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Discrete phenomena are an important aspect of various complex 
systems, acting both as underlying driving mechanisms and as 
manifestations of diverse behaviours. However, the characterisation 
of these discrete phenomena requires models that go beyond those 
featured in existing books. 

Largely concerned with mathematical models used to describe 
time-varying populations and series of events, The Dynamics of 
Discrete Populations and Series of Events demonstrates how 
analytical tools are used to develop, simulate, and solve discrete 
stochastic models. It provides an understanding of the effect of the 
competing processes governing the changing number of individuals 
present in a population, and shows how relatively simple models 
can be used to generate a wide range of behaviours.
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Preface

This book is largely concerned with mathematical models that can be used 
to describe time-varying populations and series of events. These models are 
simple and generic, and the emphasis is on their general properties rather 
than their applicability to any particular real-world systems, although exam-
ples of the latter can be found in some of the further reading material listed 
at the end of each chapter. Although the models are relatively simple and 
analytically tractable, they provide a basic understanding of the effect of the 
competing processes governing the changing number of individuals present 
in a population and therefore a guide to the development of more complex 
models that can be accessible only through numerical modelling.

The book was originally stimulated by the recent development of models 
that can be used to characterise the evolution of populations with fluctua-
tions governed by long-tailed probability distributions such as are com-
monly observed in so-called complex systems. It was clear to the authors 
that a transparent description of such models would be greatly facilitated by 
tracing the way that they had emerged from the more familiar population 
processes described in the existing literature. The main part of this book is 
therefore devoted to the logical development of the theory of first-order dis-
crete Markov population processes starting from a few basic assumptions. 
Note the term discrete, here; it is also possible to characterise populations by 
approximating them with continuous variables, and this is a method that 
has been widely used. However, this book is concerned solely with the dis-
crete approach. More information about these two contrasting methods can 
be found in Chapter 1.

The book also covers work inspired by the authors’ background in quan-
tum optics. This led them to extend the more familiar models to situations 
where the populations have novel properties, including sub-Poisson statis-
tics and odd–even effects that have no continuum counterpart. Perhaps more 
importantly, it prompted them to investigate processes by which the popu-
lations may be monitored and to calculate how the measured and intrinsic 
statistics differ. This leads naturally to the generation and characterisation 
of time series that record, for example, when individuals leave a population.

A substantial review of the history of the subject and of the contents of 
each chapter is given in the introductory Chapter 1, but the book does not 
aim to give a comprehensive coverage of what is a very large area of science 
with a long and distinguished history and with a wide range of applications. 
Rather, it is intended to provide some basic mathematical tools, physical 
insight, and some novel ideas that will assist students to develop their own 
stochastic modelling capabilities. To aid this, Chapter 11 describes methods 
for numerical simulation of the models developed in the rest of the book, with 
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examples given in the mathematical programming language Mathematica®. 
These examples are, however, kept sufficiently simple that even those with 
no in-depth knowledge of Mathematica should be able to re-write them in a 
programming language of their choice.

The authors are particularly indebted to Terry Shepherd, and to Eric 
Renshaw who has authored two comprehensive volumes of related work. 
They are also indebted, of course, to a number of research students for their 
work in this area, including S. Phayre, J.O. Matthews, O.E. French, J.M. Smith, 
and W.H. Lee.
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1
Introduction

This book has a dual purpose. The first is to provide an introductory text 
that collects various discrete stochastic population models. This will furnish 
the reader with a systematic methodology for the formulation of the models, 
and it will explore their dynamical properties and the ways of characterising 
their behaviours in terms of customary measurements that can be made upon 
them. The second purpose is to then use these models as a tool for generating 
a series of events, or point processes, that have distinct properties according 
to which population model is used as a motor. The two qualifiers, discrete 
and stochastic, simultaneously provide the subject with a richness of phenom-
enology and technical challenges for formulating, describing, and extracting 
those behaviours. This is because the population can only change by an inte-
ger amount, and those changes are triggered to occur at times not governed 
by the invariable ticks of a clock. These strictures are absent when adopting 
a more straightforward continuous and deterministic approach, whereby the 
population is described as a continuous density and time marches uniformly 
onward at a regular pace. This distinction between the two approaches also 
delineates between the source, character and strength of fluctuations. In 
the stochastic formulation the fluctuations are an intrinsic property of the 
population itself. The mechanisms causing the changes in population size 
are essentially non-perturbative in nature because they change the state of 
the population by values of finite size, and this is true even if the mathe-
matical formulation of a particular mechanism is linear. In the deterministic 
approach, intrinsic fluctuations can only arise through non-linearity. Both 
approaches can be affected by the presence of extrinsic noise, but again this 
is essentially non-perturbative in the stochastic formulation.

