
“Bill Manaris and Andrew Brown have created this marvelous book 
that will engage and inspire you to learn more about the science and 
art of creating music through computation. … Bill and Andrew offer 
an accessible path into a wonderful world that is both as modern as 
your new laptop and as ancient as Plato. In that world of music and 
mathematics, they construct a sandbox of computational tools. They 
encourage you to create, compose music, and play with patterns and 
data.”
—From the Foreword by Mark Guzdial, Georgia Institute of Technology

“Making Music with Computers by Bill Manaris and Andrew Brown 
is a perfect accompaniment to programming music with the computer 
language Python. Written clearly, succinctly, and including many 
appropriate diagrams, this book is a must for anyone desiring to 
create their own applications for composing and making music. First 
rate in every way.”
—David Cope, Computer Composition Pioneer, and Professor 
Emeritus, Music Department, University of California, Santa Cruz

Making Music with Computers: Creative Programming in Python 
introduces important concepts and skills necessary to generate music 
with computers. It interweaves computing pedagogy with musical 
concepts and creative activities, showing you how to integrate the 
creativity and design of the arts with the mathematical rigor and 
formality of computer science. A supplementary website provides a 
music library and other software resources used in the text.
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Foreword

The human desire to express and communicate has influenced 
computing almost as long as there have been computers. ENIAC was 

first turned on in 1947. The first computer music was generated in 1957.
The desire to say more with a computer has driven many advances 

in computer science. Ivan Sutherland invented interactive computer 
graphics in 1963, and his creation inspired the idea of classes in object-
oriented programming. Alan Kay and Adele Goldberg described the 
computer as human’s first meta-medium, the first creative medium that 
could encompass all previous media. Their research group at Xerox’s Palo 
Alto Research Center (PARC) worked in the 1970s to answer the ques-
tion, “What would a computer used for creative expression look like?” 
That’s what led them to invent the desktop user interface as we know it 
today. In a real sense, the menus and windows that we use today to access 
Facebook were invented in order to make the most powerful tool ever for 
human expression.

Making music on a computer is a natural way to learn more about 
mathematics, computer science, and music. Bill Manaris and Andrew 
Brown have created this marvelous book that will engage and inspire 
you to learn more about the science and art of creating music through 
computation. They lead us through exploration of fascinating ques-
tions. How does music draw on both mathematical patterns and ran-
domness? How did Bach use algorithms to generate canons? How can 
we turn data about proteins and planets into music? What kinds of new 
 interfaces can you create to make it easier for you and others to make 
music?

Bill and Andrew offer an accessible path into a wonderful world that is 
both as modern as your new laptop and as ancient as Plato. In that world 
of music and mathematics, they constructed a sandbox of computational 
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tools. They encourage you to create, to compose music, and to play with 
patterns and data. They invite you to continue in the traditions of Ivan 
Sutherland and Alan Kay to use computing to explore powerful and 
 creative ideas.

Mark Guzdial
Georgia Institute of Technology

July 2013
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Preface

The book in your hands is the result of more than a decade of 
 independent and collaborative effort by the two authors and their 

computer music associates. Combining computers and music has a long 
and fruitful heritage. The ideas which underpin the connection between 
calculating and composing date back centuries. In the 21st century, com-
puters and music are more closely aligned than ever before. In particu-
lar, computers have become indispensable in music making, distribution, 
 performance, and consumption.

This book introduces important concepts and skills necessary to make 
music with computers. It interweaves computing pedagogy with musical 
concepts and creative activities. It does this while maintaining a natu-
ral, steady increase in computational skills that are motivated by creative 
musical contexts.

This book is intended primarily for introductory computer science 
courses and for courses in the intersection of computing and the arts. 
However, it is naturally suited for self-study. It assumes little musical and 
programming experience; it introduces topics and concepts as they arise 
through motivating, and hopefully inspiring examples.

CREATIVE PROGRAMMING
“Making Music with Computers” is an introduction to creative software 
development in the Python programming language. It uses music-making 
as a vehicle to introduce computer programming and computational 
thinking to non-traditional audiences. This book helps computer science 
educators teach students how to synthesize the creativity and design of the 
arts with the mathematical rigor and formality of computer science.

Initially inspired by Randy Pausch’s “head-fake” approach*, we  utilize 
exciting and innovative music-creation activities to ultimately teach 

* See Randy Pausch’s “Last Lecture” (readily available online).
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 introductory computer science concepts. Our goal is to keep this “game” 
going throughout the book, just long enough so that the students learn to 
express themselves algorithmically.

The book covers all concepts found in a traditional “Intro to Computer 
Programming” (CS1) course. These concepts include data types, variables, 
assignment, arithmetic operators, input/output, algorithms, selection 
(if  statements), relational operators, logical operators, iteration (loops), 
lists (arrays), functions, modularization (functions), classes (object- 
oriented programming). Additionally, the book covers graphical user 
interfaces (GUIs), event-driven programming, big data, MIDI program-
ming, client-server programming (via OSC messages), recursion, fractals, 
and complex system dynamics (boids).

TARGET AUDIENCE
This book addresses two trends in computing education: (1) the grow-
ing use of the Python language for teaching introductory programming, 
and (2) the increasing infusion of computational thinking into liberal arts 
courses, especially interdisciplinary offerings in computing and the arts. It 
does so by presenting computer music topics in an accessible way for our 
two main target audiences:

• First- and second-year university students, as well as advanced high 
school students, who are interested in computer music and wish to 
learn computer programming in a creative context; and

• Musicians of all levels and backgrounds who wish to expand their 
creative horizons by modeling musical processes through computer 
programming, and by applying these processes to create novel and 
intriguing musical material for composition and live performance.

