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Preface

There have been critical discussions on the management information systems (MIS) 
curriculum design during the last several years. The most notable trend in the MIS cur-
riculum renewal movement is to develop more new MIS courses to meet the needs 
of the job market of MIS graduates. The needs of the job market have considerable 
implications for the design of MIS courses to educate the next generation of MIS 
professionals. MIS students must acquire the fundamental theories of MIS as well as 
the essential practical skills of computer applications to develop the lifelong learning 
ability in information technology. Technical skills should focus more on problem solv-
ing and practical applications. Regardless of changes in the MIS curricula over the 
past years to meet the requirements of the job market, as well as the requirements of 
accreditation organizations such as AACSB and ABET, programming remains a core 
requirement in most MIS programs.

In the modern service-oriented age, development and maintenance of web-based 
applications still rely heavily on applications of computer languages regardless of the 
advances of a variety of software packages. To meet the challenges of the ever chang-
ing information technologies, educators need to offer courses in important program-
ming languages for their MIS majors. On the other hand, MIS majors cannot afford 
to learn multiple computer languages on the one-language/one-course basis. The key 
to the solution to this problem is to make a pedagogical paradigm shift and to develop 
courses in multiple computer languages.

Few guidelines for MIS courses of computer programming can be found in the 
literature or on the Internet. The selection of computer languages for programming 
courses is a crucial task for the pedagogy design. The design components of such courses 
are based on four considerations. First, the selected computer languages must be 
representative and should cover essential concepts and features of all kinds of com-
puter languages that are used in business organizations. Second, the selected computer 
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languages must be commonly used in the industry. Third, the selected computer lan-
guages should not require additional computing resources in the ordinary computing 
labs of the MIS programs. Fourth, the scope and the workload for MIS students to 
learn these computer languages should be manageable.

Considering these factors, we selected the following computer programming lan-
guages for this book: C++, HTML, JavaScript, CSS, VB.NET, C#.NET, ASP.NET, 
PHP (with MySQL), XML (with XSLT, DTD, and XML Schema), and SQL. 
Java is a full-scale computer programming language and has been widely used in the 
industry. This book does not include Java because it requires the Java platform and 
installation of the Java computing environment on computers with the Windows 
platform, which could be demanding. In addition, .NET and Java, the two major 
computer language platforms, share a great similarity of language characteristics. 
The interested reader who wants to learn Java is referred to our book Programming 
Languages for Business Problem Solving, published by Taylor & Francis, 2007 (ISBN 
1-4200-6264-6), for its chapter on Java.

Due to time constraints, it is impossible for students to learn all these languages in 
great detail. Nevertheless, students are expected to have general knowledge of com-
monly used computer languages and to be able to develop basic skills of program-
ming. Our methodology applied to the programming courses is to learn languages 
through typical examples. Specifically, we teach typical problems of MIS applications 
and their solutions through the use of these computer languages.

A course that uses this book usually consists of two distinct modules: the teaching 
module and the project module. The teaching module provides an overview of rep-
resentative computer languages. The project module provides an opportunity for stu-
dents to practice the computer languages involving hands-on projects. The interested 
instructor is referred to our pedagogical research papers for the relevant discussions on 
teaching and learning multiple computer languages in a single course: “An Approach 
to Teaching Multiple Computer Languages,” Journal of Information Systems Education, 
12(4), 2002, 201–211; and “Design and Delivery of Multiple Server-Side Computer 
Languages Course,” Journal of Information Systems Education, 22(2), 2011, 159–168.

The book includes an introduction and eight chapters. The introduction discusses 
basics of computer languages and the key characteristics of all procedural computer 
languages. Chapter 2 introduces C++ and explains the fundamental concepts of 
the two programming paradigms: function oriented and object oriented. Chapter 3 
includes HTML, JavaScript, and CSS for web page development. Chapter 4 intro-
duces VB.NET for graphical user interface development. Chapter 5 introduces 
C#.NET, which is similar to Java. Chapter 6 explains ASP.NET, an important server-
side programming language for the Windows platform. ASP.NET incorporates 
VB.NET, C#.NET, and ADO.NET. Chapter 7 introduces PHP, a popular open 
source programming language, and explains the use of the MySQL database in PHP. 
Chapter 8 discusses XML and its companion languages, including XSTL, DTD, and 
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XML Schema. Finally, Chapter 9 discusses SQL, which is a part of application of 
server-side programming for database processing.

