
“Bill Manaris and Andrew Brown have created this marvelous book
that will engage and inspire you to learn more about the science and
art of creating music through computation. … Bill and Andrew offer
an accessible path into a wonderful world that is both as modern as
your new laptop and as ancient as Plato. In that world of music and
mathematics, they construct a sandbox of computational tools. They
encourage you to create, compose music, and play with patterns and
data.”
—From the Foreword by Mark Guzdial, Georgia Institute of Technology

“Making Music with Computers by Bill Manaris and Andrew Brown
is a perfect accompaniment to programming music with the computer
language Python. Written clearly, succinctly, and including many
appropriate diagrams, this book is a must for anyone desiring to
create their own applications for composing and making music. First
rate in every way.”
—David Cope, Computer Composition Pioneer, and Professor
Emeritus, Music Department, University of California, Santa Cruz

Making Music with Computers: Creative Programming in Python
introduces important concepts and skills necessary to generate music
with computers. It interweaves computing pedagogy with musical
concepts and creative activities, showing you how to integrate the
creativity and design of the arts with the mathematical rigor and
formality of computer science. A supplementary website provides a
music library and other software resources used in the text.

K13083

Making Music

with Computers
Creative Programming in Python

M
ak

in
g
 M

u
sic

 w
ith

 C
o
m

p
u
ters

Bill Manaris
Andrew R. Brown

M
anaris and B

row
n

Computer Science/Computer Engineering/Computing

K13083_Cover.indd 1 2/19/14 12:46 PM

Making Music

with Computers
Creative Programming in Python

CHAPMAN & HALL/CRC
TEXTBOOKS IN COMPUTING

Series Editors

Published Titles

Paul Anderson, Web 2.0 and Beyond: Principles and Technologies

Henrik Bærbak Christensen, Flexible, Reliable Software: Using Patterns and Agile
Development

John S. Conery, Explorations in Computing: An Introduction to Computer Science

Ted Herman, A Functional Start to Computing with Python

Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph, Foundations of Semantic Web
Technologies

Mark J. Johnson, A Concise Introduction to Data Structures using Java Uvais Qidwai and
C.H. Chen, Digital Image Processing: An Algorithmic Approach with MATLAB®

Mark J. Johnson, A Concise Introduction to Programming in Python

Lisa C. Kaczmarczyk, Computers and Society: Computing for Good

Mark C. Lewis, Introduction to the Art of Programming Using Scala

Bill Manaris and Andrew R. Brown, Making Music with Computers: Creative Programming
in Python

Henry M. Walker, The Tao of Computing, Second Edition

John Impagliazzo
Professor Emeritus, Hofstra University

Andrew McGettrick
Department of Computer
and Information Sciences
University of Strathclyde

Aims and Scope

This series covers traditional areas of computing, as well as related technical areas, such as
software engineering, artificial intelligence, computer engineering, information systems, and
information technology. The series will accommodate textbooks for undergraduate and gradu-
ate students, generally adhering to worldwide curriculum standards from professional societ-
ies. The editors wish to encourage new and imaginative ideas and proposals, and are keen to
help and encourage new authors. The editors welcome proposals that: provide groundbreaking
and imaginative perspectives on aspects of computing; present topics in a new and exciting
context; open up opportunities for emerging areas, such as multi-media, security, and mobile
systems; capture new developments and applications in emerging fields of computing; and
address topics that provide support for computing, such as mathematics, statistics, life and
physical sciences, and business.

Chapman & Hall/CRC
TEXTBOOKS IN COMPUTING

Making Music

with Computers

Bill Manaris
College of Charleston
South Carolina, USA

Andrew R. Brown
Queensland University of Technology

Keperra, Australia

Creative Programming in Python

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140402

International Standard Book Number-13: 978-1-4822-2221-0 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

v

Contents

Foreword, xix

Preface, xxi

The Authors, xxvii

Acknowledgments, xxix

Chapter 1 ◾ Introduction and History 1
1.1 OVERVIEW 1

1.2 CONNECTING MUSIC, NATURE, AND NUMBER 1

1.2.1 Pythagoras—Harmonic Series 2
1.2.2 The Antikythera Mechanism—The First Known

Computer 4
1.2.3 Johannes Kepler—Harmony of the World 4
1.2.4 Cymatics 6
1.2.5 Fractals 7

1.3 COMPUTER MUSIC HISTORY 9

1.3.1 Automated Music 10
1.3.2 Early Computer Music 11
1.3.3 Electronic Music 12

1.3.3.1 Reflection Questions 17
1.4 ALGORITHMS AND PROGRAMMING 17

1.5 THE COMPUTER AS A MUSICAL INSTRUMENT 19

1.6 SOFTWARE USED IN THIS BOOK 21

1.6.1 Case Study: Running a Python Program 22
1.7 SUMMARY 23

vi ◾ Contents

Chapter 2 ◾ Elements of Music and Code 25
2.1 OVERVIEW 25

2.2 MUSIC IS SOUND AND … 25

2.3 NOTES 26

2.3.1 Musical Notation 27
2.3.2 Pitch 28

2.3.2.1 Pitches Are Integers 28
2.3.3 Duration 29

2.3.3.1 Durations Are Real Numbers 31
2.3.4 Dynamic 31
2.3.5 Panning 31
2.3.6 Creating Notes 32

2.4 RESTS 33

2.4.1 Creating Rests 34
2.4.2 Case Study: Playing a Note 34

2.4.2.1 Comments 35
2.4.3 Exercise 36

2.5 VARIABLES AND ASSIGNMENT 36

2.5.1 Examples 37
2.5.2 Reserved Words 38

2.6 NUMBERS 39

2.6.1 Integers 39
2.6.2 Floats 40
2.6.3 Arithmetic Expressions 40

2.7 INPUT AND OUTPUT 42

2.7.1 Input from the Keyboard 42
2.7.2 Output to the Screen 43

2.8 DATA TYPES 44

2.8.1 The type() Function 44
2.8.2 Case Study: Finding the Octave of a Pitch 45
2.8.3 Testing Programs 46
2.8.4 Exercise 46

2.9 SUMMARY 47

Contents ◾ vii

Chapter 3 ◾ Organization and Data 49
3.1 OVERVIEW 49

3.2 MUSICAL ORGANIZATION 49

3.2.1 Music Data Structure 50
3.3 PHRASES 51

3.3.1 Creating Phrases 51
3.3.2 Adding Notes 52

3.4 PYTHON LISTS 53

3.4.1 List Concatenation 54
3.4.2 List Repetition 54

3.5 ADDING NOTES WITH LISTS 55

3.6 CASE STUDY: LUDWIG VAN BEETHOVEN—“FÜR ELISE” 56

3.6.1 Exercise 57
3.7 MUSICAL SCALES 57

3.7.1 The Major Scale 58
3.7.2 The Minor Scale 59
3.7.3 Other Scales 59
3.7.4 Exercise 60

3.8 MUSICAL INSTRUMENTS 60

3.8.1 MIDI Instruments 61
3.9 SETTING THE INSTRUMENT 61

3.9.1 Exercise 62
3.9.1.1 Setting the Tempo 63

3.10 CASE STUDY: HAROLD FALTERMEYER—“AXEL F” 63

3.10.1 Exercises 64
3.11 CHORDS 64

3.11.1 Adding Chords 65
3.11.2 Case Study: Bruce Hornsby—“The Way It Is” 67
3.11.3 Adding Chords with Lists 68
3.11.4 Case Study: 2Pac—“Changes” 68

