polyethers 
and polycarbonates for the matrix.

The introduction of plastics is associated with the twentieth century but the 
first plastic material, celluloid, were made in 1865. During the 1970s, clothes of 
polyester became fashionable but by the 1980s synthetics lost the popularity in 
favor of natural materials. Although people were less enthusiastic about synthetic 
fabrics for everyday wear, Gore–Tex and other synthetics became popular for 
outdoors and workout clothing. At the same time as the use of synthetic materials 
in clothing declined, alternative uses were found. One great example is the use of 
polyester for making beverage bottles where it replaced glass with its shatterproof 
properties as a significant property.

In general it can be said that plastics enhance and even preserve life. Kevlar, 
for instance, when it is used in making canoes for recreation or when used to make 
a bulletproof vest. Polyester enhances life, when this highly nonreactive material 
is used to make replacement human blood vessels or even replacement skin for 
burn victims. With all the benefits attributed to plastics, they have their negative 
side. A genuine environmental problem exists due to the fact that the synthetic 
polymers do not break down easily compared with the natural polymers. Hence 
the need not only to develop biodegradable plastics, but also to work on more 
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effective means of recycling. A lot of research needed to study the methods of 
degradation and stabilization of polymers in order to design polymers according 
to the end-use.

Among the most important and versatile of the hundreds of commercial plas-
tics is polyethylene. Polyethylene is used in a wide variety of applications because 
it can be produced in many different forms. The first type to be commercially ex-
ploited was called low-density polyethylene (LDPE). This polymer is character-
ized by a large degree of branching, forcing the molecules to pack together rather 
than loosely forming a low-density material. LDPE is soft and pliable and has ap-
plications ranging from plastic bags, containers, textiles, and electrical insulation, 
to coatings for packaging materials.

Another form of polyethylene differing from LDPE in structure is high-densi-
ty polyethylene (HDPE). HDPE demonstrates little or no branching, resulting in 
the molecules to be tightly packed. HDPE is much more rigid than LDPE and is 
used in applications where rigidity is important. Major uses of HDPE are plastic 
tubing, bottles, and bottle caps. Other variations of polyethylene include high 
and ultra-high molecular mass ones. These types are used in applications where 
extremely tough and resilient materials are needed.

Natural polymers unlike the synthetic ones do possess very complex structure. 
Natural polymers such as cellulose, wool, and natural rubber are used in many 
products in large proportions. Cellulose derivatives are one of the most versatile 
groups of regenerated materials with various fields of application. Cellulose is 
found in nature in all forms of plant life, particularly in wood and cotton. The 
purest form of cellulose is obtained from the seed hairs of the cotton plant, which 
contain up to 95% cellulose. The first cellulose derivatives came to stage around 
1845 when the nitration of starch and paper led to discovery of cellulose nitrate. 
In 1865 for the first time a moldable thermoplastic made of cellulose nitrate and 
castor oil.

In 1865 the first acetylation of cellulose was carried out but the first acetyla-
tion process for use in industry was announced in 1894. In 1905 an acetylation 
process was introduced which yielded a cellulose acetate soluble in the cheap 
solvent, acetone. It was during the First World War when cellulose acetate dope 
found importance for weather proofing and stiffening the fabric of aircraft wings. 
There was a large surplus production capacity after the war, which led to civilian 
end uses such as the production of cellulose acetate fibers by 1920’s. Cellulose 
acetate became the main thermoplastic molding material when the first modern 
injection molding machines were designed. Among the cellulose derivatives, cel-
lulose acetates are produced in the largest volume. Cellulose acetate can be made 
into fibers, transparent films and the less substituted derivatives are true thermo-
plastics. Cellulose acetates are moldable and can be fabricated by the conven-
tional processes. They have toughness, good appearance, capable of many color 
variations including white transparency.
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New applications are being developed for polymers at a very fast rate all over 
the world at various research centers. Examples of these include electro active 
polymers, nanoproducts, robotics, etc. Electro active polymers are special types 
of materials, which can be used for example as artificial muscles and facial parts 
of robots or even in nanorobots. These polymers change their shape when acti-
vated by electricity or even by chemicals. They are lightweight but can bear a 
large force, which is very useful when being utilized for artificial muscles. Electro 
active polymers together with nanotubes can produce very strong actuators. Cur-
rently research works are carried out to combine various types of electro active 
polymers with carbon nanotubes to make the optimal actuator. Carbon nanotubes 
are very strong, elastic, and conduct electricity. When they are used as an actua-
tor, in combination with an electro active polymer the contractions of the arti-
ficial muscle can be controlled by electricity. Already works are under way to 
use electro active polymers in space. Various space agencies are investigating the 
possibility of using these polymers in space. This technology has a lot to offer for 
the future, and with the ever-increasing work on nanotechnology, electro active 
materials will play very important part in modern life.