MIS students will be able to use the concepts and practices in this book as the start-
ing point in their journey to become successful information technology professionals.

Shouhong Wang, PhD
University of Massachusetts, Dartmouth

Hai Wang, PhD
Saint Mary’s University, Halifax, Nova Scotia, Canada
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1
Introduction

1.1 � Computers

A computer is a general purpose machine that can be programmed to carry out com-
putation and data processing operations. Since programs can be readily changed by 
humans through programming, the computer can solve a variety of problems. A com-
puter has a central processing unit (CPU), which interprets and executes programs, 
and primary memory, which stores programs and data. The components of a computer 
system also include secondary memory, input device, and output device, as shown in 
Figure 1.1. An input device converts human signals and data into the signals that can 
be processed by the CPU. The keyboard and mouse are examples of input devices. 
An output device converts the signals from the CPU into a form understandable to 
a human. The monitor and printer are examples of output devices. A device, such as 
the touch screen or network communication device, can be both an input and output 
device. Similar to a primary memory, a secondary memory can also be used to store 
programs and data. There are two main differences between primary memory and 
second memory. First, primary memory is volatile in nature, while secondary memory 
is nonvolatile. The programs and data that are stored in the primary memory cannot 
be retained when the power is turned off. A secondary memory can retain the stored 
programs and data even if the power is turned off. Second, it is much faster for the 
CPU to access programs and data in the primary memory than in the second memory. 
The programs or data stored in the secondary memory are read in batches into the 
primary memory before they are used by the CPU.

1.2 � Computer Programming Languages

1.2.1 � Role of Computer Programming Language

A computer programming language is an artificial language designed to communicate 
instructions to a computer. Programming languages are used to create programs that 
control a computer to perform the tasks as designed. The tasks a computer can carry 
out include:

•	 Manipulating data and information
•	 Reading data from and/or writing data to the secondary memory or other 

input/output devices
•	 Presenting data for a human through the user–computer interface
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There are many computer programming languages. Each computer programming 
language has its syntax. There is no single computer programming language that can 
fit all types of applications.

1.2.2 � Software Systems

The software systems in a computer are structured in layers, as illustrated in Figure 1.2. 
As shown in the figure, application software is built by the software developer using 
high-level programming languages that programmers can easily understand and use. 
However, the programs in high-level programming languages cannot be executed by 
the computer unless the programs are translated into the machine executable code 
(i.e., specific strings of binary digits). To translate a program in a high-level pro-
gramming language into the machine executable code, a special program, called the 
compiler or interpreter for that high-level language, must be applied, as shown in 
Figure 1.3. Once a program in a high-level programming language is translated into 
the machine-executable code, it can be used an infinite number of times.

Application Software (e.g., ERP system)

High-Level Languages

Assembly Language

Hardware

Development Tools

Operating System

Figure 1.2  The role of computer programming language.

Computer

Central Processing Unit
(CPU)

Primary
Memory

Output Device

Secondary
Memory

Input Device

Figure 1.1  A computer system.
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If a program in a high-level programming language has a syntax error, the transla-
tion will fail and machine-executable code will not be generated. On the other hand, 
a program without a syntax error could have a logical error, or semantic error, and the 
final execution result could be incorrect. To ensure that a program is executed cor-
rectly, the computer programmer must do the following three tasks.

	 1.	Understand the application to be developed.
	 2.	Design the program for the application.
	 3.	Debug to fix all syntax errors as well as logical errors.

1.2.3 � Taxonomies of Computer Programming Languages

There is no overarching classification scheme for programming languages. In this 
book, we introduce three major classifications.