3.12 PARTS 69

3.12.1 Creating Parts 70
3.12.2 MIDI Channels 71

viii ◾ Contents

3.12.3 Adding Phrases 71
3.12.4 Creating Ensembles 72

3.13 SCORES 74

3.13.1 Creating Scores 74
3.13.2 Putting It All Together 75

3.14 A COMPLETE EXAMPLE 76

3.14.1 Case Study: Joseph Kosma—“Autumn Leaves”
(Jazz Trio) 76

3.14.2 Exercise 79
3.15 MIDI DRUMS AND PERCUSSIVE SOUNDS 79

3.15.1 Exercises 80
3.15.2 Case Study: Drum Machines 80

3.15.2.1 Drum Machine Pattern #1 81
3.15.2.2 Exercise 83

3.15.3 Case Study: Deep Purple—“Smoke on the Water” 83
3.16 TOP-DOWN DESIGN 84

3.17 INPUT AND OUTPUT 85

3.17.1 Reading MIDI Files 85
3.17.2 Writing MIDI Files 86
3.17.3 Exercises 87

3.18 SUMMARY 87

Chapter 4 ◾ Transformation and Process 89
4.1 OVERVIEW 89

4.2 GESTURES, EMOTION, AND MUSICAL STRUCTURE 89

4.2.1 Musical Patterns 90
4.3 MINIMALISM 92

4.3.1 Repetition and Phasing 93
4.3.2 Case Study: Steve Reich, “Piano Phase” (1967) 93

4.4 MODIFYING MUSICAL MATERIAL (MOD FUNCTIONS) 95

4.4.1 Modifying Volume 96
4.4.2 Modifying Duration 96
4.4.3 Modifying Pitch 97
4.4.4 Modifying with Randomness 98

Contents ◾ ix

4.5 MUSICAL CANON 98

4.5.1 Case Study: Traditional “Row Your Boat” 99
4.5.1.1 Exercise 101

4.5.2 Analyzing the Musical Process 101
4.5.2.1 Creating Musical Material 102
4.5.2.2 Making Copies of Musical Material 102
4.5.2.3 Shifting Musical Material in Time 103
4.5.2.4 Transposing Musical Material 103
4.5.2.5 Combining Music Material 103
4.5.2.6 Saving and Playing Musical Material 105

4.5.3 Case Study: J.S. Bach—Goldberg Ground, Canon 1
(BWV 1087) 105

4.5.4 Case Study: Trias Harmonica canon (BWV 1072) 107
4.5.5 Exercises 110
4.5.6 Case Study: Arvo Pärt—“Cantus in Memoriam”

(1977) 110
4.5.7 Exercises 112

4.6 VIEWING MUSIC 112

4.6.1 Notation Display 113
4.6.2 Piano Roll Display 113
4.6.3 Internal Values Display 114
4.6.4 Sketch Display 116
4.6.5 Exercises 116

4.7 THE SOFTWARE DEVELOPMENT PROCESS 117

4.7.1 Design 117
4.7.2 Implementation 118
4.7.3 Testing 118
4.7.4 Documentation—Good Style and Comments 119

4.8 CASE STUDY: COMPUTER-AIDED MUSIC
COMPOSITION 120

4.8.1 Exercise 123
4.9 SUMMARY 123

x ◾ Contents

Chapter 5 ◾ Iteration and Lists 125
5.1 OVERVIEW 125

5.2 ITERATION 125

5.2.1 The Python for Loop 125
5.2.2 Exercises 127

5.3 CASE STUDY: ARPEGGIATORS 128

5.3.1 Arpeggiator #1—Using Absolute Pitches 128
5.3.2 Constants 129

5.3.2.1 Exercise 131
5.3.3 Interactive Processes 131
5.3.4 Arpeggiator #2—Using Relative Pitches 131

5.3.4.1 Exercises 133
5.4 PYTHON LIST OPERATIONS 133

5.4.1 Accessing List Items 134
5.4.2 Modifying List Items 135
5.4.3 List Functions 136
5.4.4 Case Study: Scale Tutor 136
5.4.5 Case Study: Interactive PianoRoll Generator 137

5.4.5.1 Exercises 139
5.4.6 The range() Function 140

5.4.6.1 Exercises 141
5.4.7 The frange() Function 141
5.4.8 Iterating with Lists 142

5.5 ITERATIVE MUSICAL PROCESSES 143

5.5.1 Case Study: Mod Retrograde 143
5.5.2 Exercises 146
5.5.3 Case Study: Guitar Effect, FX-35 Octoplus 147
5.5.4 Exercises 148

5.6 DNA MUSIC 149

5.6.1 Case Study: Protein Music—Human Thymidylate
Synthase A 149
5.6.1.1 Exercises 152

5.7 SUMMARY 153

Contents ◾ xi

Chapter 6 ◾ Randomness and Choices 155
6.1 OVERVIEW 155

6.2 RANDOMNESS AND CREATIVITY 155

6.2.1 Case Study: Mozart—“Musikalisches Würfelspiel” 156

6.2.1.1 Exercise 159
6.3 INDETERMINISM AND SERIALISM 160

6.3.1 Case Study: Pierre Cage—“Structures pour deux
Chances” 161
6.3.1.1 Exercises 162

6.4 PYTHON RANDOM FUNCTIONS 163

6.4.1 Exercise 164
6.4.2 randint() 164
6.4.3 choice() 165

6.5 STOCHASTIC MUSIC 165

6.5.1 Case Study: Iannis Xenakis—“Concret PH” 166
6.6 HARNESSING (OR SIEVING) RANDOMNESS 168

6.6.1 Case Study: Wind Chimes 169
6.6.1.1 Exercises 170

6.6.2 Case Study: Pentatonic Melody Generator 170
6.6.3 Weighted Probabilities 171

6.7 SELECTION 172

6.7.1 Python if Statement 173
6.7.1.1 Many Cases 174

6.7.2 Case Study: Flipping a Coin 175
6.7.3 Case Study: Russian Roulette 176

6.7.3.1 Exercise 176
6.7.4 Case Study: Throwing Dice 177

6.7.4.1 Nesting “If” Statements 178
6.7.4.2 Exercise 178

6.7.5 Case Study: Let the Drums Come Alive 179
6.7.5.1 Exercises 181

6.8 PYTHON RELATIONAL OPERATORS 181

xii ◾ Contents

6.9 PYTHON BOOLEAN VALUES 184

6.10 PYTHON LOGICAL OPERATORS 185

6.10.1 Case Study: Music from Weighted Probabilities 186
6.10.1.1 Exercises 189

6.11 SUMMARY 190

Chapter 7 ◾ Sonification and Big Data 191
7.1 OVERVIEW 191

7.2 DATA SONIFICATION 192

7.2.1 The mapValue() Function 192
7.2.2 The mapScale() Function 194

7.3 CASE STUDY: KEPLER—“HARMONIES OF THE
WORLD” (1619) 196

7.3.1 Exercise 199
7.4 PYTHON STRINGS 200

7.4.1 Case Study: Music from Text 202
7.4.1.1 Exercise 204

7.4.2 String Library Functions 204
7.4.3 Case Study: Guido d’Arezzo—“Word Music”

(ca. 1000) 206
7.4.4 Python Nested Loops 208
7.4.5 Exercise 210

7.5 FILE INPUT AND OUTPUT 211

7.5.1 Reading Files 211
7.5.2 Writing Files 212
7.5.3 Exercises 213

7.6 PYTHON WHILE LOOP 213

7.6.1 Exercise 214
7.7 BIG DATA 215

7.7.1 Case Study: Biosignal Sonification 215
7.7.1.1 Sonification Design 217
7.7.1.2 Python Parallel Assignment 220

7.7.2 Exercises 223

Contents ◾ xiii

7.8 PYTHON FUNCTIONS 223

7.8.1 Defining Functions 224
7.8.2 Exercise 225
7.8.3 Returning Values 226
7.8.4 Exercises 227
7.8.5 Scope of Variables 229

