
Information Technology / Programming Languages

Programming Languages for MIS: Concepts and Practice supplies a synopsis of
the major computer programming languages, including C++, HTML, JavaScript, CSS,
VB.NET, C#.NET, ASP.NET, PHP (with MySQL), XML (with XSLT, DTD, and XML
Schema), and SQL. Ideal for undergraduate students in IS and IT programs, this textbook
and its previous versions have been used in the authors’ classes for the past 15 years.

Focused on web application development, the book considers client-side computing,
server-side computing, and database applications. It emphasizes programming techniques,
including structured programming, object-oriented programming, client-side programming,
server-side programming, and graphical user interface.

•	Introduces the basics of computer languages along with the key characteristics
of all procedural computer languages

•	Covers C++ and the fundamental concepts of the two programming paradigms:
function-oriented and object-oriented

•	Considers HTML, JavaScript, and CSS for web page development

•	Presents VB.NET for graphical user interface development

•	Introduces PHP, a popular open source programming language, and explains
the use of the MySQL database in PHP

•	Discusses XML and its companion languages, including XSTL, DTD,
and XML Schema

With this book, students learn the concepts shared by all computer languages as well
as the unique features of each language. This self-contained text includes exercise
questions, project requirements, report formats, and operational manuals of programming
environments. A test bank and answers to exercise questions are also available upon
qualified course adoption.

This book supplies professors with the opportunity to structure a course consisting of
two distinct modules: the teaching module and the project module. The teaching module
supplies an overview of representative computer languages. The project module provides
students with the opportunity to gain hands-on experience with the various computer
languages through projects.

ISBN: 978-1-4822-2266-1

9 781482 222661

90000

Programming
Languages for MIS
Concepts and Practice

H
. W

ang
S
. W

ang

Hai Wang
Shouhong Wang

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

www.auerbach-publications.com

P
rogram

m
ing Languages for M

ISK22290

K22290 cvr mech.indd 1 12/3/13 10:07 AM

Programming
Languages for MIS

Concepts and Practice

Programming
Languages for MIS

Concepts and Practice

Hai Wang
Shouhong Wang

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20130925

International Standard Book Number-13: 978-1-4822-2267-8 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

v© 2010 Taylor & Francis Group, LLC

Contents

Preface 	 xi
The Authors 	 xv
Acknowledgments 	 xvii

Chapter 1	 Introduction 	 1
1.1	 Computers	 1
1.2	 Computer Programming Languages	 1

1.2.1	 Role of Computer Programming Language	 1
1.2.2	 Software Systems	 2
1.2.3	 Taxonomies of Computer Programming Languages	 3

1.3	 Computing Architecture in the Internet Environment	 4
1.4	 Key Characteristics Shared by All Procedural Programming Languages	 5

1.4.1	 Syntax, Sentence, and Word	 5
1.4.2	 Variable	 5
1.4.3	 Arithmetic Operation	 6
1.4.4	 Execution Sequence	 6
1.4.5	 If-Then-Else Logic	 6
1.4.6	 Loop	 6
1.4.7	 Module	 7

Chapter 2	C ++ 	 9
2.1	 Introduction to Function-Oriented and Object-Oriented Programming	 9
2.2	 A Tour of C Language	 9

2.2.1	 C and C++ Keyword and User-Defined Word	 14
2.2.2	 Comment Statements	 14
2.2.3	 Preprocessor	 14
2.2.4	 Namespace	 14
2.2.5	 Structure of a C Program, Functions, and Arguments	 15
2.2.6	 Statements and Semicolon	 16
2.2.7	 Data Type	 16
2.2.8	 Arithmetic Operations	 16
2.2.9	 for-Loop	 17

vi Contents

© 2010 Taylor & Francis Group, LLC

2.2.10	 printf() Statement with Conversion Specifier	 18
2.2.11	 if-Statement	 18
2.2.12	 String and String Processing	 20

2.3	 Functional Approach	 20
2.3.1	 Functional Decomposition	 20
2.3.2	 A Simple Example of User-Defined Function	 21
2.3.3	 Declaration of User-Defined Function	 22
2.3.4	 Calling-Function and Called-Function	 22
2.3.5	 Structure Diagram	 23
2.3.6	 An Example of Two Functions	 23
2.3.7	 An Example of Multiple Functions	 25

2.4	 Object-Oriented Approach	 29
2.4.1	 Object and Class	 29
2.4.2	 Descriptions of Class	 31
2.4.3	 public and private Statements	 32
2.4.4	 Constructor	 32
2.4.5	 Use of Class—Declare Object and Message Sending	 32