— Alexandr A. Berlin, DSc, Viktor F. Kablov, DSc, 
Andrey A. Pimerzin, DSc, and Simon S. Zlotsky, PhD
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2 Key Elements in Polymers for Engineers and Chemists

1.1 INTRODUCTION

The kinetic modeling of styrene controlled radical polymerization, initiated by 
2,2’-asobis(isobutirnitrile) and proceeding by a reversible chain transfer mecha-
nism was carried out and accompanied by “addition-fragmentation” in the pres-
ence dibenzyltritiocarbonate. An inverse problem of determination of the un-
known temperature dependences of single elementary reaction rate constants of 
kinetic scheme was solved. The adequacy of the model was revealed by compari-
son of theoretical and experimental values of polystyrene molecular-mass proper-
ties. The influence of process controlling factors on polystyrene molecular-mass 
properties was studied using the model

The controlled radical polymerization is one of the most developing synthesis 
methods of narrowly dispersed polymers nowadays [1–3]. Most considerations 
were given to researches on controlled radical polymerization, proceeding by a 
reversible chain transfer mechanism and accompanied by “addition-fragmenta-
tion” (RAFT – reversible addition-fragmentation chain transfer) [3]. It should 
be noted that for classical RAFT-polymerization (proceeding in the presence of 
sulphur-containing compounds, which formula is Z–C(=S)–S–R’, where Z – sta-
bilizing group, R’ – outgoing group), valuable progress was obtained in the field 
of synthesis of new controlling agents (RAFT-agents), as well as in the field of 
research of kinetics and mathematical modeling; and for RAFT-polymerization in 
symmetrical RAFT-agents’ presence, particularly, tritiocarbonates of formula R’–
S–C(=S)–S–R’, it came to naught in practice: kinetics was studied in extremely 
general form [4] and mathematical modeling of process hasn’t been carried out at 
all. Thus, the aim of this research is the kinetic modeling of polystyrene controlled 
radical polymerization initiated by 2,2’-asobis(isobutirnitrile) (AIBN), proceed-
ing by reversible chain transfer mechanism and accompanied by “addition-frag-
mentation” in the presence of dibenzyltritiocarbonate (DBTC), and also the re-
search of influence of the controlling factors (temperature, initial concentrations 
of monomer, AIBN and DBTC) on molecular-mass properties of polymer.

1.2 EXPERIMENTAL PART

Prior using of styrene (Aldrich, 99%), it was purified of aldehydes and inhibi-
tors at triple cleaning in a separatory funnel by 10%-th (mass) solution of NaOH 
(styrene to solution ratio is 1:1), then it was scoured by distilled water to neutral 
reaction and after that it was dehumidified over CaCl2 and rectified in vacuo.

AIBN (Aldrich, 99%) was purified of methanol by re-crystallization.
DBTC was obtained by the method presented in research [4]. Masses of initial 

substances are the same as in Ref. [4]. Emission of DBTC was 81%. NMR 13С 
(CCl3D) δ, ppm: 41.37, 127.60, 128.52, 129.08, 134.75, and 222.35.

Examples of polymerization were obtained by dissolution of estimated quan-
tity of AIBN and DBTC in monomer. Solutions were filled in tubes, 100 mm 
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long, and having internal diameter of 3 mm, and after degassing in the mode of 
“freezing-defrosting” to residual pressure 0.01-mmHg column, the tubes were 
unsoldered. Polymerization was carried out at 60°C.

Research of polymerization’s kinetics was made with application of the calo-
rimetric method on Calvet type differential automatic microcalorimeter DAK-1–1 
in the mode of immediate record of heat emission rate in isothermal conditions at 
60°C. Kinetic parameters of polymerization were calculated basing on the calori-
metric data as in the work [5]. The value of polymerization enthalpy 73.8HΔ = −  
kJ × mol–1 [5] was applied in processing of the data in the calculations.

Molecular-mass properties of polymeric samples were determined by gel-
penetrating chromatography in tetrahydrofuran at 35°С on chromatograph GPCV 
2000 “Waters”. Dissection was performed on two successive banisters PLgel 
MIXED–C 300×7.5 mm, filled by stir gel with 5 μm vesicles. Elution rate – 0.1 
mL × min–1. Chromatograms were processed in programme “Empower Pro” with 
use of calibration by polystyrene standards.

1.2.1 MATHEMATICAL MODELING OF POLYMERIZATION PROCESS
Kinetic scheme, introduced for description of styrene controlled radical polymer-
ization process in the presence of trithiocarbonates, includes the following phases.

1. Real initiation

 dkI 2R(0)⎯⎯→ .

2.  Thermal initiation [6]. It should be noted that polymer participation in 
thermal initiation reactions must reduce the influence thereof on molec-
ular-mass distribution (MMD). However, since final mechanism of these 
reactions has not been ascertained in recording of balance differential 
equations for polymeric products so far, we will ignore this fact.

 
i1k

3M 2R(1)⎯⎯→ , 

 
i2k

2M+P R(1)+R(i)⎯⎯→ , 

 
i3k

2P 2R(i)⎯⎯→ .