7.9 IMAGE SONIFICATION 229

7.9.1 Python Images 229
7.9.2 Image Library Functions 230
7.9.3 Case Study: Visual Soundscape 231

7.9.3.1 Sonification Design 232
7.9.3.2 Defining a Function 236

7.9.4 Python Nested Loops (again) 238
7.9.5 Exercises 239

7.10 SUMMARY 239

Chapter 8 ◾ Interactive Musical Instruments 241
8.1 OVERVIEW 241

8.2 BUILDING MUSICAL INSTRUMENTS 241

8.3 GRAPHICAL USER INTERFACES 242

8.3.1 Creating Displays 243
8.3.2 Graphics Objects 244

8.3.2.1 Exercise 245
8.3.3 Showing Display Coordinates 245

8.4 CASE STUDY: RANDOM CIRCLES 246

8.4.1 Exercises 247
8.5 GUI WIDGETS 248

8.5.1 Event-Driven Programming 248
8.5.2 Callback Functions 249

8.6 CASE STUDY: A SIMPLE MUSICAL INSTRUMENT 250

8.6.1 Python Global Statement 252
8.6.2 Exercise 253

8.7 PLAY CLASS 253

xiv ◾ Contents

8.8 CASE STUDY: AN AUDIO INSTRUMENT FOR
CONTINUOUS PITCH CONTROL 255

8.9 AUDIOSAMPLE CLASS 258

8.9.1 Creating Audio Samples 258
8.9.2 Exercise 260

8.10 MIDISEQUENCE CLASS 260

8.10.1 Creating MIDI Sequences 261
8.10.2 Exercises 262

8.11 PAPER PROTOTYPING 262

8.12 A SIMPLE METHODOLOGY FOR DEVELOPING GUIS 263

8.12.1 Listen, Listen, Listen 265
8.13 EVENT HANDLING 265

8.13.1 Keyboard Events 266
8.13.2 Mouse Events 266

8.13.2.1 Example 266
8.13.2.2 Exercises 268

8.13.3 Case Study: Drawing Musical Circles 268
8.13.3.1 Defining Callback Functions 271
8.13.3.2 Exercises 273

8.14 CASE STUDY: A VIRTUAL PIANO 273

8.14.1 Exercise 278
8.14.2 A Variation, Using Parallel Lists 278

8.14.2.1 Exercises 281
8.15 SCHEDULING FUTURE EVENTS 282

8.15.1 Case Study: Random Circles with Timer 282
8.15.2 The Timer Class 286

8.15.2.1 Creating Timers 286
8.16 SUMMARY 287

Chapter 9 ◾ Making Connections 289
9.1 OVERVIEW 289

9.2 MIDI DEVICES—CONNECTING TO PIANOS,
GUITARS, ETC. 290

Contents ◾ xv

9.2.1 Case Study: Make Music with a MIDI Instrument 291
9.2.1.1 Exercise 294

9.2.2 The MIDI Library 294
9.2.2.1 The MidiIn Class 294
9.2.2.2 The MidiOut Class 296

9.3 OSC DEVICES—CONNECTING TO SMARTPHONES,
TABLETS, ETC. 298

9.3.1 OSC Messages 299
9.3.2 Case Study: Hello (OSC) World! 299

9.3.2.1 Program for OSC Server Device 299
9.3.2.2 Program for OSC Client Device 301
9.3.2.3 Exercises 301

9.3.3 The OSC Library 302
9.3.3.1 The OscIn Class 302
9.3.3.2 The OscOut Class 304

9.3.4 Case Study: Make Music with your Smartphone 305
9.3.4.1 Performance Instructions 305
9.3.4.2 Setting up Your Smartphone (OSC Client) 307
9.3.4.3 Setting up Your Computer (OSC Server) 307
9.3.4.4 Exercises 312

9.3.5 Hybrid Musical Instrument Projects 313
9.4 SUMMARY 313

Chapter 10 ◾ Music, Number, and Nature 315
10.1 OVERVIEW 315

10.2 ORIGINS AND REPRESENTATIONS 316

10.2.1 Pythagorean Theorem 317
10.2.2 Python as a Representation 318

10.3 CASE STUDY: MUSIC FROM MATH CURVES 319

10.3.1 Hearing the Music 320
10.3.2 Exercises 323

10.4 MATH LIBRARY 324

10.5 CASE STUDY: THE HARMONOGRAPH 324

xvi ◾ Contents

10.5.1 Lateral Harmonograph 327
10.5.2 Rotary Harmonograph 330
10.5.3 Exercises 333
10.5.4 Noninteger Ratios 333

10.6 CASE STUDY: KEPLER’S HARMONY OF THE WORLD,
NO. 2 334

10.6.1 Exercises 337
10.7 SUMMARY 338

Chapter 11 ◾ Exploring Powerful Ideas 339
11.1 OVERVIEW 339

11.2 FRACTALS AND RECURSION 340

11.3 FIBONACCI NUMBERS AND THE GOLDEN RATIO 340

11.3.1 Case Study: The Golden Tree 343
11.3.1.1 Exercises 347

11.4 ZIPF’S LAW 348

11.4.1 Zipf ’s Law and Music 350
11.4.2 What Does It Mean? 351
11.4.3 Measuring Zipf Proportions 352

11.4.3.1 Top-Down Design (Revisited) 354
11.4.4 Python Dictionaries 356
11.4.5 Exercises 358

11.5 PYTHON CLASSES 358

11.6 CASE STUDY: THE NOTE CLASS 359

11.6.1 Creating Note Objects 361
11.6.2 Defining the Class 361

11.6.2.1 Checking for Data Integrity 364
11.6.3 Python Exceptions 366
11.6.4 Exercises 366

11.7 CASE STUDY: A SLIDER CONTROL 367

11.7.1 Creating SliderControl Objects 368
11.7.2 Defining the Class 369
11.7.3 Exercises 370

Contents ◾ xvii

11.8 ANIMATION 371

11.8.1 Frame Rate 372
11.8.2 Case Study: A Revolving Musical Sphere 372

11.8.2.1 Color Gradients 373
11.8.3 Defining the Class 374

11.8.3.1 Spherical Coordinate System 375
11.8.4 Exercises 383

11.9 CYMATICS 384

11.9.1 Vectors and Python Complex Numbers 387
11.9.2 Defining the Boid Universe 389
11.9.3 Defining the Boids 393

11.9.3.1 Boid Sensing 396
11.9.3.2 Boid Acting 398

11.9.4 Creating the Simulation 398
11.10 EXERCISES 399

11.11 SUMMARY 402

reFereNCeS, 405

appeNDIX a: MIDI CONStaNtS, 409

appeNDIX B: MUSIC LIBrarY FUNCtIONS, 419

appeNDIX C: GUI LIBrarY FUNCtIONS, 429

appeNDIX D: Other FUNCtIONS, 449

xix

Foreword

The human desire to express and communicate has influenced
computing almost as long as there have been computers. ENIAC was

first turned on in 1947. The first computer music was generated in 1957.
The desire to say more with a computer has driven many advances

in computer science. Ivan Sutherland invented interactive computer
graphics in 1963, and his creation inspired the idea of classes in object-
oriented programming. Alan Kay and Adele Goldberg described the
computer as human’s first meta-medium, the first creative medium that
could encompass all previous media. Their research group at Xerox’s Palo
Alto Research Center (PARC) worked in the 1970s to answer the ques-
tion, “What would a computer used for creative expression look like?”
That’s what led them to invent the desktop user interface as we know it
today. In a real sense, the menus and windows that we use today to access
Facebook were invented in order to make the most powerful tool ever for
human expression.

Making music on a computer is a natural way to learn more about
mathematics, computer science, and music. Bill Manaris and Andrew
Brown have created this marvelous book that will engage and inspire
you to learn more about the science and art of creating music through
computation. They lead us through exploration of fascinating ques-
tions. How does music draw on both mathematical patterns and ran-
domness? How did Bach use algorithms to generate canons? How can
we turn data about proteins and planets into music? What kinds of new
 interfaces can you create to make it easier for you and others to make
music?

Bill and Andrew offer an accessible path into a wonderful world that is
both as modern as your new laptop and as ancient as Plato. In that world
of music and mathematics, they constructed a sandbox of computational

xx ◾ Foreword

tools. They encourage you to create, to compose music, and to play with
patterns and data. They invite you to continue in the traditions of Ivan
Sutherland and Alan Kay to use computing to explore powerful and
 creative ideas.

Mark Guzdial
Georgia Institute of Technology

July 2013

xxi

Preface

The book in your hands is the result of more than a decade of
 independent and collaborative effort by the two authors and their

computer music associates. Combining computers and music has a long
and fruitful heritage. The ideas which underpin the connection between
calculating and composing date back centuries. In the 21st century, com-
puters and music are more closely aligned than ever before. In particu-
lar, computers have become indispensable in music making, distribution,
 performance, and consumption.

This book introduces important concepts and skills necessary to make
music with computers. It interweaves computing pedagogy with musical
concepts and creative activities. It does this while maintaining a natu-
ral, steady increase in computational skills that are motivated by creative
musical contexts.

This book is intended primarily for introductory computer science
courses and for courses in the intersection of computing and the arts.
However, it is naturally suited for self-study. It assumes little musical and
programming experience; it introduces topics and concepts as they arise
through motivating, and hopefully inspiring examples.

CREATIVE PROGRAMMING
“Making Music with Computers” is an introduction to creative software
development in the Python programming language. It uses music-making
as a vehicle to introduce computer programming and computational
thinking to non-traditional audiences. This book helps computer science
educators teach students how to synthesize the creativity and design of the
arts with the mathematical rigor and formality of computer science.