2.5	 Design of Objected-Oriented Program	 35
2.6	 Connection between Classes—An Example with Two Classes	 39
2.7	 An Example of Inheritance	 43
2.8	 Identify Class	 48
2.9	 Debugging	 48
Appendix 2.1: Commonly Used C and C++ Keywords	 52
C and C++ Keywords	 52
C++ Only Keywords	 52

Chapter 3	H TML, JavaScript, and CSS 	 53
3.1	 Introduction to the Internet	 53
3.2	 Creating Web Pages Using HTML	 54
3.3	 Simple Container Tags	 55

3.3.1	 <HTML>	 55
3.3.2	 <HEAD> and <TITLE>	 55
3.3.3	 <BODY>	 55
3.3.4	 Comments <!-- ... -->	 55
3.3.5	 Headings <H1> <H2> ... <H6>	 56
3.3.6	 <P>	 56
3.3.7	 <I>	 56
3.3.8	 <TABLE>, <TH>, <TR>, and <TD>	 56
3.3.9	 <A>	 56
3.3.10	 <CENTER>	 56

3.4	 Empty Tags	 56
3.4.1	 <HR>	 56
3.4.2	
	 56
3.4.3	 	 57

3.5	 Complex Container Tags	 59
3.5.1	 <FORM>	 59

3.5.1.1	 Attribute ACTION	 59
3.5.1.2	 Attribute METHOD	 60
3.5.1.3	 <INPUT> and Its Attributes TYPE, NAME, SIZE, and

VALUE	 60
3.5.2	 FRAME and FRAMESET	 60

3.6	 Publish Web Page	 61

viiContents

© 2010 Taylor & Francis Group, LLC

3.7	 Introduction to JavaScript	 61
3.8	 Image Manipulation	 62

3.8.1	 Object Classes and Their Methods and Attributes	 63
3.8.2	 Event Handler	 64

3.9	 FORM Input Data Verification	 64
3.9.1	 Comparison of JavaScript with C and C++	 66
3.9.2	 Function and Calling a Function	 67
3.9.3	 String Processing	 68
3.9.4	 if-Statement	 68
3.9.5	 alert-Statement	 69

3.10	 FORM Data Calculation	 69
3.11	 Cookies	 71
3.12	 Miscellaneous JavaScript Statements	 74

3.12.1	 new Statement	 74
3.12.2	 Miscellaneous Functions and Methods	 74

3.13	 Cascading Style Sheet	 74
3.13.1	 Inline CSS	 75
3.13.2	 Internal CSS	 76
3.13.3	 External CSS	 79

3.14	 Debugging Source Code of Web Pages	 80
Appendix 3.1: List of HTML Commonly Used Tags	 85
Appendix 3.2: JavaScript Reserved Words and Other Keywords	 86
JavaScript Reserved Words	 86

Chapter 4	V B.NET 	 87
4.1	 Graphical User Interface	 87
4.2	 Microsoft Visual Studio and VB.NET Environment	 87
4.3	 Event Driven	 90
4.4	 Example of a Single Form	 93
4.5	 Multiple Forms	 96

4.5.1	 Design Forms	 96
4.5.2	 Module	 98
4.5.3	 Class	 99
4.5.4	 Coding	 100

4.6	 Programming with VB.NET	 106
4.6.1	 General Format of Code, Comments, and Keywords	 106
4.6.2	 Class and Object	 108
4.6.3	 Methods	 108
4.6.4	 Constant Variables	 109
4.6.5	 Data Types	 109
4.6.6	 Arithmetic Operations	 109
4.6.7	 If-Then-Else Statement	 110
4.6.8	 For-loop	 110
4.6.9	 String Processing and Format Statement	 110
4.6.10	 Print Document	 110
4.6.11	 Message Box	 111

4.7	 Debugging	 111

Chapter 5	C #.NET 	 115
5.1	 Microsoft Visual Studio and C# Programming Environment	 115
5.2	 C# Program Structure	 117
5.3	 Run a C# Console Application Program	 117
5.4	 C# Syntax	 118

viii Contents

© 2010 Taylor & Francis Group, LLC

5.4.1	 Arrays and foreach loop	 119
5.4.2	 Command Line Arguments	 120
5.4.3	 Functions	 121

5.5	 Examples of Console Application	 123
5.6	 Windows Forms Application	 127
5.7	 Examples of Windows Forms Application	 130
5.8	 Debugging	 138

Chapter 6	AS P.NET 	 145
6.1	 Introduction to ASP.NET	 145
6.2	 ASP.NET with VB.NET	 146