	 1.	Procedural language versus markup language. A procedural language is capable 
of commanding a computer to carry out arithmetic or logical operations. All 
programming languages except for HTML and XML are procedural lan-
guages. A markup language is used for annotating a document (or a data set) 
in a way that is syntactically distinguishable from the text. HTML and XML 
are markup languages.

	 2.	Function-oriented language versus object-oriented language. A function-oriented 
language uses functions as modules. C is a typical function-oriented lan-
guage. An object-oriented language uses objects as modules. C++ is a typical 
object-oriented language. A computer language can be a blended language 
of function-oriented and object-oriented languages, such as JavaScript and 
VB.NET.

	 3.	Client-side language versus server-side language. A client-side language is used 
to create the computer programs that are executed on the client side on the 
web. JavaScript and HTML are typical client-side languages. In contrast, 
programs in server-side languages such as PHP and ASP.NET are executed 
by the Web server and have greater access to the information and functional 
resources available on the server in response to the client’s request.

Programmer Computer

Edit program
using program editor

Compiler
(or interpreter)

software

Execution

Machine CodeTranslation
Programs in high-level

computer programming
languages

Figure 1.3  Translation of computer programs.
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1.3 � Computing Architecture in the Internet Environment

Massive client–server networks are connected to build the Internet (or World Wide 
Web). A general computing architecture in the Internet environment is illustrated in 
Figure 1.4. Computers are linked to the Internet through the Internet providers.

Client is a computer that accesses a service made available by a server. It is 
equipped with client-side programs.

Firewall is a computer with special software to protect the Web server, database 
server, and the database from unauthorized access, viruses, and other suspi-
cious incoming code.

Web server stores the web portal, processes all applications (e.g., order process and 
payment), and makes all responses to the Internet users’ requests. To support 
applications, a web server has three important software components: API, 
middleware, and ODBC:
API (application program interface) is a set of functions that allow data exchange 

between the application software and the database.
Middleware is specialized software of server-side programs to access the database.
ODBC (open database connectivity) is a software interface to relational data-

bases. On a computer of the Windows platform, you can set ODBC for 
a particular relational database (e.g., structured query language server) or 
tabular data (e.g., Excel) through [Administrative Tools] in the 
[Control Panel] of [Settings] in the Windows operating systems. 
In the Java platform, JDBC (Java database connectivity) plays a similar role.

Database server is the dedicated server for the data retrieval and maintenance of 
the database.

Clients

Internet

Firewall

TCP/IP and HTTP

Client-Side
Programs

Server-Side
Programs

Web Server
Applications

Middleware ODBC

DMBS

Centralized
Database

Database Server

API

Figure 1.4  Computing architecture in the Internet environment.
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1.4 � Key Characteristics Shared by All Procedural Programming Languages

As discussed in the previous sections, a procedural programming language is used 
to carry out arithmetic or logical operations. All procedural programming languages 
share key characteristics, although individual procedural programming language can 
have its unique features. Thus, the knowledge of the key characteristics learned from 
one procedural programming language can be applied to other procedural program-
ming languages.

1.4.1 � Syntax, Sentence, and Word

A computer programming language has its syntax—the rules that govern the struc-
ture of sentences of the programs written in the language. In a procedural program-
ming language, a sentence consists of words, numbers, and punctuation. There are 
two types of words in a procedural programming language: keyword (or reserved 
word) and user-defined word. A keyword represents a specific meaning of the lan-
guage (e.g., a specific instruction). A user-defined word is defined by the programmer 
to name a variable or a module. A word used in a procedural programming language 
must not contain a space and is usually case sensitive.

1.4.2 � Variable

A variable is the name of a piece of CPU memory that holds data. A variable name is 
defined by the programmer and must be a user-defined word. Clearly, variable names 
are case sensitive; that is, AVariable is different from avariable. In addition, a 
name of a variable must be a single user-defined word without a space. A variable has 
its data type, such as integer, character, etc. The data held by the variable are called the 
value of the variable. The original value of a variable could be a default value depend-
ing on its data type (such as 0 for an integer and space for a character). The value of a 
variable can be changed through operations, but can never be lost unless the computer 
program is terminated. Figure 1.5 shows examples of the basic property of variables.