NAVIGATING THE BOOK
The book may be navigated using one of three narratives, objects first, 
 procedures first, or à la carte:

• Objects first (chapters 1–3, followed by chapters 8–11, with just-
in-time introduction of for loops, functions, and if statements). 
This approach works well with inexperienced students, as it is cre-
atively rich. It includes building graphical user interfaces (GUIs) and 
interactive musical instruments, and thus motivates hard-to-grasp 
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programming concepts (such as loops, functions, and if state-
ments). To quote one of our students, “students want to do the work, 
because it is fun.” In particular, chapters 1-3 introduce object-based 
programming (using Notes, Phrases, Parts, and Scores). Chapter 8 
introduces GUI objects, event-driven programming, and important 
human-computer interaction (HCI) ideas, such as how to develop 
usable interfaces through paper prototyping, usability testing, and 
iterative refinement. Chapter 9 introduces MIDI and OSC (open 
sound control) input/output objects, thus enabling programs to con-
nect to traditional musical instruments (e.g., guitars, pianos, etc.)* 
and physical controllers (e.g., MIDI control surfaces, smartphones, 
touch-sensitive tablets, etc.). Finally, chapters 10 and 11 introduce 
Python classes, music from math equations, the harmonograph 
(a way to visualize and sonify complex, yet beautiful repetitive pat-
terns found in nature, such as planetary orbits), animation, fractals, 
the golden ratio, recursion, Zipf ’s law, and chaotic systems (boids). 
This material is full of musical and other creative possibilities.

• Procedures first (chapters 1–11). This is a traditional narrative, which 
interweaves computational and musical concepts incrementally, 
from beginning to intermediate level of expertise. In addition to the 
above topics, it includes randomness and creativity, data sonifica-
tion, image processing, musical canons (musical puzzles, of which 
JS Bach was a master), minimalism, and stochastic music, to name 
a few. It also provides a thorough introduction to programming in 
Python, including data types, variables, assignment, arithmetic oper-
ators, input/output, algorithms, selection (if statements), iteration 
(loops), lists (arrays), file input/output, modularization (functions), 
event-driven programming (callback functions), and object-oriented 
 programming (classes).

• À la carte (explore topics as desired/needed). This approach is best 
suited for self-learners, and for musicians (and programmers) who 
already know some Python (and music), and who wish to explore 
techniques to enhance their potential for creative expression. If you 
belong in this group, then the table of contents is your best friend. 
Study it carefully, looking for items that seem attractive, and go from 

* Any MIDI-enabled instrument will work, opening the door for some powerful creative possibili-
ties, for building hybrid computer music instruments.
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there. If you are lacking some Python background (to fully appreci-
ate the provided examples, without having to read the whole book 
up to that point), either you can look up Python topics in the book 
index, or search the Internet (the latter being full of great Python ref-
erence material). Please enjoy weaving your own path through this 
material - we certainly did!

All three narratives are supported by the website provided at http://
jythonMusic.org. There you will find additional resources (including more 
code examples) to enhance your creative exploration and learning. Enjoy!

PEDAGOGY
From the point of view of pedagogy, our primary audience is educators 
interested in teaching computing and computational thinking in a media-
rich context, in conjunction with guidelines such as the CS Principles 
and Big Ideas.* In particular, this book supports teaching of the 7 CS Big 
Ideas:

• Big Idea I—Creativity. Computing is a creative human activity that 
engenders innovation and promotes exploration (whole book, and in 
particular chapters 1, 6, 7, 8, 9, 10, and 11).

• Big Idea II—Abstraction. Abstraction reduces information and 
detail to focus on concepts relevant to understanding and solving 
problems (whole book, and in particular chapters 2, 3, 7, and 11).

• Big Idea III—Data. Data and information facilitate the creation of 
knowledge (chapters 3, 4, 7, 10, and 11).

• Big Idea IV—Algorithms. Algorithms are tools for developing and 
expressing solutions to computational problems (chapters 4, 5, 6, 7, 
10, and 11).

• Big Idea V—Programming. Programming is a creative process that 
produces computational artifacts (chapters 3, 4, 5, 6, 7, 8, 9, 10, and 11).

• Big Idea VI—Internet. Digital devices, systems, and the networks 
that interconnect them enable and foster computational approaches 
to solving problems (chapter 9).

* The College Board, “Computer Science: Principles, Big Ideas and Key Concepts”, 2012.
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• Big Idea VII—Impact. Computing enables innovation in other fields 
including mathematics, science, humanities, and arts, among others 
(chapters 1, 8, 9, 10, and 11).

SOFTWARE LIBRARIES
The book comes with a Jython environment and a collection of software 
examples and libraries, including music, image, graphical user interface, 
MIDI, audio, and Open Sound Control. The music library is an extension 
of the jMusic library and incorporates other cross-platform programming 
tools. This software is available for download on the website associated 
with this book, http://jythonMusic.org.

We hope that this book will enhance the educational experience of stu-
dents in entry-level courses in computing and computational thinking. 
We also hope that it may serve as a reference and text for computer music 
courses, such as those offered by music technology programs. Finally, we 
hope this book may serve as a reference and tutorial resource for digital 
music enthusiasts who wish to expand their creative horizons and learn 
how to write music software and create algorithmic music compositions.
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C h a p t e r  1

Introduction and History

Topics:  Pythagoras (music, nature, and number), the Antikythera mechanism, 
Kepler’ s harmony of the world, cymatics, fractals, electronic music,  computers 
and  programming, the computer as a musical instrument, running Python 
programs.