6.2.1	 Structure of ASP.NET Program	 147
6.2.2	 HTML Controls Versus ASP.NET Web Controls	 149
6.2.3	 HTML Controls	 149

6.2.3.1	 Submit Button	 150
6.2.3.2	 Textbox	 150
6.2.3.3	 Checkbox	 151
6.2.3.4	 Radio Button	 152
6.2.3.5	 Select	 153

6.2.4	 Web Controls	 154
6.2.5	 Validation Controls	 156
6.2.6	 The Code-Behind Programming Framework	 157
6.2.7	 Server-Side File Processing	 159
6.2.8	 Accessory Features	 162

6.2.8.1	 Sending E-mail Message	 162
6.2.8.2	 Calendar	 163
6.2.8.3	 Redirect Method	 164
6.2.8.4	 Security	 166

6.2.9	 Web Application Design	 168
6.2.10	 ADO.NET—Server-Side Database Processing	 172

6.2.10.1	 Database Connection and SQL in ASP.NET	 173
6.2.10.2	 Search Database	 175
6.2.10.3	 Update Database	 177
6.2.10.4	 Use Data of Database for Decision	 177

6.3	 ASP.NET with C#.NET	 179
6.3.1	 C# Programming with ASP.NET Web Controls	 179
6.3.2	 Code-Behind Programming	 184
6.3.3	 Server-Side File Processing	 185
6.3.4	 <asp:SqlDataSource> Control for Database Processing	 192

6.4	 Debugging	 195

Chapter 7	 PHP 	 201
7.1	 Introduction to PHP and PHP Development Environment	 201
7.2	 Format of PHP Program	 202
7.3	 Structure of PHP Program	 205
7.4	 Activate PHP in Web Page and Process Form Data on Server	 206
7.5	 Programming in PHP	 207

7.5.1	 PHP Functions	 207
7.5.2	 if-Statement	 209
7.5.3	 Read Data File from Server	 209
7.5.4	 fopen() and fclose()	 210

ixContents

© 2010 Taylor & Francis Group, LLC

7.5.5	 feof() and fgets()	 211
7.5.6	 while-loop	 211
7.5.7	 Write Data File to Server and fputs()	 211

7.6	 Relay Data through Multiple Dynamic Web Pages Using Hidden Fields	 212
7.7	 Example of Web Application Design	 215
7.8	 PHP and MySQL Database	 219

7.8.1	 Set MySQL Database	 219
7.8.2	 Create and Delete Table in PHP Using SQL	 221
7.8.3	 Insert Data to Table	 222
7.8.4	 Access Database	 222
7.8.5	 Search Database	 224
7.8.6	 Use ODBC Connection	 225

7.9	 Debugging	 225

Chapter 8	 XML 	 229
8.1	 Introduction to XML	 229

8.1.1	 HTML Documents Are Difficult to Process	 229
8.1.2	 Databases Need Common Data Format to Exchange Data	 230

8.2	 XML Documents Are Data Sheets	 231
8.2.1	 XML Instance Documents	 231
8.2.2	 Declaration	 232
8.2.3	 Tags and Element	 232
8.2.4	 Attribute	 232
8.2.5	 Comment Line and Editorial Style	 233

8.3	 Cascading Style Sheets	 233
8.4	 Extensible Style Language	 234

8.4.1	 <xsl:stylesheet>	 235
8.4.2	 <xsl:template>	 235
8.4.3	 HTML Presentation	 235
8.4.4	 <xsl:value-of>	 235
8.4.5	 Empty Tag	 236
8.4.6	 <xsl:for-each>	 236

8.5	 XML Data Tree	 236
8.6	 CSS Versus XSLT	 237
8.7	 Document Type Definition and Validation	 239

8.7.1	 Simple Example of Internal DTD	 240
8.7.2	 Simple Example of External DTD	 240
8.7.3	 <!DOCTYPE>	 241
8.7.4	 <!ELEMENT>	 241
8.7.5	 <!ATTLIST>	 242
8.7.6	 <!ENTITY>	 242

8.8	 XML Schema	 242
8.8.1	 Schema Element	 243
8.8.2	 Data Element, Attribute, and Data Type	 244
8.8.3	 complexType	 244
8.8.4	 sequence	 244
8.8.5	 Cardinality	 244
8.8.6	 Attribute	 244
8.8.7	 XML Validation	 244

8.9	 Summary of Application of XML	 245
8.10	 An Example of XML Application	 246

x Contents

© 2010 Taylor & Francis Group, LLC

8.11	 Advanced Subjects of XML	 251
8.11.1	 Conversion of Relational Database into XML Tree	 251
8.11.2	 xlink and xsl:if	 254

