
Computer games represent a significant software application domain
for innovative research in software engineering techniques and tech-
nologies. Game developers, whether focusing on entertainment-mar-
ket opportunities or game-based applications in non-entertainment
domains, thus share a common interest with software engineers and
developers on how to best engineer game software.

Featuring contributions from leading experts in software engineering,
the book provides a comprehensive introduction to computer game
software development that includes its history as well as emerging
research on the interaction between these two traditionally distinct
fields.

An ideal reference for software engineers, developers, and research-
ers, this book explores game programming and development from a
software engineering perspective. It introduces the latest research in
computer game software engineering (CGSE) and covers topics such
as HALO (Highly Addictive, sociaLly Optimized) software engineering,
multi-player outdoor smartphone games, gamifying sports software,
and artificial intelligence in games.

The book explores the use of games in software engineering edu-
cation extensively. It also covers game software requirements engi-
neering, game software architecture and design approaches, game
software testing and usability assessment, game development frame-
works and reusability techniques, and game scalability infrastructure,
including support for mobile devices and web-based services.

CHAPMAN & HALL/CRC INNOVATIONS IN
SOFTWARE ENGINEERING AND SOFTWARE DEVELOPMENT

Computer Games and
Software Engineering

C
o

m
p

u
ter G

a
m

es a
n

d
 S

o
ftw

a
re E

n
g

in
eerin

g

Computer Games and
Software Engineering

Edited by

Kendra M. L. Cooper
Walt Scacchi

C
o

o
p

er
S

ca
cch

i

K22498

w w w . c r c p r e s s . c o m

Software Engineering & Systems Development

K22498_cover.indd 1 4/14/15 12:01 PM

Computer Games and
Software Engineering

Chapman & Hall/CRC Innovations in Software Engineering
and Software Development

Series Editor
Richard LeBlanc

Chair, Department of Computer Science and Software Engineering, Seattle University

AIMS AND SCOPE

This series covers all aspects of software engineering and software development. Books
in the series will be innovative reference books, research monographs, and textbooks at
the undergraduate and graduate level. Coverage will include traditional subject matter,
cutting-edge research, and current industry practice, such as agile software development
methods and service-oriented architectures. We also welcome proposals for books that
capture the latest results on the domains and conditions in which practices are most ef-
fective.

PUBLISHED TITLES

Computer Games and Software Engineering
Kendra M. L. Cooper and Walt Scacchi

Software Essentials: Design and Construction
Adair Dingle

Software Metrics: A Rigorous and Practical Approach, Third Edition
Norman Fenton and James Bieman

Software Test Attacks to Break Mobile and Embedded Devices
Jon Duncan Hagar

Software Designers in Action: A Human-Centric Look at Design Work
André van der Hoek and Marian Petre

Fundamentals of Dependable Computing for Software Engineers
John Knight

Introduction to Combinatorial Testing
D. Richard Kuhn, Raghu N. Kacker, and Yu Lei

Building Enterprise Systems with ODP: An Introduction to Open
Distributed Processing
Peter F. Linington, Zoran Milosevic, Akira Tanaka, and Antonio Vallecillo

Software Engineering: The Current Practice
Václav Rajlich

Software Development: An Open Source Approach
Allen Tucker, Ralph Morelli, and Chamindra de Silva

CHAPMAN & HALL/CRC INNOVATIONS IN
SOFTWARE ENGINEERING AND SOFTWARE DEVELOPMENT

Computer Games and
Software Engineering

Edited by

Kendra M. L. Cooper
University of Texas

Dallas, USA

Walt Scacchi
University of California, Irvine

Irvine, USA

Chapman & Hall/CRC Innovations in Software Engineering
and Software Development

Series Editor
Richard LeBlanc

Chair, Department of Computer Science and Software Engineering, Seattle University

AIMS AND SCOPE

This series covers all aspects of software engineering and software development. Books
in the series will be innovative reference books, research monographs, and textbooks at
the undergraduate and graduate level. Coverage will include traditional subject matter,
cutting-edge research, and current industry practice, such as agile software development
methods and service-oriented architectures. We also welcome proposals for books that
capture the latest results on the domains and conditions in which practices are most ef-
fective.

PUBLISHED TITLES

Computer Games and Software Engineering
Kendra M. L. Cooper and Walt Scacchi

Software Essentials: Design and Construction
Adair Dingle

Software Metrics: A Rigorous and Practical Approach, Third Edition
Norman Fenton and James Bieman

Software Test Attacks to Break Mobile and Embedded Devices
Jon Duncan Hagar

Software Designers in Action: A Human-Centric Look at Design Work
André van der Hoek and Marian Petre

Fundamentals of Dependable Computing for Software Engineers
John Knight

Introduction to Combinatorial Testing
D. Richard Kuhn, Raghu N. Kacker, and Yu Lei

Building Enterprise Systems with ODP: An Introduction to Open
Distributed Processing
Peter F. Linington, Zoran Milosevic, Akira Tanaka, and Antonio Vallecillo

Software Engineering: The Current Practice
Václav Rajlich

Software Development: An Open Source Approach
Allen Tucker, Ralph Morelli, and Chamindra de Silva

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20150317

International Standard Book Number-13: 978-1-4822-2669-0 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

v

Contents

Contributors, vii

Chapter 1 ◾ Introducing Computer Games and Software
Engineering 1
Kendra M.L. Cooper and WaLt SCaCChi

SeCtion i The Potential for Games in Software
Engineering Education

Chapter 2 ◾ Use of Game Development in Computer
Science and Software Engineering Education 31
aLf inge Wang and Bian Wu

Chapter 3 ◾ Model-Driven Engineering of Serious
Educational Games: Integrating Learning
Objectives for Subject-Specific Topics
and Transferable Skills 59
Kendra M.L. Cooper and Shaun LongStreet

Chapter 4 ◾ A Gameful Approach to Teaching Software
Design and Software Testing 91
SWapneeL Sheth, Jonathan BeLL, and gaiL KaiSer

Chapter 5 ◾ Educational Software Engineering:
Where Software Engineering, Education,
and Gaming Meet 113
tao Xie, niKoLai tiLLMann, Jonathan de haLLeuX,
and Judith BiShop

vi ◾ Contents

Chapter 6 ◾ Adaptive Serious Games 133
BarBara reiChart, daMir iSMaiLović, denniS pagano,
and Bernd Brügge

SeCtion ii Conducting Fundamental Software Engineering
Research with Computer Games

Chapter 7 ◾ RESTful Client–Server Architecture: A Scalable
Architecture for Massively Multiuser Online
Environments 153
thoMaS deBeauvaiS, arthur vaLadareS, and CriStina v. LopeS