1.1 OVERVIEW
This chapter provides a quick tour of some of the major technological 
 landmarks in Western music history and computer science. When we 
think of computer music, we usually imagine electronic technologies, 
particularly the synthesizer, computer, and sound recording devices. 
These devices are products of the information age in which we live. This 
age focuses on computational thinking, that is, using computers in cre-
ative ways to manipulate data and perform various tasks, usually involv-
ing some form of programming. The introduction of computers and, 
in  particular, computer programming has also expanded the sonic and 
structural boundaries of music composition and performance.

In the 20th century, the fundamental education of an individual con-
sisted of the three R’s—reading, writing, and arithmetic. In the 21st cen-
tury, with the proliferation of computing devices, this list now consists of 
four R’s, that is, reading, writing, arithmetic, and programming.

Once computer programming is mastered, new vistas of creative 
expression become available. This new expressive capability is not con-
fined only to computer music—it is available in every area of the arts as 
well as the sciences. Accordingly, the programming skills you will acquire 
in this book are not specific only to making music. They may be applied to 
creative endeavors in all areas of human knowledge and expression.

1.2 CONNECTING MUSIC, NATURE, AND NUMBER
The development of music and mathematics is connected to humanity’s 
early observations of nature, and attempts to explain and formulate aspects 
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of the human experience. The ancient Babylonians, Egyptians, and Greeks 
investigated the origin of sound and resonance, and developed the notion 
of musical scale in terms of integer ratios. To them nature was a harmoni-
ous artifact, in which humans found themselves exploring and creating. 
Mathematics was created around that time, and in its early phases, it was 
intricately connected to nature and music. Even more recent concepts of 
the golden ratio, Fibonacci numbers, Zipf ’s law, cymatics, and fractals are 
all based on this ancient theme. In this book, we let this ancient theme 
guide us, as we interweave music, number, and computer programming.

1.2.1 Pythagoras—Harmonic Series

The ancient Babylonians, Egyptians, and Greeks were fascinated with the 
technological nature of music—perhaps even more than we are today. For 
instance, Pythagoras (c. 570–c. 495 BCE) discovered that musical pitch 
intervals could be described by numbers. He and his students are credited 
with the discovery of mathematics, a term which they coined. Pythagoras 
left Greece at a young age to be educated in Egypt. There he associ-
ated himself with Egyptian priests, who at the time studied astronomy, 
geometry, and religion (all at once, without the divisions we have today). 
Pythagoras spent close to 20 years in Egypt, but then was captured during 
a war and was transferred as a slave to Babylon (an area now part of Iraq). 
There, through his knowledge and intellect, he gained access again to the 
educated elite and continued his studies in astronomy, religion, geometry, 
and music.

Pythagoras’s contributions helped shape the ideas of subsequent phi-
losophers, mathematicians, and scientists, including Plato, Aristotle, and 
many more. Aristotle tells us the Pythagoreans discovered that musical 
harmony can be explained by numbers; they took up mathematics, and 
“thought its principles were the principles of all things. Since, of these 
principles, numbers are by nature the first, and in numbers they seemed 
to see many resemblances to the things that exist and come into being” 
(Aristotle 1992, pp. 70–71). This observation suggests that everything 
we experience through our senses can be described (e.g., measured and 
represented) by numbers, in some way or another, and then it can be 
turned into music. For instance, consider the music stored on your digital 
music player (inside the machine, this music is represented by numbers).* 

* This applies to all information (e.g., text, images) stored on a computer, or the Internet—the term 
digital refers to representing information using numbers (i.e., converting information to data).



Introduction and History   ◾   3  

Also, consider the concept of sonification, that is, the conversion of arbi-
trary data to sounds, so that they may be perceived more easily.* In other 
words, music and numbers are interchangeable.

One of the major discoveries contributed by the Pythagoreans, which 
helped shape the nature of music theory many centuries later, is the obser-
vation that strings resonate in simple ratios. In particular, they observed 
that strings exhibit harmonic proportions—they vibrate at integer ratios 
of their length, that is, 1/1, 1/2, 1/3, 1/4, 1/5, etc. (see Figure 1.1). The instru-
ments of the era, the lyra and the kithara (the latter etymologically related 
to the modern guitar), were most probably used in their experimentations.

This was a major discovery, since it demonstrated that integers emerge 
from the natural properties (or geometry) of a string. Accordingly, the 19th 
century mathematician Leopold Kronecker said, “God made the integers; 
all else is the work of man” (Bell 1986: 477). He argued that arithmetic 
and mathematical analysis must be founded on integers. The Pythagorean 
 discovery is even more profound when considering the implications of 
string theory in physics, which states that the universe consists of sub-
atomic particles resembling one-dimensional resonating strings. These 
ideas are related to the fields of cymatics and fractal geometry (see the 
 following sections).

Finally, Pythagoras and his students worked on a theory of numbers 
and explored the harmony of the spheres. The harmony of the spheres (or 
musica universalis—music of the spheres) is the philosophical belief that 

* See Chapter 7 for a more in-depth discussion of sonification.

1/5

1/4

1/3

1/2

1

FIGURE 1.1 String resonating at integer ratios.
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the planets and stars moved according to mathematical equations. Since 
numbers are connected to musical notes, the orderly movement of planets 
was said to create an astronomical symphony. According to different reli-
gious/philosophical traditions, this music could be heard only by the most 
enlightened individuals. However, with the advent of the modern com-
puter (and the knowledge you will accumulate in this book), this music is 
now accessible to everyone.