8.11.2.1	 xlink	 259
8.11.2.2 <xsl:if>	 260

8.12	 XHTML	 260
8.13	 XBRL	 262

8.13.1	 Comparison of XBRL with XML	 262
8.13.2	 Taxonomy	 263
8.13.3	 Prepare XBRL-Based Reports	 263

Chapter 9	S QL 	 267
9.1	 Introduction to SQL	 267
9.2	 CREATE and DROP	 267
9.3	 INSERT, UPDATE, DELETE	 268
9.4	 Query—SELECT	 269
9.5	 WHERE Clause and Comparison	 271
9.6	 ORDER BY Clause	 272
9.7	 Aggregate Functions	 273
9.8	 GROUP BY Clause and HAVING Clause	 273
9.9	 Joining Tables	 274
9.10	 Subquery	 275

9.10.1	 Subquery—Reducing Computational Workload of Join Operation	 275
9.10.2	 Subquery as an Alternative to GROUP BY	 277
9.10.3	 Subquery—Determining an Uncertain Criterion	 277

9.11	 Tactics for Writing Queries	 278
9.12	 SQL Embedded in Host Computer Programming Languages	 278

xi© 2010 Taylor & Francis Group, LLC

Preface

There have been critical discussions on the management information systems (MIS)
curriculum design during the last several years. The most notable trend in the MIS cur-
riculum renewal movement is to develop more new MIS courses to meet the needs
of the job market of MIS graduates. The needs of the job market have considerable
implications for the design of MIS courses to educate the next generation of MIS
professionals. MIS students must acquire the fundamental theories of MIS as well as
the essential practical skills of computer applications to develop the lifelong learning
ability in information technology. Technical skills should focus more on problem solv-
ing and practical applications. Regardless of changes in the MIS curricula over the
past years to meet the requirements of the job market, as well as the requirements of
accreditation organizations such as AACSB and ABET, programming remains a core
requirement in most MIS programs.

In the modern service-oriented age, development and maintenance of web-based
applications still rely heavily on applications of computer languages regardless of the
advances of a variety of software packages. To meet the challenges of the ever chang-
ing information technologies, educators need to offer courses in important program-
ming languages for their MIS majors. On the other hand, MIS majors cannot afford
to learn multiple computer languages on the one-language/one-course basis. The key
to the solution to this problem is to make a pedagogical paradigm shift and to develop
courses in multiple computer languages.

Few guidelines for MIS courses of computer programming can be found in the
literature or on the Internet. The selection of computer languages for programming
courses is a crucial task for the pedagogy design. The design components of such courses
are based on four considerations. First, the selected computer languages must be
representative and should cover essential concepts and features of all kinds of com-
puter languages that are used in business organizations. Second, the selected computer

xii Preface

© 2010 Taylor & Francis Group, LLC

languages must be commonly used in the industry. Third, the selected computer lan-
guages should not require additional computing resources in the ordinary computing
labs of the MIS programs. Fourth, the scope and the workload for MIS students to
learn these computer languages should be manageable.

Considering these factors, we selected the following computer programming lan-
guages for this book: C++, HTML, JavaScript, CSS, VB.NET, C#.NET, ASP.NET,
PHP (with MySQL), XML (with XSLT, DTD, and XML Schema), and SQL.
Java is a full-scale computer programming language and has been widely used in the
industry. This book does not include Java because it requires the Java platform and
installation of the Java computing environment on computers with the Windows
platform, which could be demanding. In addition, .NET and Java, the two major
computer language platforms, share a great similarity of language characteristics.
The interested reader who wants to learn Java is referred to our book Programming
Languages for Business Problem Solving, published by Taylor & Francis, 2007 (ISBN
1-4200-6264-6), for its chapter on Java.

Due to time constraints, it is impossible for students to learn all these languages in
great detail. Nevertheless, students are expected to have general knowledge of com-
monly used computer languages and to be able to develop basic skills of program-
ming. Our methodology applied to the programming courses is to learn languages
through typical examples. Specifically, we teach typical problems of MIS applications
and their solutions through the use of these computer languages.

A course that uses this book usually consists of two distinct modules: the teaching
module and the project module. The teaching module provides an overview of rep-
resentative computer languages. The project module provides an opportunity for stu-
dents to practice the computer languages involving hands-on projects. The interested
instructor is referred to our pedagogical research papers for the relevant discussions on
teaching and learning multiple computer languages in a single course: “An Approach
to Teaching Multiple Computer Languages,” Journal of Information Systems Education,
12(4), 2002, 201–211; and “Design and Delivery of Multiple Server-Side Computer
Languages Course,” Journal of Information Systems Education, 22(2), 2011, 159–168.

