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Preface

Nonlinear analysis is one of the most interesting and fascinating branches of
pure and applied mathematics. During the last five decades, several branches
of nonlinear analysis have been developed and extensively studied. The main
aim of this volume is to include those branches of nonlinear analysis which
have different applications in different areas. We divide this volume into three
parts: Fixed-Point Theory, Convex Analysis and Variational Analysis, and
Vector Optimization.

The first part consists of the first three chapters.
Chapter 1 is devoted to the study of Mann-type iterations for nonlinear

mappings on some classes of a metric space. This is achieved through the con-
vex structure introduced by W. Takahashi. The common fixed-point results
for asymptotically (quasi-) nonexpansive mappings through their explicit and
implicit iterative schemes on nonlinear domains such as CAT (0) spaces, hy-
perbolic spaces, and convex metric spaces are presented, which provide metric
space version of the corresponding well-known results in Banach spaces.

Chapter 2 provides an outline of the recent results in fixed-point theory
in modular function spaces. Modular function spaces are natural generaliza-
tions of both function and sequence variants of many important (from an
applications perspective) spaces such as Lebesgue, Orlicz, Musielak–Orlicz,
Lorentz, Orlicz–Lorentz, Calderon–Lozanovskii, and many others. In the con-
text of fixed-point theory, the foundations of the geometry of modular function
spaces and other important techniques like extensions of the Opial property to
modular spaces are discussed. A series of existence theorems of fixed points for
nonlinear mappings, and of common fixed points for semigroups of mappings,
is presented.

Chapter 3 discusses key results on the existence of continuous approx-
imations and selections for set-valued maps with an emphasis on the non-
convex case (non-convex domains, co-domains, and non-convex values) and
in a general and generic framework allowing the passage, by approximation,
from simple domains to more elaborate ones. Applications of the approxima-
tion and selection results to topological fixed-point and coincidence theory for
set-valued maps are also presented.

The second part of the volume consists of Chapters 4, 5, and 6.
Chapter 4 contains the basic definitions, properties, and characterizations

of convex, quasiconvex, and pseudoconvex functions, and of their strict coun-
terparts. The aim of this chapter is to present the basic techniques that will

xi



xii Preface

help the reader in his/her further reading, so we include almost all proofs
of the results presented. At the same time, the definitions of some classes of
generalized monotone operators are recalled; it is shown how they are related
to corresponding classes of generalized convex functions. Finally, some of the
many applications of generalized convex functions and generalized monotone
operators are given, which are related to optimization and microeconomics,
and especially to consumer theory.

After the huge development of convex optimization during several decades,
quasiconvex optimization, or optimization problems involving a quasiconvex
objective function, can be considered as a new step to embrace a larger class
of problem with powerful mathematical tools. The main aim of Chapter 5 is to
show that, using some adapted tools, a sharp and powerful first-order analysis
can be developed for quasiconvex optimization.

Chapter 6 gives an introduction to the theory of variational-like in-
equalities. Some relations between a nonconvex optimization problem and
a variational-like inequality problem are provided. Some existence results for
a solution of variational-like inequalities are presented under different kinds
of assumptions. Two solution methods—auxiliary principle method and the
proximal method—for finding the approximate solutions of variational-like
inequalities are discussed.

The last part is devoted to vector optimization.
Chapter 7 presents basic concepts of vector optimization, starting with

partial orders in a vector space with respect to which optimality is defined.
Some criteria for existence of maximal elements of a set in a partially ordered
space by using coverings of a set and monotone functions are discussed. For
a vector optimization problem with equality and inequality constraints, one
can express optimality conditions in terms of derivatives when the data of the
problem are differentiable, or in terms of subdifferentials when the data are
nonsmooth. Finally, three methods for solving nonconvex vector optimization
problems are presented. Two of them are well-known and the other one is
more recent, but both are interesting from mathematical and practical points
of view.

The last chapter is devoted to multi-objective combinatorial optimization
(MOCO) problems, which are integer programs with multiple objectives. The
goal in solving a MOCO problem is to find efficient (or Pareto optimal) solu-
tions and their counterparts in objective space, called non-dominated points.
Various types of efficient solutions and non-dominated points as well as lexico-
graphic optima are defined. It is shown that MOCO problems are usually NP-
hard, #P-hard, and intractable, that is, they can have an exponential number
of non-dominated points. The multi-objective shortest-path and spanning-
tree problems are presented as examples of MOCO problems for which single
objective algorithms can be extended. The two-phase method is an effective
tool for problems that are polynomially solvable in the single objective case
and for which efficient ranking algorithms to find r-best solutions exist. For
problems for which the two-phase approach is not computationally effective,
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one must resort to general scalarization techniques or adapt general integer
programming techniques, such as branch and bound, to deal with multiple
objectives. Some popular scalarization methods in the context of a general
formulation are presented. Bound sets for non-dominated points are natural
multi-objective counterparts of lower and upper bounds that enable multi-
objective branch and bound algorithms and several examples are cited. Exact
algorithms based on integer programming techniques and scalarization can
easily result in prohibitive computation times even for relatively small-sized
problems. Metaheuristics may be applied in this case. The main concepts of
metaheuristics that have been applied to MOCO problems are introduced and
their evolution over time is illustrated.