Chapter 8 ◾ Software Engineering Challenges of
Multiplayer Outdoor Smart Phone Games 183
roBert J. haLL

Chapter 9 ◾ Understanding User Behavior at Three Scales:
The AGoogleADay Story 199
danieL M. ruSSeLL

Chapter 10 ◾ Modular Reuse of AI Behaviors for Digital
Games 215
ChriStopher dragert, Jörg KienzLe, and CLarK verBrugge

Chapter 11 ◾ Repurposing Game Play Mechanics as a
Technique for Designing Game-Based Virtual
Worlds 241
WaLt SCaCChi

Chapter 12 ◾ Emerging Research Challenges in Computer
Games and Software Engineering 261
WaLt SCaCChi and Kendra M.L. Cooper

vii

Jonathan Bell
Department of Computer Science
Columbia University
New York, New York

Judith Bishop
Microsoft Research
Redmond, Washington

Bernd Brügge
Computer Science Department
Technical University of Munich
Munich, Germany

Kendra M.L. Cooper
Department of Computer Science
University of Texas, Dallas
Richardson, Texas

Jonathan de Halleux
Microsoft Research
Redmond, Washington

Thomas Debeauvais
Department of Informatics
University of California, Irvine
Irvine, California

Christopher Dragert
School of Computer Science
McGill University
Montréal, Québec, Canada

Robert J. Hall
AT&T Labs Research
Florham Park, New Jersey

Damir Ismailović
Computer Science Department
Technical University of Munich
Munich, Germany

Gail Kaiser
Department of Computer Science
Columbia University
New York, New York

Jörg Kienzle
School of Computer Science
McGill University
Montréal, Québec, Canada

Contributors

viii ◾ Contributors

Shaun Longstreet
Center for Teaching and Learning
Marquette University
Milwaukee, Wisconsin

Cristina V. Lopes
Department of Informatics
University of California, Irvine
Irvine, California

Dennis Pagano
Computer Science Department
Technical University of Munich
Munich, Germany

Barbara Reichart
Computer Science Department
Technical University of Munich
Munich, Germany

Daniel M. Russell
Google, Inc.
Menlo Park, California

Walt Scacchi
Center for Computer Games and

Virtual Worlds
University of California, Irvine
Irvine, California

Swapneel Sheth
Department of Computer Science
Columbia University
New York, New York

Nikolai Tillmann
Microsoft Research
Redmond, Washington

Arthur Valadares
Department of Informatics
University of California, Irvine
Irvine, California

Clark Verbrugge
School of Computer Science
McGill University
Montréal, Québec, Canada

Alf Inge Wang
Department of Computer and

Information Science
Norwegian University of Science

and Technology
Trondheim, Norway

Bian Wu
Department of Computer

and Information Science
Norwegian University of Science

and Technology
Trondheim, Norway

Tao Xie
University of Illinois at Urbana,

Champaign
Champaign, Illinois

1

C h a p t e r 1

Introducing Computer
Games and Software
Engineering

Kendra M.L. Cooper and Walt Scacchi

1.1 EMERGING FIELD OF COMPUTER GAMES
AND SOFTWARE ENGINEERING

Computer games (CGs) are rich, complex, and often large-scale software
applications. CGs are a significant, interesting, and often compelling soft-
ware application domain for innovative research in software engineer-
ing (SE) techniques and technologies. CGs are progressively changing

CONTENTS
1.1 Emerging Field of Computer Games and Software Engineering 1
1.2 Brief History of Computer Game Software Development 3
1.3 Topics in Computer Games and Software Engineering 6

1.3.1 Computer Games and SEE 6
1.3.2 Game Software Requirements Engineering 8
1.3.3 Game Software Architecture Design 8
1.3.4 Game Software Playtesting and User Experience 9
1.3.5 Game Software Reuse 10
1.3.6 Game Services and Scalability Infrastructure 11

1.4 Emergence of a Community of Interest in CGSE 12
1.5 Introducing the Chapters and Research Contributions 14
1.6 Summary 24
Acknowledgments 25
References 25

2 ◾ Computer Games and Software Engineering

the everyday world in many positive ways (Reeves and Read 2009). Game
developers, whether focusing on entertainment-market opportunities or
game-based applications in nonentertainment domains such as education,
health care, defense, or scientific research (serious games or games with
a purpose), thus share a common community of interest in how to best
engineer game software.

There are many different and distinct types of games, game engines, and
game platforms, much like there are many different and distinct types of
software applications, information systems, and computing systems used
for business. Understanding how games as a software system are devel-
oped to operate on a particular game platform requires identifying what
types of games (i.e., game genre) are available in the market. Popular game
genres include action or first-person shooters, adventure, role-playing
game (RPG), fighting, racing, simulations, sports, strategy and real-time
strategy, music and rhythm, parlor (board and card games), puzzles, edu-
cational or training, and massively multiplayer online games (MMOGs).
This suggests that knowledge about one type of game (e.g., RPGs such as
Dungeons and Dragons) does not subsume, contain, or provide the game
play experience, player control interface, game play scenarios, or player
actions found in other types of games. Therefore, being highly skilled in the
art of one type of game software development (e.g., building a turn- taking
RPG) does not imply an equivalent level of skill in developing another type
of game software (e.g., a continuous play twitch or action game). This is
analogous to saying that if a software developer is skilled in payroll and
accounting software application systems, this does not imply that such a
developer is also competent or skilled in the development of enterprise
database management or e-commerce product sales over the web systems.
The differences can be profound, and the developers’ skills and expertise
narrowly specialized.

Conversely, similar games, such as card or board games, raise the obvious
possibility for a single game engine to be developed and shared or reused
to support multiple game kinds of a single type. Game engines provide a
runtime environment and reusable components for common game-related
tasks, which leaves the developers freer to focus on the unique aspects of
their game. For example, the games checkers and chess are played on an
8 × 8 checkerboard; though the shape and appearance of the game play
pieces differ and the rules of game play differ, the kinds of player actions
involved in playing either chess or checkers are the same (picking a piece
and moving it to a square allowed by the rules of the game). Therefore,

Introducing Computer Games and Software Engineering ◾ 3

being skilled in the art of developing a game of checkers can suggest the
ability or competent skill in developing a similar game like chess, especially
if both games can use the same game engine. However, this is feasible only
when the game engine is designed to allow for distinct sets of game rules
and distinct appearance of game pieces—that is, the game engine must be
designed for reuse or extension. This design goal is not always an obvi-
ous engineering choice, and it is one that increases the initial cost of game
engine development (Bishop et al. 1998; Gregory 2009). Subsequently,
developing software for different kinds of games of the same type, or using
the same game engine, requires a higher level of technical skill and com-
petence in software development than designing an individual game of a
given type.