 In these three reactions summary concentration of polymer is recorded as 
P.

3. Chain growth

 
pk

R(0)+M R(1)⎯⎯→ , 
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pk

R'+M R(1)⎯⎯→ , 

 
pk

R(i)+M R(i+1)⎯⎯→ .

4. Chain transfer to monomer

 
trkR(i)+M P(i, 0, 0, 0) R(1)+⎯⎯→ .

5. Reversible chain transfer [4]. As a broadly used assumption lately, we 
shall take that intermediates fragmentation rate constant doesn’t depend 
on leaving radical’s length [7].

 a1 f

f a2

k k
R(i)+RAFT(0, 0) Int(i, 0, 0) RAFT(i, 0)+R'

k k
⎯⎯→ ⎯⎯→←⎯⎯ ←⎯⎯  (I)

 
a2 f

f a2

k k
R(j)+RAFT(i, 0) Int(i, j, 0) RAFT(i, j)+R'

k k
⎯⎯→ ⎯⎯→←⎯⎯ ←⎯⎯  (II)

 

a2

f

k
R(k)+RAFT(i, j) Int(i, j, k)

k
⎯⎯→←⎯⎯  (III)

6. Chain termination [4]. For styrene’s RAFT-polymerization in the trithio-
carbonates presence, besides reactions of radicals quadratic termination

 
t1kR(0)+R(0) R(0)-R(0)⎯⎯→ , 

 
t1kR(0)+R' R(0)-R'⎯⎯→ , 

 
t1kR'+R' R'-R'⎯⎯→ , 

 
t1kR(0)+R(i) P(i, 0, 0, 0)⎯⎯→ , 

 
t1kR'+R(i) P(i, 0, 0, 0)⎯⎯→ , 

 
t1kR(j)+R(i-j) P(i, 0, 0, 0)⎯⎯→
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 are character reactions of radicals and intermediates cross termination.

 
t2kR(0)+Int(i, 0, 0) P(i, 0, 0, 0)⎯⎯→ , 

 
t2kR(0)+Int(i, j, 0) P(i, j, 0, 0)⎯⎯→ , 

 
t2kR(0)+Int(i, j, k) P(i, j, k, 0)⎯⎯→ , 

 
t2kR'+Int(i, 0, 0) P(i, 0, 0, 0)⎯⎯→ , 

 
t2kR'+Int(i, j, 0) P(i, j, 0, 0)⎯⎯→ , 

 
t2kR'+Int(i, j, k) P(i, j, k, 0)⎯⎯→ , 

 
t2kR(j)+Int(i, 0, 0) P(i, j, 0, 0)⎯⎯→ , 

 
t2kR(k)+Int(i, j, 0) P(i, j, k, 0)⎯⎯→ , 

 
t2kR(m)+Int(i, j, k) P(i, j, k, m)⎯⎯→ .

In the introduced kinetic scheme: I, R(0), R(i), R’, M, RAFT(i, j), Int(i, j, k), 
P(i, j, k, m) – reaction system’s components (refer to Table 1); i, j, k, m – a number 
of monomer links in the chain; kd – a real rate constant of the initiation reaction; 
ki1, ki2, ki3, – thermal rate constants of the initiation reaction’s; kp, ktr, ka1, ka2, 
kf, kt1, kt2 are the values of chain growth, chain transfer to monomer, radicals ad-
dition to low-molecular RAFT-agent, radicals addition to macromolecular RAFT-
agent, intermediates fragmentation, radicals quadratic termination and radicals 
and intermediates cross termination reaction rate constants, respectively.
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TABLE 1 Signs of components in a kinetic scheme.
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The differential equations system describing this kinetic scheme, is as follows:

dd[I] / dt=-k [I];

d p t1 t2
i=1

d[R(0)]/dt=2f k [I]-[R(0)](k [M]+k (2[R(0)]+[R']+[R])+k ( [Int(i, 0, 0)]+
∞
∑

i=1 j=1 i=1 j=1k=1
[Int(i, j, 0)]+ [Int(i, j, k)]));