The dynamics of populations has a long and varied history, both in terms 
of the subjects’ development per se and for the stimulus it has provided to 
other seemingly unconnected areas. Indeed, the subject has a pervasiveness 
that can cross between scientific boundaries and even beyond the ambit 
of the physical sciences by virtue of its utility. It was the cleric and scholar 
Robert Malthus who, in his Essay on the Principle of Population in 1798 [1], 
considered the brakes to unfettered linear exponential population growth. 
His conclusion that ‘the power of population is indefinitely greater than the 
power in the earth to produce subsistence in man’ resonates down the ages 
in spirit if not through the predictive accuracy of his analysis. This essay 
stimulated, in 1801, the establishment of the first decennial national census 
in the United Kingdom in order to ascertain how much corn was required to 
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feed the nation (and, serendipitously, to quantify the number of able-bodied 
men available to fight in the Napoleonic wars). The essay provided one of 
many stimuli to Charles Darwin’s development of the theory of natural 
selection. Darwin recognised that the effects of competition for resources by 
species as described by Malthus provided a mechanism for their diversifica-
tion, whereby ‘favourable variations would tend to be preserved, and unfa-
vourable ones to be destroyed. The results of this would be the formation of 
a new species. Here, then I had at last got a theory by which to work’ [2].

Pierre-Francois Vehulst sought to model and thereby quantify the limita-
tions to exponential growth to which Malthus alluded [3]. This introduced to 
the equation describing the continuous and deterministic evolution of popu-
lation size the notion of a carrying capacity that embodies an ecosystem’s abil-
ity to sustain such a population. The key ingredient of this ‘logistic’ equation 
is its non-linearity, which predicted that the population’s size saturated even-
tually and established the timescale on which this occurred. It is not so much 
this result but a technical reinterpretation of the logistic equation itself, over 
a century after Vehulst, which is of interest and profound consequence. This 
reinterpretation of the governing equation recognised that there is a sea-
son in which an animal or plant species breeds or grows. To encapsulate 
this observation, time was no longer treated continuously but as a discrete 
variable, although still deterministically. In this way the logistic differential 
equation is transformed to a difference equation or iterative mapping. The 
mapping contains a parameter, related to the carrying capacity, whose value 
leads to very different classes of behaviour. These range from solutions simi-
lar to those obtained from the continuous equation, to periodic bi-stability 
where the population oscillates between two values, period-doubling and 
aperiodic behaviour sensitive to the initial conditions. The logistic mapping 
therefore provides a paradigm for deterministic chaos, as described in the 
review article by Robert May [4].

Descriptions of the events that are associated with various population 
models are also ubiquitous because of their usefulness. The model with 
which all others are compared is the Poisson process. The distribution for 
the number of these birth events occurring in an interval of time was intro-
duced by Siméon-Denis Poisson but with totally different context and appli-
cation, namely to the deliberations of juries in criminal and civil legal trials 
[5]. The Poisson process’ reach is very wide because of its elemental and sim-
ple nature. The Poisson distribution is an example belonging to the discrete 
stable class of distributions. This means that the sum of Poisson distributed 
random variables is itself a Poisson distributed random variable. This makes 
the Poisson the discrete analogue of the continuous Gaussian random vari-
able, which also possesses the stability property. The widening of the dis-
crete stable class through the agency of population models, and the events 
associated with them, forms the subject matter of Chapter 7.