Understanding how game software operates on a game platform
requires an understanding of the game device (e.g., Nintendo GameBoy,
Microsoft Xbox One, Apple iPhone) and the internal software run-time
environment that enables its intended operation and data communication
capabilities. A game platform constrains the game design in terms of its
architectural structure, how it functions, how the game player controls
the game device through its interfaces (keyboard, buttons, stylus, etc.)
and video/audio displays, and how they affect game data transmission and
reception in a multiplayer game network.

1.2 BRIEF HISTORY OF COMPUTER GAME
SOFTWARE DEVELOPMENT

Game software researchers and developers have been exploring computer
game software engineering (CGSE) from a number of perspectives for
many years. Many are rooted in the history of CG development, much of
which is beyond what we address here, as are topics arising from many
important and foundational studies of games as new media and as cul-
tural practice. However, it may be reasonable to anticipate new game stud-
ies that focus on topics such as how best to develop CGs for play across
global cultures or through multisite, global SE practices.

The history of techniques for CG software development goes back
many decades, far enough to coincide with the emergence of SE as a
field of research and practices in the late 1960s. As CG software devel-
opment was new and unfamiliar, people benefitted from publications of
open source game software, often written in programming languages
such as Fortran (Spencer 1968). Before that, interest in computer-based
playing against human opponents in popular parlor games such as chess,

4 ◾ Computer Games and Software Engineering

checkers, poker, bridge, backgammon, and go was an early fascination
of researchers exploring the potential of artificial intelligence (AI) using
computers (Samuel 1960). It should be noted that these CG efforts did not
rely on graphic interfaces, which were to follow with the emergence of
video games that operated on general-purpose computer workstations,
and later personal computers and special-purpose game consoles.

Spacewar!, PONG, Maze War, DOOM, SimCity, and thousands of other
CGs began to capture the imagination of software developers and end
users as opening up new worlds of interactive play for human player ver-
sus computer or player versus player game play to large public audiences,
and later to end-user development or modification of commercial games
(Burnett 2004).

Combat-oriented maze games such as Maze War, Amaze (Berglund and
Cheriton 1985), MiMaze (Gautier and Dior 1998), and others (Sweeney
1998) helped introduce the development and deployment of networked
multiplayer games. BattleZone, Habitat, and other game-based virtual
worlds similarly helped launch popular interest in MMOGs (Bartle 1990),
along with early social media capabilities such as online forums (threaded
e-mail lists), multiuser chat (including Internet Relay Chat) and online
chat meeting rooms (from multiuser dungeons), which would then be
globally popularized within Ultima Online, EverQuest, World of Warcraft,
and others. The emergence of the CG development industry, with major
studios creating games for global markets, soon made clear the need for
game development to embrace modern SE techniques and practices, or
else likely suffer the fate of problematic, difficult-to-maintain or -expand
game software systems, which is the common fate of software application
systems whose unrecognized complexity grows beyond the conventional
programming skills of their developers.

As many game developers in the early days were self-taught software
makers, it was not surprising to see their embrace of practices for sharing
game source code and play mechanic algorithms. Such ways and means
served to collectively advance and disseminate game development prac-
tices on a global basis. As noted above, early game development books
prominently featured open source game programs that others could copy,
build, modify, debug, and redistribute, albeit through pre-Internet file
sharing services such as those offered by CompuServe, though game-
making students in academic settings might also share source code to
games such as Spacewar!, Adventure, and Zork using Internet-accessible
file servers via file transfer protocols.

Introducing Computer Games and Software Engineering ◾ 5

The pioneering development of DOOM in the early 1990s (Hall 1992;
Kushner 2003), along with the growing popularity of Internet-based file
sharing, alongside of the emergence of the open source software move-
ment, the World Wide Web, and web-based service portals and appli-
cations, all contributed in different ways to the growing realization that
CGs as a software application could similarly exploit these new ways and
means for developing and deploying game software systems. Id Software,
through the game software developer John Carmack and the game
designer John Romero, eventually came to realize that digital game distri-
bution via file sharing (initially via floppy disks for freeware and paid ver-
sions of DOOM), rather than in-store retail sales, would also point the way
to offload the ongoing development and customization of games such as
DOOM, by offering basic means for end-user programming and modifica-
tion of CGs that might have little viable commercial market sales remain-
ing (Au 2002; Kushner 2003). The end users’ ability to therefore engage
in primitive CGSE via game modding was thus set into motion (cf. Au
2002; Burnett 2004; Morris 2003; Scacchi 2010). Other game development
studios such as Epic Games also began to share their game software devel-
opment tools as software development kits (SDKs), such as the UnrealEd
game level editor and script development interface, and its counterpart
packages with Quake from Id Software (QuakeEd) and Half-Life from
Valve Software. These basic game SDKs were distributed for no addi-
tional cost on the CD-ROM media that retail consumers would purchase
starting in the late 1990s. Similarly, online sharing of game software, as
either retail product or free game mod, was formalized by Valve Software
through their provision of the Steam online game distribution service,
along with its integrated payment services (Au 2002; Scacchi 2010).

Finally, much of the wisdom to arise from the early and more recent days
of CG development still focus attention on game programming and game
design, rather than on CGSE. For example, the current eight-volume series
Game Programming Gems, published by Charles River Media and later
Cengage Learning PTR (2000–2010), reveals long-standing interest on the
part of game makers to view their undertaking as one primarily focused
on programming rather than SE; field of SE long ago recognized that pro-
gramming is but one of the major activities in developing, deploying, and
sustaining large-scale software system applications, but not the only activity
that can yield high quality software products and related artifacts. Similarly,
there are many books written by well-informed, accomplished game devel-
opers on how best to design games as playful interactive media that can

6 ◾ Computer Games and Software Engineering

induce fun or hedonic experiences (Fullerton et al. 2004; Meigs 2003; Rogers
2010; Salen and Zimmerman 2004; Schell 2008). This points to another gap,
as many students interested in making CG choose to focus their attention
toward a playful user experience, while ignoring whether SE can help pro-
duce better quality CG at lower costs with greater productivity. That is part
of the challenge that motivates new research and practice in CGSE.