Initially inspired by Randy Pausch’s “head-fake” approach*, we utilize
exciting and innovative music-creation activities to ultimately teach

* See Randy Pausch’s “Last Lecture” (readily available online).

xxii ◾ Preface

 introductory computer science concepts. Our goal is to keep this “game”
going throughout the book, just long enough so that the students learn to
express themselves algorithmically.

The book covers all concepts found in a traditional “Intro to Computer
Programming” (CS1) course. These concepts include data types, variables,
assignment, arithmetic operators, input/output, algorithms, selection
(if statements), relational operators, logical operators, iteration (loops),
lists (arrays), functions, modularization (functions), classes (object-
oriented programming). Additionally, the book covers graphical user
interfaces (GUIs), event-driven programming, big data, MIDI program-
ming, client-server programming (via OSC messages), recursion, fractals,
and complex system dynamics (boids).

TARGET AUDIENCE
This book addresses two trends in computing education: (1) the grow-
ing use of the Python language for teaching introductory programming,
and (2) the increasing infusion of computational thinking into liberal arts
courses, especially interdisciplinary offerings in computing and the arts. It
does so by presenting computer music topics in an accessible way for our
two main target audiences:

• First- and second-year university students, as well as advanced high
school students, who are interested in computer music and wish to
learn computer programming in a creative context; and

• Musicians of all levels and backgrounds who wish to expand their
creative horizons by modeling musical processes through computer
programming, and by applying these processes to create novel and
intriguing musical material for composition and live performance.

NAVIGATING THE BOOK
The book may be navigated using one of three narratives, objects first,
 procedures first, or à la carte:

• Objects first (chapters 1–3, followed by chapters 8–11, with just-
in-time introduction of for loops, functions, and if statements).
This approach works well with inexperienced students, as it is cre-
atively rich. It includes building graphical user interfaces (GUIs) and
interactive musical instruments, and thus motivates hard-to-grasp

Preface ◾ xxiii

programming concepts (such as loops, functions, and if state-
ments). To quote one of our students, “students want to do the work,
because it is fun.” In particular, chapters 1-3 introduce object-based
programming (using Notes, Phrases, Parts, and Scores). Chapter 8
introduces GUI objects, event-driven programming, and important
human-computer interaction (HCI) ideas, such as how to develop
usable interfaces through paper prototyping, usability testing, and
iterative refinement. Chapter 9 introduces MIDI and OSC (open
sound control) input/output objects, thus enabling programs to con-
nect to traditional musical instruments (e.g., guitars, pianos, etc.)*
and physical controllers (e.g., MIDI control surfaces, smartphones,
touch-sensitive tablets, etc.). Finally, chapters 10 and 11 introduce
Python classes, music from math equations, the harmonograph
(a way to visualize and sonify complex, yet beautiful repetitive pat-
terns found in nature, such as planetary orbits), animation, fractals,
the golden ratio, recursion, Zipf ’s law, and chaotic systems (boids).
This material is full of musical and other creative possibilities.

• Procedures first (chapters 1–11). This is a traditional narrative, which
interweaves computational and musical concepts incrementally,
from beginning to intermediate level of expertise. In addition to the
above topics, it includes randomness and creativity, data sonifica-
tion, image processing, musical canons (musical puzzles, of which
JS Bach was a master), minimalism, and stochastic music, to name
a few. It also provides a thorough introduction to programming in
Python, including data types, variables, assignment, arithmetic oper-
ators, input/output, algorithms, selection (if statements), iteration
(loops), lists (arrays), file input/output, modularization (functions),
event-driven programming (callback functions), and object-oriented
 programming (classes).

• À la carte (explore topics as desired/needed). This approach is best
suited for self-learners, and for musicians (and programmers) who
already know some Python (and music), and who wish to explore
techniques to enhance their potential for creative expression. If you
belong in this group, then the table of contents is your best friend.
Study it carefully, looking for items that seem attractive, and go from

* Any MIDI-enabled instrument will work, opening the door for some powerful creative possibili-
ties, for building hybrid computer music instruments.

xxiv ◾ Preface

there. If you are lacking some Python background (to fully appreci-
ate the provided examples, without having to read the whole book
up to that point), either you can look up Python topics in the book
index, or search the Internet (the latter being full of great Python ref-
erence material). Please enjoy weaving your own path through this
material - we certainly did!

All three narratives are supported by the website provided at http://
jythonMusic.org. There you will find additional resources (including more
code examples) to enhance your creative exploration and learning. Enjoy!

PEDAGOGY
From the point of view of pedagogy, our primary audience is educators
interested in teaching computing and computational thinking in a media-
rich context, in conjunction with guidelines such as the CS Principles
and Big Ideas.* In particular, this book supports teaching of the 7 CS Big
Ideas:

• Big Idea I—Creativity. Computing is a creative human activity that
engenders innovation and promotes exploration (whole book, and in
particular chapters 1, 6, 7, 8, 9, 10, and 11).

• Big Idea II—Abstraction. Abstraction reduces information and
detail to focus on concepts relevant to understanding and solving
problems (whole book, and in particular chapters 2, 3, 7, and 11).

• Big Idea III—Data. Data and information facilitate the creation of
knowledge (chapters 3, 4, 7, 10, and 11).

• Big Idea IV—Algorithms. Algorithms are tools for developing and
expressing solutions to computational problems (chapters 4, 5, 6, 7,
10, and 11).

• Big Idea V—Programming. Programming is a creative process that
produces computational artifacts (chapters 3, 4, 5, 6, 7, 8, 9, 10, and 11).

• Big Idea VI—Internet. Digital devices, systems, and the networks
that interconnect them enable and foster computational approaches
to solving problems (chapter 9).

* The College Board, “Computer Science: Principles, Big Ideas and Key Concepts”, 2012.

Preface ◾ xxv

• Big Idea VII—Impact. Computing enables innovation in other fields
including mathematics, science, humanities, and arts, among others
(chapters 1, 8, 9, 10, and 11).

SOFTWARE LIBRARIES
The book comes with a Jython environment and a collection of software
examples and libraries, including music, image, graphical user interface,
MIDI, audio, and Open Sound Control. The music library is an extension
of the jMusic library and incorporates other cross-platform programming
tools. This software is available for download on the website associated
with this book, http://jythonMusic.org.

We hope that this book will enhance the educational experience of stu-
dents in entry-level courses in computing and computational thinking.
We also hope that it may serve as a reference and text for computer music
courses, such as those offered by music technology programs. Finally, we
hope this book may serve as a reference and tutorial resource for digital
music enthusiasts who wish to expand their creative horizons and learn
how to write music software and create algorithmic music compositions.

xxvii

The Authors

Bill Manaris is a computer science educator, researcher, and musician.
He holds a Ph.D. in computer science and is professor of computer science
and director of computing in the arts program at the College of Charleston,
South Carolina. He has studied music theory, and classical and jazz guitar,
and performs live occasionally. He has been active in curriculum devel-
opment in human–computer interaction, artificial intelligence, and com-
puting in the arts. His teaching experience spans 30 years. His research
interests include statistical, connectionist, and evolutionary techniques
for modeling human aesthetics and creativity in music and art. He has
developed several systems for computer-aided music analysis, composi-
tion, and performance, including NEvMuse, Armonique, and Monterey
Mirror. For more information visit http://www.cs.cofc.edu/~manaris.

Andrew R. Brown is an educator, musician, digital artist, and computer
 programmer. He holds a Ph.D. in music and is professor of digital arts at
Griffith University, in Brisbane, Australia, where his work explores the
 aesthetics of process and regularly involves programming software as part
of the creative process. In addition to a history of computer-assisted com-
position and audio-visual installations, Andrew has in recent years focused
on real-time artworks using generative processes and musical live-coding.
The latter is a practice where the software to generate a work is written as
part of the performance. He has been invited to perform live coding in
many international venues. His digital media artworks have been shown
in galleries across Australia and in China. For more information visit
http://andrewrbrown.net.au.

xxix

Acknowledgments

We would like to thank John Impagliazzo for recommending and
encouraging the writing of this book; Randi Cohen for patiently

working through the various stages and ever-extending timeframes
that this book required; and our various collaborators and students who
assisted in various invaluable ways to complete this project (via code devel-
opment, API design and review, and testing) including Dana Hughes
(GUI library), David Johnson (OSC and MIDI libraries), Kenneth Hanson,
J.R. Armstrong, Thomas Zalonis, Patrick Roos, Luca Pellicore, Timothy
Hirzel, Brian Muller, William Daugherty, Dallas Vaughan, Christopher
Wagner, Semmy Purewal, and Valerie Sessions (Zipf library and metrics).
We are particularly indebted to Mark Guzdial for opening the door to
introducing computer science concepts via Media Computation. Also
of particular importance to the first author was attending the 15-day
Workshop in Algorithmic Music Composition (WACM), in 2010, and his
interactions with David Cope, Peter Elsea, Paul Nauert, and Daniel Brown,
as well as the various workshop participants. The second author is particu-
larly indebted to those who contributed to the development of the jMusic
library and tutorials upon which this book builds. These include Andrew
Sorensen, Rene Wooller, Tim Opie, Andrew Troedson and Adam Kirby.

