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Presenting the state of the art, the Handbook of Enumerative Combinatorics 
brings together the work of today’s most prominent researchers. The contribu-
tors survey the methods of combinatorial enumeration along with the most 
frequent applications of these methods.

This important new work is edited by Miklós Bóna of the University of Florida, 
where he is a member of the Academy of Distinguished Teaching Scholars. He 
received his Ph.D. in mathematics at Massachusetts Institute of Technology in 
1997. Miklós is the author of four books and more than 65 research articles, 
including the award-winning Combinatorics of Permutations. Miklós Bóna is 
an editor-in-chief for the Electronic Journal of Combinatorics and Series Editor 
of the Discrete Mathematics and Its Applications Series for CRC Press/Chap-
man and Hall.

The first two chapters provide a comprehensive overview of the most frequent-
ly used methods in combinatorial enumeration, including algebraic, geometric, 
and analytic methods. These chapters survey generating functions, methods 
from linear algebra, partially ordered sets, polytopes, hyperplane arrange-
ments, and matroids. Subsequent chapters illustrate applications of these 
methods for counting a wide array of objects. 

The contributors for this book represent an international spectrum of research-
ers with strong histories of results. The chapters are organized so readers ad-
vance from the more general ones, namely enumeration methods, towards the 
more specialized ones.

Topics include coverage of asymptotic normality in enumeration, planar maps, 
graph enumeration, Young tableaux, unimodality, log-concavity, real zeros, 
asymptotic normality, trees, generalized Catalan paths, computerized enu-
meration schemes, enumeration of various graph classes, words, tilings, 
pattern avoidance, computer algebra, and parking functions.

This book will be beneficial to a wide audience. It will appeal to experts on the 
topic interested in learning more about the finer points, readers interested in a 
systematic and organized treatment of the topic, and novices who are new to 
the field.

Combinatorics & Discrete Mathematics
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Foreword

When I first became seriously interested in enumerative combinatorics around 1967,
the subject did not really exist per se. There were numerous results and methods,
beginning with Euler (with some hints of even earlier work), scattered throughout the
literature, but there was little systematic attempt to bring some order to this chaos.
It is remarkable that enumerative combinatorics has progressed so far that we now
need over 1000 pages just to present a basic overview of techniques and results.
Numerous topics such as pattern avoidance and parking functions existed in only
very rudimentary form 40–50 years ago but are now flourishing subjects in their own
right. The seventeen authors of the present volume, in addition to being world leaders
in the area of their contribution, are also superb writers. Their fifteen chapters are a
combination of broad surveys of major areas and techniques, together with more
specialized expositions of many of the most active research topics in enumerative
combinatorics today.

A prominent reason why practitioners of enumerative combinatorics find it so ap-
pealing is its unexpected connections with other areas of mathematics. These connec-
tions have grown increasingly sophisticated over the years. It is no longer sufficient
to know some rudimentary algebraic topology, say, to give a significant connection
with enumerative combinatorics. The papers in this handbook do an exemplary job
of explaining deep connections with such areas as complex analysis, probability the-
ory, linear algebra, commutative algebra, representation theory, algebraic geometry,
algebraic topology, and computer science. Just this list of topics gives an idea of the
breadth and depth of modern enumerative combinatorics. Readers from neophytes to
experts have much to look forward to when they peruse the riches that follow.

Richard Stanley
Cambridge, MA
December 2014
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Preface

When designing a handbook of a large and rapidly developing fields like Enumerative
Combinatorics, one faces several questions: What subjects to cover? How to organize
the subjects? What audience to target?

We have decided to include both chapters that focus on methods of enumeration
of various objects and chapters that focus on specific kinds of objects that need to
be counted, by any method available. The chapters are organized so that we advance
from the more general ones, namely enumeration methods, towards the more special-
ized ones that focus on the counting of specific objects. These objects become more
and more specialized as we proceed.

As far as our preferred audience goes, we believe that each chapter can benefit at
least three different kinds of readers as listed below.

• The experts, who are familiar with most of the information in the chapter, but
are interested in its presentation, and some of the finer points.

• The “relative outsiders,” that is, readers who have already seen a few results
here and there, a proof or two here and there, but nothing systematic, and
who are interested to see an organized treatment of the topic.

• The novices, who are new to the field, and have no background information
past the first year of graduate school. These readers will hopefully see that
the subject is interesting, accessible, and challenging.

We do hope that all three groups of our targeted readership will find the book as
useful and enjoyable as we do.

Miklós Bóna
Gainesville, FL
February 2015
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owe a lot to my brother Péter who made sure that I had high-speed internet access
when most people around us could not even make a phone call. Last, but not least, I
am thankful to my wife Linda, and my sons Miki, Benny, and Vinnie for putting up
with me when I worked at the book at highly unexpected times.

xxiii





Part I

Methods





Chapter 1
Algebraic and Geometric Methods
in Enumerative Combinatorics

Federico Ardila
San Francisco State University, San Francisco, CA, USA; Universidad de los Andes,
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1.1 Introduction
Enumerative combinatorics is about counting. The typical question is to find the
number of objects with a given set of properties.