We thank our friends and colleagues, whose encouragement and help influ-
enced the development of this volume. We mainly are grateful to the Rector
of the University of Tabuk Dr. Abdulaziz S. Al-Enazi, for his support in or-
ganizing an International Workshop on Nonlinear Analysis and Optimization,
March 18–19, 2013 at University of Tabuk, Tabuk, Saudi Arabia. Most of the
contributors attended this workshop and agreed to be a part of this volume.

We would like to convey our special thanks to Miss Aastha Sharma, com-
missioning editor at Taylor & Francis India, for taking a keen interest in
publishing this book.

October 2013 Saleh A. R. Al-Mezel,
Falleh R. M. Al-Solamy,
and Qamrul H. Ansari
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1.1 Introduction

The Banach Contraction Principle (BCP) asserts that a contraction on a
complete metric space has a unique fixed point and its proof hinges on “Pi-
card iterations.” This principle is applicable to a variety of subjects such as
integral equations, partial differential equations and image processing. This
principle breaks down for nonexpansive mappings on metric spaces. This led
to the introduction of Mann iterations in a Banach space [33]. Our aim is
to study Mann-type iterations for some classes of nonlinear mappings in a
metric space. We achieve it through the convex structure introduced by Taka-
hashi [45]. In this chapter, iterative construction of common fixed points of
asymptotically (quasi-) nonexpansive mappings [11] by using their explicit
and implicit schemes on nonlinear domains such as CAT (0) spaces, hyper-
bolic spaces, and convex metric spaces[1, 7, 22, 24, 45] will be presented. The
new results provide a metric space version of the corresponding known results
in Banach spaces and CAT (0) spaces (for example, [12, 25, 32, 26, 47]).

3



4 Fixed Point Theory, Variational Analysis, and Optimization

1.2 Preliminaries

Let C be a nonempty subset of a metric space (X, d) and T be a mapping
on C. Denote the set of fixed points of T by F = {x ∈ C : Tx = x}. The
mapping T is said to be:

• contraction if there exists a constant k ∈ [0, 1) such that d(T (x), T (y)) ≤
k d(x, y), for all x, y ∈ C;

• uniformly L-Lipschitzian if d (T n(x), T n(y)) ≤ L d(x, y), for some L > 0,
x, y ∈ C, n ≥ 1;

• asymptotically nonexpansive [11] if there exists a sequence {kn} ⊂ [1,∞)
with lim

n→∞
kn = 1 such that d (T n(x), T n(y)) ≤ kn d(x, y), for all x, y ∈ C

and n ≥ 1;

• asymptotically quasi-nonexpansive if F 6= ∅ and there exists a sequence
{kn} ⊂ [1,∞) with lim

n→∞
kn = 1 such that d (T n(x), p) ≤ kn d(x, p), for

all x ∈ C, p ∈ F and n ≥ 1.

For n = 1, the uniform L-Lipschitzian mapping is known as L-Lipschitzian.
For kn = 1 for n ≥ 1 in the definitions above, asymptotically nonexpansive
mapping and asymptotically quasi-nonexpansive mapping becomes nonexpan-
sive mapping and quasi-nonexpansive mapping, respectively.

A nonlinear mapping may or may not have a fixed point.

Example 1.1. Define T : [1,∞) → [1,∞) by

(a) T (x) = x
2 + 3. Then, T is a contraction with k = 1

2 and F = {6},

(b) T (x) = 25
26 (x + 1

x). Then, T is a contraction with k = 25
26 and F = {5},

(c) T (x) = x + 1
x . Then, T is not a contraction and so by the Banach

contraction principle, it has no fixed point.

The concept of quasi-nonexpansiveness is more general than that of non-
expansiveness. A nonexpansive mapping with at least one fixed point is quasi-
nonexpansive. There are quasi-nonexpansive mappings which are not nonex-
pansive.

Example 1.2. (a) [36] Let X = R (the set of real numbers). Define T1 : R →
R by T1(x) =

x
2 sin

1
x with T1(0) = 0. The only fixed point of T1 is 0 as follows:

if x 6= 0 and T1(x) = x, then x = x
2 sin 1

x or 2 = sin 1
x , which is impossible.

T1 is quasi-nonexpansive because |T1(x)− 0| =
∣∣x
2

∣∣ ∣∣sin 1
x

∣∣ ≤ |x|
2 < |x− 0| for

all x ∈ X . However, T1 is not nonexpansive mapping. This can be verified
by choosing x = 2

π , y = 2
3π ; |T (x)− T (y)| = 2

π sin π
2 − 2

3π sin 3π
2 = 8

3π and
|x− y| = 4

3π .



