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1

Chapter 1

Introduction

Winnie Daamen, Christine Buisson, 
and Serge Hoogendoorn

Traffic and transportation applications are rapidly expanding in scope due 
to their potential impacts on community and environmental decision mak-
ing. These applications range from planning and assessment of road infra-
structure to evaluation of advanced traffic management and information 
systems (e.g., dynamic hard-shoulder running) and testing technologies 
and systems to increase safety, capacity, and environmental efficiency of 
vehicles and roads (e.g., cooperative systems and intelligent speed adapta-
tion). The complexity and scale of these problems dictate that accurate and 
dynamic traffic simulation models rather than analytical methods are used 
increasingly for these purposes.

Many commercial traffic simulation models are currently available, and 
even more models have been developed by research institutes and research 
groups all over the world. However, the simulation results should be inter-
preted with great care. First, the quality of the simulation models should 
be considered. In addition, the reproducibility of the simulation results is 
important. Reproducibility is the ability of simulation results to be accu-
rately reproduced or replicated by a party working independently using 
the same or a different simulation model. Since more and more parameters 
must be set in traffic simulation models, situations can be modeled in dif-
ferent ways and models exhibit increasing complexity, the capabilities of a 
user may affect the quality of the simulation results.

Therefore, it is important to develop methods and procedures to help 
developers and users to apply traffic simulation models correctly, effectively, 
and with reproducible results. Motivations and solutions to this problem 
should be found in the traffic models themselves and in the ways they are 
applied, following an approach that is often halfway between deductive 
and inductive, “whereby one first develops (via physical reasoning and/
or adequate idealizations and/or physical analogies) a basic mathematical 
modeling structure and then fits this specific structure (its parameters) to 
real data” (Papageorgiou, 1998). The fitting process is generally known 
as model calibration. Validation tests whether a model gives a sufficiently 
accurate representation of reality (Kleijnen, 1995). As for calibration, during 

K22594.indb   1 7/31/14   4:09 PM



2  Winnie Daamen, Christine Buisson, and Serge Hoogendoorn

the validation of a simulation tool, predictions from the simulation model 
are compared to observations from reality, but a data set different from the 
data set used for calibration should be utilized.

Unfortunately, calibration and validation against suitable observed data 
are not commonly practiced in the field of traffic simulation. Until now, no 
standardized methods existed and most efforts and resources focused on 
model (and software) development.

While researchers recently started working on these topics, the efforts are 
fragmented, based on different data sets, and motivated by various appli-
cations. The problem is further complicated by geographic and cultural 
differences in attitudes toward driving, road design, and traffic regulations 
among different countries, resulting in considerable differences in driving 
behaviors and traffic operations.

The aim of the MULTITUDE project (2013) covering methods and tools 
for supporting the use, calibration, and validation of traffic simulation 
models is therefore to develop, implement, and promote the use of methods 
and procedures to support the use of traffic simulation models, especially in 
relation to model calibration and validation, to ensure their proper use and 
the validity of the results and decisions based on them.

Before development and implementation of methods and procedures for 
calibration and validation can be started, an overview should indicate the 
information that is currently available on these and related topics. This 
overview can be used to identify the blank spots in the research and also to 
provide researchers and practitioners who are new in the field an opportu-
nity to be introduced to existing (theoretical) knowledge about the calibra-
tion and validation processes in general and in performed calibrations and 
validations of specific models in particular. The aims of this state-of-the-art 
report are to:

•	 Analyze data collection techniques and estimation methodologies for 
innovative traffic data, e.g., vehicle trajectory data.

•	 Consider data reduction and enhancement techniques for standards, 
i.e., commonly available traffic information such as point detector data.

•	 Provide an overview of calibration and validation principles.
•	 Review literature on estimation, calibration, and validation of traffic 

flow models and corresponding methodologies, including estimating 
and refining travel demand matrices using traffic data.

First, we will look at the relationship of a real system and a simulated 
system, as shown in Figure 1.1. As indicated earlier, validation intends to 
determine how well a simulation model replicates a real system. In calibra-
tion, the outputs of the simulation and the real system are also compared, 
but the parameters of the simulated system are optimized until the differ-
ence between both outputs is minimal or at least meets specific minimum 
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Introduction  3

requirements. Ideally, the inputs of the real and simulated systems should 
be identical. Therefore, both the input variables and outputs of the real 
system should be observed. However, not all inputs (e.g., dynamic origin–
destination matrices) can be observed directly and thus must be estimated; 
this introduces an additional source of inaccuracy.

A framework for calibration and validation of traffic simulation models is 
shown in Figure 1.2. Calibration and validation of traffic simulation models 
involve two steps (Toledo et al., 2003). Initially, the individual models of the 
simulator (e.g., driving behavior and route choices) are estimated using disag-
gregate data. Disaggregate data include detailed driver behavior issues such 
as vehicle trajectories. These individual models may be tested independently, 
for example, using a holdout sample. The disaggregate analysis is performed 
by statistical software and does not involve the use of a simulation model.