The intended readership of this book is the advanced undergraduate or 
postgraduate student, but we also have in mind the experienced researcher 
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who may be changing fields, or who needs to know about a particular class of 
population model and to access key information for its characterisation. The 
mathematical machinery required to understand the development will have 
been encountered by most chemistry, mathematics, physics and theoretical 
biology students. Moreover, we have adhered to pursuing the development 
using a limited bag of tools, even in those instances when application of 
another method can produce a result with greater economy of effort. If a par-
ticular model admits an analytical solution, then that solution can usually be 
obtained by more than one means. The text is concerned with exploring the 
stochastic formulation of population models and the qualitative differences 
between them rather than the methods available for obtaining their solution. 
The following chapters include a brief summary, some problems that explore 
both the basics and some more interesting aspects of the development, and a 
‘Further Reading’ list. A manual with solutions to the problems is also avail-
able. The bibliography is not meant to be exhaustive but rather a first port of 
call for the reader to explore applications, subtleties, and further techniques.

Chapter 2 provides a primer for the probabilistic and statistical tools that 
will be used throughout. It introduces the discrete distributions that will 
feature in subsequent chapters and also their alternative representation in 
terms of a generating function. The technique of using generating functions 
to represent the population dynamics may, at first encounter, appear as an 
unwelcome abstraction and diversion. But their use enables the equations to 
be solved in a systematic fashion, and once obtained, the probabilities and 
moments that correspond to observable quantities can be derived from the 
generating function by elementary means.

Chapter 3 commences by establishing the Markov property, which is a 
further preliminary probabilistic foundation that will inform the develop-
ment of most of the population models we go on to describe. This property 
pertains to how the future evolution of a system is affected by its immediate 
or more distant past. The chapter continues by exploring the three impor-
tant elements of births, deaths and immigration as a cause for population 
change, and shows, with the assistance of the Markov property, how these 
separate processes are represented mathematically in the equation describ-
ing the stochastic evolution. Rather than solve for the complete dynamics, 
the evolution of measurables, such as the mean size and the correlation in 
size between one instant and the next, is obtained. The reason for this is 
that these microscopic causes for change in a populations’ size are easy to 
intuit in terms of their averaged manifestation; births and deaths occurring 
in a population cause it to either grow or diminish in size unless the birth 
and death rates are identical, and so this contains no particular surprises. 
The stochastic treatment of the birth process was originally treated by Yule 
[6], in the context of mathematical biology, and independently by Furry [7] 
with regard to transmutation of elements by radioactive decay. The combina-
tion of deaths with immigration leads to the important concept of a station-
ary or equilibrium state for the population. Indeed, this equilibrium forms 
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something of a benchmark against which all others can be compared, for it is 
the ubiquitous Poisson distribution. The simple mechanisms of birth, death 
and immigration provide a useful ground in which to explore the effect of 
measurement. The idea of making a measurement on a fluctuating quantity 
is not as straightforward as one might expect, or indeed hope. Any measure-
ment takes a finite time to perform, during which the population continues 
to change. If that change is small compared with the population’s size at the 
commencement of the measurement, then it will approximate the instanta-
neous state of the population itself. If the converse is true, the measurement 
process will sample and aggregate the various intermediate states through 
which the population evolves during the measurement time. The type of 
measurement made can also affect the population itself. Counting the num-
ber of individuals leaving (say) an airport is fundamentally different from 
counting the number of photons leaving a cavity. The detection of a photon 
is synonymous with its destruction and it can no longer participate in the 
dynamics. The measurement process also furnishes a more abstract but utili-
tarian function for turning the fluctuations in population size into a series 
of events in time that mark when those changes occur. It is this connection 
between the primary process by which the population evolves in time, and 
the secondary process by which it is monitored, that forms an important and 
recurrent theme throughout the text.