Common Fixed Points in Convex Metric Spaces 5

(b) [11] LetB be the unit ball in the Hilbert space l2 and {ai} be a sequence
of numbers such that 0 < ai < 1 and

∏∞
i=2 ai = 1

2 . Define T : B → B by
T (x1, x2, x3, . . .) =

(
0, x21, a2x2, a3x3, . . .

)
. Then,

‖T n(x) − T n(y)‖ ≤ 2

n∏

i=2

ai ‖x− y‖ for n ≥ 2 and

‖T (x)− T (y)‖ ≤ 2 ‖x− y‖

give that T is asymptotically nonexpansive but not nonexpansive.

Remark 1.1. (a) The linear quasi-nonexpansive mappings are nonexpan-
sive, but it is easy to verify that there exist nonlinear continuous quasi-
nonexpansive mappings which are not nonexpansive; for example, the
above T1.

(b) It is obvious that, if T is nonexpansive, then it is asymptotically nonex-
pansive with the constant sequence {1}.

If a fixed point of a certain mapping exists and its exact value is not
known, then we use an iterative procedure to find it. Here is an example

: Define T : R3 → R3 by T (x, y, z) =
(

sin y
4 , sin z

3 + 1, sin x
5 + 2

)
. Then,

T is a contraction with k = 1
3 . By (BCP), T has a unique fixed point

p. Its exact value is not known. Using the method of proof of (BCP), we
can find an approximate value of p with a required accuracy. An answer is
p = (x6, y6, z6) = (0.2406, 1.2961, 2.0477) within the accuracy of 0.001 to the
fixed point (by measuring it through Euclidean distance).

The reader interested in the iterative approximation of fixed points(common
fixed points) for various classes of mappings in the context of Banach spaces
and metric spaces is referred to Berinde [3].

Many problems in science and engineering are nonlinear. So translating a
linear version of known problems (usually in Banach spaces) into an equivalent
nonlinear version (metric spaces) has great importance. This basic problem
is usually considered in a CAT (0) space. We include a brief description of a
CAT (0) space.

Let (X, d) be a metric space. A geodesic from x to y in X is a map c
from a closed interval [0, l] ⊂ R to X such that c (0) = x, c (l) = y, and
d (c (t) , c (t′)) = |t− t′| for all t, t′ ∈ [0, l]. In particular, c is an isometry and
d (x, y) = l. The image α of c is called a geodesic (or metric) segment joining
x and y. The space (X, d) is said to be a geodesic space if every two points of
X are joined by a geodesic, and X is said to be uniquely geodesic if there is
exactly one geodesic joining x and y for each x, y ∈ X , which we will denote
by [x, y], called the segment joining x to y.

A geodesic triangle ∆(x1, x2, x3) in a geodesic metric space (X, d) consists
of three points x1, x2, x3 in X (the vertices of ∆) and a geodesic segment be-
tween each pair of vertices (the edges of ∆). A comparison triangle for geodesic
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triangle ∆ (x1, x2, x3) in (X, d) is a triangle ∆ (x1, x2, x3) := ∆ (x̄1, x̄2, x̄3) in
R2 such that dR2 (x̄i, x̄j) = d (xi, xj) for all i, j ∈ {1, 2, 3}. Such a triangle
always exists [5].

A geodesic metric space is said to be a CAT (0) space if all geodesic trian-
gles of appropriate size satisfy the following CAT (0) comparison axiom:

Let ∆ be a geodesic triangle in X and let ∆ ⊂ R2 be a comparison triangle
for ∆. Then ∆ is said to satisfy the CAT (0) inequality if for all x, y ∈ ∆ and
all comparison points x̄, ȳ ∈ ∆,

d (x, y) ≤ d (x̄, ȳ) .

A complete CAT (0) space is often called a Hadamard space (see [28]). If
x, y1, y2 are points of a CAT (0) space and if y0 is the midpoint of the segment
[y1, y2], which we will denote by y1⊕y2

2 , then the CAT (0) inequality implies:

d

(
x,
y1 ⊕ y2

2

)2

≤ 1

2
d (x, y1)

2 +
1

2
d (x, y2)

2 − 1

4
d (y1, y2)

2 .

This inequality is the (CN)-inequality of Bruhat and Titz [6]. The above in-
equality has been extended by Khamsi and Kirk [18] as follows:

d (z, λx⊕ (1 − λ)y)
2 ≤ λd (z, x)

2
+ (1− λ)d (z, y)

2

− λ(1 − λ)d (x, y)
2
,

(CN∗)

for any λ ∈ [0, 1] = I and x, y, z ∈ X.
In 1970, Takahashi [45] introduced a concept of convex structure in a

metric space (X, d) as a mapping W : X2 × I → X satisfying

d (u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y)

for all x, y, u ∈ X and λ ∈ I.
A metric space (X, d) together with a convex structure W is a convex

metric space (X, d,W ), which will be denoted byX for simplicity. A nonempty
subset C of a convex metric spaceX is convex ifW (x, y, λ) ∈ C for all x, y ∈ C
and λ ∈ I.