1.3 TOPICS IN COMPUTER GAMES
AND SOFTWARE ENGINEERING

This book collects 11 chapters that systematically explore the CGSE
space. The chapters that follow draw attention to topics such as CG and
SE education (SEE), game software requirements engineering, game
software architecture and design approaches, game software testing
and usability assessment, game development frameworks and reusability
techniques, and game scalability infrastructure, including support for
mobile devices and web-based services. Here, a sample of earlier research
efforts in CGSE that help inform these contemporary studies is presented
in the following subsections.

1.3.1 Computer Games and SEE

Swartout and van Lent (2003) were among the earliest to recognize the
potential of bringing CG and game-based virtual worlds into mainstream
computer science education and system development expertise. Zyda
(2006) followed by further bringing attention to the challenge of how best
to educate a new generation of CG developers. He observes something
of a conflict between programs that stress CG as interactive media cre-
ated by artists and storytellers (therefore somewhat analogous to feature
film production) and programs that would stress the expertise in com-
puter science required of game software developers or infrastructural sys-
tems engineers. These pioneers in computer science research recognized
the practical utility of CG beyond entertainment that could be marshaled
and directed to support serious game development for training and educa-
tional applications. However, for both of these visions for undergraduate
computer science education, SE has little role to play in their respective
framings. In contrast, SE faculty who teach project-oriented SE courses
increasingly have sought to better motivate and engage students through
game software development projects, as most computer science students
worldwide are literate in CG and game play. Building from this insight,
Oh Navarro and van der Hoek (2005, 2009), the Claypools (Claypool and

Introducing Computer Games and Software Engineering ◾ 7

Claypool 2005), and Wang and students (Wang 2011; Wang et al. 2008)
were among the earliest to call out the opportunity for focusing on the
incorporation of CG deep into SEE coursework.

Oh Navarro and van der Hoek started in the late 1990s exploring the
innovative idea of teaching SE project dynamics through a simulation-
based SE RPG, called SimSE. Such a game spans the worlds of software
process modeling and simulation, team-based SE, and SE project manage-
ment, so that students can play, study, and manipulate different SE tasking
scenarios along with simulated encounters with common problems in SE
projects (e.g., developers falling behind schedule, thus disrupting develop-
ment plans and inter-role coordination). In this way, SE students could play
the game before they undertook the software development project, and
thus be better informed about some of the challenges of working together
as a team, rather than just as skilled individual software engineers.

The Claypools highlight how SE project or capstone courses can focus
on student teams conducting game development projects, which seek to
demonstrate their skill in SE, as well as their frequent enthusiastic inter-
est in CG culture and technology. The popularity of encouraging game
development projects for SE capstone project courses is now widespread.
However, the tension between CG design proffered in texts that mostly
ignore modern SE principles and practices (Fullerton et al. 2004; Meigs
2003; Rogers 2010; Salen and Zimmerman 2004; Schell 2008) may some-
times lead to projects that produce interesting, playful games but do so
with minimal demonstration of SE skill or expertise.

Wang et al. (2008) have demonstrated how other CG and game play
experiences can be introduced into computer science or SEE coursework
through gamifying course lectures that facilitate faculty–student interac-
tions and feedback. Wang (2011) along with Cooper and Longstreet (2012)
(and in Chapter 3) expand their visions for SEE by incorporating contem-
porary SE practices such as software architecture and model-driven devel-
opment. More broadly, Chapters 2 through 6 all discuss different ways and
means for advancing SEE through CG.

Finally, readers who teach SEE project courses would find it valuable
to have their students learn CGSE through their exposure to the history
of CG software development, including a review of some of the pioneer-
ing papers or reports cited earlier in this introductory chapter. Similarly,
whether to structure the SEE coursework projects as massively open
online courses or around competitive, inter-team game jams also mer-
its consideration. Such competitions can serve as test beds for empirical

8 ◾ Computer Games and Software Engineering

SE (or SEE) studies, for example, when project teams are composed by
students who take on different development roles and each team engages
members with comparable roles and prior experience. Such ideas are dis-
cussed in Chapter 12.

1.3.2 Game Software Requirements Engineering

Understanding how best to elicit and engineer the requirements for CG is
unsurprisingly a fertile area for CGSE research and practice (Ampatzoglou
and Stamelos 2010; Callele et al. 2005), much like it has been for main-
stream SE. However, there are still relatively few game development
approaches that employ SE requirements development methods such as
use cases and scenario-based design (Walker 2003).

Many game developers in industry have reviewed the informal game
“postmortems” that first began to be published in Game Developer maga-
zine in the 1990s (Grossman 2003), and more recently on the Gamasutra.
com online portal. Grossman’s (2003) collection of nearly 50 postmortems
best reveals common problems that recur in game development projects,
which cluster around project software and content development sched-
uling, budget shifts (generally development budget cuts), and other non-
functional requirements that drift or shift in importance during game
development projects (Alspaugh and Scacchi 2013; Petrillo et al. 2009).
None of this should be surprising to experienced SE practitioners or proj-
ect managers, though it may be “new knowledge” to SE students and new
self-taught game developers. Similarly, software functional requirements
for CG most often come from the game producers or developers, rather
than from end users. However, nonfunctional requirements (e.g., the game
should be fun to play but hard to master and it should be compatible with
mobile devices and the web) dominate CG development efforts, and thus
marginalize the systematic engineering of functional game requirements.
Nonetheless, the practice of openly publishing and sharing postproject
descriptions and hindsight rationalizations may prove valuable as another
kind of empirical SE data for further study, as well as something to teach
and practice within SEE project courses.

1.3.3 Game Software Architecture Design

CGs as complex software applications often represent configurations of
multiple software components, libraries, and network services. As such,
CG software must have an architecture, and ideally such an architec-
ture is explicitly represented and documented as such. Although such

Introducing Computer Games and Software Engineering ◾ 9

architecture may be proprietary and thus protected by its developers as
intellectual property covered by trade secrets and end-user license agree-
ments, there is substantial educational value in having access to such
architectural renderings as a means for quickly grasping key system design
decisions and participating modules in game play event processing. This
is one reason for interest in games that are open to modding (Seif El-Nasr
and Smith 2006; Scacchi 2010). However, other software architecture
concerns exist. For instance, there are at least four kinds of CG software
architecture that arise in networked multiplayer games: (1) the static and
dynamic run-time architectures for a game engine; (2) the architecture of
the game development frameworks or SDKs that embed a game’s devel-
opment architecture together with its game engine (Wang 2011); (3) the
architectural distribution of software functionality and data processing
services for networked multiplayer games; and (4) the informational and
geographical architecture of the game levels as designed play spaces. For
example, for (3) there are four common alternative system configurations:
single server for multiple interacting or turn-taking players, peer-to-peer
networking, client–server networking for end-user clients and playspace
data exchange servers, and distributed, replicated servers for segmented
user community play sessions (via sharding) (Alexander 2003; Bartle 1990;
Berglund and Cheriton 1985; Bishop et al. 1998; Gautier and Dior 1998;
Hall 1992; Sweeney 1998).