The book includes an introduction and eight chapters. The introduction discusses
basics of computer languages and the key characteristics of all procedural computer
languages. Chapter 2 introduces C++ and explains the fundamental concepts of
the two programming paradigms: function oriented and object oriented. Chapter 3
includes HTML, JavaScript, and CSS for web page development. Chapter 4 intro-
duces VB.NET for graphical user interface development. Chapter 5 introduces
C#.NET, which is similar to Java. Chapter 6 explains ASP.NET, an important server-
side programming language for the Windows platform. ASP.NET incorporates
VB.NET, C#.NET, and ADO.NET. Chapter 7 introduces PHP, a popular open
source programming language, and explains the use of the MySQL database in PHP.
Chapter 8 discusses XML and its companion languages, including XSTL, DTD, and

xiiiPreface

© 2010 Taylor & Francis Group, LLC

XML Schema. Finally, Chapter 9 discusses SQL, which is a part of application of
server-side programming for database processing.

MIS students will be able to use the concepts and practices in this book as the start-
ing point in their journey to become successful information technology professionals.

Shouhong Wang, PhD
University of Massachusetts, Dartmouth

Hai Wang, PhD
Saint Mary’s University, Halifax, Nova Scotia, Canada

xv© 2010 Taylor & Francis Group, LLC

The Authors

Hai Wang is an associate professor at the Sobey School of Business at Saint Mary’s
University, Halifax, Nova Scotia, Canada. He received his BSc in computer science
from the University of New Brunswick, and his MSc and PhD in computer science from
the University of Toronto. He has published more than 50 research articles in the
areas of MIS, big data, data mining, database management, knowledge management,
and e-business. His research has continuously been funded by the Natural Sciences
and Engineering Research Council of Canada in the past years.

Shouhong Wang is a professor at University of Massachusetts, Dartmouth. He
received his PhD in information systems from McMaster University. He has over
30 years’ experience of higher education in the MIS field. He has published more than
100 research papers in academic journals and several books on the subject of MIS.

xvii© 2010 Taylor & Francis Group, LLC

Acknowledgments

Windows, Notepad, WordPad, Windows Explorer, Internet Explorer, Visual Basic,
Excel, Access, VB.NET, C#, ASP.NET, Visual Studio.NET, and SQL Server are
trademarks of Microsoft Corporation.

Mozilla Firefox is copyrighted by Mozilla Corporation and Mozilla Foundation.

MySQL, Java, and JavaScript are trademarks of Oracle Corporation.

PHP is copyrighted by the PHP Group.

Apache is copyrighted by The Apache Software Foundation.

EasyPHP is copyrighted by EasyPHP and distributed under the general public
license.

CSS and XML are trademarks of World Wide Web Consortium (W3C).

Notepad++ is distributed as free software under the GNU general public license.

Dev-C++ is a free integrated development environment developed by Bloodshed
Software and distributed under the GNU general public license.

1© 2010 Taylor & Francis Group, LLC

1
Introduction

1.1 � Computers

A computer is a general purpose machine that can be programmed to carry out com-
putation and data processing operations. Since programs can be readily changed by
humans through programming, the computer can solve a variety of problems. A com-
puter has a central processing unit (CPU), which interprets and executes programs,
and primary memory, which stores programs and data. The components of a computer
system also include secondary memory, input device, and output device, as shown in
Figure 1.1. An input device converts human signals and data into the signals that can
be processed by the CPU. The keyboard and mouse are examples of input devices.
An output device converts the signals from the CPU into a form understandable to
a human. The monitor and printer are examples of output devices. A device, such as
the touch screen or network communication device, can be both an input and output
device. Similar to a primary memory, a secondary memory can also be used to store
programs and data. There are two main differences between primary memory and
second memory. First, primary memory is volatile in nature, while secondary memory
is nonvolatile. The programs and data that are stored in the primary memory cannot
be retained when the power is turned off. A secondary memory can retain the stored
programs and data even if the power is turned off. Second, it is much faster for the
CPU to access programs and data in the primary memory than in the second memory.
The programs or data stored in the secondary memory are read in batches into the
primary memory before they are used by the CPU.

1.2 � Computer Programming Languages

1.2.1 � Role of Computer Programming Language

A computer programming language is an artificial language designed to communicate
instructions to a computer. Programming languages are used to create programs that
control a computer to perform the tasks as designed. The tasks a computer can carry
out include:

•	 Manipulating data and information
•	 Reading data from and/or writing data to the secondary memory or other

input/output devices
•	 Presenting data for a human through the user–computer interface

2 Programming Languages for MIS﻿

© 2010 Taylor & Francis Group, LLC

There are many computer programming languages. Each computer programming
language has its syntax. There is no single computer programming language that can
fit all types of applications.