If X is a CAT (0) space and x, y ∈ X , then for any λ ∈ I, there exists a
unique point λx⊕ (1− λ)y ∈ [x, y] = {λx⊕ (1− λ)y : λ ∈ I} such that

d(z, λx⊕ (1− λ)y) ≤ λd(z, x) + (1− λ)d(z, y)

for any z ∈ X (see [9] for details).
In view of the above inequality, a CAT (0) space has Takahashi’s convex

structure W (x, y, α) = αx⊕ (1− α)y.
We now give examples of convex metric spaces which cannot be Banach

spaces [45].
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Example 1.3. (a) Let X = {[ai, bi] : 0 ≤ ai ≤ bi ≤ 1} . For Ii = [ai, bi] , Ij =
[aj , bj], and λ ∈ I, we define

W (Ii, Ij , λ) = [λai + (1− λ) aj , λbi + (1− λ) bj] ,

d (Ii, Ij) = sup
α∈I

{∣∣∣∣ infb∈Ii
{|a− b|} − inf

c∈Ij
{|a− c|}

∣∣∣∣
}
,Hausdorff distance on X.

(b) A linear space X with a metric d on it and satisfying the properties:
(i) d (x, y) = d (x− y, 0), (ii) d(λx+(1−λ)y, 0) ≤ λd(x, 0)+ (1−λ)d(y, 0) for
x, y ∈ X and λ ∈ I, is a convex metric space with W (x, y, λ) = λx+(1−λ)y.

Recently, Kohlenbach [27] defined the concept of a hyperbolic space by
including the following additional conditions in the definition of a convex
metric space X :

(1) d(W (x, y, λ1),W (x, y, λ2)) = |λ1 − λ2| d(x, y),
(2) W (x, y, λ) =W (y, x, 1− λ),
(3) d(W (x, z, λ),W (y, w, λ)) ≤ λd(x, y) + (1− λ) d(z, w),

for all x, y, z, w ∈ X and λ, λ1, λ2 ∈ I.

If X = R, W (x, y, λ) = λx + (1 − λ)y, and d(x, y) = |x−y|
1+|x−y| , for all

x, y ∈ R, then X is a convex metric space but not a hyperbolic space (the
above condition (1) does not hold). In fact, every normed space and its convex
subsets are hyperbolic spaces, but the converse is not true, in general.

Some other notions of hyperbolic space have been introduced and studied
by Goebel and Reich [13], Khamsi and Khan [17], and Reich and Shafrir [39].

Now we prove some elementary properties of a convex metric space.

Lemma 1.1. Let X be a convex metric space. Then, for all x, y ∈ X and
λ ∈ I, we have the following:

(a) W (x, y, 1) = x and W (x, y, 0) = y;

(b) W (x, x, λ) = x;

(c) d (x,W (x, y, λ)) + d (W (x, y, λ) , y) = d (x, y);

(d) the open sphere Sr(x) = {y ∈ X : d (y, x) < r} and the closed sphere
Sr[x] = {y ∈ X : d (y, x) ≤ r} are convex subsets of X ; and

(e) the intersection of convex subsets of X is convex.

Proof. (a) and (b) follow easily from the definition of W .
(c) Since X is a convex metric space, we obtain

d (x, y) ≤ d (x,W (x, y, λ)) + d (W (x, y, λ) , y)

≤ λd (x, x) + (1− λ) d (x, y) + λd (x, y) + (1− λ) d (y, y)

= (1− λ) d (x, y) + λd (x, y)

= d (x, y) ,

for all x, y ∈ X and λ ∈ I.
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It follows by the above inequalities that

d (x, y) = d (x,W (x, y, λ)) + d (W (x, y, λ) , y) .

(d) Since X is a convex metric space,

d (x,W (y, z, λ)) ≤ λd(x, y) + (1− λ)d(x, z)

< λr + (1− λ)r = r,

for any y, z ∈ Sr(x) and λ ∈ I. Hence, W (y, z, λ) ∈ Sr(x). This proves that
Sr(x) is a convex subset of X. Similarly, we can prove that Sr[x] is a convex
subset of X .

(e) Follows by routine calculations.

A convex metric space X is said to satisfy Property (G) [46]: whenever
w ∈ X and there is (x, y, λ) ∈ X2 × I for which

d(z, w) ≤ λd(z, x) + (1− λ)d(z, y), for every z ∈ X,

then w =W (x, y, λ) .
The Property (G) holds in the Euclidean plane equipped with the norm

‖(x1, x2)‖ = |x1|+ |x2| .
The proof of next lemma depends on the Property (G).

Lemma 1.2. Let X be a convex metric space satisfying the Property (G).
Then, we have the following assertions:

(a) W (W (x, y, λ1) , y, λ2) = W (x, y, λ1λ2), for every x, y ∈ X and λ1, λ2 ∈
I;

(b) The function f (λ) = W (x, y, λ) is an embedding (one-to-one function)
of I into X , for every pair x, y ∈ X with x 6= y.