However, enumerative combinatorics is not just about counting. In “real life,”
when we talk about counting, we imagine lining up a set of objects and counting
them off: 1,2,3, . . .. However, families of combinatorial objects do not come to us in
a natural linear order. To give a very simple example: We do not count the squares in
an m×n rectangular grid linearly. Instead, we use the rectangular structure to under-
stand that the number of squares is m ·n. Similarly, to enumerate a more complicated
combinatorial set, we usually spend most of our efforts understanding the underlying
structure of the individual objects, or of the set itself.

Many combinatorial objects of interest have a rich and interesting algebraic or
geometric structure, which often becomes a very powerful tool toward their enumer-
ation. In fact, there are many families of objects that we only know how to count
using these tools. Our goal in this chapter is to highlight some key aspects of the rich
interplay between algebra, discrete geometry, and combinatorics, with an eye toward
enumeration.

About this chapter. Over the last fifty years, combinatorics has undergone a radi-
cal transformation. Not too long ago, combinatorics mostly consisted of ad hoc meth-
ods and clever solutions to problems that were fairly isolated from the rest of math-
ematics. It has since grown to be a central area of mathematics, largely thanks to the
discovery of deep connections to other fields. Combinatorics has become an essential
tool in many disciplines. Conversely, even though ingenious methods and clever new
ideas still abound, there is now a powerful, extensive toolkit of algebraic, geometric,
topological, and analytic techniques that can be applied to combinatorial problems.

It is impossible to give a meaningful summary of the many facets of algebraic
and geometric combinatorics in a writeup of this length. I found it very difficult but
necessary to omit several beautiful, important directions. In the spirit of a Handbook
of Enumerative Combinatorics, my guiding principle was to focus on algebraic and
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geometric techniques that are useful toward the solution of enumerative problems.
My main goal was to state clearly and concisely some of the most useful tools in
algebraic and geometric enumeration, and to give many examples that quickly and
concretely illustrate how to put these tools to use.

PART 1. ALGEBRAIC METHODS

The first part of this chapter focuses on algebraic methods in enumeration. In Sec-
tion 1.2 we discuss the question, “What is a good answer to an enumerative prob-
lem.” Generating functions are the most powerful tool to unify the different kinds
of answers that interest us: explicit formulas, recurrences, asymptotic formulas, and
generating functions. In Section 1.3 we develop the algebraic theory of generating
functions. Various natural operations on combinatorial families of objects correspond
to simple algebraic operations on their generating functions, and this allows us to
count many families of interest. In Section 1.4 we show how many problems in com-
binatorics can be rephrased in terms of linear algebra, and reduced to the problem
of computing determinants. Finally, Section 1.5 is devoted to the theory of posets.
Many combinatorial sets have a natural poset structure, and this general theory is
very helpful in enumerating such sets.

1.2 What is a good answer?
The main goal of enumerative combinatorics is to count the elements of a finite set.
Most frequently, we encounter a family of sets T0,T1,T2,T3, . . . and we need to find
the number tn = |Tn| for n = 1,2, . . .. What constitutes a good answer?

Some answers are obviously good. For example, the number of subsets of
{1,2, . . . ,n} is 2n, and it seems clear that this is the simplest possible answer to
this question. Sometimes an answer “is so messy and long, and so full of factorials
and sign alternations and whatnot, that we may feel that the disease was preferable
to the cure” [218]. Usually, the situation is somewhere in between, and it takes some
experience to recognize a good answer.

A combinatorial problem often has several kinds of answers. Which answer is
better depends on what one is trying to accomplish. Perhaps this is best illustrated
with an example. Let us count the number an of domino tilings of a 2×n rectangle
into 2×1 rectangles. There are several different ways of answering this question.

Explicit formula 1. We first look for an explicit combinatorial formula for an. To
do that, we play with a few examples, and quickly notice that these tilings are struc-
turally very simple: They are just a sequence of 2×1 vertical tiles, and 2×2 blocks
covered by two horizontal tiles. Therefore constructing a tiling is the same as writing
n as an ordered sum of 1s and 2s. For example, the tilings of Figure 1.1 correspond,
respectively, to 1+ 1+ 1+ 1, 1+ 1+ 2, 1+ 2+ 1, 2+ 1+ 1,2+ 2. These sums are
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Figure 1.1
The five domino tilings of a 2×4 rectangle.

easy to count. If there are k summands equal to 2 there must be n− 2k summands
equal to 1, and there are

(n−2k+k
k

)
=
(n−k

k

)
ways of ordering the summands. Therefore

an =
bn/2c
∑
k=0

(
n− k

k

)
=

(
n
0

)
+

(
n−1

1

)
+

(
n−2

2

)
+ · · · . (1.1)

This is a pretty good answer. It is certainly an explicit formula, and it may be used to
compute an directly for small values of n. It does have two drawbacks. Aesthetically,
it is certainly not as satisfactory as “2n .” In practice, it is also not as useful as it
seems; after computing a few examples, we will soon notice that computing binomial
coefficients is a non-trivial task. In fact there is a more efficient method of computing
an.