One of the major discoveries of this era (first described by Plato, in 
Timaeus, and then by Euclid, in his Elements) was the golden ratio (or 
golden) mean. This special proportion, which humans find aesthetically 
very pleasing, is found in natural or human-made artifacts (Beer 2008; 
Calter 2008, pp. 46–57; Hemenway 2005, pp. 91–132; Livio 2002). It is also 
found in the human body (e.g., the bones of our hands, the cochlea in our 
ears, etc.). The golden ratio reflects a place of balance in the structural 
interplay of opposites.

1.2.2 The Antikythera Mechanism—The First Known Computer

Ancient astronomical models were well established. They were used to 
construct the first computing machines approximately 2,100 years ago 
(Vallianatos 2012). Of these early computational machines, only one 
survives, in the National Archeological Museum of Greece, in Athens. 
Interestingly, these machines would have been unknown to us had it not 
been for the early 20th century discovery of fragments of a working model 
on a 2,000-old shipwreck near the island of Antikythera (see Figure 1.2).

The Antikythera mechanism uses the same design principles (i.e., 
employing gear ratios to implement mathematical relations) as the much 
later (19th century) Difference and Analytical Engines designed by Charles 
Babbage and Lady Ada Lovelace (see Figure 1.3). The connection between 
these machines and modern computers is indisputable.

1.2.3 Johannes Kepler—Harmony of the World

The Pythagorean ideas and theories inspired many in the centuries that 
 followed, including Johannes Kepler. In 1619 Kepler wrote his seminal 
work Harmonices Mundi (Harmony of the World). In this book, Kepler 
describes physical harmonies in planetary motion. His work contributed 
significantly to the scientific revolution that brought us out of the dark ages.

In this book Kepler presents his third law of planetary motion, that the 
distance of a planet from the sun is inversely proportional to its speed. 
Based on this result, he also discusses the harmony found in the motions 
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of the planets. In particular, he discovered that the speeds of consecutive 
planets approximate musical harmonies. The only exceptions are Mars 
and Jupiter. However, we now know that this is the result of a missing 
planet, whose mass is found in the asteroid belt between Mars and Jupiter. 
This belt was discovered 150 years after Kepler’s death.

FIGURE 1.2 Fragment from the Antikythera mechanism.

FIGURE 1.3 Part of Babbage’s difference engine.
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Kepler argued that planets can be thought of as “singing” together in 
near harmony. This harmony fluctuates as planets slow down and speed 
up (i.e., each has a minimum and maximum angular speed). Only rarely 
do planets “sing” in perfect concord.

This kind of sonification (i.e., turning data into music) has been applied 
to many natural and human-made phenomena to generate sounds that are 
not too foreign to our ears, as might initially be imagined (see Figure 1.4). 
Later in the book, we explore this idea of sonification, so you too can cre-
ate your own experiments related to the Pythagorean ideas. Recently, 
geologist John Rodgers and jazz musician Willie Ruff helped materialize 
Kepler’s Harmonices Mundi by sonifying actual orbital data of planets in 
our solar system. This recording can be easily found on the Internet and is 
very inspiring to listen to.

1.2.4 Cymatics

Cymatics (from the Greek κύμα, “wave”) is the study of visible (visualized) 
sound and vibration in 1-, 2-, and 3-dimensional artifacts. It was influ-
enced significantly by the work of the 18th century physicist and musician 
Ernst Chladni, who developed a technique to visualize modes of vibration 
on mechanical surfaces, known as Chladni plates (see Figure 1.5).

When drums or gongs are struck, they vibrate in similar ways. That 
similar modes of vibration relate to musical pitch, rhythmic subdivisions, 
and sound timbre is interesting and suggests that many aspects of music 
and sound can be described computationally and controlled through 
software. Cymatics is an inspiring young field of exploration—for more 

Here the moon also has a place

Mercury

Earth VenusMars (approx.)

Saturn Jupiter

FIGURE 1.4 Kepler’s study of musical notes representing the motion of the 
known planets (capturing changes in speed as planets traverse their elliptical 
orbits around the sun).
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information, see Evan Grant’s TED Talk, which demonstrates the  science 
and art of cymatics, through beautiful visualizations of soundwaves 
(Grant 2009).

1.2.5 Fractals

In the spirit of Pythagoras, mathematical descriptions for musical orga-
nization continue to be pursued. The hierarchical nature of music has led 
many to consider fractal geometry as an interesting candidate for such 
descriptions. Fractals are self-similar objects (or phenomena), that is, 
objects consisting of multiple parts, with the property that the smaller 
parts are the same shape as the larger parts, but of a smaller size. Fractals 
were developed by Benoit Mandelbrot to study harmonic proportions in 
nature (Mandelbrot 1982). Figure 1.6 displays a fractal tree (also known as 
a Golden Tree, since it incorporates golden ratio proportions). This fractal 
is constructed by dividing a line into two branches, each rotated by 60° 
(clockwise and counter-clockwise), with a length reduction factor equal to 
the golden ratio (0.61803399…). These smaller lines, again, are each subdi-
vided into two lines following the same procedure. This repetition/subdi-
vision continues on and on (theoretically) to infinity. Interestingly, similar 
patterns appear extensively in nature (as they maximize the amount of 
matter that can fit in a limited space, that is, touching but not overlap-
ping). Such artifacts are very easy to construct using a computer.