∞ ∞ ∞ ∞ ∞
+ ∑ ∑ ∑ ∑ ∑

3 2
p tr i1 i2 0d[M] / dt =-(k ([R(0)]+[R'] [R])+k [R])[M]-3k [M] -2k [M] ([M] -[M]);+

p f a2
i=1 i=1

d[R']/dt =-k [R'][M]+2k [Int(i, 0, 0)]-k [R'] [RAFT(i, 0)]+
∞ ∞
∑ ∑

f a2 t1
i=1 j=1 i=1 j=1

+k [Int(i, j, 0)]-k [R'] [RAFT(i, j)]-[R'](k ([R(0)]+2[R']+[R])+
∞ ∞ ∞ ∞
∑ ∑ ∑ ∑

t2
i=1 i=1 j=1 i=1 j=1k=1

+k ( [Int(i, 0, 0)]+ [Int(i, j, 0)]+ [Int(i, j, k)]));
∞ ∞ ∞ ∞ ∞ ∞
∑ ∑ ∑ ∑ ∑ ∑

a1 f
i=1

d[RAFT(0,0)] / dt =-k [RAFT(0,0)][R] k [Int(i, 0, 0)];
∞

+ ∑
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3 2 3
i1 i2 0 i3 0 pd[R(1)]/dt=2k [M] +2k [M] ([M] -[M])+2k ([M] -[M]) +k [M]([R(0)]+[R']-

tr a1 f-[R(1)])+k [R(i)][M]-k [R(1)][RAFT(0,0)]+k [Int(1, 0, 0)]-

a2 f a2
i 1 i 1 j 1

-k [R(1)] [RAFT(i, 0)]+2k [Int(1, 1, 0)]-k [R(1)] [RAFT(i, j)]+
∞ ∞ ∞

= = =
∑ ∑ ∑

f t1 t2
i=1

+3k [Int(1, 1, 1)]-[R(1)](k ([R(0)]+[R']+[R])+k ( [Int(i, 0, 0)]+
∞
∑

i=1 j=1 i=1 j=1k=1
[Int(i, j, 0)] [Int(i, j, k)])), i = 2,...;

∞ ∞ ∞ ∞ ∞
+ +∑ ∑ ∑ ∑ ∑

p tr a1 fd[R(i)]/dt=k [M]([R(i-1)]-[R(i)])-k [R(i)][M]-k [R(i)][RAFT(0,0)]+k [Int(i, 0, 0)]-

a2 f a2 f
i 1 i 1 j 1

-k [R(i)] [RAFT(i, 0)]+2k [Int(i, j, 0)]-k [R(i)] [RAFT(i, j)]+3k [Int(i, j, k)]-
∞ ∞ ∞

= = =
∑ ∑ ∑

t1 t2
i=1 i=1 j=1

-[R(i)](k ([R(0)]+[R']+[R])+k ( [Int(i, 0, 0)]+ [Int(i, j, 0)]+
∞ ∞ ∞
∑ ∑ ∑

i=1 j=1k=1
[Int(i, j, k)])),  i = 2,...;

∞ ∞ ∞
+ ∑ ∑ ∑

a1 f a2d[Int(i, 0, 0)]/dt=k [RAFT(0,0)][R(i)]-3k [Int(i, 0, 0)]+k [R'][RAFT(i, 0)]-

t2-k [Int(i, 0, 0)]([R(0)]+[R']+[R]);

a2 f a2d[Int(i, j, 0)]/dt=k [RAFT(i, 0)][R(j)]-3k [Int(i, j, 0)]+k [R'][RAFT(i, j)]-

t2-k [Int(i, j, 0)]([R(0)]+[R']+[R]);

a2 f t2d[Int(i, j, k)]/dt=k [RAFT(i, j)][R(k)]-3k [Int(i, j, k)]-k [Int(i, j, k)]([R(0)]+[R']+[R]);
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f a2 a2 fd[RAFT(i, 0)]/dt=2k [Int(i, 0, 0)]-k [R'][RAFT(i, 0)]-k [RAFT(i, 0)][R]+2k [Int(i, j, 0)];

f a2 a2 fd[RAFT(i, j)]/dt=k [Int(i, j, 0)]-k [R'][RAFT(i, j)]-k [RAFT(i, j)][R] 3k [Int(i, j, k)];+

i-1t1
t1 tr

j=1

k
d[P(i, 0, 0, 0)] / dt=[R(i)](k ([R(0)]+[R'])+k [M])+ [R(j)][R(i-j)]

2
+∑

t2+k [Int(i, 0, 0)]([R(0)]+[R']);

t2
i+j=2

d[P(i, j, 0, 0)]/dt = k ([Int(i, j, 0)]([R(0)]+[R'])+ [R( j)][Int(i, 0, 0)]);
∞
∑

t2
i+j+k=3

d[P(i, j, k, 0)]/dt = k ([Int(i, j, k)]([R(0)]+[R'])+ [R(k)][Int(i, j, 0)]);
∞
∑

t2
i+j+k+m=4

d[P(i, j, k, m)]/dt = k [R(m)][Int(i, j, k)].
∞
∑

where f – initiator’s efficiency; 
i=1

[R]= [R(i)]
∞
∑  – summary concentration of macro-

radicals; t – time.
A method of generating functions was used for transition from this equation 

system to the equation system related to the unknown MMD moments [8].
Number-average molecular mass (Mn), polydispersity index (PD) and weight-

average molecular mass (Mw) are linked to MMD moments by the following 
expressions:

 n 1 0 STM ( / )Mμ μ= ∑ ∑ , 2
2 0 1PD / ( )μ μ μ= ∑ ∑ ∑ , w nM PD M= ⋅ , 

where Σμ0, Σμ1, Σμ2 – sums of all zero, first and second MMD moments; 

STM 104 g/mol=  – styrene’s molecular mass.