In the second step, the simulation model as a whole is calibrated and 
then validated using aggregate data (e.g., flows, speeds, occupancies, time 
headways, travel times, and queue lengths). Aggregate calibration and vali-
dation are important both in developing the model and applying it. The role 
of aggregate calibration is to ensure that the interactions of the individual 
models within the simulator are captured correctly and to refine previously 
estimated parameter values. In most practical applications, only aggregate 
traffic measurements are available. Model calibration in such cases must be 
performed by using aggregate data alone, so as to minimize the deviation 
between observed and simulated measurements.

Note, however, that the difference between aggregate and disaggregate 
data from the view of calibration is mostly a practical issue, not a funda-
mental one. Usually, disaggregate data are not available or are difficult to 
work with, but nothing forbids disaggregate testing of a simulation model.

This book starts with an overview of the various data collection techniques 
that can be applied to collect the different data types cited in Chapter 2. 

Simulated
system

Real
system

Simulation
output

Validation CalibrationEstimation

Parameter
optimization

Simulation
input

Real
input

Real
output

Figure 1.1 � Relationship of simulated and real systems and locations of calibration 
and validation processes. (Source: Toledo, T. and Koutsopoulos, H. 2004. 
Transportation Research Record, 1876, 142–150. With permission.)
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4  Winnie Daamen, Christine Buisson, and Serge Hoogendoorn

Chapter 3 shows data processing and enhancement techniques for improving 
the quality of the collected data. The techniques are introduced according 
to the type of estimation, i.e., microscopic data enhancement, traffic state 
estimation, feature extraction and parameter identification techniques, and 
origin–destination (OD) matrix estimation. In Chapter 4, the principles of 
calibration and validation are described. In addition to generic procedures, 
the measures of performance, goodness of fit, and optimization algorithms 
are discussed.

Before focusing on the calibration and validation processes, Chapter 5 
discusses the sensitivity analyses of the parameters in traffic models. These 
sensitivity analyses indicate the effects of various parameters on simula-
tion results and thus on the importance of determining a correct value for 
a specific parameter. Chapter 6 gives details on network model calibration 
studies, while Chapter 7 focuses on the validation of simulation models. 
The final chapter discusses conclusions.

Data collection

Estimation of individual
models

Disaggregate testing

Model re�nement

A
gg

re
ga

te
da

ta
D

isa
gg

re
ga

te
da

ta

Aggregate calibration of
simulation model

Aggregate validation

Calibrated and validated
simulation model

Figure 1.2 � Calibration and validation framework of traffic simulation models. (Source: 
Toledo, T., Koutsopoulos, H.N., Davol, A. et al. 2003. Transportation Research 
Record, 1831, 65–75. With permission.)
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Chapter 2

Data collection techniques

Jean-Michel Auberlet, Ashish Bhaskar, 
Biagio Ciuffo, Haneen Farah, 
Raymond Hoogendoorn, and Axel Leonhardt
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6  Jean-Michel Auberlet et al.

The objective of this chapter is to provide an overview of traffic data col-
lection that can and should be used for the calibration and validation of 
traffic simulation models. There are big differences in availability of data 
from different sources. Some types of data such as loop detector data are 
widely available and used. Some can be measured with additional effort, 
for example, travel time data from GPS probe vehicles. Some types such 
as trajectory data are available only in rare situations such as research 
projects.

This means that a simulation study carried out as part of a traffic engi-
neering project, having a restricted budget, typically must rely on existing 
loop data or can at most utilize some GPS probe drives. The objective of 
calibration and validation in a traffic engineering project is mainly to check 
whether a model of a specific area replicates—at a desired level of detail—
the macroscopic traffic conditions (flow, speed, travel time) for a certain 
traffic demand. Consequently, data for calibration and validation in traffic 
engineering projects typically need not to be microscopic.

Conversely, data generated with much more effort (e.g., trajectory data) 
are typically used by researchers to investigate driver behavior in general. 