We owe a debt of gratitude to the reviewers of this book, especially William
Greene and Maximos Kaliakatsos for reading every chapter word-for-word
and every code example, and for offering numerous suggestions and improve-
ments. Additional comments and support were provided by David Cope,
Daniel Brown, Yiorgos Vassilandonakis, Walter Pharr, and Blake Stevens.

Finally, we want to thank our families for their patience and support as we
worked the long nights, weekends, and holidays this book required.

This book has been partially supported through funding by the US
National Science Foundation (including DUE-1044861, IIS-0736480,
IIS-0849499 and IIS-1049554).

1

C h a p t e r 1

Introduction and History

Topics: Pythagoras (music, nature, and number), the Antikythera mechanism,
Kepler’ s harmony of the world, cymatics, fractals, electronic music, computers
and programming, the computer as a musical instrument, running Python
programs.

1.1 OVERVIEW
This chapter provides a quick tour of some of the major technological
 landmarks in Western music history and computer science. When we
think of computer music, we usually imagine electronic technologies,
particularly the synthesizer, computer, and sound recording devices.
These devices are products of the information age in which we live. This
age focuses on computational thinking, that is, using computers in cre-
ative ways to manipulate data and perform various tasks, usually involv-
ing some form of programming. The introduction of computers and,
in particular, computer programming has also expanded the sonic and
structural boundaries of music composition and performance.

In the 20th century, the fundamental education of an individual con-
sisted of the three R’s—reading, writing, and arithmetic. In the 21st cen-
tury, with the proliferation of computing devices, this list now consists of
four R’s, that is, reading, writing, arithmetic, and programming.

Once computer programming is mastered, new vistas of creative
expression become available. This new expressive capability is not con-
fined only to computer music—it is available in every area of the arts as
well as the sciences. Accordingly, the programming skills you will acquire
in this book are not specific only to making music. They may be applied to
creative endeavors in all areas of human knowledge and expression.

1.2 CONNECTING MUSIC, NATURE, AND NUMBER
The development of music and mathematics is connected to humanity’s
early observations of nature, and attempts to explain and formulate aspects

2 ◾ Making Music with Computers

of the human experience. The ancient Babylonians, Egyptians, and Greeks
investigated the origin of sound and resonance, and developed the notion
of musical scale in terms of integer ratios. To them nature was a harmoni-
ous artifact, in which humans found themselves exploring and creating.
Mathematics was created around that time, and in its early phases, it was
intricately connected to nature and music. Even more recent concepts of
the golden ratio, Fibonacci numbers, Zipf ’s law, cymatics, and fractals are
all based on this ancient theme. In this book, we let this ancient theme
guide us, as we interweave music, number, and computer programming.

1.2.1 Pythagoras—Harmonic Series

The ancient Babylonians, Egyptians, and Greeks were fascinated with the
technological nature of music—perhaps even more than we are today. For
instance, Pythagoras (c. 570–c. 495 BCE) discovered that musical pitch
intervals could be described by numbers. He and his students are credited
with the discovery of mathematics, a term which they coined. Pythagoras
left Greece at a young age to be educated in Egypt. There he associ-
ated himself with Egyptian priests, who at the time studied astronomy,
geometry, and religion (all at once, without the divisions we have today).
Pythagoras spent close to 20 years in Egypt, but then was captured during
a war and was transferred as a slave to Babylon (an area now part of Iraq).
There, through his knowledge and intellect, he gained access again to the
educated elite and continued his studies in astronomy, religion, geometry,
and music.

Pythagoras’s contributions helped shape the ideas of subsequent phi-
losophers, mathematicians, and scientists, including Plato, Aristotle, and
many more. Aristotle tells us the Pythagoreans discovered that musical
harmony can be explained by numbers; they took up mathematics, and
“thought its principles were the principles of all things. Since, of these
principles, numbers are by nature the first, and in numbers they seemed
to see many resemblances to the things that exist and come into being”
(Aristotle 1992, pp. 70–71). This observation suggests that everything
we experience through our senses can be described (e.g., measured and
represented) by numbers, in some way or another, and then it can be
turned into music. For instance, consider the music stored on your digital
music player (inside the machine, this music is represented by numbers).*

* This applies to all information (e.g., text, images) stored on a computer, or the Internet—the term
digital refers to representing information using numbers (i.e., converting information to data).

Introduction and History ◾ 3

Also, consider the concept of sonification, that is, the conversion of arbi-
trary data to sounds, so that they may be perceived more easily.* In other
words, music and numbers are interchangeable.

One of the major discoveries contributed by the Pythagoreans, which
helped shape the nature of music theory many centuries later, is the obser-
vation that strings resonate in simple ratios. In particular, they observed
that strings exhibit harmonic proportions—they vibrate at integer ratios
of their length, that is, 1/1, 1/2, 1/3, 1/4, 1/5, etc. (see Figure 1.1). The instru-
ments of the era, the lyra and the kithara (the latter etymologically related
to the modern guitar), were most probably used in their experimentations.

This was a major discovery, since it demonstrated that integers emerge
from the natural properties (or geometry) of a string. Accordingly, the 19th
century mathematician Leopold Kronecker said, “God made the integers;
all else is the work of man” (Bell 1986: 477). He argued that arithmetic
and mathematical analysis must be founded on integers. The Pythagorean
 discovery is even more profound when considering the implications of
string theory in physics, which states that the universe consists of sub-
atomic particles resembling one-dimensional resonating strings. These
ideas are related to the fields of cymatics and fractal geometry (see the
 following sections).

Finally, Pythagoras and his students worked on a theory of numbers
and explored the harmony of the spheres. The harmony of the spheres (or
musica universalis—music of the spheres) is the philosophical belief that

* See Chapter 7 for a more in-depth discussion of sonification.

1/5

1/4

1/3

1/2

1

FIGURE 1.1 String resonating at integer ratios.

4 ◾ Making Music with Computers

the planets and stars moved according to mathematical equations. Since
numbers are connected to musical notes, the orderly movement of planets
was said to create an astronomical symphony. According to different reli-
gious/philosophical traditions, this music could be heard only by the most
enlightened individuals. However, with the advent of the modern com-
puter (and the knowledge you will accumulate in this book), this music is
now accessible to everyone.

One of the major discoveries of this era (first described by Plato, in
Timaeus, and then by Euclid, in his Elements) was the golden ratio (or
golden) mean. This special proportion, which humans find aesthetically
very pleasing, is found in natural or human-made artifacts (Beer 2008;
Calter 2008, pp. 46–57; Hemenway 2005, pp. 91–132; Livio 2002). It is also
found in the human body (e.g., the bones of our hands, the cochlea in our
ears, etc.). The golden ratio reflects a place of balance in the structural
interplay of opposites.

1.2.2 The Antikythera Mechanism—The First Known Computer

Ancient astronomical models were well established. They were used to
construct the first computing machines approximately 2,100 years ago
(Vallianatos 2012). Of these early computational machines, only one
survives, in the National Archeological Museum of Greece, in Athens.
Interestingly, these machines would have been unknown to us had it not
been for the early 20th century discovery of fragments of a working model
on a 2,000-old shipwreck near the island of Antikythera (see Figure 1.2).

The Antikythera mechanism uses the same design principles (i.e.,
employing gear ratios to implement mathematical relations) as the much
later (19th century) Difference and Analytical Engines designed by Charles
Babbage and Lady Ada Lovelace (see Figure 1.3). The connection between
these machines and modern computers is indisputable.