1.2.2 RATE CONSTANTS

1.2.2.1 REAL AND THERMAL INITIATION
The efficiency of initiation and temperature dependence of polymerization real 
initiation reaction rate constant by AIBN initiator are determined basing on the 
data in this research, which have established a good reputation for mathematical 
modeling of leaving in mass styrene radical polymerization [6]:

f 0.5,=  15 -15501/T -1
dk =1.58 10 e , s⋅ , 
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where Т – temperature, К.
As it was established in the research, thermal initiation reactions’ rates con-

stants depend on the chain growth reactions rate constants, the radicals’ quadratic 
termination and the monomer initial concentration:

13 -20293/T 2 -2 -1t1
i1 2 3

p 0

k
k =1.95 10 e , L mol s ;

k M
⋅⋅ ⋅

17 -23878/T 2 -2 -1t1
i2 2 3

p 0

k
k =4.30 10 e , L mol s ;

k M
⋅⋅ ⋅

 

8 -14807/T -1 -1t1
i3 2 2

p 0

k
k =1.02 10 e , L mol s .

k M
⋅⋅ ⋅   (6).

1.2.2.2 CHAIN TRANSFER TO MONOMER REACTION’S RATE 
CONSTANT
On the basis of the data in research [6]:

 
6 -6376/T

trk =2.31 10 e ,⋅  L·mol–1·s–1.

1.2.2.3 RATE CONSTANTS FOR THE ADDITION OF RADICALS TO 
LOW–MOLECULAR AND MACROMOLECULAR RAFT–AGENTS
In research [9], it was shown by the example of dithiobenzoates at first that chain 
transfer to low- and macromolecular RAFT-agents of rate constants are functions 
of respective elementary constants. Let us demonstrate this for our process. For 
this record, the change of concentrations [Int(i, 0, 0)], [Int(i, j, 0)], [RAFT(0,0)]  
and [RAFT(i, 0)] in quasistationary approximation for the initial phase of polym-
erization is as follows:

 a1 fd[Int(i, 0, 0)]/dt=k [RAFT(0,0)][R]-3k [Int(i, 0, 0)] 0,≈  (1)

 a2 fd[Int(i, j, 0)]/dt=k [RAFT(i, 0)][R]-3k [Int(i, j, 0)] 0,≈  (2)
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 a1 fd[RAFT(0,0)] / dt =-k [RAFT(0,0)][R] k [Int(i, 0, 0)],+  (3)

f a2 fd[RAFT(i, 0)]/dt=2k [Int(i, 0, 0)]-k [RAFT(i, 0)][R]+2k [Int(i, j, 0)].  (4)

The Eq. (1) expresses the following concentration [Int(i, 0, 0)] :

a1

f

k
[Int(i, 0, 0)] [RAFT(0,0)][R]

3k
= .

Substituting the expansion gives the following [Int(i, 0, 0)]  expression to Eq. 
(3):

a1
a1 f

f

k
d[RAFT(0,0)] / dt =-k [RAFT(0,0)][R] k [RAFT(0,0)][R].

3k
+

After transformation of the last equation, we have:

a1
d[RAFT(0,0)] 2

- k [R]dt.
[RAFT(0,0)] 3

=

Solving this equation (initial conditions: t = 0 , 0[R] = [R]  = 0 , 
0[RAFT(0,0)] = [RAFT(0,0)] ), we obtain:

 a1
0

[RAFT(0,0)] 2
ln - k [R]t.

[RAFT(0,0)] 3
=  (5)

To transfer from time t, being a part of Eq. (5), to conversion of monomer MC , we 
put down a balance differential equation for monomer concentration, assuming 
that at the initial phase of polymerization, thermal initiation and chain transfer to 
monomer are not of importance:

 pd[M] / dt =-k [R][M] . (6)

Transforming the Eq. (6) with its consequent solution at initial conditions
t = 0 , 0[R] = [R]  = 0 , 0[M] = [M] :

pd[M] / [M]=-k [R]dt , 
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 p
0

[M]
ln =-k [R]t

 [M]
. (7)

Link rate 0[M]/[M]  with monomer conversion (CM) in an obvious form like this:

0
M

0 0

[M] -[M] [M]
C 1-

 [M]  [M]
= = , 

M
0

[M]
1- C .

 [M]
=

We substitute the last ratio to Eq. (7) and express time t:

 
M

p

-ln(1- C )
t = .

k [R]
 (8)

After substitution of the expression (8) by the Eq. (5), we obtain the next equa-
tion:

 a1
M

0 p

k[RAFT(0,0)] 2
ln ln(1- C ).