2.4	 Trajectory data................................................................................ 17
2.4.1	 Vehicle-based trajectory collection (probe vehicle data)........ 17

2.4.1.1	 Macroscopic traffic parameters............................... 17
2.4.1.2	 Microscopic traffic parameters................................ 18
2.4.1.3	 Quality enhancement.............................................. 18
2.4.1.4	 Trends..................................................................... 18

2.4.2	 Video-based trajectories........................................................ 18
2.4.3	 Mobile phone data................................................................ 19

2.5	 Studies of driver and traveler behavior............................................ 20
2.5.1	 Driving simulators................................................................ 20
2.5.2	 Advantages and limitations of driving simulators................. 21
2.5.3	 Simulator validity................................................................. 21
2.5.4	 Simulator sickness................................................................. 23
2.5.5	 Use of simulators to model driver behaviors......................... 24

2.6	 Stated and revealed preferences....................................................... 26
2.7	 Metadata......................................................................................... 26
2.8	 Conclusions..................................................................................... 28

2.8.1	 Useful data............................................................................ 28
2.8.2	 Expected data quality........................................................... 28
2.8.3	 Suggestions for further actions............................................. 29

2.8.3.1	 Macroscopic data.................................................... 29
2.8.3.2	 Microscopic data..................................................... 29

2.8.4	 Overview table...................................................................... 29
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Data collection techniques  7

Analysis of driving behavior such as car following and lane changing 
requires highly detailed data to generate adequate insight into the traf-
fic features to be modeled. These data are typically very expensive and/or 
laborious to acquire.

Sections 2.1 through 2.7 briefly describe the technical backgrounds 
of various data types and detection techniques and discuss typical avail-
ability and application areas. Section 2.8 draws conclusions about what 
data to use for specific purposes. An overview table included in Section 
2.8.4 may be useful to get a quick view on the various sorts of data that 
may be used for the calibration of microscopic traffic simulation models.

In accordance with the primary focus of this book, this chapter provides 
only an overview of data collection. Extensive literature covering the tech-
niques and their performance is available to the public through the World 
Wide Web.

An interesting point is the expected quality of the data. However, there 
is some ambiguity in existing studies because “performance of a data col-
lection system” is a result of several factors (hardware and software used, 
sensor configuration, and environmental and traffic conditions). Therefore, 
this chapter will not answer questions like “What is the expected accu-
racy?” and in “What sensor is best to be used?”. Specific studies describing 
detector features and boundary conditions are cited.

Errors in data exert impacts on the calibration of a simulation model 
and hence, on its results. This impact is twofold. First, a calibration step 
is needed before a simulation can be performed. In Chapter 4, we show 
that errors in measuring the variables that are compared with the simula-
tion results impact the optimal parameters set for the calibration process. 
Second, any simulation tool uses measured (or enhanced or estimated; see 
Chapter 3) variables as inputs. Therefore, data measurement errors must be 
kept in mind when performing simulation studies. The reader is invited to 
consult the available documentation to gain knowledge of limits and error 
bounds of each type of detector.

2.1 � Manual Recording

Manual recording is not exactly a data collection technology but may 
become necessary if automatic data collection is not feasible or fails to 
provide sufficient insight. Manual observations may be especially useful at 
intersections. The following data can typically be collected manually:

•	 Traffic volumes
•	 Turning volumes at junctions
•	 Delays at signals
•	 Queue lengths
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8  Jean-Michel Auberlet et al.

2.2 �L ocal Detector Data

This section describes local detector data in detail. First, the data charac-
teristics are described, and then an overview of the various detector types 
and relevant information is presented.

2.2.1 � Data characteristics

Local detector data constitute traffic information collected at a single mea-
surement point on a road. Data can be raw (single vehicle data) or aggregate 
(information recorded at time intervals, typically 1, 5, 15, or 60 minutes, 
and in rare cases intervals smaller than 1 minute) covering one or several 
lanes. Depending on the detector type, raw data collected may include:

•	 Vehicle presence (time points when it enters and/or leaves the detec-
tion zone)

•	 Vehicle speed
•	 Vehicle class (truck, bus, etc.)
•	 True or sensor-specific (e.g., magnetic) vehicle length

Aggregate data based on a specific time interval may show:

•	 Vehicle count, possibly per vehicle class
•	 Average vehicle speed, possibly per vehicle class (time mean speed)
•	 Variance in time mean speed
•	 Local occupancy (fraction of time when vehicle was present in the 

detection zone)
•	 Average time headways and variances of time headways

Local traffic data are the most widely available automatically collected 
traffic information available now and play a key role in most simulation 
studies. Such data can be used as input values and boundary conditions to 
derive demand and route split rates. On the other hand, simulation output 
can be compared to local traffic data to validate a simulation. Comparing 
time series of local speeds is a common way to calibrate a simulation model 
for analyzing congestion development. Automatic origin–destination (OD) 
matrix correction is another application of local detector data. More details 
about OD matrix estimation and correction are given in Section 6.2 of 
Chapter 6.

2.2.2 � Detector types

Detectors can roughly be classified as intrusive and nonintrusive. Con
ventional intrusive traffic collection devices primarily consist of inductive 
loop detectors. These detectors must be cut into a road surface. This makes 
them usable only as permanent detectors, as they cannot be used for short 
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data collection periods. Because they are embedded in pavements, intru-
sive detectors are costly to install and maintain because they require road 
closures. Furthermore, they deteriorate under the impact of traffic. Loop 
detectors are well advanced because the technology has been applied for 
several decades. Another advantage is that they are less prone to vandalism 
and theft than nonintrusive devices.