In contrast, the focus on CG as interactive media often sees little or
no software architecture as being relevant to game design, especially for
games that assume a single server architecture or PC game run-time envi-
ronment, or in a distributed environment that networking system special-
ists, it is assumed, will design and provide (Fullerton et al. 2004; Meigs
2003; Rogers 2010; Salen and Zimmerman 2004; Schell 2008). Ultimately,
our point is not to focus on the gap between game design and game soft-
ware (architecture) design as alternative views but to draw attention to the
need for CGSE to find ways to span the gap.

1.3.4 Game Software Playtesting and User Experience

CGs as complex software applications for potentially millions of end users
will consistently and routinely manifest bugs (Lewis 2010). Again, this
is part of the puzzle of any complex SE effort, so games are no excep-
tion. However, as user experience and thus user satisfaction may be key to
driving viral social media that helps promote retail game sales and adop-
tion, paying close attention to bugs and features in CG development and

10 ◾ Computer Games and Software Engineering

usability (Pinelle et al. 2008) may be key to the economic viability of a
game development studio. Further, on the basis of decades of experience
in developing large-scale software applications, we believe that most end
users cannot articulate their needs or requirements in advance but can
assess what is provided in terms of whether or not it meets their needs.
This in turn may drive the development of large-scale, high-cost CGs that
take calendars to produce and person-decades (or person-centuries) of
developer effort away from monolithic product development life cycles to
ones that are much more incremental and driven by user feedback based
on progressively refined or enhanced game version (or prototype) releases.
Early and ongoing game playtesting will likely come to be a central facet of
CGSE, as will tools and techniques for collecting, analyzing, and visualiz-
ing game playtesting data (Drachen and Canossa 2009; Zoeller 2013). This
is one activity where CGSE efforts going forward may substantially diverge
from early CG software development approaches, much like agile meth-
ods often displace waterfall software life cycle development approaches.
Therefore, CG developers, much like mainstream software engineers, are
moving toward incremental development, rapid release, and user playtest-
ing to drive new product release versions.

1.3.5 Game Software Reuse

Systematic software reuse could be considered within multiple SE activities
(requirements, architecture, design, code, build and release, test cases) for
a single game or a product line of games (Furtado et al. 2011). For example,
many successful CGs are made into franchise brands through the produc-
tion and release of extension packs (that provide new game content or play
levels) or product line sequels (e.g., Quake, Quake II, and Quake III; Unreal,
Unreal Tournament 2003, and Unreal Tournament 2007). Whether or how
the concepts and methods of software product lines can be employed in
widespread CG business models is unclear and underexplored. A new suc-
cessful CG product may have been developed and released in ways that
sought to minimize software production costs, thus avoiding the neces-
sary investment to make the software architecture reusable and extensible
and the component modules replaceable or upgradable without discard-
ing much of the software developed up to that point. This means that SE
approaches to CG product lines may be recognized in hindsight as missed
opportunities, at least for a given game franchise.

Reuse has the potential to reduce CG development costs and improve
quality and productivity, as it often does in mainstream SE. Commercial

Introducing Computer Games and Software Engineering ◾ 11

CG development relies often on software components (e.g., game engines)
or middleware products provided by third parties (AI libraries for non-
player characters [NPCs]) as perhaps its most visible form of software reuse
practice. Game SDKs, game engines, procedural game content generation
tools, and game middleware services all undergo active R&D within indus-
try and academia. Game engines are perhaps the best success story for CG
software reuse, but it is often the case that commercial game development
studios and independent game developers avoid adoption of such game
engines when they are perceived to overly constrain game development pat-
terns or choice of game play mechanics to those characteristic of the engine.
This means that game players may recognize such games as offering deriva-
tive play experience rather than original play experience. However, moving
to catalogs of pattern or antipatterns for game requirements, architecture
and design patterns for game software product lines (Furtado et al. 2011),
and online repositories of reusable game assets organized by standardized
ontologies may be part of the future of reusable game development tech-
niques. As noted earlier, such topics are explored in Chapters 10 and 11.

Other approaches to software reuse may be found in free or open source
software for CG development (Scacchi 2004), and also in AI or computa-
tional intelligence methods for semiautomated or automated content gen-
eration and level design (IEEE 2014).

1.3.6 Game Services and Scalability Infrastructure

CGs range from small-scale, stand-alone applications for smart phones
(e.g., app games) to large-scale, distributed, real-time MMOGs. CGs are
sometimes played by millions of end users, so that large-scale, big data
approaches to game play analytics and data visualization become essential
techniques for engineering sustained game play and deployment support
(Drachen and Canossa 2009; Zoeller 2013). Prior knowledge of the devel-
opment of multiplayer game software systems and networking services
(cf. Alexander 2003; Berglund and Cheriton 1985; Gautier and Dior 1998;
Sweeney 1998) may be essential for CGSE students focusing on devel-
opment of social or mobile MMOGs. In order to engage the users and
promote the adoption and ongoing use of such large and upward or down-
ward scalable applications, CGSE techniques have significant potential but
require further articulation and refinement. Questions on the integration
of game playtesting and end-user play analytic techniques together with
large-scale, big-data applications are just beginning to emerge. Similarly,
how best to design back-end game data management capabilities or

12 ◾ Computer Games and Software Engineering

remote middleware game play services also points to SE challenges for
networked software systems engineering, as has been recognized within
the history of networked game software development (Alexander 2003,
Bartle 1990, Berglund and Cheriton 1985; Gautier and Dior 1998; Sweeney
1998). Whether or how cloud services or cloud-based gaming has a role in
CGSE may benefit by review of the chapters that follow.

The ongoing emphasis on CGs that realize playful, fun, social, or learn-
ing game experiences across different game play platforms leads naturally
to interdisciplinary approaches to CGSE, where psychologists, sociolo-
gists, anthropologists, and economists could provide expertise on defin-
ing new game play requirements and experimental designs to assess the
quality of user play experiences. Further, the emergence of online fantasy
sports, along with eSports (e.g., team/player vs. team/player competitions
for prizes or championship rankings) and commercial endeavors such
as the National Gaming League for professional-level game play tourna-
ments, points to other CGSE challenges such as cheat prevention, latency
equalization, statistical scoring systems, complex data analytics (DsC09),
and play data visualizations (Zoeller 2013), all of which support game
systems that are balanced and performance (monitoring) equalized for
professional-level tournaments. The social sciences could provide insight
into how to attract, engage, and retain players across demographic groups
(e.g., age, gender, geographic location), much like recent advances in the
Cooperative and Human Aspects in Software Engineering workshop and
ethnographic studies of users in contemporary SE research.