Proof. (a) Let z ∈ X . Then

d (z,W (W (x, y, λ1) , y, λ2)) ≤ λ2d (z,W (x, y, λ1)) + (1− λ2) d (z, y)

≤ λ2 [λ1d (z, x) + (1− λ1) d (z, y)]

+ (1− λ2) d (z, y)

≤ λ2λ1d (z, x) + (1− λ2λ1) d (z, y) .

Hence, by Property (G), W (W (x, y, λ1) , y, λ2) = W (x, y, λ1λ2).
(b) Let λ1, λ2 ∈ I such that λ1 6= λ2. Assume, without loss of generality,
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that λ1 < λ2. Then,

d (f (λ1) , f (λ2)) = d (W (x, y, λ1) ,W (x, y, λ2))

= d

(
W

(
x, y, λ2

(
λ1
λ2

))
,W (x, y, λ2)

)

= d

(
W

(
W (x, y, λ2) , y,

(
λ1
λ2

))
,W (x, y, λ2)

)

=

[
1−

(
λ1
λ2

)]
d (W (x, y, λ2) , y)

= (λ2 − λ1) d (x, y) > 0.

That is, f (λ1) 6= f (λ2) for λ1 6= λ2. This proves that the function f is an
embedding of I into X for every pair x, y ∈ X with x 6= y.

The argument in the proof of Lemma 1.2 (b) shows that the mapping
W (x, y, λ) 7→ λd(x, y) is an isometry of the subspace {W (x, y, λ) : λ ∈ I} of
X onto the closed interval [0, d(x, y)]. In particular, {W (x, y, λ) : λ ∈ I} is
homeomorphic with I if x 6= y and, is a singleton if x = y. It is not clear
whether a convex structure W satisfying the Property (G) is necessarily a
continuous function.

However, we have the following result:

Lemma 1.3. Let X be a convex metric space. Then, W is continuous at each
point (x, x, λ) of X2 × I.

Proof. Let {(xn, yn, λn)}∞n=1 be a sequence in X2 × I that converges to
(x, x, λ). Because W (x, x, λ) = x, it suffices to show that {W (xn, yn, λn)}∞n=1

converges to x. This is immediate as both the sequences {xn}∞n=1 and {yn}∞n=1

converge to x, and hence the definition of W yields

d (x,W (xn, yn, λn)) ≤ λnd (x, xn) + (1− λn) d (x, yn) , for each n ≥ 1.

Thus, d (x, xn) → 0, d (x, yn) → 0, and λn → λ imply the conclusion.

The difficulty in obtaining continuity ofW as a mapping from the product
lies in the fact that there seems to be no way to guarantee that the sequence
{W (xn, yn, λn)}∞n=1 will converge when {(xn, yn, λn)}∞n=1 converges to (x, y, λ)
with x 6= y. When X is compact, manage this difficulty as follows:

Lemma 1.4. Let X be a compact convex metric space satisfying the Property
(G). Then, W is a continuous function.

Proof. Let {(xn, yn, λn)}∞n=1 be a sequence inX
2×I that converges to (x, y, λ),

and let w be a limit point of the sequence {W (xn, yn, λn)}∞n=1. Select a subse-
quence {W (xnk

, ynk
, λnk

)}∞k=1 that converges to w. Then, for any z ∈ X , we
have d (z,W (xnk

, ynk
, λnk

)) ≤ λnk
d (z, xnk

) + (1− λnk
) d (z, ynk

) for k ≥ 1.
By continuity of d, we conclude that d(z, w) ≤ λd(z, x) + (1 − λ)d(z, y). The
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Property (G) now guarantees that w = W (x, y, λ). Hence, it follows that
W (x, y, λ) is the only limit point of the sequence {W (xn, yn, λn)}∞n=1. Since
X is compact, {W (xn, yn, λn)}∞n=1 must converge to W (x, y, λ) and we are
done.

Next we define two geometric structures in a convex metric space and
present their basic properties.

A convex metric (hyperbolic) space X is strictly convex [45] if for any
x, y ∈ X and λ ∈ I, there exists a unique element z ∈ X such that d(z, x) =
λd(x, y) and d(z, y) = (1 − λ)d(x, y), and uniformly convex [43] if for any
ε > 0, there exists α > 0 such that d

(
z,W

(
x, y, 12

))
≤ r (1− α) < r for all

r > 0 and x, y, z ∈ X with d (z, x) ≤ r, d (z, y) ≤ r and d (x, y) ≥ rε.
A mapping η : (0,∞)× (0, 2] → (0, 1] that provides such an α = η(r, ε) for

u, x, y ∈ X, r > 0, and ε ∈ (0, 2], is called modulus of uniform convexity [24]
of X . We call η monotone if it decreases with respect to r (for a fixed ε).

Example 1.4. Let H be a Hilbert space and C = {x ∈ H : ‖x‖ = 1}. If
x, y ∈ C and a, b ∈ I with a + b = 1, then ax+by

‖ax+bk‖ ∈ C and δ(C) ≤
√
2/2,

where δ(C) denotes the diameter of C. Let d(x, y) = cos−1{〈x, y〉} for every
x, y ∈ C, where 〈., .〉 is the inner product of H . Then, C is uniformly convex
under W (x, y, λ) = λx+ (1− λ) y.