1.2.3 Johannes Kepler—Harmony of the World

The Pythagorean ideas and theories inspired many in the centuries that
 followed, including Johannes Kepler. In 1619 Kepler wrote his seminal
work Harmonices Mundi (Harmony of the World). In this book, Kepler
describes physical harmonies in planetary motion. His work contributed
significantly to the scientific revolution that brought us out of the dark ages.

In this book Kepler presents his third law of planetary motion, that the
distance of a planet from the sun is inversely proportional to its speed.
Based on this result, he also discusses the harmony found in the motions

Introduction and History ◾ 5

of the planets. In particular, he discovered that the speeds of consecutive
planets approximate musical harmonies. The only exceptions are Mars
and Jupiter. However, we now know that this is the result of a missing
planet, whose mass is found in the asteroid belt between Mars and Jupiter.
This belt was discovered 150 years after Kepler’s death.

FIGURE 1.2 Fragment from the Antikythera mechanism.

FIGURE 1.3 Part of Babbage’s difference engine.

6 ◾ Making Music with Computers

Kepler argued that planets can be thought of as “singing” together in
near harmony. This harmony fluctuates as planets slow down and speed
up (i.e., each has a minimum and maximum angular speed). Only rarely
do planets “sing” in perfect concord.

This kind of sonification (i.e., turning data into music) has been applied
to many natural and human-made phenomena to generate sounds that are
not too foreign to our ears, as might initially be imagined (see Figure 1.4).
Later in the book, we explore this idea of sonification, so you too can cre-
ate your own experiments related to the Pythagorean ideas. Recently,
geologist John Rodgers and jazz musician Willie Ruff helped materialize
Kepler’s Harmonices Mundi by sonifying actual orbital data of planets in
our solar system. This recording can be easily found on the Internet and is
very inspiring to listen to.

1.2.4 Cymatics

Cymatics (from the Greek κύμα, “wave”) is the study of visible (visualized)
sound and vibration in 1-, 2-, and 3-dimensional artifacts. It was influ-
enced significantly by the work of the 18th century physicist and musician
Ernst Chladni, who developed a technique to visualize modes of vibration
on mechanical surfaces, known as Chladni plates (see Figure 1.5).

When drums or gongs are struck, they vibrate in similar ways. That
similar modes of vibration relate to musical pitch, rhythmic subdivisions,
and sound timbre is interesting and suggests that many aspects of music
and sound can be described computationally and controlled through
software. Cymatics is an inspiring young field of exploration—for more

Here the moon also has a place

Mercury

Earth VenusMars (approx.)

Saturn Jupiter

FIGURE 1.4 Kepler’s study of musical notes representing the motion of the
known planets (capturing changes in speed as planets traverse their elliptical
orbits around the sun).

Introduction and History ◾ 7

information, see Evan Grant’s TED Talk, which demonstrates the science
and art of cymatics, through beautiful visualizations of soundwaves
(Grant 2009).

1.2.5 Fractals

In the spirit of Pythagoras, mathematical descriptions for musical orga-
nization continue to be pursued. The hierarchical nature of music has led
many to consider fractal geometry as an interesting candidate for such
descriptions. Fractals are self-similar objects (or phenomena), that is,
objects consisting of multiple parts, with the property that the smaller
parts are the same shape as the larger parts, but of a smaller size. Fractals
were developed by Benoit Mandelbrot to study harmonic proportions in
nature (Mandelbrot 1982). Figure 1.6 displays a fractal tree (also known as
a Golden Tree, since it incorporates golden ratio proportions). This fractal
is constructed by dividing a line into two branches, each rotated by 60°
(clockwise and counter-clockwise), with a length reduction factor equal to
the golden ratio (0.61803399…). These smaller lines, again, are each subdi-
vided into two lines following the same procedure. This repetition/subdi-
vision continues on and on (theoretically) to infinity. Interestingly, similar
patterns appear extensively in nature (as they maximize the amount of
matter that can fit in a limited space, that is, touching but not overlap-
ping). Such artifacts are very easy to construct using a computer.

The Harvard linguist George Kingsley Zipf (1902–1950) was a great
influence on the development of fractals. In his seminal book, Human
Behavior and the Principle of Least Effort, Zipf reports the amazing obser-
vation that word proportions in textbooks, as well as notes in musical
pieces (among other phenomena), follow the same harmonic proportions
(i.e., 1/1, 1/2, 1/3, 1/4, 1/5, etc.) first discovered by Pythagoreans on strings.
Zipf proportions have been discovered in a wide range of natural and

FIGURE 1.5 Chladni plates, vintage engraving. Old engraved illustration
of Chladni plates isolated on a white background. (From Charton, É. and
Cazeaux, E., eds. (1874), Magasin Pittoresque.)

8 ◾ Making Music with Computers

human-made phenomena, including music, city sizes, salaries, subrou-
tine calls, earthquake magnitudes, thicknesses of sediment depositions,
extinctions of species, traffic jams, and visits to websites, among many
others.

Zipf proportions are also known as pink-noise, harmonic, and 1/f pro-
portions and can be considered to be measures of variety or interest. At
one extreme is a random probability of occurrence (i.e., chaos or white
noise, such as radio static) where events are unpredictable and seemingly
unorganized. In the mid range lie fractal and brown-noise that have some
discernable organization. At the other extreme are very monotonous phe-
nomenon (aka black-noise proportions), such as a musical piece consist-
ing mostly of one note. In physics, white-noise, pink-noise, brown-noise,
and black-noise proportions are known as power laws. Psychologists have
shown that people prefer music, and other experiences, that have a balance
of predictability and surprise, and so having a computable measure of this
likelihood can be useful in computer music making.

Many interesting attempts have been made to generate music from
fractal artifacts. Conceptually, the process is relatively straightforward—
it involves converting aspects of a fractal object to aspects of a musical
artifact. For instance, the placement and size of a line in Figure 1.6 could
be converted to the pitch and duration of a note. As the fractal object
is being visually generated through a computer program, that same pro-
gram could output the corresponding musical notes to a MIDI file, thus

FIGURE 1.6 Fractal tree.

Introduction and History ◾ 9

generating a fractal music piece. The process of mapping visual elements
to audio elements is called sonification. Sonification is an art in itself, as
there are many possible ways of converting between visual elements and
audio elements. (For instance, consider how you might sonify Figure 1.6.)
The trick is to identify which visual elements to select, and how to map
them to audio, so as to generate the most aesthetically pleasing (or scien-
tifically interesting) audio artifacts. Sonification and fractals are explored
later in the book.

1.3 COMPUTER MUSIC HISTORY
Throughout human history, technologies have consistently influenced
our societal development, with periods of accelerated influence occur-
ring at times such as the Renaissance, the Industrial Revolution, and the
Information Age. This is paralleled by a relatively similar pattern of music
technology developments. The earliest harps, horns, and drums are clearly
technologies and their development and usage relied on new technologies
of their day, very similar to the way computers are applied to music pro-
duction in our age.

Landmarks in the history of music technologies include the use of
written notation from around mid 9th century CE, the development of
polyphony in the centuries that followed, and organ building improve-
ments and equal temperament in the Middle Ages.

The Renaissance and Baroque periods saw an obsession with music of
the spheres resulting from the newly developed field of astronomy (see
above), and a peaking of craftsmanship in the violins of Stradivarius and
in compositional technique in the fugues of Bach. The study of alchemy
led to 19th century chemistry and physics, which provided new metals and
efficient methods to improve instrument fabrication. This surge in instru-
ment development went hand in hand with increases in orchestra size.
Also, industrialization was a common underscoring theme in music, such
as Wagner’s “Der Ring des Nibelungen.” Early 20th century landmarks
include the automation of music via the player piano, the technological
abstractions of electronic and recorded sound in the music of Schaeffer
and Stockhausen, and parallel abstractions in the musical structures and
notations of Debussy, Stravinsky, Schoenberg, Xenakis, Cage, and others.

This history is continuous in its highlighting of human curiosity and
creativity. However, the developments in knowledge and technology are
not deterministic and did not follow a simple evolutionary path (i.e., a
path of increasing complexity). For example, the interests of Pythagoras

10 ◾ Making Music with Computers

resurfaced and inspired (more than one thousand years later) Kepler’s
explorations of musical patterns in astrological movements and Fourier’s
investigations into sonic spectra in the later 18th century. In between these
investigations were centuries of explorations that followed other techno-
logical paths. The path of technological development is in no way straight
or predictable in advance, even if such developments appear as a logical
sequence with hindsight.