With this background in mind, we turn to explain the motivating
events that gave rise to the production of this book on CGSE.

1.4 EMERGENCE OF A COMMUNITY OF INTEREST IN CGSE
At the core of CGs are complex human–software platform interactions
leading to emergent game play behaviors. This complexity creates diffi-
culties architecting game software components, predicting their behav-
iors, and testing the results. SE has not yet been able to meet the demands
of the CG software development industry, an industry that works at the
forefront of technology and creativity, where creating a fun experience
is the most important metric of success. In recognition of this gap, the
first games and software engineering workshop (GAS 2011) was held at
the International Conference on Software Engineering (ICSE 2011), initi-
ated through the efforts of Chris Lewis and E. James Whitehead (both
from UC Santa Cruz). Together with a committee of like-minded others

Introducing Computer Games and Software Engineering ◾ 13

within the SE community, Lewis and Whitehead sought to bring together
SE researchers interested in exploring the demands of game creation and
ascertain how the SE community can contribute to this important cre-
ative domain. GAS 2011 participants were also challenged to investigate
how games can help aid the SE process or improve SEE. Research in these
areas has been exciting and interesting, and GAS 2011 was envisioned
to be the first time practitioners from these fields would have the oppor-
tunity to come together at ICSE to investigate the possibilities of this
innovative research area. The content of Chapters 4 and 8 was originally
presented at GAS 2011, in simpler form.

The GAS 2012 workshop explored issues that crosscut the SE and the
game engineering communities. Advances in game engineering tech-
niques can be adopted by the SE community to develop more engag-
ing applications across diverse domains: education, health care, fitness,
sustainable activities (e.g., recycling awareness), and so on. Successful
CGs feature properties that are not always found in traditional software:
they are highly engaging, they are playful, and they can be fun to play
for extended periods of time. Engaging games enthrall players and result
in users willing to spend increasing amounts of time and money play-
ing them. ICSE 2012 sought to provide a forum for advances in SE for
developing more sustainable (greener) software, so GAS 2012 encouraged
presentation and discussion of ways and means through green game appli-
cations. For example, approaches that support adapting software to trade
off power consumption and video quality would benefit the game com-
munity. SE techniques spanning patterns (requirements, design), middle-
ware, testing techniques, development environments, and processes for
building sustainable software are of great interest. Chapters 6 and 10 were
both initially presented in simpler form at GAS 2012.

GAS 2013 explored issues that crosscut the SE and the game develop-
ment communities. Advances in game development techniques can be
adopted by the SE community to develop more engaging applications
across diverse domains: education, health care, fitness, sustainable activi-
ties (e.g., recycling awareness), and so on. GAS 2013 provided a forum
for advances in SE for developing games that enable progressive societal
change through fun, playful game software. SE techniques spanning
patterns, middleware, testing techniques, development environments,
and processes were in focus and consumed much of participant inter-
est, including a handful of live game demonstrations. Chapters 9 and 5
were initially presented in simpler form at GAS 2013. Chapters 2, 7,

14 ◾ Computer Games and Software Engineering

and Chapter 11 are new and were prepared specifically for this book.
Finally, it should be noted that Cooper, Scacchi, and Wang were the
 co-organizers of GAS 2013.

The topic of how best to elevate the emerging results and discipline of
CGSE was put into motion at the end of GAS 2013; this book is now the
product of that effort. Many participants at the various GAS workshops
were invited to develop and refine their earlier contributions into full
chapters. The chapters that follow are the result. Similarly, other research
papers that speak to CGSE topics that appeared in other workshops, con-
ferences, or journals were reviewed for possible inclusion in this book.
Therefore, please recognize the chapters that follow as a sample of recent
research in the area of CGSE, rather than representing some other criteria
for selection. However, given more time and more pages to fill for publica-
tion, others who were not in a position to prepare a full chapter of their
work would have been included.

As such, we turn next to briefly introduce each of the chapters that were
contributed for this book on CGSE. The interested reader is encouraged to
consider focusing on topics of greatest interest first and to review the other
chapters as complementary issues found at the intersection of CG and SE
covered across the set of remaining chapters.

1.5 INTRODUCING THE CHAPTERS
AND RESEARCH CONTRIBUTIONS

A comprehensive literature review of CG in software education is presented
in Chapter 2 by Alf Inge Wang and Bian Wu. They explore how CG devel-
opment is being integrated into computer science and SE coursework. The
survey is organized around three research questions:

• The first question focuses on discovering the topics where game
development has been used as a teaching method. These results are
presented in three categories: computer science (37 articles), SE (16
articles), and applied computer science (13 articles). For computer
science, a variety of topics (e.g., programming, AI, algorithms) are
being taught at different levels (university and elementary, middle,
and high school). Game development approaches in university
courses on programming dominate the findings, followed by AI.
For SE, a variety of topics (e.g., architecture, object-oriented analy-
sis and design, and testing) are being taught in university courses.
Game development approaches in design topics (architecture and

Introducing Computer Games and Software Engineering ◾ 15

object-oriented) lead the findings, followed by testing. For applied
computer science a variety of topics (e.g., game design, game devel-
opment with a focus on game design, and art design) are being taught
in pre-college/university and university courses. These approaches
focus on creating or changing games through graphical tools to cre-
ate terrains, characters, game objects, and populate levels. Applied
courses on game design and development dominate the findings, fol-
lowed by art design; approximately half the findings were for courses
at the pre-college/university level.

• The second research question focuses on identifying the most com-
mon tools used and any shared experiences from using these tools.
The articles reveal a plethora of game development frameworks and
languages in use. Interestingly, the most commonly used frame-
works include the educators’ own framework, XNA, or a Java game
development framework; Unity has not been reported in the articles
reviewed. With respect to programming languages, visual program-
ming languages and Java dominate, followed by C#. Visual languages
have worked well for introducing programming concepts, promot-
ing the field of computer science. Often, students are asked to create
simple 2D games from scratch; an alternative approach reported is to
use game modding, in which the existing code is changed, modifying
the behavior and presentation of a game.