Nonintrusive detectors are not in direct contact with vehicles and are usu-
ally side firing or mounted overhead. They experience less wear and tear than 
intrusive pavement-based detectors. Because they are not embedded in road 
surfaces, they are easier to install and to replace, making them suitable choices 
for temporary installations. Among the many technologies available are radar, 
ultrasonic, and video cameras. Some are advanced technologies used in the 
field for years. Others are still under development or involved in field trials.

Minge et al. (2010) noted that volume and speed measurement perfor-
mance with state-of-the-art nonintrusive detection technology (radar, video, 
laser, infrared, and magnetometer) is satisfying, but classification remains a 
weak point, especially if standardized classification schemes such as FHWA 
13 of the Federal Highway Administration in the United States (FHWA, 
2001) are applied.

2.2.2.1  �Inductive loop detectors

Inductive loops consist of wire loops inside a road surface. The loops are 
fed electrically with a frequency between 40 and 100 kHz. Any metal 
objects in the inside area of the loops change the electric inductivity of the 
loops and can be measured by an electronic device. Vehicle presence is the 
basic information provided by a loop detector. If two loops are combined 
in a small distance (typically a few meters), the speed of a vehicle can be 
measured with good accuracy.

Inductive loops are by far the most common detectors for road traffic. 
They are used as single loops around signals to provide information for 
vehicle-actuated control and on freeways as double loops to provide flow 
and speed information.

From single loops, speed can be estimated with some advanced tech-
niques, but this kind of speed information should be used with care only. 
Several recent research efforts are aimed at improving the accuracy of speed 
estimation and vehicle classification with single loops (Coifman and Kim, 
2008). Double loops can determine speeds more easily than single loops 
and are more easily used for vehicle classification (Heidemann et al., 2008).

Specific studies investigating the accuracy of installed dual loop detectors 
report unreliable results like underestimation of volumes and false classifica-
tion while stating that the cause of the inaccuracy could be the hardware, 
software, or underlying algorithm (Nihan et al., 2002). Traffic volume under-
estimation was also reported by Briedis and Samuels (2010), who cited pave-
ment condition as the factor producing the highest impact on data quality.
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Generally, data from a working and calibrated loop detector are rather 
accurate and reliable. However, since inductive loops are the typical detec-
tors used for long-term installations, many are broken or biased after long-
time usage.

2.2.2.2  �Magnetic field detectors

These detectors use the earth’s magnetic field to detect vehicles. The metal-
lic mass of a vehicle influences the vertical and horizontal components of the 
earth’s magnetic field locally and this influence can be measured by the sensors. 
For a description of the method, see Mimbela and Klein (2000). To measure 
speeds, two sensors within a close distance are needed. In modern detection 
equipment, both sensors are combined in a single unit. The time series of 
changes in the magnetic field produced by moving vehicles can also serve as 
the basis for vehicle classification and patterns for vehicle reidentification.

Since the earth’s magnetic field can be distorted by influences such as elec-
tric cables, it is necessary to consider these error sources when installing the 
sensors. A sensor is typically mounted in the middle of a lane on a road surface 
such that installation and maintenance work can be done without road clo-
sure. The systematic disadvantage of magnetic field sensors is that they cannot 
detect stopped vehicles. Since magnetometers are relatively recent measure-
ment technologies, there is no consensus on their measurement quality.

2.2.2.3  �Pressure detectors

A pressure detector can measure the presence of a vehicle at a cross section 
by measuring the impact of the wheels of the vehicle on the detector. The 
simplest pressure detectors are thin tubes attached to a road surface. When 
a vehicle crosses a tube, the air pressure is increased and the pressure can 
be measured by an electronic device. More advanced pressure detectors use 
fiber-optic tubes or piezoelectric cables.

Pressure detectors remain the most commonly used sensors for short-
term traffic counting and vehicle classification by axle count and spacing. 
Some types gather data to calculate vehicle gaps, intersection stop delays, 
stop sign delays, saturation flow rates, spot speeds, and other factors. High 
truck and bus volumes tend to deteriorate axle count accuracy. Pressure 
detectors are also prone to breakage from vandalism and wear produced by 
truck tires (Heidemann et al., 2008).

2.2.2.4  �Weigh-in-motion systems and piezoelectric sensors

Weigh-in-motion (WIM) systems are used to capture and record truck axle 
weights and gross vehicle weights as they pass over sensors. The advantage 
of state-of the-art WIM systems over older weighting systems is that the 
vehicles do not have to stop to be weighted. WIM systems use piezoelectric 
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