1.2.2 � Software Systems

The software systems in a computer are structured in layers, as illustrated in Figure 1.2.
As shown in the figure, application software is built by the software developer using
high-level programming languages that programmers can easily understand and use.
However, the programs in high-level programming languages cannot be executed by
the computer unless the programs are translated into the machine executable code
(i.e., specific strings of binary digits). To translate a program in a high-level pro-
gramming language into the machine executable code, a special program, called the
compiler or interpreter for that high-level language, must be applied, as shown in
Figure 1.3. Once a program in a high-level programming language is translated into
the machine-executable code, it can be used an infinite number of times.

Application Software (e.g., ERP system)

High-Level Languages

Assembly Language

Hardware

Development Tools

Operating System

Figure 1.2  The role of computer programming language.

Computer

Central Processing Unit
(CPU)

Primary
Memory

Output Device

Secondary
Memory

Input Device

Figure 1.1  A computer system.

3Introduction

© 2010 Taylor & Francis Group, LLC

If a program in a high-level programming language has a syntax error, the transla-
tion will fail and machine-executable code will not be generated. On the other hand,
a program without a syntax error could have a logical error, or semantic error, and the
final execution result could be incorrect. To ensure that a program is executed cor-
rectly, the computer programmer must do the following three tasks.

	 1.	Understand the application to be developed.
	 2.	Design the program for the application.
	 3.	Debug to fix all syntax errors as well as logical errors.

1.2.3 � Taxonomies of Computer Programming Languages

There is no overarching classification scheme for programming languages. In this
book, we introduce three major classifications.

	 1.	Procedural language versus markup language. A procedural language is capable
of commanding a computer to carry out arithmetic or logical operations. All
programming languages except for HTML and XML are procedural lan-
guages. A markup language is used for annotating a document (or a data set)
in a way that is syntactically distinguishable from the text. HTML and XML
are markup languages.

	 2.	Function-oriented language versus object-oriented language. A function-oriented
language uses functions as modules. C is a typical function-oriented lan-
guage. An object-oriented language uses objects as modules. C++ is a typical
object-oriented language. A computer language can be a blended language
of function-oriented and object-oriented languages, such as JavaScript and
VB.NET.

	 3.	Client-side language versus server-side language. A client-side language is used
to create the computer programs that are executed on the client side on the
web. JavaScript and HTML are typical client-side languages. In contrast,
programs in server-side languages such as PHP and ASP.NET are executed
by the Web server and have greater access to the information and functional
resources available on the server in response to the client’s request.

Programmer Computer

Edit program
using program editor

Compiler
(or interpreter)

software

Execution

Machine CodeTranslation
Programs in high-level

computer programming
languages

Figure 1.3  Translation of computer programs.

4 Programming Languages for MIS﻿

© 2010 Taylor & Francis Group, LLC

1.3 � Computing Architecture in the Internet Environment

Massive client–server networks are connected to build the Internet (or World Wide
Web). A general computing architecture in the Internet environment is illustrated in
Figure 1.4. Computers are linked to the Internet through the Internet providers.

Client is a computer that accesses a service made available by a server. It is
equipped with client-side programs.

Firewall is a computer with special software to protect the Web server, database
server, and the database from unauthorized access, viruses, and other suspi-
cious incoming code.

Web server stores the web portal, processes all applications (e.g., order process and
payment), and makes all responses to the Internet users’ requests. To support
applications, a web server has three important software components: API,
middleware, and ODBC:
API (application program interface) is a set of functions that allow data exchange

between the application software and the database.
Middleware is specialized software of server-side programs to access the database.
ODBC (open database connectivity) is a software interface to relational data-

bases. On a computer of the Windows platform, you can set ODBC for
a particular relational database (e.g., structured query language server) or
tabular data (e.g., Excel) through [Administrative Tools] in the
[Control Panel] of [Settings] in the Windows operating systems.
In the Java platform, JDBC (Java database connectivity) plays a similar role.

Database server is the dedicated server for the data retrieval and maintenance of
the database.

Clients

Internet

Firewall

TCP/IP and HTTP

Client-Side
Programs

Server-Side
Programs

Web Server
Applications

Middleware ODBC

DMBS

Centralized
Database

Database Server

API

Figure 1.4  Computing architecture in the Internet environment.

5Introduction

© 2010 Taylor & Francis Group, LLC

1.4 � Key Characteristics Shared by All Procedural Programming Languages

As discussed in the previous sections, a procedural programming language is used
to carry out arithmetic or logical operations. All procedural programming languages
share key characteristics, although individual procedural programming language can
have its unique features. Thus, the knowledge of the key characteristics learned from
one procedural programming language can be applied to other procedural program-
ming languages.