Chapter 4 considers the simultaneous combination of births, deaths, and 
immigration into a process, and this leads to a broader class of equilibrium 
solution provided that the death rate exceeds the rate at which births occur. 
This problem has surfaced in numerous branches of science, with the three 
mechanisms for change being co-opted to represent genetic mutations, 
through the production of photons in a cavity to the fluctuating state of the 
sea’s surface. The full machinery of the generating function method of solu-
tion is deployed here for the first time. This serves to illustrate, in a natural 
way, how the relative sizes of the rates affect the structure of the equilibrium 
solution, how these combine to form the timescale that governs the approach 
to this steady state and the intrinsic fluctuations in it. The monitoring of this 
process is explored in more detail with two scenarios being treated. The first 
of these is where the counted ‘individuals’ are removed and no longer par-
ticipate in the evolution; the second corresponds to when they are replaced 
and so continue to contribute to the evolution. Although one might consider 
that such distinctions would lead to minor differences, the discrepancies 
are nevertheless significant and the underlying physical interpretation for 
their occurrence is explored. The equilibrium solution of the birth–death–
immigration process is characterised by fluctuations whose relative sizes are 
greater than the benchmark Poisson process. The series of events that are 
generated by this process are characterised by their occurring in clusters or 
bunches and therefore have an intermittent quality.

There are processes whose fluctuations are of lesser size than those asso-
ciated with the Poisson, and events whose occurrences show a greater 
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regularity than the purely random, manifesting a propensity for anti-bunch-
ing. Such populations can be generated using the mechanisms already intro-
duced but with the important modification that the population size is capped 
but dynamically coupled with the extant population size. A limiting mecha-
nism of this kind is redolent of the carrying capacity of an environment, 
but crucially it has no continuum analogue and is therefore quite distinct 
from the logistic model. A lower limit can also be applied so that the popula-
tion cannot fall below some base value, and even when the cap is removed, 
this process can exhibit sub-Poisson effects. Chapter 5 provides the details 
of these models that exhibit sub-Poisson traits whilst retaining similar math-
ematical properties to those processes already encountered. An altogether 
different process that also has no continuum equivalent arises from relax-
ing the condition that the population can only increase though singletons. 
If immigrants enter the population in pairs but die singly, then the fluctua-
tions display different properties according to whether there are an even or 
odd number present. Moreover, the monitoring without replacement of such 
a population serves to amplify the odd–even parity effects. Although this 
process is of interest to a rather arcane amplifier effect in quantum optics, its 
formulation prompts an important generalisation of the death–immigration 
process to one possessing great flexibility for modelling arbitrary popula-
tions with a prescribed steady state.

Allowing the immigrants to enter not just singly or in pairs, but in addi-
tion as triplets, …, r-tuplets, with rates of immigration particular to r, results 
in a mathematical structure with a simple and appealing interpretation. 
The population may be thought as being coupled to a separate equilibrium 
population of potential immigrants; it provides a coupling to an environ-
ment. Crucially, the formulation, which is described in Chapter 6, admits 
an inverse problem to be performed, whereby a population with a desired 
equilibrium state can be constructed through tailoring the rates at which the 
multiple immigrants are introduced.

The utility of the death–multiple immigration model is demonstrated in 
Chapter 7 to generate the discrete analogue of the stable process. Continuous 
stable random variables were treated by Paul Lévy in 1937 [8] as a generalisa-
tion of the Gaussian random variable, which is ubiquitous in pure and applied 
science. Nevertheless, the generalisation resulted in distributions whose 
variance is infinite and for which there is no characteristic associated scale 
size. Consequently, the generalisation was regarded as mathematical pathol-
ogy and of little practical importance. In 1963, Beniot Mandelbrot showed 
that the fluctuations in cotton prices were described by such distributions [9]. 
So too were the fluctuations in diverse systems whose correlation scale size 
become commensurate with that of the system, irrespective of the details of 
the dynamics governing the system itself. Such behaviours are observed in 
systems close to some change in its phase or state. Throughout the late 1980s 
onward, various manifestations of the ‘sandpile’ paradigm were developed 
with the aim of demonstrating manifestations of these phenomena without 
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recourse to fine-tuning a systems’ parameters in order to adopt particular 
outcomes, in other words to achieve emergent behaviours from a parsimoni-
ous and generic dynamics [10]. This was achieved using computational mod-
els, and these possessed the wild fluctuations and scale-free properties of the 
non-Gaussian stable distributions. Since these were computational results, 
they are necessarily discrete in nature. A discrete stable process can be gener-
ated using the death–multiple immigration population model. The particular 
problems associated with monitoring such a process are acute, for the detect-
ing ‘instrument’ will have a finite range or bandwidth, whereas the popula-
tion has fluctuations of arbitrary size. Saturation effects in sampling, which 
are therefore inevitable, must be accounted for. When monitored, the series 
of events so formed present fractal properties irrespective of the properties 
of the detector—the scale-free attributes being transferred from a cascade in 
increasing population size to an inverse cascade in the time between events.