The Harvard linguist George Kingsley Zipf (1902–1950) was a great 
influence on the development of fractals. In his seminal book, Human 
Behavior and the Principle of Least Effort, Zipf reports the amazing obser-
vation that word proportions in textbooks, as well as notes in musical 
pieces (among other phenomena), follow the same harmonic proportions 
(i.e., 1/1, 1/2, 1/3, 1/4, 1/5, etc.) first discovered by Pythagoreans on strings. 
Zipf proportions have been discovered in a wide range of natural and 

FIGURE 1.5 Chladni plates, vintage engraving. Old engraved illustration 
of Chladni plates isolated on a white background. (From Charton, É. and 
Cazeaux, E., eds. (1874), Magasin Pittoresque.)
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human-made phenomena, including music, city sizes, salaries, subrou-
tine calls, earthquake magnitudes, thicknesses of sediment depositions, 
extinctions of species, traffic jams, and visits to websites, among many 
others.

Zipf proportions are also known as pink-noise, harmonic, and 1/f pro-
portions and can be considered to be measures of variety or interest. At 
one extreme is a random probability of occurrence (i.e., chaos or white 
noise, such as radio static) where events are unpredictable and seemingly 
unorganized. In the mid range lie fractal and brown-noise that have some 
discernable organization. At the other extreme are very monotonous phe-
nomenon (aka black-noise proportions), such as a musical piece consist-
ing mostly of one note. In physics, white-noise, pink-noise, brown-noise, 
and black-noise proportions are known as power laws. Psychologists have 
shown that people prefer music, and other experiences, that have a balance 
of predictability and surprise, and so having a computable measure of this 
likelihood can be useful in computer music making.

Many interesting attempts have been made to generate music from 
fractal artifacts. Conceptually, the process is relatively straightforward—
it involves converting aspects of a fractal object to aspects of a musical 
artifact. For instance, the placement and size of a line in Figure 1.6 could 
be converted to the pitch and duration of a note. As the fractal object 
is being visually generated through a computer program, that same pro-
gram could output the corresponding musical notes to a MIDI file, thus 

FIGURE 1.6 Fractal tree.
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generating a fractal music piece. The process of mapping visual elements 
to audio elements is called sonification. Sonification is an art in itself, as 
there are many possible ways of converting between visual elements and 
audio elements. (For instance, consider how you might sonify Figure 1.6.) 
The trick is to identify which visual elements to select, and how to map 
them to audio, so as to generate the most aesthetically pleasing (or scien-
tifically interesting) audio artifacts. Sonification and fractals are explored 
later in the book.

1.3 COMPUTER MUSIC HISTORY
Throughout human history, technologies have consistently influenced 
our societal development, with periods of accelerated influence occur-
ring at times such as the Renaissance, the Industrial Revolution, and the 
Information Age. This is paralleled by a relatively similar pattern of music 
technology developments. The earliest harps, horns, and drums are clearly 
technologies and their development and usage relied on new technologies 
of their day, very similar to the way computers are applied to music pro-
duction in our age.

Landmarks in the history of music technologies include the use of 
written notation from around mid 9th century CE, the development of 
polyphony in the centuries that followed, and organ building improve-
ments and equal temperament in the Middle Ages.

The Renaissance and Baroque periods saw an obsession with music of 
the spheres resulting from the newly developed field of astronomy (see 
above), and a peaking of craftsmanship in the violins of Stradivarius and 
in compositional technique in the fugues of Bach. The study of alchemy 
led to 19th century chemistry and physics, which provided new metals and 
efficient methods to improve instrument fabrication. This surge in instru-
ment development went hand in hand with increases in orchestra size. 
Also, industrialization was a common underscoring theme in music, such 
as Wagner’s “Der Ring des Nibelungen.” Early 20th century landmarks 
include the automation of music via the player piano, the technological 
abstractions of electronic and recorded sound in the music of Schaeffer 
and Stockhausen, and parallel abstractions in the musical structures and 
notations of Debussy, Stravinsky, Schoenberg, Xenakis, Cage, and others.

This history is continuous in its highlighting of human curiosity and 
creativity. However, the developments in knowledge and technology are 
not deterministic and did not follow a simple evolutionary path (i.e., a 
path of increasing complexity). For example, the interests of Pythagoras 
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resurfaced and inspired (more than one thousand years later) Kepler’s 
explorations of musical patterns in astrological movements and Fourier’s 
investigations into sonic spectra in the later 18th century. In between these 
investigations were centuries of explorations that followed other techno-
logical paths. The path of technological development is in no way straight 
or predictable in advance, even if such developments appear as a logical 
sequence with hindsight.

1.3.1 Automated Music

One of the characteristics of the computer as a music machine is that it 
can be automated by programming. Automatic instruments have existed 
for a long time, probably since antiquity. One possibility is the  hydraulis 
which is attributed to Ctesibius of Alexandria (3rd century BCE). The 
hyrdraulis, about which little is known (due to the loss of ancient knowl-
edge mentioned earlier), used water pressure to drive air through pipes, 
thus producing sounds (similarly to later ecclesiastical organs). Another 
possibility is the wind organ developed by Heron also of Alexandria (1st 
century CE), which was driven by a wind wheel. These and later designs 
were passed through Byzantine and later Arab scholars to Italy around the 
Renaissance period.