1.3.1 Automated Music

One of the characteristics of the computer as a music machine is that it
can be automated by programming. Automatic instruments have existed
for a long time, probably since antiquity. One possibility is the hydraulis
which is attributed to Ctesibius of Alexandria (3rd century BCE). The
hyrdraulis, about which little is known (due to the loss of ancient knowl-
edge mentioned earlier), used water pressure to drive air through pipes,
thus producing sounds (similarly to later ecclesiastical organs). Another
possibility is the wind organ developed by Heron also of Alexandria (1st
century CE), which was driven by a wind wheel. These and later designs
were passed through Byzantine and later Arab scholars to Italy around the
Renaissance period.

These designs contributed to later automated instruments, such as the
barrel organ of Henry VIII built in 1502. It was manually driven, but
the course of the following century led to fully autonomous instruments
driven by clockwork mechanisms (similar to the Antikythera mechanism,
whose design principles were also passed through Byzantine and later
Arab scholars).

In order to increase the repertoire used in automated music machines,
an alternative was sought to barrel organs that used replaceable barrels,
which were expensive to produce and on which playing time was limited.
A solution to both these problems presented itself in the 18th century in the
form of the punch card technologies employed by Jacquard weaving looms.
Scores were made in the form of holes punched in paper tape or cards. The
cards could be strung together to create long sequences. This became a
new form of musical notation, which was not efficient for human reading
but quite efficient for machine reading. The machine became the inter-
preter of these machine-specific scores. Such instruments constitute more
than an amusement even if their quality of performance was quite low.
They enabled musical performances to be captured and transported, to be
reproduced on demand, and replayed time and again for closer inspection.

Introduction and History ◾ 11

Perhaps the most sophisticated (and certainly the most popular)
 automated instrument was the player piano. Although its development
historically paralleled the gramophone, its sonic quality was far superior
for quite a while and brought music on demand into many homes in the
first half of the 20th century. The availability of automated musical per-
formances in the home changed the role of the audience, affecting (not
always detrimentally) concert attendance and the social status of musical
performance skills. The player piano, more than electronic recording tech-
nologies, was the parent of MIDI sequencing in choosing to capture pitch,
duration, and force (velocity) for each note. The piano rolls were editable and
so “near perfect” performances could be created, and composers were not
slow to realize that piano rolls could produce music beyond that humanly
performable. In this way the composer first became a nonperforming pro-
ducer, involved in all the steps from conception to final sounding.

1.3.2 Early Computer Music

The first public performance of computer music was programmed by
Geoff Hill and Trevor Pearcey and generated by CSIRAC (Council for
Scientific and Industrial Research Automatic Computer) at the Australian
Computer Conference in August 1951. At this time, computer music was
little more than a computational barrel organ playing popular tunes of the
time; however, to do so at that time was no easy task, especially given the
fickleness of the valve components, the timing constraints of the memory
using mercury delay lines, and awkward punched paper tapes for describ-
ing programs. CSIRAC was the first computer in Australia and a machine
intended purely for scientific research, so the achievement is a remarkable
example of how quickly people turn any technology to musical purposes.

Computer-based music composition had its start in the mid-1950s
when Lejaren Hillier and Leonard Isaacson did their first experiments
with computer-generated music on the ILLIAC computer at the University
of Illinois. They employed both a rule-based system utilizing strict coun-
terpoint and also a probabilistic method based on Markov chains (also
employed by Iannis Xenakis around the same time). These procedures
were applied variously to pitch and rhythm, resulting in “The ILLIAC
Suite,” a series of four pieces for string quartet published in 1957.

The recent history of automated music and computers is densely popu-
lated with examples based on various theoretical rules from music theory
and mathematics. While The ILLIAC Suite used known examples of these,
developments in such theories have added to the repertoire of intellectual

12 ◾ Making Music with Computers

technologies applicable to the computer. Among these are the Serial music
techniques, the application of music grammars (notably the Generative
Theory of Tonal Music by Fred Lerdahl and Ray Jackendoff), sonification
of fractals and chaos equations, and connectionist pattern recognition
techniques based on work in neuropsychology and artificial intelligence.

Arguably, the most comprehensive of the automated computer music
programs is David Cope’s Experiments in Music Intelligence (EMI),
which performs a feature analysis on a database of a particular composer’s
works (Cope 2004). Using this analysis, EMI can then compose any num-
ber of pieces in that composer’s style (e.g., J.S. Bach, Chopin, etc.). The
term style, here, is a function of many musical aspects, including melody
and harmony.

In terms of melody, EMI captures repeated ideas that run through the
works in its database, that is, common melodic material that a composer
tends to use. Finding such repeated ideas is a complicated task, as the same
melodic idea can be presented in a variety of different ways within a single
piece: notes can be added to it or removed, it can be sped up or slowed
down, and it can be played over different harmonies. This requires sophis-
ticated pattern recognition within a complicated context and is one of the
major accomplishments of Cope’s research.

In terms of harmony, EMI extracts chords from the works in its data-
base and then constructs its own chord progressions. These progressions
do not replicate the ones in the database’s works; they are novel. However,
they are stylistically similar to (i.e., follow similar construction rules as)
the analyzed works. In this way, the composer’s “harmonic style” is also
replicated in EMI’s new compositions.

EMI’s database can, actually, be loaded with the works of more than
one composer. When this is done, its resulting compositions blend the
styles of those composers. The results are sometimes odd, but quite often
surprisingly clever and beautiful.

1.3.3 Electronic Music

After Thaddeus Cahill’s relatively unsuccessful attempt at creating a
massive organ-like device using early American telephone technologies
called the Telharmonium, one of the first electronic performance instru-
ments was Leon Thérémin’s device invented in the 1920s in Moscow.
The Theremin, as it was known, was played by positioning each hand at a
varying distance from two antennae. The location of the hands changed
the electromagnetic fields generated by electricity passing through

Introduction and History ◾ 13

the antennae, one controlling volume, the other the pitch of a constant
and relatively pure tone. The Theremin made quite an impact, with pieces
being written for it by Aaron Copeland and Percy Grainger, although the
most popularly known example is in the opening of the Beach Boys’ hit
“Good Vibrations.”

The first popular electric keyboard instrument was the Hammond
organ, invented in 1935 by Laurens Hammond using electromagnetic
components to generate sinusoidal waveforms which could be combined
in various combinations using drawbars. The drawbars acted similarly
to pipe organ stops, but rather than simply turning on or off oscillators,
they controlled their degrees of loudness. The B3 model, first produced in
1936, has become legendary in gospel, jazz, and rock music. It provided a
relatively affordable and portable keyboard instrument for music perfor-
mance, and the timbral variety “synthesized” through drawbar settings
gave to keyboard players a taste of customizable timbre that would later be
expanded by the synthesizer.

The solid body electric guitar was developed after some initial produc-
tion of semiacoustic electric models in the 1930s. Following early experi-
ments by Adolf Rickenbacker and Les Paul, the first production models
appeared in the early 1950s from the Gibson and Fender companies. The
major technical hurdle was the refinement of the pickups to eliminate
noise and provide a clear signal, which was solved largely by the develop-
ment of the twin-coil “humbucking” pickup.

The early development of recording technologies by Thomas Edison
was done with mechanical technologies around the turn of the 20th cen-
tury. It was not until electronic amplifiers became available in the form of
vacuum tubes that the minute etchings of the recording process could be
played back with any fidelity. Even then the making of recorded cylinders
was tedious and specialized. Building on this research, the first commer-
cial magnetic tape recorder was introduced in 1948. The ability to record,
not only play back, was the shift necessary to motivate musicians to use
this technology creatively.

In Paris in the late 1940s after World War II, Pierre Schaeffer devel-
oped a compositional use for the previously reproduction-focused tape
recorder. The compositional technique Musique Concrète, as it became
known, used recorded sounds of both instrumental and environmental
origin, manipulated them through variations in timbre, pitch, duration,
and amplitude, then collaged these sounds into a polyphonic musical
form.

14 ◾ Making Music with Computers

Tape-based compositional works were produced by Karlheinz
Stockhausen in Cologne from the mid-1950s, which he called Elektronische
Musik (Electronic Music). As well as treating recorded sounds, Stockhausen
and contemporaries such as Edgard Varèse focused on synthesizing new
timbres using oscillators, filters, and amplifiers.