A B
Integers

Original: default value

Operations: A=10; B=20; C=A;

Operations: A=B; B=C; C=A;

C

A B C

A B C

0 0

10 20

20 10

0

10

20

Figure 1.5  Examples of the basic property of variables.
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1.4.3 � Arithmetic Operation

Arithmetic operations in procedural programming are similar to day-to-day arithme-
tic calculations, but use reverse expression. For instance, instead of A+B=C, C=A+B is 
used in programming; this means: “Let C equal to A plus B.” Multiplication is denoted 
by the asterisk symbol“*”, and division is denoted by the slash symbol “/”. The follow-
ing are several examples of arithmetic operations:

A=10	 Let A equal to 10.
C=A+B	 Let C equal to A plus B.
B=A*10+(B/10)	Let B equal to 10 times A plus 1/10 of the original value of B.

1.4.4 � Execution Sequence

A computer program consists of a set of instructions. During the execution of the 
procedure of a program, instructions are executed one after another in a sequence 
(so-called execution sequence) in which they are encountered, but not in the order 
in which they are listed in the program. Logical instructions (e.g., if-statement and 
loops) can control the execution sequence of the program, as explained next.

1.4.5 � If-Then-Else Logic

An if-then-else statement controls the computer execution sequence based on a con-
dition that is defined by the current value of a particular variable(s). The if-then-else 
logic is illustrated in Figure 1.6.

1.4.6 � Loop

A loop is a group of instructions that are specified once but are executed several times 
in succession. A loop statement defines such an iteration procedure, as illustrated 

If-then-else instruction with condition

If

Is the condition
true?

Next instruction

False (No)

Else
Action 2

(Could be null)
Action 1

�en

True (Yes)

Figure 1.6  If-then-else logic.
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in Figure 1.7. Loop is actually a variation of if-then-else logic. The common loops 
include for-loop and do-loop. The variable used in a loop to control the execution of 
the loop is called a counter.

1.4.7 � Module

A large program must be divided into modules to make the program easy to debug. 
Also, a module can be reused. Here, a module could be a paragraph of instructions, 
an independent function, or a class, depending upon the specific language in discus-
sion. An instruction in a module can call another module to accomplish a specific task 
carried out by the called module, as illustrated in Figure 1.8. A module has its name, 
which is a single user-defined word. The communication between the calling module 
and the called module can be implemented by passing the values of special variables 
termed arguments or parameters. Argument and parameter are exchangeable terms 
in this book.

ContinueTest
counter or conditionAction

For-loop instruction (declares a counter and control values)
do-loop instruction (declares a condition)

Stop

Next instruction

Figure 1.7  Loop.

Module A

Calling instruction
(declares arguments)

Module B

(3) Pass the value of
      execution result

(2) – Receive values of arguments
      – Execute instructions
      – Return execution result

Called Module

(1) Call and pass values
of arguments

 

Figure 1.8  Module.
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Chapter 1 Exercises

	 1.	Discuss the general model of a computer system. Why does it include second-
ary memory?

	 2.	Discuss the role of computer programming languages.
	 3.	Discuss how a computer program in a high-level language can be executed by 

the computer.
	 4.	Discuss the taxonomies of computer programming languages.
	 5.	Discuss the components of computing architecture in the Internet environment.
	 6.	Provide examples of user-defined words that can be used for programs written 

in a procedural programming language.
	 7.	Suppose that there are two variables: x and y. x stores “Beer” and y stores 

“Water.” How can you swap the values of the two variables to let x store 
“Water” and y store “Beer”?

	 8.	Suppose that there are three variables: Purchase, TaxRate, and Payment. 
Purchase stores the money value of the purchased merchandise, and 
TaxRate stores the state sales tax rate. Write an arithmetic operation to let 
Payment store the payment amount after tax.