Now we present some basic properties of a uniformly convex metric space.

Lemma 1.5. Let X be a uniformly convex metric space. Then, we have the
following assertions:

(a) X is strictly convex.

(b) If d (x, z) + d (z, y) = d (x, y) for all x, y, z ∈ X , then z ∈
{W (x, y, λ) : λ ∈ I}.

(c) d(W (x, y, λ1),W (x, y, λ2)) = |λ1 − λ2| d(x, y), for all x, y ∈ X and
λ1, λ2 ∈ I.

(d) W (x, y, λ) = W (y, x, 1− λ), for all x, y ∈ X and λ ∈ I.

Proof. (a) Assume that X is not strictly convex. If x, y ∈ X and λ ∈ I, then
there exist z1, z2 in X such that z1 6= z2 and

d(z1, x) = λd(x, y) = d(z2, x), d(z1, y) = (1− λ)d(x, y) = d(z2, y).

It follows by z1 6= z2 and the above identities that x 6= y and λ ∈ (0, 1). Let

r1 = λd(x, y) > 0, r2 = (1 − λ)d(x, y) > 0. Obviously, ε1 = d(z1,z2)
r1

> 0 and

ε2 = d(z1,z2)
r2

> 0. Since X is uniformly convex, we have

d

(
x,W

(
z1, z2,

1

2

))
≤ r1 (1− α1) < r1
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and

d

(
y,W

(
z1, z2,

1

2

))
≤ r2 (1− α2) < r2.

Consider

d(x, y) ≤ d

(
x,W

(
z1, z2,

1

2

))
+ d

(
y,W

(
z1, z2,

1

2

))

≤ r1 (1− α1) + r2 (1− α2)

< r1 + r2

= λd(x, y) + (1 − λ)d(x, y)

= d(x, y),

a contradiction to the reflexive property of real numbers.
(b) Let x, y, z ∈ X be such that

d (x, z) + d (z, y) = d (x, y) . (1.1)

Let u ∈ {W (x, y, λ) : λ ∈ I} be such that d (x, u) = d (x, z). Then, by Lemma
1.1 (c),

d (x, u) + d (u, y) = d (x, y) . (1.2)

Comparing (1.1) and (1.2), we have that d (z, y) = d (u, y). Now, we show that
z = u. Assume instead that z 6= u. Let v = W

(
x, y, 12

)
and r = d (x, u) =

d (x, z). Since d (z, u) > 0, choose ε > 0 so that d (z, u) > rε. By the uniform
convexity of X , there exists α > 0 such that

d (x, v) ≤ r (1− α) < r = d (x, z) .

Similarly, we can show that d (y, v) < d (y, z).
Therefore,

d (x, y) ≤ d (x, v) + d (y, v) < d (x, z) + d (y, z) = d (x, y) .

This is a contradiction to the reflexive property of real numbers. Hence, z =
u ∈ {W (x, y, λ) : λ ∈ I}.

(c) Note that the conclusion holds if λ1 = 0 or λ2 = 0. Let x, y ∈
X,λ1, λ2 ∈ (0, 1], u = W (y, x, λ1), and z = W (y, x, λ2). Without loss of

generality, we may assume that λ1 < λ2. Let v =W
(
z, x, λ1

λ2

)
. Then,

d (x, v) =
λ1
λ2
d (x, z) = λ1d (x, y) ,

and

d (v, y) ≤
(
1− λ1

λ2

)
d (x, y) +

λ1
λ2
d (z, y) = (1− λ1) d (x, y) .
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If u 6= v, let w = W
(
u, v, 12

)
. By the uniform convexity of X , we can prove

that d (x,w) < d (x, u) and d (y, w) < d (y, u). Therefore,

d (x, y) < d (x, u) + d (u, y) = d (x, y) .

This contradicts the reflexive property of real numbers. Hence, u = v.
Now, it follows that

d (z, u) = d (z, v) =

(
1− λ1

λ2

)
d (x, z) = |λ2 − λ1| d (x, y) .

(d) Let x, y ∈ X and λ ∈ I. Obviously, the conclusion holds if λ = 0 or
λ = 1. By the definition of W , we have

d (x,W (x, y, λ)) = (1− λ) d (x, y) , d (y,W (x, y, λ)) = λd (x, y) ,

and

d (x,W (y, x, 1− λ)) = (1− λ) d (x, y) , d (y,W (y, x, 1− λ)) = λd (x, y) .

Suppose that W (x, y, λ) = z1 6= z2 =W (y, x, 1− λ).

Let r1 = (1− λ) d (x, y) > 0, r2 = λd (x, y) > 0, ε1 = d(z1,z2)
r1

, and

ε2 = d(z1,z2)
r2

. Obviously ε1, ε2 > 0.
By uniform convexity of X , we have

d

(
x,W

(
z1, z2,

1

2

))
≤ r1 (1− α1) < r1;

d

(
y,W

(
z1, z2,

1

2

))
≤ r2 (1− α2) < r2.