These designs contributed to later automated instruments, such as the 
barrel organ of Henry VIII built in 1502. It was manually driven, but 
the course of the following century led to fully autonomous instruments 
driven by clockwork mechanisms (similar to the Antikythera mechanism, 
whose design principles were also passed through Byzantine and later 
Arab scholars).

In order to increase the repertoire used in automated music machines, 
an alternative was sought to barrel organs that used replaceable barrels, 
which were expensive to produce and on which playing time was limited. 
A solution to both these problems presented itself in the 18th century in the 
form of the punch card technologies employed by Jacquard weaving looms. 
Scores were made in the form of holes punched in paper tape or cards. The 
cards could be strung together to create long sequences. This became a 
new form of musical notation, which was not efficient for human reading 
but quite efficient for machine reading. The machine became the inter-
preter of these machine-specific scores. Such instruments constitute more 
than an amusement even if their quality of performance was quite low. 
They enabled musical performances to be captured and transported, to be 
reproduced on demand, and replayed time and again for closer inspection.
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Perhaps the most sophisticated (and certainly the most popular) 
 automated instrument was the player piano. Although its development 
historically paralleled the gramophone, its sonic quality was far superior 
for quite a while and brought music on demand into many homes in the 
first half of the 20th century. The availability of automated musical per-
formances in the home changed the role of the audience, affecting (not 
always detrimentally) concert attendance and the social status of musical 
performance skills. The player piano, more than electronic recording tech-
nologies, was the parent of MIDI sequencing in choosing to capture pitch, 
duration, and force (velocity) for each note. The piano rolls were editable and 
so “near perfect” performances could be created, and composers were not 
slow to realize that piano rolls could produce music beyond that humanly 
performable. In this way the composer first became a nonperforming pro-
ducer, involved in all the steps from conception to final sounding.

1.3.2 Early Computer Music

The first public performance of computer music was programmed by 
Geoff Hill and Trevor Pearcey and generated by CSIRAC (Council for 
Scientific and Industrial Research Automatic Computer) at the Australian 
Computer Conference in August 1951. At this time, computer music was 
little more than a computational barrel organ playing popular tunes of the 
time; however, to do so at that time was no easy task, especially given the 
fickleness of the valve components, the timing constraints of the memory 
using mercury delay lines, and awkward punched paper tapes for describ-
ing programs. CSIRAC was the first computer in Australia and a machine 
intended purely for scientific research, so the achievement is a remarkable 
example of how quickly people turn any technology to musical purposes.

Computer-based music composition had its start in the mid-1950s 
when Lejaren Hillier and Leonard Isaacson did their first experiments 
with computer-generated music on the ILLIAC computer at the University 
of Illinois. They employed both a rule-based system utilizing strict coun-
terpoint and also a probabilistic method based on Markov chains (also 
employed by Iannis Xenakis around the same time). These procedures 
were applied variously to pitch and rhythm, resulting in “The ILLIAC 
Suite,” a series of four pieces for string quartet published in 1957.

The recent history of automated music and computers is densely popu-
lated with examples based on various theoretical rules from music theory 
and mathematics. While The ILLIAC Suite used known examples of these, 
developments in such theories have added to the repertoire of intellectual 
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technologies applicable to the computer. Among these are the Serial music 
techniques, the application of music grammars (notably the Generative 
Theory of Tonal Music by Fred Lerdahl and Ray Jackendoff), sonification 
of fractals and chaos equations, and connectionist pattern recognition 
techniques based on work in neuropsychology and artificial intelligence.

Arguably, the most comprehensive of the automated computer music 
programs is David Cope’s Experiments in Music Intelligence (EMI), 
which performs a feature analysis on a database of a particular composer’s 
works (Cope 2004). Using this analysis, EMI can then compose any num-
ber of pieces in that composer’s style (e.g., J.S. Bach, Chopin, etc.). The 
term style, here, is a function of many musical aspects, including melody 
and harmony.

In terms of melody, EMI captures repeated ideas that run through the 
works in its database, that is, common melodic material that a composer 
tends to use. Finding such repeated ideas is a complicated task, as the same 
melodic idea can be presented in a variety of different ways within a single 
piece: notes can be added to it or removed, it can be sped up or slowed 
down, and it can be played over different harmonies. This requires sophis-
ticated pattern recognition within a complicated context and is one of the 
major accomplishments of Cope’s research.

In terms of harmony, EMI extracts chords from the works in its data-
base and then constructs its own chord progressions. These progressions 
do not replicate the ones in the database’s works; they are novel. However, 
they are stylistically similar to (i.e., follow similar construction rules as) 
the analyzed works. In this way, the composer’s “harmonic style” is also 
replicated in EMI’s new compositions.

EMI’s database can, actually, be loaded with the works of more than 
one composer. When this is done, its resulting compositions blend the 
styles of those composers. The results are sometimes odd, but quite often 
surprisingly clever and beautiful.

1.3.3 Electronic Music

After Thaddeus Cahill’s relatively unsuccessful attempt at creating a 
massive organ-like device using early American telephone technologies 
called the Telharmonium, one of the first electronic performance instru-
ments was Leon Thérémin’s device invented in the 1920s in Moscow. 
The Theremin, as it was known, was played by positioning each hand at a 
varying distance from two antennae. The location of the hands changed 
the  electromagnetic fields generated by electricity passing through 
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the antennae, one controlling volume, the other the pitch of a constant 
and relatively pure tone. The Theremin made quite an impact, with pieces 
being written for it by Aaron Copeland and Percy Grainger, although the 
most popularly known example is in the opening of the Beach Boys’ hit 
“Good Vibrations.”