	 9.	Write an if-then-else statement using structured English for the GPA 
scheme: Grade “A” = 4.0 points, grade “B” = 3.0 points, grade “C” = 2.0 points, 
grade “D” = 1.0 point, and grade “F” = 0 points.

	 10.	Write a loop statement using structured English to let the computer list 0.3, 
0.6, 0.9, 1.2, 1.5, …, 30.

	 11.	Discuss the advantages of the use of modules in programming.
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2
C++

2.1 � Introduction to Function-Oriented and Object-Oriented Programming

In the 1960s and 1970s, the structured program theorem was the main stream of 
programming methodology. In structured programming, a computer program can be 
expressed by a computable function or a combination of functions. In this book, the 
structured program theorem is called function-oriented programming. C is a typical 
function-oriented programming language.

Object-oriented programming (OOP) was first discussed in the late 1960s by peo-
ple who were working on the SIMULA language. OOP did not become a popular 
method until the 1980s. Recently, the object-oriented philosophy has been extended 
to systems development. The computational environments for networking, multime-
dia, cloud computing, and mobile computing all require object-oriented systems. C++ 
is a typical OOP language.

This chapter will explain the basic concepts of function-oriented and object-oriented 
approaches and provide necessary knowledge of both programming paradigms for stu-
dents. We will use examples to describe the characteristics of the two programming 
theorems. Traditionally, C and C++ are two languages, although C++ was migrated 
from C. Actually, C and C++ share many syntax features. Recently, C++ has become 
nearly a superset of C. In this chapter of C++, we call a typical function-oriented pro-
gram a “C program” and a typical objected-oriented program a “C++ program.” Since 
C and C++ languages have been the fundamental computer languages, we believe that 
the benefit of knowing C and C++ languages would be far beyond what we initially 
desired. Learning C and C++ together is the best way to gain a comparative view of 
the two programming theorems. In fact, many commonly used computer program-
ming languages adhere to the concept and the characteristics of C and C++. Many 
procedural programming languages have blended features of function-oriented and 
object-oriented programs.

2.2 � A Tour of C Language

C is a “mid-level” language. Compared to low-level languages (assembly languages), 
C programs are easier to write and take fewer instructions. They allow the programmer 
to take full advantage of the built-in capacities of the computer. Compared to high-
level languages (e.g., VB.NET), C programs are more compact and efficient; they 
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provide the programmer with flexibility in writing a set of programmed instructions 
at a low level.

Let us examine the style of C program. Suppose we want to display the string 
“Hello, World !” on the screen. The C program could be written as follows:

Listing 2.1:  An Example of C Program (HelloWorld.cpp)

/* C Programming Example */
#include<iostream>
using namespace std;
void main()
{
   printf("Hello, world ! \n");
}

We use a Microsoft Visual Studio computing environment to run this program. 
Start Microsoft Visual Studio. After the start page has been loaded, you may simply 
close it and start to edit your own program (see Figure 2.1).

Click on [File] on the top menu and then [New Project]; you will be allowed 
to create a project. In the New Project window, select [Win32] on the left pane 
in [Visual C++] and [Win32 Console Application] on the right pane. It 
would be a good practice to choose your own folder (e.g., F:\Wang), which will hold 
your project and the project name (e.g., C-Project), which will keep your programs 
(see Figure 2.2).

Menu

Error message window for debugging

Project window

Figure 2.1  Microsoft visual studio environment.
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Click on [OK] and you will see the Win32 Console Application Wizard 
window. You choose [Application Setting] on the left pane and select 
[Empty Project] (see Figure 2.3). Click on [Finish] and the environment cre-
ates your project in your folder. Right-click on your project name in the [Solution 
Explore] pane; you will see a pop-up menu. Select [Add] on the menu and then 
[New Item] on the second pop-up menu (see Figure 2.4).

Figure 2.2  Create your project.

Figure 2.3  Set your project.