Since λ ∈ (0, 1) , we get x 6= y.
Finally,

d (x, y) ≤ d

(
x,W

(
z1, z2,

1

2

))
+ d

(
y,W

(
z1, z2,

1

2

))

≤ r1 (1− α1) + r2 (1− α2)

< r1 + r2 = d (x, y) ,

which is against the reflexivity of reals. Therefore, W (x, y, λ) =
W (y, x, 1− λ).

A convex metric space X is said to satisfy the Property (H) [10] if

d (W (x, y, λ) ,W (z, y, λ)) ≤ λd(x, z) for all x, y, z ∈ X and λ ∈ I.

Lemma 1.6. Let X be a uniformly convex metric space satisfying the Prop-
erty (H). Then, X is a uniformly hyperbolic space.
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Proof. In the light of Lemma 1.5 (c)–(d), it is sufficient to show that

d(W (x, z, λ),W (y, w, λ)) ≤ λd(x, y) + (1− λ) d(z, w),

for all x, y, z, w ∈ X , λ ∈ I. Using the triangle inequality, Lemma 1.5 (d), and
the Property (H), we have

d(W (x, z, λ),W (y, w, λ)) ≤ d(W (x, z, λ),W (x,w, λ))

+d(W (x,w, λ),W (y, w, λ))

= d(W (z, x, 1− λ),W (w, x, 1 − λ))

+d(W (x,w, λ),W (y, w, λ))

≤ (1− λ) d (z, w) + λd (x, y)

= λd (x, y) + (1− λ) d (z, w) .

Lemma 1.7. Let X be a uniformly convex metric space satisfying the Prop-
erty (H). Then, the convex structure W is continuous.

Proof. It has been shown in Lemma 1.6 that

d(W (x, z, λ),W (y, w, λ)) ≤ λd (x, y) + (1− λ) d (z, w) ,

for all x, y, z, w ∈ X and λ ∈ I.
Let {(xn, yn, λn)} be any sequence in X2 × I such that (xn, yn, λn) →

(x, y, λ) for all x, y ∈ X and λ ∈ I. We show thatW (xn, yn, λn) →W (x, y, λ).
An application of Lemma 1.5 (c) and Lemma 1.6 provide:

d (W (xn, yn, λn),W (x, y, λ)) ≤ d (W (xn, yn, λn),W (x, y, λn))

+d (W (x, y, λn),W (x, y, λ))

≤ λnd (xn, x) + (1− λn) d (yn, y)

+ |λn − λ| d (x, y) .

Since d (xn, x) → 0, d (λn, λ) → 0 and |λn − λ| → 0, therefore
W (xn, yn, λn) → W (x, y, λ).

Lemma 1.8. Let X be a uniformly convex metric space with modulus of
uniform convexity α(decreases for a fixed ε). If d(x, z) ≤ r, d(y, z) ≤ r, and
d
(
z,W

(
x, y, 12

))
≥ h > 0 for all x, y, z ∈ X, then d(x, y) ≤ rη

(
r−h
r

)
where η

is the inverse of α.

Proof. Let d(x, z) ≤ r, d(y, z) ≤ r and d
(
z,W

(
x, y, 12

))
≥ h > 0 for all

x, y, z ∈ X. To show that d(x, y) ≤ rη
(
r−h
r

)
, we assume instead that d(x, y) >

rη
(
r−h
r

)
. Take r−h

r < ε1 such that d(x, y) ≥ r η
(
r−h
r

)
. Now using the uniform
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convexity of X , we have

d

(
z,W

(
x, y,

1

2

))
≤ (1− α (η (ε1))) r

= (1− ε1) r

<

(
1− r − h

r

)
r

= h.

That is,

d

(
z,W

(
x, y,

1

2

))
< h,

a contradiction to a given inequality.

Lemma 1.9. Let X be a uniformly convex metric space with modulus of
uniform convexity α (decreases for a fixed ε) and satisfies the Property (H).
Let x1, x2, x3 ∈ Br[u] ⊂ X and satisfy d(x1, x2) ≥ d(x2, x3) ≥ l > 0. If

d(u, x2) ≥
(
1− 1

2
α

(
l

r

))
r, (1.3)

then

d(x1, x3) ≤ η

(
1− 1

2
α

(
l

r

))
d(x1, x2),

where η is the inverse of α.

Proof. Denote z1 = W
(
x1, x2,

1
2

)
, z2 = W

(
x3, x2,

1
2

)
, and z = W

(
z1, z2,

1
2

)
.