[RAFT(0,0)] 3 k
=  (9)

By analogy with introduced 0[M]/[M]  to monomer conversion, reduce ratio 

0[RAFT(0,0)] / [RAFT(0,0)]  to conversion of low-molecular RAFT-agent –

RAFT(0,0)C . As a result, we obtain:

 RAFT(0,0)
0

[RAFT(0,0)]
1- C .

[RAFT(0,0)]
=  (10)

Substitute the derived expression for 0[RAFT(0,0)] / [RAFT(0,0)]  from Eq. (10) 
to Eq. (9):
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a1

RAFT(0,0) M
p

k2
ln(1- C ) ln(1- C ).

3 k
=  (11)

In the research [9], the next dependence of chain transfer to low-molecular RAFT-
agent constant tr1C  is obtained on the monomer and low-molecular RAFT-agent 
conversions:

 RAFT(0,0)
tr1

M

ln(1- C )
C .

ln(1- C )
=  (12)

Comparing Eqs. (12) and (11), we obtain dependence of chain transfer to low-
molecular RAFT-agent constant tr1C  on the constant of radicals’ addition to mac-
romolecular RAFT-agent and chain growth reaction rate constant:

 
a1

tr1
p

k2
C .

3 k
=  (13)

From Eq. (13), we derive an expression for constant a1k , which will be based on 
the following calculation:

a1 tr1 pk 1.5C k= , L·mol–1·s–1

As a numerical value for tr1C , we assume value 53, derived in research [4] on the 
base of Eq. (12), at immediate experimental measurement of monomer and low-
molecular RAFT-agent conversions. Since chain transfer reaction in RAFT-po-
lymerization is usually characterized by low value of activation energy, compared 
to activation energy of chain growth, it is supposed that constant tr1C  doesn’t 
depend or slightly depends on temperature. We will propose as an assumption that 

tr1C  doesn’t depend on temperature [10].
By analogy with a1k , we deduce equation for constant a2k . From Eq. (2) we 

express such concentration [Int(i, j, 0)] :

a2

f

k
[Int(i, j, 0)] [RAFT(i, 0)][R]

3k
= .

Substitute expressions, derived for [Int(i, 0, 0)]  and [Int(i, j, 0)]  in Eq. (4):

 a1 a2
2 1

d[RAFT(i, 0)]/dt= k [RAFT(0,0)][R]- k [RAFT(i, 0)][R].
3 3

 (14)
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Since in the end it was found that constant of chain transfer to low-molecular 
RAFT-agent tr1C  is equal to divided to constant pk  coefficient before expression 
[RAFT(0,0)][R]  in the balance differential equation for [RAFT(0,0)] , from Eq. (14) 
for constant of chain transfer to macromolecular RAFT-agent, we obtain the next 
expression:

a2
tr2

p

k1
C .

3 k
=

From the last equation we obtain an expression for constant a2k , which based on 
the following calculation:

 a2 tr2 pk 3C k ,=  L·mol–1·s–1. (15)

In research [4] on the base of styrene and DBTK, macromolecular RAFT-agent 
was synthesized, thereafter with a view to experimentally determine constant 

tr2C , polymerization of styrene was performed with the use of the latter. In the 
course of experiment, it may be supposed that constant tr2C  depends on mono-
mer and macromolecular RAFT-agent conversions by analogy with Eq. (12). As a 
result directly from the experimentally measured monomer and macromolecular 
RAFT-agent conversions, value tr2C was derived, equal to 1,000. On the ground of 
the same considerations as for that of tr1C , we assume independence of constant 

tr2C  on temperature.

1.2.2.4 RATE CONSTANTS OF INTERMEDIATES FRAGMENTATION, 
TERMINATION BETWEEN RADICALS AND TERMINATION BETWEEN 
RADICALS AND INTERMEDIATES
In research [4] it was shown, that RAFT-polymerization rate is determined by this 
equation:

2 2 2t2 t3
0 0 0

t1 t1

k k
W / W 1 K[RAFT(0,0)] K [RAFT(0,0)] ,

k k
( ) = + +

where 0W  and W  – polymerization rate in the absence and presence of RAFT-
agent, respectively, s–1; K – constant of equilibrium (III), L·mol–1; t3k  – constant 
of termination between two intermediates reaction rate, L·mol–1·s–1 [11].
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For initiated AIBN styrene polymerization in DBTC’s presence at 80°С, it 
was shown that intermediates quadratic termination wouldn’t be implemented and 
RAFT-polymerization rate was determined by equation [4]:

 
2

0 0.W / W 1 8[RAFT(0,0)]( ) = +

Since t2

t1

k
1

k
≈ , then at 80°С K = 8 L·mol–1 [4]. In order to find dependence of con-

stant K on temperature, we made research of polymerization kinetics at 60°С. 
It was found, (Fig. 1), that the results of kinetic measurements well rectify in 
coordinates 2

0 0W / W ([RAFT(0,0)] )( ) f= . At 60°С, K = 345  L·mol–1 was obtained. 
Finally dependence of equilibrium constant on temperature has been determined 
in the form of Vant–Goff’s equation:

 -27 22123/TK = 4.85 10 e⋅ , L·mol–1. (16)

FIGURE 1 Dependence 2
0(W / W) on DBTC concentration at 60°С.
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In compliance with the equilibrium (III), the constant is equal to

 a2

f

k
K=

3k
, L·mol–1.