The coupling of populations in the stochastic framework presents techni-
cal challenges that are absent in the continuous and deterministic picture. It 
is an important area with much scope for future work in diverse application 
areas. A celebrated continuous formulation was pioneered independently 
by Alfred Lotka and Vito Volterra and has become known as the predator–
prey equations [11], through which the dynamics of an idealised ecosystem 
comprising the hunters and hunted can be explored. The developments of 
this paradigm to treat a more diverse, realistic, and necessarily more com-
plex set of ecosystems is described by Robert May [12]. From the stochastic 
perspective, the incorporation of immigrations into a population, be they 
single or multiple, is essentially modelling the situation of the population 
being affected and adjusting to accommodate the influence of an external 
environment. This occurs without the population reacting back onto those 
stimuli. Chapter 8 examines how the multiple immigration picture can be 
adapted so that a population and its environment become fully coupled 
with one another, evolving self-consistently according to their internal 
and mutual dynamics. This approach admits treating increasingly com-
plex situations, where the environment can be regarded as a heterogeneous 
ensemble of different populations that connected in a chain. But the inter-
actions between populations can occur in a greater variety of ways. The 
situation where members of one population are exchanged and rebadged 
as members of another provides another mechanism that displays distinct 
characteristics.

Rather than a series of events being driven through the agency of a discrete 
population process, it is possible for the events to be caused by some under-
lying fluctuation in a continuous quantity. Useful ideas frequently emerge 
in unconnected application areas and at broadly similar times. David Cox 
formulated this idea and illustrated it with application to the periods when 
a weaving loom was operational, dormant or had broken down [13]. By con-
trast, Leonard Mandel independently arrived at the same formulation with 
regard to the intervals between detection of photons using photoelectric 
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multiplier tubes [14]. Such a representation has become known as doubly 
stochastic or compound because the fluctuations in the continuous variable 
stimulate an associated discrete process, the two forming a transform pair. 
This mechanism is explored in Chapter 9 and furnishes a method of great 
power and flexibility for generating populations. Indeed, the method can 
be demonstrated using the discrete stable process detailed in Chapter 7 to 
deduce the continuous process that produces it. Not surprisingly (perhaps) 
this is a continuous stable process, and the underlying Markov assumption 
enables the entire joint statistical properties of stable distributed variables to 
be deduced within the doubly stochastic context.

Chapter 10 discusses another mechanism for generating a series of events 
defined by an underlying continuous random process exceeding a pre-
defined threshold: the level crossing problem. This problem has a huge litera-
ture associated with it [15], which has continued to expand. The reason for 
the large volume and diversity of work is principally because of the prob-
lem’s close association with diverse applications in communications theory 
and technology, instrumentation and signal processing, and its relevance to 
the size, frequency and duration of extremal events. The principal differ-
ence between this problem and all the others treated in the text stems from 
its non-Markovian nature; the future evolution of the continuous process is 
affected not just by its immediate past but also further back into its history. 
This complexity through the mechanism of ‘memory’ is inherited by the level 
crossings and properties associated with them. The mathematical manifesta-
tion of this occurs through the spectrum of the continuous process having 
a non-Lorenztian form, which leads to profound technical challenges but 
also considerable richness in phenomenology. The statistical properties of 
the events display all the attributes that particular models describe: bunch-
ing, anti-bunching, fractal and sub-fractal.