• The third research question focuses on identifying common experi-
ences from using game development to teach computer science and
SE subjects. Most studies in the survey report that game develop-
ment improves student motivation and engagement, as the visual-
ization makes programming fun. However, only a few studies report
learning improvements in terms of better grades; there is a tendency
for some students to focus too much on game development instead of
the topic being taught. In addition, many articles reported that game
development positively supported recruiting and enrolment efforts
in computer science and SE.

Based on the results of this survey, the authors propose a set of recommen-
dations for choosing an appropriate game development framework to use
in a course. The recommendations include the consideration of the educa-
tional goals, subject constraints, programming experience, staff expertise,
usability of the game development platform, and the technical environment.

16 ◾ Computer Games and Software Engineering

A model-driven SE approach to the development of serious educational
games (SEGs) is presented in Chapter 3 by Kendra Cooper and Shaun
Longstreet. SEGs are complex applications; developing new ones has been
time consuming and expensive, and has required substantial expertise from
diverse stakeholders: game developers, software developers, educators, and
players. To improve the development of SEGs, the authors present a model-
driven engineering (MDE)-based approach that uniquely integrates elements
of traditional game design, pedagogical content, and SE. In the SE commu-
nity, MDE is an established approach for systematically developing complex
applications, where models of the application are created, analyzed (vali-
dated/verified), and subsequently transformed to lower levels of abstraction.

The MDE-based approach consists of three main steps to systematically
develop the SEGs:

• The first step is to create an informal model of the SEG captured
as a storyboard with preliminary descriptions of the learning objec-
tives, game play, and user interface concepts. The learning objectives
cover specific topics (e.g., design patterns, grade 4 reading) as well as
transferable skills (e.g., problem solving, analysis, critical thinking).
Storyboards are an established, informal approach used in diverse
creative endeavors to capture the flow of events over time using a
combination of graphics and text. The SimSYS storyboard is tailored
to explicitly include the learning objectives for the game.

• The second step is to transform the informal model into a semi-
formal, tailored unified modeling language (UML) use case model
(visual and tabular, template-based specifications). Here, the prelim-
inary description is refined to organize it into acts, scenes, screens,
and challenges; each of these has a tabular template to assist in the
game development. The templates include places for the learning
objectives; they can be traced from the highest level (game template)
down to specific challenges. More detailed descriptions of the game
play narrative, graphics, animation, music and sound effects, and
challenge content are defined.

• The third step is to transform the semiformal model into formal,
executable models in statecharts and extensible markup language
(XML). A statechart can undergo comprehensive simulation or ani-
mation to verify the model’s behavior using existing tool support;
errors can be identified and corrected in both the statechart model

Introducing Computer Games and Software Engineering ◾ 17

and the semiformal model as needed. XML is the game specification,
which can be loaded, played, and tested using the SimSYS game play
engine; the XML schema definition for the game is defined.

A key feature of the MDE approach is the meta-model foundation, which
explicitly represents traditional game elements (e.g., narrative, characters),
educational elements (e.g., learning objectives, learning taxonomy), and their
relationships. The approach supports the wide adoption across curricula, as
domain-specific knowledge can be plugged in across multiple disciplines
(e.g., science, technology, engineering and mathematics [STEM], humani-
ties) and the thorough integration of learning objectives. This approach is
flexible, as it can be applied in an agile, iterative development process by
describing a part of the game informally, semiformally, and formally (execut-
able), allowing earlier assessment and feedback on a running (partial) game.

In Chapter 4, Swapneel Sheth, Jonathan Bell, and Gail Kaiser present
an experience report describing their efforts in using game play motifs,
inspired from online RPGs, and competitive game tournaments to intro-
duce students to software testing and design principles. The authors draw
upon the reported success of gamifying another topic in SE (formal veri-
fication) by proposing a social approach to introduce students to software
testing using their game-like environment HALO (highly addictive,
socially optimized) SE. HALO can make the software development pro-
cess, and in particular, the testing process, more fun and social by using
themes from popular CGs. HALO represents SE tasks as quests; a story-
line binds multiple quests together. Quests can be individual, requiring
a developer to work alone, or in groups, requiring a developer to form
a team and work collaboratively toward an objective. Social rewards in
HALO can include titles—prefixes or suffixes of players’ names—and
 levels, both of which showcase players’ successes in the game world. These
social rewards harness a model, operant conditioning, which rewards
players for good behavior and encourages repeating good behavior.

HALO was introduced into the course as an optional part of two assign-
ments and as a bonus question in a third assignment. The student evalua-
tions on using HALO in their assignments revealed that the approach may
be more effective if the HALO quests had a stronger alignment with all the
students doing well in the assignment, not as an optional or bonus ques-
tion that may only appeal to some of the students. The ability to embrace
a broader range of students, perhaps by providing some adaptability to
adjust the level of difficulty based on what the students would find it most

18 ◾ Computer Games and Software Engineering

useful, was recommended by the authors. For example, students who are
struggling with the assignment might want quests covering more basic
aspects of the assignment, whereas students who are doing well might
need quests covering more challenging aspects.

To instill good software design principles, a programming assignment
using a game was used in combination with a competitive game tourna-
ment in an early course. The assignment and tournament centered on
developing the game Battleship. The students were provided with three
interfaces as a starting point for the assignment: game, location, and
player. As long as the students’ code respected the interfaces, they would
be able to take part in the tournament. The teaching staff provided imple-
mentations of the game and location interfaces; each student’s automated
computer player implementation was used. Extra credit was used as an
incentive; even though the extra credit was modest, the combination of
the extra credit and the competitive aspect resulted in almost the entire
class participating in the tournament: a remarkable 92% of the class had
implementations that realized the defined interfaces and were permit-
ted to compete in the tournament. The authors note that the competitive
tournaments require substantial resources (e.g., time, automated testing
frameworks, equipment), in particular for large classes.

In Chapter 5, Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and
Judith Bishop focus on the gamification of online programming exercise
systems through their online CG, Pex4Fun, and its successor, Code Hunt.
These game-based environments are designed to address educational
tasks of teaching and learning programming and SE skills. They are open,
browser based, interactive gaming-based teaching and learning plat-
forms for .NET programming languages such as C#, Visual Basic, and F#.
Students play coding-duel game play sessions, where they need to write
code to implement the capabilities of a hidden specification (i.e., sample
solution code not visible to the student). The Pex4Fun system automati-
cally finds discrepancies in the behavior between the student’s code and
the hidden specification, which are provided as feedback to the student.
The students then proceed to correct their code. The coding-duel game
type within Pex4Fun is flexible and can be used to create games that tar-
get a wide range of skills such as programming, program understanding,
induction, debugging, problem solving, testing, and specification writing,
with different degrees of difficulty. Code Hunt offers additional gaming
aspects to enhance the game play experience such as audio support, a lea-
derboard, and visibility to the coding duels of other players to enhance the

Introducing Computer Games and Software Engineering ◾ 19

social aspect; games can also be organized in a series of worlds, sectors,
and levels, which become increasingly challenging. Pex4Fun has been
adopted as a major platform for assignments in a graduate SE course, and
a coding-duel contest has recently been held at the ICSE 2011 for engaging
conference attendees to solve coding duels in a dynamic social contest.
The response from the broader community using the Pex4Fun system has
been positive and enthusiastic, indicating the gamification of online pro-
gramming exercise systems holds great promise as a tool in SEE.