Hence, reactions of intermediates fragmentation rate constant will be as such:

 a2
f

k
k =

3K
, s-1. (17)

The reactions of intermediates fragmentation rate constant was built into the 
model in the form of dependence (17) considering Eqs. (15) and (16).

As it has been noted above, ratio t2 t1k / k  equals approximately to one, there-
fore it will taken, that t2 t1k k≈ [4]. For description of gel-effect, dependence as a 
function of monomer conversion MC and temperature Т (К) [12] was applied:

2 3
1 M 2 M 3 M-2(A C +A C +A C )9 -844/T

t2 t1k k 1.255 10 e e≈ ≈ ⋅ , L·mol–1·s–1, 

where -3
1A =2.57-5.05 10 T⋅ ; -2

2A =9.56-1.76 10 T⋅ ; -3
3A =-3.03+7.85 10 T⋅ .

1.2.2.5 RATE CONSTANT FOR CHAIN GROWTH
The method of polymerization, being initiated by pulse laser radiation [13] is used 
for determination of rate constant for chain growth pk  lately. It is anticipated that 
such an estimation method is more correct, than the traditionally used revolving 
sector method [12]. We made our choice on temperature dependence of the rate 
constant for chain growth that was derived on the ground of method of polymer-
ization, being initiated by pulse laser radiation:

 7 -3910/T
pk = 4.27 10 e⋅ , L·mol–1·s–1,  (18)

since this dependence is more adequately describes the change of polymerization 
reduced rate with monomer conversion in the network of the developed math-
ematical model (Fig. 2), than temperature dependence, which is derived by re-
volving sector method [12]:

 7 -3667/T
pk =1.057 10 e⋅ , L·mol–1·s–1. (19)
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FIGURE 2 Dependence of initiated AIBN ([I]0=0.01 mol·L–1) styrene polymerization 
reduced rate on monomer conversion at 60°С (1 – experiment; 2 – estimation by 
introduced in this research mathematical model with temperature dependence of pk  
(18); 3 – estimation by introduced in this research mathematical model with temperature 
dependence of pk  (19): 0[RAFT(0,0)] 0=  mol·L–1 (а), 0.007 (b).



18 Key Elements in Polymers for Engineers and Chemists

1.2.3 MODEL’S ADEQUACY
The results of polystyrene molecular-mass properties calculations by the intro-
duced mathematical model are presented in Figs. 3 and 4. Mathematical model 
of styrene RAFT-polymerization in the presence of trithiocarbonates, taking into 
account the radicals and intermediates cross termination, adequately describes the 
experimental data that prove the process mechanism, built in the model. The es-
sential proof of the mechanism correctness is that in case of conceding the absence 
of radicals and intermediates cross termination – the experimental data wouldn’t 
substantiate theoretical calculation by the mathematical model, introduced in this 
assumption (Fig. 5).

FIGURE 3 (Continued)
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FIGURE 3 Dependence of number-average molecular mass (a) and polydispersity index 
(b)–(d) on monomer conversion for being initiated by AIBN ([I]0=0.01 mol·L–1) styrene 
bulk RAFT-polymerization at 60°С in the presence of DBTC (lines – estimation by model; 
points – experiment): 0[RAFT(0,0)] 0.005=  mol·L–1 (1), 0.007 (2), 0.0087 (3), 0.0174 (4), 
0.087 (5).
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FIGURE 4 Dependence of number-average molecular mass (a) and polydispersity index 
(b) on monomer conversion for being initiated by AIBN ([I]0=0.01 mol·L–1) styrene bulk 
RAFT-polymerization at 80°С in DBTC presence (lines – estimation by model; points – 
experiment): 0[RAFT(0,0)] 0.01=  mol·L–1 (1), 0.02 (2), 0.1 (3) [4].
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FIGURE 5 Dependence of number-average molecular mass on monomer conversion for 
initiated AIBN ([I]0=0.01 mol·L–1) styrene bulk RAFT-polymerization at 60 °С in DBTC 
presence [RAFT(0,0)]0 = 0.005 mol·L–1 (lines – estimation by model assuming that radicals 
and intermediates cross termination are absent; points – experiment).