The first popular electric keyboard instrument was the Hammond 
organ, invented in 1935 by Laurens Hammond using electromagnetic 
components to generate sinusoidal waveforms which could be combined 
in various combinations using drawbars. The drawbars acted similarly 
to pipe organ stops, but rather than simply turning on or off oscillators, 
they controlled their degrees of loudness. The B3 model, first produced in 
1936, has become legendary in gospel, jazz, and rock music. It provided a 
relatively affordable and portable keyboard instrument for music perfor-
mance, and the timbral variety “synthesized” through drawbar settings 
gave to keyboard players a taste of customizable timbre that would later be 
expanded by the synthesizer.

The solid body electric guitar was developed after some initial produc-
tion of semiacoustic electric models in the 1930s. Following early experi-
ments by Adolf Rickenbacker and Les Paul, the first production models 
appeared in the early 1950s from the Gibson and Fender companies. The 
major technical hurdle was the refinement of the pickups to eliminate 
noise and provide a clear signal, which was solved largely by the develop-
ment of the twin-coil “humbucking” pickup.

The early development of recording technologies by Thomas Edison 
was done with mechanical technologies around the turn of the 20th cen-
tury. It was not until electronic amplifiers became available in the form of 
vacuum tubes that the minute etchings of the recording process could be 
played back with any fidelity. Even then the making of recorded cylinders 
was tedious and specialized. Building on this research, the first commer-
cial magnetic tape recorder was introduced in 1948. The ability to record, 
not only play back, was the shift necessary to motivate musicians to use 
this technology creatively.

In Paris in the late 1940s after World War II, Pierre Schaeffer devel-
oped a compositional use for the previously reproduction-focused tape 
recorder. The compositional technique Musique Concrète, as it became 
known, used recorded sounds of both instrumental and environmental 
origin, manipulated them through variations in timbre, pitch, duration, 
and amplitude, then collaged these sounds into a polyphonic musical 
form.
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Tape-based compositional works were produced by Karlheinz 
Stockhausen in Cologne from the mid-1950s, which he called Elektronische 
Musik (Electronic Music). As well as treating recorded sounds, Stockhausen 
and contemporaries such as Edgard Varèse focused on synthesizing new 
timbres using oscillators, filters, and amplifiers.

The successful commercialization of synthesizers came with the release 
in 1964 of the Moog synthesizers. The technical breakthrough that made 
these instruments possible was the use of transistors instead of vacuum 
tubes, which dramatically reduced the instrument’s size and increased 
the stability of voltage control. One of the more popular early record-
ings using the Moog synthesizers was Wendy Carols’s “Switched-on 
Bach,” which was a notable achievement at the time, but created a leg-
acy of imitative thinking which still haunts synthesizer usage, as more 
recently reinforced in the General MIDI specification. The most popular 
of Robert Moog’s synthesizers was the Mini Moog, one of the first por-
table all-in-one synthesizers, still highly regarded 50 years after its release 
(see Figure 1.7).

The use of recording as a compositional and synthesis tool did not 
change much from the days of musique concrète until the late 1970s, 
when the development in Australia of the Quasar and M8 digital syn-
thesizers by Tony Furse influenced the commercially successful Fairlight 
CMI developed by Peter Vogel and Kim Ryrie, and at the same time the 
New  England Digital Synclavier was developed in New Hampshire by 

FIGURE 1.7 The Mini Moog synthesizer.
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Sydney Alonso, Jon Appleton, and Cameron Jones. The Fairlight and 
the Synclavier introduced sampling technologies (short-duration digital 
recording) to commercial music making in 1979. Both instruments were 
also capable of sound synthesis processes and used keyboard controllers 
for performance, attached to computer systems for storage, display, and 
editing of waveforms. A version of the Fairlight is now available for the 
Apple iPad, which highlights how much computing power and expense 
has changed in the last half a century or so.

Digital technologies made their way into synthesizers first as memory 
banks for presets, most famously in the Sequential Circuits Prophet V, and 
later in the sound synthesis engine itself, notably with the Yamaha DX7 
(see Figure 1.8). The release of the DX7 in 1983 coincided with another sig-
nificant event in electronic music history: the introduction of the Musical 
Instrument Digital Interface (MIDI) standard.

Developed by Dave Smith of Sequential Circuits, and with input from 
other major manufactures of the time, notably Roland and Yamaha, the 
MIDI standard replaced the plethora of interconnecting standards such 
that equipment from different manufacturers could communicate. MIDI 
began as a note-based live performance protocol, intellectually indebted 
to music notation and player-piano technologies. The MIDI standard has 
expanded over the years to include file formats, sample transfer protocols, 
the General MIDI standard sound set, a music XML format, and a range 
of other musical and operational parameters.

The synthesizer, in its keyboard form, has remained quite stable since 
the 1980s, with some controller extensions modeled on other instruments 
including guitar, woodwind, and percussion. Research continues into 
new instrument designs, as it always has, with STEIM in the Netherlands 
and the HyperInstrument group at MIT’s Media Lab contributing sig-
nificantly during the 1990s, but with developments expanding quite 
broadly since then. Many of the latest research developments are evident 

FIGURE 1.8 The Yamaha DX7 synthesizer.
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in the proceedings of the annual New Interfaces for Musical Expression 
(NIME) conference.

Along with advances in MIDI and the digital synthesizers, the 1980s 
also saw an accelerating increase in personal computer ownership and 
with it the expansion of music software. Most significant from a commer-
cial aspect was the rise of the MIDI sequencer software. Building on the 
techniques of earlier electronic sequencers to repeat short series of notes, 
software sequencers continue to provide more comprehensive musical 
transformations.