1.4.1 � Syntax, Sentence, and Word

A computer programming language has its syntax—the rules that govern the struc-
ture of sentences of the programs written in the language. In a procedural program-
ming language, a sentence consists of words, numbers, and punctuation. There are
two types of words in a procedural programming language: keyword (or reserved
word) and user-defined word. A keyword represents a specific meaning of the lan-
guage (e.g., a specific instruction). A user-defined word is defined by the programmer
to name a variable or a module. A word used in a procedural programming language
must not contain a space and is usually case sensitive.

1.4.2 � Variable

A variable is the name of a piece of CPU memory that holds data. A variable name is
defined by the programmer and must be a user-defined word. Clearly, variable names
are case sensitive; that is, AVariable is different from avariable. In addition, a
name of a variable must be a single user-defined word without a space. A variable has
its data type, such as integer, character, etc. The data held by the variable are called the
value of the variable. The original value of a variable could be a default value depend-
ing on its data type (such as 0 for an integer and space for a character). The value of a
variable can be changed through operations, but can never be lost unless the computer
program is terminated. Figure 1.5 shows examples of the basic property of variables.

A B
Integers

Original: default value

Operations: A=10; B=20; C=A;

Operations: A=B; B=C; C=A;

C

A B C

A B C

0 0

10 20

20 10

0

10

20

Figure 1.5  Examples of the basic property of variables.

6 Programming Languages for MIS﻿

© 2010 Taylor & Francis Group, LLC

1.4.3 � Arithmetic Operation

Arithmetic operations in procedural programming are similar to day-to-day arithme-
tic calculations, but use reverse expression. For instance, instead of A+B=C, C=A+B is
used in programming; this means: “Let C equal to A plus B.” Multiplication is denoted
by the asterisk symbol“*”, and division is denoted by the slash symbol “/”. The follow-
ing are several examples of arithmetic operations:

A=10	 Let A equal to 10.
C=A+B	 Let C equal to A plus B.
B=A*10+(B/10)	Let B equal to 10 times A plus 1/10 of the original value of B.

1.4.4 � Execution Sequence

A computer program consists of a set of instructions. During the execution of the
procedure of a program, instructions are executed one after another in a sequence
(so-called execution sequence) in which they are encountered, but not in the order
in which they are listed in the program. Logical instructions (e.g., if-statement and
loops) can control the execution sequence of the program, as explained next.

1.4.5 � If-Then-Else Logic

An if-then-else statement controls the computer execution sequence based on a con-
dition that is defined by the current value of a particular variable(s). The if-then-else
logic is illustrated in Figure 1.6.

1.4.6 � Loop

A loop is a group of instructions that are specified once but are executed several times
in succession. A loop statement defines such an iteration procedure, as illustrated

If-then-else instruction with condition

If

Is the condition
true?

Next instruction

False (No)

Else
Action 2

(Could be null)
Action 1

�en

True (Yes)

Figure 1.6  If-then-else logic.

7Introduction

© 2010 Taylor & Francis Group, LLC

in Figure 1.7. Loop is actually a variation of if-then-else logic. The common loops
include for-loop and do-loop. The variable used in a loop to control the execution of
the loop is called a counter.

1.4.7 � Module

A large program must be divided into modules to make the program easy to debug.
Also, a module can be reused. Here, a module could be a paragraph of instructions,
an independent function, or a class, depending upon the specific language in discus-
sion. An instruction in a module can call another module to accomplish a specific task
carried out by the called module, as illustrated in Figure 1.8. A module has its name,
which is a single user-defined word. The communication between the calling module
and the called module can be implemented by passing the values of special variables
termed arguments or parameters. Argument and parameter are exchangeable terms
in this book.

ContinueTest
counter or conditionAction

For-loop instruction (declares a counter and control values)
do-loop instruction (declares a condition)

Stop

Next instruction

Figure 1.7  Loop.

Module A

Calling instruction
(declares arguments)

Module B

(3) Pass the value of
 execution result

(2) – Receive values of arguments
 – Execute instructions
 – Return execution result

Called Module

(1) Call and pass values
of arguments

Figure 1.8  Module.