Despite the emphasis placed on analytical methods, computational sim-
ulation of populations and the properties derived from them provides an 
important complementary approach to understanding, model development 
and the treatment of real-world situations. Often it is the only way to make 
progress. Chapter 11 describes the techniques for the population models pre-
viously described, with examples of Mathematica® code for their implemen-
tation. The essentials of any stochastic population model are to determine 
when the next event occurs and its nature, both of these being conditioned 
on what happened at the preceding event. This procedure can be elabo-
rated without difficulty to incorporate an arbitrary number of different 
mechanisms that influence the dynamics of the population. The algorithmic 
method usually carries Daniel Gillespie’s name [16], following his treatment 
of chemical reactions, but it can be traced back further to a computational 
implementation made by David Kendall [17] of a birth–death population 
model that flowed from rigorous work in probability theory carried out by 
Andrey Kolmogorov, William Feller and Joseph Doob. The other numeri-
cal technique describes the simulation of a Gaussian random process with 
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zero mean, unit variance and allowable but otherwise arbitrary autocorrela-
tion function, hence a non-Markov situation. The higher-order statistics of a 
Gaussian process is completely defined through this single function. New 
continuous processes can be generated as functions of a Gaussian process, 
and so the ability to simulate them provides utility and flexibility for produc-
ing a range of continuous random processes.

The construction of models is the most basic activity in science. A ‘good’ 
model is one which captures the essentials of a particular phenomenon and 
which possesses a predictive capacity, both of these being achieved with the 
fewest of underlying assumptions. If those assumptions are transgressed 
or applied inappropriately, the model will fail to correspond to the reality. 
Hence, a model should not be confused with the actual phenomenon it pur-
ports to explain, rather it is a simulacrum of some aspect of its manifestation. 
This book contains a collection of models that have found a direct applicabil-
ity in a range of application areas. But they also supply a more general way 
of thinking about the generation of events having different characters. We 
have aimed to show how these models can be fabricated in a hierarchical and 
systematic way from a few basic elements, and have arranged them accord-
ing to the different phenomena they present. The reader can therefore select 
whether a given model has the appropriate character for describing their 
application of interest. If not, then a further aim is to provide for the reader 
the foundations and techniques to apply, adapt, and augment the models 
described here together with the ability and confidence to create new models 
for their own purposes.
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2
Statistical Preliminaries

2.1  Introduction

The purpose of this chapter is to provide a brief introduction to the statistical 
quantities and notation that will be used in the remainder of the book. The 
treatment is oriented to the case of discrete variables and is not intended to be 
exhaustive. The reader is referred to books listed under ‘Further Reading’ at 
the end of the chapter for more comprehensive treatments of the basics and 
particularly for situations in which the quantities of interest are not quantised.

After defining the basic concept of probability in the context of discrete 
variables, we shall describe some commonly encountered discrete probabil-
ity distributions and characteristic measures by which their properties can 
be recognised and assessed. The generating functions that can often be used 
to simplify calculation will be introduced, and it will be shown how these 
can be used to recover both the distributions themselves and other useful 
properties. Discrete processes will be introduced through the concept of a 
population of individuals that is evolving with time. The number in the pop-
ulation at any given instant may then be related to that at previous times, 
giving rise to the notion of correlation. Another kind of discrete process is the 
series of events and in later chapters we shall show how simple mathematical 
models for the evolution of the number of individuals in a population can 
also be used to generate time sequences of this type. In the present chapter, 
two related measures of such a process will be discussed: the probability 
distribution of the number of events that occur in a given time interval and 
the statistics of the separation of the points in time at which the events occur.

2.2  Probability Distributions

Consider a large collection or ensemble of similar populations. We can work 
out the fraction of the populations containing exactly N individuals. This 
represents the probability ≡P P N( )N  of finding a population of N individuals 
in such an ensemble and we can plot this as a function of N as illustrated in 