An exploratory study on how human tutors interact with learners play-
ing serious games is presented by Barbara Reichart, Damir Ismailović,
Dennis Pagano, and Bernd Brügge in Chapter 6. In traditional educational
settings, a professional human tutor observes a student’s skills and uses
those observations to select learning content, adapting the material as
needed. Moving into a serious game educational setting, this study investi-
gates how players can be characterized and how to provide them with help
in this new environment. The study uses four small serious games with
focus on elementary-school mathematics. The authors created these over a
span of 2 years; the new games were needed to retain very high control over
the game elements (content, difficulty level, and game speed), which would
not be possible with games already available. Interviews with experts and
observing children at play provided qualitative data for the first part of the
study. Here, the results reveal that the human tutor observes the correct
and incorrect execution of the tasks in the game as well as the motorical
execution (hand–eye coordination, timing); tutors rate the skills of the
learners in a fuzzy way. In the second part of the study, interviews with
experts provided qualitative data; here, experts observed the recordings of
children playing. The experts defined different levels of difficulty that they
considered reasonable for each game. To provide the different levels of dif-
ficulty, a detailed description of the data (content) that can be changed in
each of the developed serious games was defined. In addition to changes in
the content, changes to some properties of the game elements are identified
to affect specific skills. For example, adapting the speed of a game element
has a direct effect on some skills necessary for mathematics, such as count-
ing. Therefore, adapting the game element properties to change the level
of difficulty is an option—a change in the learning content is not always
necessary. Using the results of these studies, the authors also propose a
definition for the adaptivity process in a serious game consisting of four
stages: monitoring players (A1), learner characterization (A2), assessment
generation (B1), and adaptive intervention (B2). This thorough, extensive

20 ◾ Computer Games and Software Engineering

study provides a strong foundation for the community to build upon in the
investigation of adapting serious games, with respect to research method-
ologies and the results reported.

A scalable architecture for MMOGs is presented by Thomas Debeauvais,
Arthur Valadares, and Cristina V. Lopes in Chapter 7. The research considers
how to harmonize the representational state transfer principles, which have
been used very successfully for scaling web applications, with the architec-
ture-level design of MMOGs. The proposed architecture, restful client–server
architecture (RCAT), consists of four tiers: proxies, game servers, caches,
and database. Proxies handle the communication with clients, game serv-
ers handle the computation of the game logic, and the database ensures data
persistence. RCAT supports the scalability of MMOGs through the addition
of servers that provide the same functionality. The authors developed a refer-
ence implementation of RCAT as a middleware solution, and then conducted
experiments to characterize the performance and identify bottlenecks.

Two quantitative performance studies are reported. The first uses a sim-
ple MMOG to analyze the impact of the number of clients on the band-
width: from the proxy to the clients and from the server to the database,
with and without caching. The experiments show that the bandwidth
from the proxy to the clients increases quadratically; the database can be
a central bottleneck, although caching can be an effective strategy for this
component. The second experiment evaluates the performance impact of
scaling up the number of players using an RCAT reference application,
which is a multiplayer online jigsaw puzzle game. These experiments are
designed to quantify how the number of proxies and the number of game
servers scale with the number of players (bots) for different message fre-
quencies. The quantitative results summarize (1) the behavior of CPU uti-
lization and round trip time (latency) as the number of clients increases,
(2) CPU utilization and context switches per second as the number of
clients increases, (3) the maximum number of clients supported under
alternative core/machine scenarios and message frequencies, and (4) CPU
utilization when the maximum capacity is reached.

The authors’ proposal of the RCAT architecture, the development of a
reference implementation, the development of a reference application,
and a quantitative performance study provides the community with a scal-
able architectural solution with a rigorous validation. The game-agnostic
approach to the RCAT architecture, modularizing the game logic in one
tier, means that it can be applied broadly, supporting the development of
diverse MMOGs.

Introducing Computer Games and Software Engineering ◾ 21

The challenges in developing multiplayer outdoor smart phone games
are presented in five core areas of SE (requirements, architecture, design,
implementation, and testing) by Robert Hall in Chapter 8. The games, part
of the Geocast Games Project, incorporate vigorous physical activity out-
doors and encourage multiplayer interactions, contributing to worthwhile
social goals. Given the outdoor environment these games are played in,
such as parks or beaches, the games need to be deployed solely on equip-
ment people are likely to carry anyway for other purposes, namely, smart
phones and iPods, and they need to rely on device-to-device communica-
tion, as network access may not be available. These two characteristics have
profound impacts on SE activities. One challenge in the requirements engi-
neering area is the definition of domain-specific set of meta-requirements
applicable to outdoor game design, providing domain-specific guidelines
and constraints on requirements models to help developers better under-
stand when they are posing impossible or impractical requirements for new
games. The architectural challenges include defining solutions that support
full distribution (no central server) and long-range play (seamless integra-
tion with networks when they are available). The design challenges include
the need to allow coherent game behavior to be implemented at the top of
a fully distributed architecture, subject to sporadic device communication.
A collection of design issues falls under this distributed joint state problem:
when devices have been out of communication, they need to resynchro-
nize in a rapid and fair way when they reestablish a connection. The imple-
mentation challenges include the need to run the games on a broad range
of smart phone brands and models; cross-platform code development
frameworks are needed to provide cross-compilation of source code and
help the developer compensate for differences in hardware performance,
sensor capabilities, communications systems, operating system, and pro-
gramming languages. Testing challenges include validating requirements
relative to the distributed joint state of the system, which allows tempo-
rary network partitions that lead to inconsistent state views and the need to
involve many to tens of different devices.

The author has implemented three multiplayer games promoting out-
door activity and social interactions; these have allowed experimenta-
tion with the concepts and provided initial trials of a Geocast Games
Architecture and rapid recoherence design.

Multilevel data analytic studies are used to support user experience
assessments during the development of a serious game, AGoogleADay.com,
by Daniel Russell in Chapter 9. The game is a trivia question-style game