By the uniform convexity of X , we have

d(u, z) = d

(
u,W

(
z1, z2,

1

2

))

≤ 1

2
d(u, z1) +

1

2
d(u, z2)

=
1

2
d

(
u,W

(
x1, x2,

1

2

))
+

1

2
d

(
u,W

(
x3, x2,

1

2

))

≤
(
1− α

(
l

r

))
r. (1.4)

Using (1.4) in (1.3), we get

d(u, x2) ≥
(
1− 1

2
α

(
l

r

))
r

=

(
1− α

(
l

r

))
r +

1

2
α

(
l

r

)
r

≥ d(u, z) +
1

2
α

(
l

r

)
r.
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That is,

1

2
α

(
l

r

)
r ≤ d(u, x2)− d(u, z)

≤ d(x2, z). (1.5)

Since d(x2, zi) ≤ 1
2d(x1, x2) for i = 1, 2, and d(z1, z2) ≥ 1

2d(x1, x2), therefore
by uniform convexity of X (with r = 1

2d(x1, x2), ε = 1), Property (H), and
(1.5), we have

1

2
α

(
l

r

)
r ≤ d(x2, z)

= d

(
x2,W

(
z1, z2,

1

2

))

≤ (1− α (1)) r

≤
(
1− α

(
d(z1, z2)

1
2d (x1, x2)

))
r

≤
(
1− α

( 1
2d(x1, x3)
1
2d(x1, x2)

))
r.

That is,
1

2
α

(
l

r

)
≤ 1− α

(
d(x1, x3)

d(x1, x2)

)
.

Therefore,

d(x1, x3) ≤ η

(
1− 1

2
α

(
l

r

))
d(x1, x2),

where η is the inverse of α.

The condition (1.3) in the above lemma holds as indicated by the following
example with α(n) = n

2 .

Example 1.5. Define d(x, y) = |x− y| on B1[0] = [−1, 1] ⊂ R. Let u =
0, x1 = 0.1, x2 = 0.99, and x3 = 0.3. Note that d(x1, x2) ≥ d(x2, x3) ≥ 0.2 =
l > 0,

(
1− 1

2α
(
l
r

))
r = 0.95, and d(u, x2) ≤

(
1− 1

2α
(
l
r

))
r. All the conditions

of Lemma 1.9 are satisfied. Moreover, d(x1, x3) ≤ η
(
1− 1

2α
(
l
r

))
d(x1, x2),

where η is the inverse of α.

1.3 Ishikawa Iterative Scheme

Mann [33] and Ishikawa [15] iterative schemes for nonexpansive and quasi-
nonexpansive mappings have been extensively studied in a uniformly convex



16 Fixed Point Theory, Variational Analysis, and Optimization

Banach space. Senter and Dotson [41] established convergence of the Mann
iterative scheme of quasi-nonexpansive mappings satisfying two special con-
ditions in a uniformly convex Banach space. A mapping T on a nonempty set
C is a generalized nonexpansive [4] if

d(T (x), T (y)) ≤ a d(x, y)+b{d(x, T (x))+d(y, T (y))}+c{d(x, T (y))+d(y, T (x))},
(1.6)

for all x, y ∈ C, where a, b, c ≥ 0 with a+ 2b+ 2c ≤ 1.
In 1973, Goebel et al. [12] proved that a generalized nonexpansive mapping

has a fixed point in a uniformly convex Banach space. Based on their work,
Bose and Mukerjee [4] proved convergence theorems for the Mann iterative
scheme of generalized nonexpansive mapping and got the result obtained by
Kannan [16] under relaxed conditions. Maiti and Ghosh [32] generalized the
results of Bose and Mukerjee [4] for the Ishikawa iterative scheme using a
modified version of the conditions of Senter and Dotson [41].

Based on Lemma 1.8 and Lemma 1.9, Fukhar-ud-din et al. [10] have ob-
tained the following fixed point theorem for a continuous mapping satisfying
(1.6) in a uniformly convex metric space.

Theorem 1.1. Let C be a nonempty, closed, convex, and bounded subset of
a complete and uniformly convex metric space X satisfying the Property (H).
If T is a continuous mapping on C satisfying (1.6), then T has a fixed point
in C.

In this section, we approximate the fixed point of this continuous mapping
satisfying (1.6). We assume that C is a nonempty, closed, and convex subset
of a convex metric space X , and T is a mapping on C. For an initial value
x1 ∈ C, we define the Ishikawa iterative scheme in C as follows:

x1 ∈ C,

xn+1 =W (T (yn), xn, αn),

yn =W (T (xn), xn, βn), n ≥ 1,

(1.7)

where αn, βn ∈ I.
If we choose βn = 0, then (1.7) reduces to the following Mann iterative

scheme:
x1 ∈ C, xn+1 =W (T (xn), xn, αn), n ≥ 1, (1.8)

where {αn} ∈ I.
On a convex subset C of a linear space X , W (x, y, λ) = λx + (1 − λ)y is

a convex structure on X ; (1.7) and (1.8), respectively, become Ishikawa [15]
and Mann [33] schemes:

x1 ∈ C, xn+1 = (1− αn)xn + αnT (yn),

yn = (1− βn)xn + βnT (xn), n ≥ 1,
(1.9)

and
x1 ∈ C, xn+1 = (1 − αn)xn + αnT (xn), n ≥ 1, (1.10)