The successful commercialization of synthesizers came with the release
in 1964 of the Moog synthesizers. The technical breakthrough that made
these instruments possible was the use of transistors instead of vacuum
tubes, which dramatically reduced the instrument’s size and increased
the stability of voltage control. One of the more popular early record-
ings using the Moog synthesizers was Wendy Carols’s “Switched-on
Bach,” which was a notable achievement at the time, but created a leg-
acy of imitative thinking which still haunts synthesizer usage, as more
recently reinforced in the General MIDI specification. The most popular
of Robert Moog’s synthesizers was the Mini Moog, one of the first por-
table all-in-one synthesizers, still highly regarded 50 years after its release
(see Figure 1.7).

The use of recording as a compositional and synthesis tool did not
change much from the days of musique concrète until the late 1970s,
when the development in Australia of the Quasar and M8 digital syn-
thesizers by Tony Furse influenced the commercially successful Fairlight
CMI developed by Peter Vogel and Kim Ryrie, and at the same time the
New England Digital Synclavier was developed in New Hampshire by

FIGURE 1.7 The Mini Moog synthesizer.

Introduction and History ◾ 15

Sydney Alonso, Jon Appleton, and Cameron Jones. The Fairlight and
the Synclavier introduced sampling technologies (short-duration digital
recording) to commercial music making in 1979. Both instruments were
also capable of sound synthesis processes and used keyboard controllers
for performance, attached to computer systems for storage, display, and
editing of waveforms. A version of the Fairlight is now available for the
Apple iPad, which highlights how much computing power and expense
has changed in the last half a century or so.

Digital technologies made their way into synthesizers first as memory
banks for presets, most famously in the Sequential Circuits Prophet V, and
later in the sound synthesis engine itself, notably with the Yamaha DX7
(see Figure 1.8). The release of the DX7 in 1983 coincided with another sig-
nificant event in electronic music history: the introduction of the Musical
Instrument Digital Interface (MIDI) standard.

Developed by Dave Smith of Sequential Circuits, and with input from
other major manufactures of the time, notably Roland and Yamaha, the
MIDI standard replaced the plethora of interconnecting standards such
that equipment from different manufacturers could communicate. MIDI
began as a note-based live performance protocol, intellectually indebted
to music notation and player-piano technologies. The MIDI standard has
expanded over the years to include file formats, sample transfer protocols,
the General MIDI standard sound set, a music XML format, and a range
of other musical and operational parameters.

The synthesizer, in its keyboard form, has remained quite stable since
the 1980s, with some controller extensions modeled on other instruments
including guitar, woodwind, and percussion. Research continues into
new instrument designs, as it always has, with STEIM in the Netherlands
and the HyperInstrument group at MIT’s Media Lab contributing sig-
nificantly during the 1990s, but with developments expanding quite
broadly since then. Many of the latest research developments are evident

FIGURE 1.8 The Yamaha DX7 synthesizer.

16 ◾ Making Music with Computers

in the proceedings of the annual New Interfaces for Musical Expression
(NIME) conference.

Along with advances in MIDI and the digital synthesizers, the 1980s
also saw an accelerating increase in personal computer ownership and
with it the expansion of music software. Most significant from a commer-
cial aspect was the rise of the MIDI sequencer software. Building on the
techniques of earlier electronic sequencers to repeat short series of notes,
software sequencers continue to provide more comprehensive musical
transformations.

Alongside sequencing, music notation programs were also appearing
at this time, although it took the desktop publishing revolution of the
early 1990s for all the appropriate technologies to fall into place, nota-
bly the postscript font-description language and laser printing. Computer
music publishing is now the norm rather than the exception. The first pro-
gram to successfully combine both sequencing and notation was C-Lab’s
Notator on the Atari computer, which proved the rule that you only need
one “must have” program to sell a computing platform. Over the years,
this program has transformed into Apple’s Logic Pro software.

As personal computer power increased in the late 1990s, synthesis
software (long the domain of expensive systems such as the Fairlight or
computer workstations) became accessible. This is evident in the cur-
rent popularity of hard disk recording systems, such as Pro Tools, as
well as real-time signal processing systems, which are becoming practi-
cal on mobile computers for reverb and equalization, and even real-time
synthesis as complex as frequency modulation, granular, and physical
modeling.

The integration of many of these technical threads in computer-based
composing, recording, publishing, and multimedia occurred around the
late 1990s, and now digital music systems provide rich and expressive
tools for the musician. Around the turn of the 21st century the increases
in computing power reached a threshold where personal computers were
powerful enough to manage most audio and some video processes in real
time. This saw the concentration of computer music systems in software
or “virtual” versions of what had been previously separate hardware com-
ponents. The laptop computer had become the one-stop digital music
workspace and an instrument for live performance. This process of con-
centrated computing power continues, with mobile devices such as smart-
phones and tablet computers increasingly becoming the site for computer
music practices.

Introduction and History ◾ 17

1.3.3.1 Reflection Questions
 1. What were the dominant technological drivers of the past few

centuries?

 2. Where do you think the current borders of technical innovation are
that will affect music making?

 3. Given that new materials such as iron and aluminum have shaped
the development of acoustic instruments, what changes have driven
electronic/computer instrument development?

 4. What have been the major developments in automated music
described in this chapter?

 5. The use of electronics has shaped music making over the past
100 years. Who were some of the musicians to first pioneer the use
of electronic devices for music?

 6. What has been the impact of audio recording on music making?

 7. What was the basis of the compositional technique known as
musique concrète?

 8. What changes occurring during the 1990s are described in this
chapter?

1.4 ALGORITHMS AND PROGRAMMING
Computers have been traditionally programmed to calculate solutions to
numerical problems (the name “computer” itself reflects this— modern
computers were viewed as a replacement for human computers in the
military). This view, of course, is very restrictive, as any normal computer
user can attest. Computers are wonderful for playing games, searching
the Internet, and for making music. In this book, we introduce computer
programming in the context of connecting number, music, and nature.

One of the more significant advantages of the computer for music mak-
ing is its ability to be programmed: its ability to automatically do a series
of tasks and to do them quickly. This is, of course, the basis for all soft-
ware development but can also be the basis for a music making practice.
Algorithmic music using a computer takes advantage of this ability to
automate a series of instructions (an algorithm) to musical ends.

Definition: An algorithm is a series of steps (or instructions) for performing
a task.

18 ◾ Making Music with Computers

Examples of algorithms include instructions for assembling a bookshelf
(assembly instructions sheet), steps for making spaghetti sauce (a recipe),
and instructions for performing a musical piece (a musical score).

Computers can be programmed to follow such series of instructions
using a programming language. When programming computer music,
the challenge is to write instructions that lead to interesting and expressive
music. Musical algorithms can describe how each of the musical elements
is specified and varied as the piece proceeds. This can include control over
the pitch, duration and loudness of notes, the timbre of sounds, the use
of structural features such as repetition and variation, as well as tempo,
volume, balance and so on.

The ability of computers to run algorithmic processes (programs, or
sequences of steps) gives the impression that computers have autonomy
and are possibly “smart.” At its most advanced levels this autonomy is
referred to as Artificial Intelligence (AI), most well known through systems
such as IBM’s Deep Blue for playing chess, and popularized through sci-
ence fiction systems such as Hal in the science fiction film 2001—A Space
Odyssey and androids such as R2D2 in Star Wars or robots such as Walle
in the film of the same name.

In algorithmic music systems the intention and possibilities are gener-
ally far more modest, even though some comprehensive systems, such as
Experiments in Musical Intelligence by David Cope, can construct com-
plex and complete pieces. Generally, algorithmic composition systems
are used for more mundane purposes, such as generating a tonal melody
of a few bars, creating valid variations in a 12 tone row, suggesting pos-
sible chorale harmonization, or sonifying mathematical structures such
as fractals or artificial life worlds by converting the numbers generated by
formulae into pitches, rhythms, and form.

Many algorithmic systems deal with music at the note level, specifying
or manipulating attributes such as pitch, duration, and dynamic. This is
historically the most prevalent way of thinking about music and is the
basis for common practice notation, so it is not surprising that note-based
generative systems are common. Algorithmic processes can be applied in
many ways to notes. Small pitch changes at the frequency level can be
used for microtonal music, or loudness may be controlled by a function
introducing a kind of jitter or instability to the note which, if subtle, may
add some life to an otherwise static electronic performance. Similarly,
subtle changes can be applied to the dynamic levels of a repeated phrase
in order to provide variety which masks the machine-like repetition to