8 Programming Languages for MIS﻿

© 2010 Taylor & Francis Group, LLC

Chapter 1 Exercises

	 1.	Discuss the general model of a computer system. Why does it include second-
ary memory?

	 2.	Discuss the role of computer programming languages.
	 3.	Discuss how a computer program in a high-level language can be executed by

the computer.
	 4.	Discuss the taxonomies of computer programming languages.
	 5.	Discuss the components of computing architecture in the Internet environment.
	 6.	Provide examples of user-defined words that can be used for programs written

in a procedural programming language.
	 7.	Suppose that there are two variables: x and y. x stores “Beer” and y stores

“Water.” How can you swap the values of the two variables to let x store
“Water” and y store “Beer”?

	 8.	Suppose that there are three variables: Purchase, TaxRate, and Payment.
Purchase stores the money value of the purchased merchandise, and
TaxRate stores the state sales tax rate. Write an arithmetic operation to let
Payment store the payment amount after tax.

	 9.	Write an if-then-else statement using structured English for the GPA
scheme: Grade “A” = 4.0 points, grade “B” = 3.0 points, grade “C” = 2.0 points,
grade “D” = 1.0 point, and grade “F” = 0 points.

	 10.	Write a loop statement using structured English to let the computer list 0.3,
0.6, 0.9, 1.2, 1.5, …, 30.

	 11.	Discuss the advantages of the use of modules in programming.

9© 2010 Taylor & Francis Group, LLC

2
C++

2.1 � Introduction to Function-Oriented and Object-Oriented Programming

In the 1960s and 1970s, the structured program theorem was the main stream of
programming methodology. In structured programming, a computer program can be
expressed by a computable function or a combination of functions. In this book, the
structured program theorem is called function-oriented programming. C is a typical
function-oriented programming language.

Object-oriented programming (OOP) was first discussed in the late 1960s by peo-
ple who were working on the SIMULA language. OOP did not become a popular
method until the 1980s. Recently, the object-oriented philosophy has been extended
to systems development. The computational environments for networking, multime-
dia, cloud computing, and mobile computing all require object-oriented systems. C++
is a typical OOP language.

This chapter will explain the basic concepts of function-oriented and object-oriented
approaches and provide necessary knowledge of both programming paradigms for stu-
dents. We will use examples to describe the characteristics of the two programming
theorems. Traditionally, C and C++ are two languages, although C++ was migrated
from C. Actually, C and C++ share many syntax features. Recently, C++ has become
nearly a superset of C. In this chapter of C++, we call a typical function-oriented pro-
gram a “C program” and a typical objected-oriented program a “C++ program.” Since
C and C++ languages have been the fundamental computer languages, we believe that
the benefit of knowing C and C++ languages would be far beyond what we initially
desired. Learning C and C++ together is the best way to gain a comparative view of
the two programming theorems. In fact, many commonly used computer program-
ming languages adhere to the concept and the characteristics of C and C++. Many
procedural programming languages have blended features of function-oriented and
object-oriented programs.

2.2 � A Tour of C Language

C is a “mid-level” language. Compared to low-level languages (assembly languages),
C programs are easier to write and take fewer instructions. They allow the programmer
to take full advantage of the built-in capacities of the computer. Compared to high-
level languages (e.g., VB.NET), C programs are more compact and efficient; they

10 Programming Languages for MIS﻿

© 2010 Taylor & Francis Group, LLC

provide the programmer with flexibility in writing a set of programmed instructions
at a low level.

Let us examine the style of C program. Suppose we want to display the string
“Hello, World !” on the screen. The C program could be written as follows:

Listing 2.1:  An Example of C Program (HelloWorld.cpp)

/* C Programming Example */
#include<iostream>
using namespace std;
void main()
{
 printf("Hello, world ! \n");
}

We use a Microsoft Visual Studio computing environment to run this program.
Start Microsoft Visual Studio. After the start page has been loaded, you may simply
close it and start to edit your own program (see Figure 2.1).

Click on [File] on the top menu and then [New Project]; you will be allowed
to create a project. In the New Project window, select [Win32] on the left pane
in [Visual C++] and [Win32 Console Application] on the right pane. It
would be a good practice to choose your own folder (e.g., F:\Wang), which will hold
your project and the project name (e.g., C-Project), which will keep your programs
(see Figure 2.2).

Menu

Error message window for debugging

Project window

Figure 2.1  Microsoft visual studio environment.

11C++

© 2010 Taylor & Francis Group, LLC

Click on [OK] and you will see the Win32 Console Application Wizard
window. You choose [Application Setting] on the left pane and select
[Empty Project] (see Figure 2.3). Click on [Finish] and the environment cre-
ates your project in your folder. Right-click on your project name in the [Solution
Explore] pane; you will see a pop-up menu. Select [Add] on the menu and then
[New Item] on the second pop-up menu (see Figure 2.4).

Figure 2.2  Create your project.

Figure 2.3  Set your project.