Due to adequacy of the model realization at numerical experiment it became 
possible to determine the influence of process controlling factors on polystyrene 
molecular-mass properties.

1.2.4 NUMERICAL APPROACH
Research of influence of the process controlling factors on molecular-mass prop-
erties of polystyrene, synthesized by RAFT-polymerization method in the pres-
ence of AIBN and DBTC, was made in the range of initial concentrations of: ini-
tiator – 0–0.1 mol·L–1, monomer – 4.35–8.7 mol·L–1, DBTC – 0.001–0.1 mol·L–1; 
and at temperatures – 60–120°С.

1.2.4.1 THE INFLUENCE OF AIBN INITIAL CONCENTRATION BY 
NUMERICAL APPROACH
It was set forth that generally in the same other conditions, with increase of AIBN 
initial concentration number-average, the molecular mass of polystyrene decreas-
es (Fig. 6). At all used RAFT-agent initial concentrations, there is a linear or close 
to linear growth of number- average molecular mass of polystyrene with mono-
mer conversion. This means that even the lowest RAFT-agent initial concentra-
tions affect the process of radical polymerization. It should be noted that at high 
RAFT-agent initial concentrations (Fig. 7) the change of AIBN initial concentra-
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tion practically doesn’t have any influence on number-average molecular mass of 
polystyrene. But at increased temperatures (Fig. 8), in case of high AIBN initial 
concentration, it is comparable to high RAFT-agent initial concentration; polysty-
rene molecular mass would be slightly decreased due to thermal initiation.

FIGURE 6 Dependence of number-average molecular mass Mn on monomer conversion 
CM (60°С) [M]0 = 6.1 mol·L–1, [RAFT(0, 0)]0 = 0.001 mol·L–1, [I]0 = 0.001 mol·L–1 (1), 0.01 
(2), 0.1 (3).

FIGURE 7 Dependence of number-average molecular mass Mn on monomer conversion 
CM (60°С) [M]0 = 8.7 mol·L–1, [RAFT(0, 0)]0 = 0.1 mol·L–1, [I]0 = 0.001 mol·L–1 (1), 0.01 
(2), 0.1 (3).
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FIGURE 8 Dependence of number-average molecular mass Mn on monomer conversion 
CM (120°С) [M]0 = 6.1 mol·L–1, [RAFT(0, 0)]0 = 0.1 mol·L–1, [I]0 = mol·L–1 (1), 0.001 (2), 
0.01 (3), 0.1 (4).

Since the main product of styrene RAFT-polymerization process, proceeding 
in the presence of trithiocarbonates, is a narrow-dispersed high-molecular RAFT-
agent (marked in kinetic scheme as RAFT(i, j)), which is formed as a result of 
reversible chain transfer, and widely-dispersed (minimal polydispersity – 1.5) 
polymer, forming by the radicals quadratic termination, so common polydisper-
sity index of synthesizing product is their ratio. In a broad sense, with increase 
of AIBN initial concentration, the part of widely-dispersed polymer, which is 
formed as a result of the radicals quadratic termination, increase in mixture, there-
after general polydispersity index of synthesizing product increases.

However, at high temperatures this regularity can be discontinued – at low 
RAFT-agent initial concentrations the increase of AIBN initial concentration 
leads to a decrease of polydispersity index (Fig. 9, curves 3 and 4). This can be 
related only thereto that at high temperatures thermal initiation and elementary 
reactions rate constants play an important role, depending on temperature, chain 
growth and radicals quadratic termination reaction rate constants, monomer initial 
concentration in a complicated way [6]. Such complicated dependence makes it 
difficult to analyze the influence of thermal initiation role in process kinetics, 
therefore the expected width of MMD of polymer, which is expected to be syn-
thesized at high temperatures, can be estimated in every specific case in the frame 
of the developed theoretical regularities.
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FIGURE 9 Dependence of polydispersity index PD on monomer conversion CM (120°С) 
[M]0 = 8.7 mol·L–1, [RAFT(0, 0)]0 = 0.001 mol·L–1, [I]0 = 0 mol·L–1 (1), 0.001 (2), 0.01 (3), 
0.1 (4).

Special attention shall be drawn to the fact that for practical objectives, real-
ization of RAFT-polymerization process without an initiator is of great concern. 
In all cases at high temperatures as the result of styrene RAFT-polymerization im-
plementation in the presence of RAFT-agent without AIBN, more high-molecular 
(Fig. 10) and more narrow-dispersed polymer (Fig. 9, curve 1) is built-up than in 
the presence of AIBN (Fig. 9, curves 2–4).

FIGURE 10 Dependence of number-average molecular mass Mn on monomer conversion 
CM (120°С) [M]0 = 8.7 mol·L–1, [RAFT(0, 0)]0 = 0.001 mol·L–1, [I]0 = 0 mol·L–1 (1), 0.001 
(2), 0.01 (3), 0.1 (4).