Alongside sequencing, music notation programs were also appearing 
at this time, although it took the desktop publishing revolution of the 
early 1990s for all the appropriate technologies to fall into place, nota-
bly the postscript font-description language and laser printing. Computer 
music publishing is now the norm rather than the exception. The first pro-
gram to successfully combine both sequencing and notation was C-Lab’s 
Notator on the Atari computer, which proved the rule that you only need 
one “must have” program to sell a computing platform. Over the years, 
this program has transformed into Apple’s Logic Pro software.

As personal computer power increased in the late 1990s, synthesis 
software (long the domain of expensive systems such as the Fairlight or 
computer workstations) became accessible. This is evident in the cur-
rent popularity of hard disk recording systems, such as Pro Tools, as 
well as real-time signal processing systems, which are becoming practi-
cal on mobile computers for reverb and equalization, and even real-time 
synthesis as complex as frequency modulation, granular, and physical 
modeling.

The integration of many of these technical threads in computer-based 
composing, recording, publishing, and multimedia occurred around the 
late 1990s, and now digital music systems provide rich and expressive 
tools for the musician. Around the turn of the 21st century the increases 
in computing power reached a threshold where personal computers were 
powerful enough to manage most audio and some video processes in real 
time. This saw the concentration of computer music systems in software 
or “virtual” versions of what had been previously separate hardware com-
ponents. The laptop computer had become the one-stop digital music 
workspace and an instrument for live performance. This process of con-
centrated computing power continues, with mobile devices such as smart-
phones and tablet computers increasingly becoming the site for computer 
music practices.
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1.3.3.1 Reflection Questions
 1. What were the dominant technological drivers of the past few 

centuries?

 2. Where do you think the current borders of technical innovation are 
that will affect music making?

 3. Given that new materials such as iron and aluminum have shaped 
the development of acoustic instruments, what changes have driven 
electronic/computer instrument development?

 4. What have been the major developments in automated music 
described in this chapter?

 5. The use of electronics has shaped music making over the past 
100 years. Who were some of the musicians to first pioneer the use 
of electronic devices for music?

 6. What has been the impact of audio recording on music making?

 7. What was the basis of the compositional technique known as 
musique concrète?

 8. What changes occurring during the 1990s are described in this 
chapter?

1.4 ALGORITHMS AND PROGRAMMING
Computers have been traditionally programmed to calculate solutions to 
numerical problems (the name “computer” itself reflects this— modern 
computers were viewed as a replacement for human computers in the 
military). This view, of course, is very restrictive, as any normal computer 
user can attest. Computers are wonderful for playing games, searching 
the Internet, and for making music. In this book, we introduce computer 
programming in the context of connecting number, music, and nature.

One of the more significant advantages of the computer for music mak-
ing is its ability to be programmed: its ability to automatically do a series 
of tasks and to do them quickly. This is, of course, the basis for all soft-
ware development but can also be the basis for a music making practice. 
Algorithmic music using a computer takes advantage of this ability to 
automate a series of instructions (an algorithm) to musical ends.

Definition: An algorithm is a series of steps (or instructions) for  performing 
a task.
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Examples of algorithms include instructions for assembling a bookshelf 
(assembly instructions sheet), steps for making spaghetti sauce (a recipe), 
and instructions for performing a musical piece (a musical score).

Computers can be programmed to follow such series of instructions 
using a programming language. When programming computer music, 
the challenge is to write instructions that lead to interesting and expressive 
music. Musical algorithms can describe how each of the musical elements 
is specified and varied as the piece proceeds. This can include control over 
the pitch, duration and loudness of notes, the timbre of sounds, the use 
of structural features such as repetition and variation, as well as tempo, 
volume, balance and so on.

The ability of computers to run algorithmic processes (programs, or 
sequences of steps) gives the impression that computers have autonomy 
and are possibly “smart.” At its most advanced levels this autonomy is 
referred to as Artificial Intelligence (AI), most well known through systems 
such as IBM’s Deep Blue for playing chess, and popularized through sci-
ence fiction systems such as Hal in the science fiction film 2001—A Space 
Odyssey and androids such as R2D2 in Star Wars or robots such as Walle 
in the film of the same name.

In algorithmic music systems the intention and possibilities are gener-
ally far more modest, even though some comprehensive systems, such as 
Experiments in Musical Intelligence by David Cope, can construct com-
plex and complete pieces. Generally, algorithmic composition systems 
are used for more mundane purposes, such as generating a tonal melody 
of a few bars, creating valid variations in a 12 tone row, suggesting pos-
sible chorale harmonization, or sonifying mathematical structures such 
as fractals or artificial life worlds by converting the numbers generated by 
formulae into pitches, rhythms, and form.

Many algorithmic systems deal with music at the note level, specifying 
or manipulating attributes such as pitch, duration, and dynamic. This is 
historically the most prevalent way of thinking about music and is the 
basis for common practice notation, so it is not surprising that note-based 
generative systems are common. Algorithmic processes can be applied in 
many ways to notes. Small pitch changes at the frequency level can be 
used for microtonal music, or loudness may be controlled by a function 
introducing a kind of jitter or instability to the note which, if subtle, may 
add some life to an otherwise static electronic performance. Similarly, 
subtle changes can be applied to the dynamic levels of a repeated phrase 
in order to provide variety which masks the machine-like repetition to 