Recurrence. Let n ≥ 2. In a domino tiling, the leftmost column of a 2× n can be
covered by a vertical domino or by two horizontal dominoes. If the leftmost domino
is vertical, the rest of the dominoes tile a 2×(n−1) rectangle, so there are an−1 such
tilings. On the other hand, if the two leftmost dominoes are horizontal, the rest of the
dominoes tile a 2× (n− 2) rectangle, so there are an−2 such tilings. We obtain the
recurrence relation

a0 = 1, a1 = 1, an = an−1 +an−2 for n≥ 2, (1.2)

which allows us to compute each term in the sequence in terms of the previous ones.
We see that an = Fn+1 is the (n+1)th Fibonacci number.

This recursive answer is not as nice as “2n ” either; it is not even an explicit for-
mula for an. If we want to use it to compute an, we need to compute all the first n
terms of the sequence 1,1,2,3,5,8,13,21,34,55,89,144, . . .. However, we can com-
pute those very quickly; we only need to perform n−1 additions. This is an extremely
efficient method for computing an.

Explicit formula 2. There is a well-established method that turns linear recurrence
relations with constant coefficients, such as (1.2), into explicit formulas. We will
review it in Theorem 1.3.5. In this case, the method gives

an =
1√
5

(1+
√

5
2

)n+1

−
(

1−
√

5
2

)n+1
 . (1.3)

This is clearly the simplest possible explicit formula for an; in that sense it is a great
formula.
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A drawback is that this formula is really not very useful if we want to compute
the exact value of, say, a1000. It is not even clear why (1.3) produces an integer, and
to get it to produce the correct integer would require arithmetic calculations with
extremely high precision.

An advantage is that, unlike (1.1), (1.3) tells us very precisely how an grows with
n.

Asymptotic formula. It follows immediately from (1.3) that

an ∼ c ·ϕn, (1.4)

where c = 1+
√

5
2
√

5
and ϕ = 1+

√
5

2 ≈ 1.6179 . . . is the golden ratio. This notation means

that limn→∞ an/(c ·ϕn) = 1. In fact, since | 1−
√

5
2 | < 1, an is the closest integer to

c ·ϕn.

Generating function. The last kind of answer we discuss is the generating func-
tion. This is perhaps the strangest kind of answer, but it is often the most powerful
one.

Consider the infinite power series A(x) = a0 +a1x+a2x2 + · · · . We call this the
generating function of the sequence a0,a1,a2, . . .. ∗ We now compute this power
series: From (1.2) we obtain that A(x) = 1 + x + ∑n≥2(an−1 + an−2)xn = 1 + x +
x(A(x)−1)+ x2A(x), which implies

A(x) = a0 +a1x+a2x2 + · · ·= 1
1− x− x2 . (1.5)

With a bit of theory and some practice, we will be able to write the equation (1.5)
immediately, with no further computations (Example 18 in Section 1.3.2). To show
this is an excellent answer, let us use it to derive all our other answers, and more.

• Generating functions help us obtain explicit formulas. For instance, rewriting

A(x) =
1

1− (x+ x2)
= ∑

k≥0
(x+ x2)k

we recover (1.1). If, instead, we use the method of partial fractions, we get

A(x) =

(
1/
√

5

1− 1+
√

5
2 x

)
−
(

1/
√

5

1− 1−
√

5
2 x

)
which brings us to our second explicit formula (1.3).

• Generating functions help us obtain recursive formulas. In this example, we
simply compare the coefficients of xn on both sides of the equation A(x)(1−
x− x2) = 1, and we get the recurrence relation (1.2).

∗For the moment, let us not worry about where this series converges. The issue of convergence can be
easily avoided (as combinatorialists often do, in a way that will be explained in Section 1.3.1) or resolved
and exploited to our advantage; let us postpone that discussion for the moment.
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• Generating functions help us obtain asymptotic formulas. In this example,
(1.5) leads to (1.3), which gives (1.4). In general, almost everything that we
know about the rate of growth of combinatorial sequences comes from their
generating functions, because analysis tells us that the asymptotic behavior
of an is intimately tied to the singularities of the function A(x).

• Generating functions help us enumerate our combinatorial objects in more
detail, and understand some of their statistical properties. For instance, say
we want to compute the number am,n of domino tilings of a 2× n rectangle
that use exactly m vertical tiles. Once we really understand (1.5) in Section
1.3.2, we will get the answer immediately:

1
1− vx− x2 = ∑

m,n≥0
am,nvmxn.

Now suppose we wish to know what fraction of the tiles is vertical in a large
random tiling. Among all the an domino tilings of the 2×n rectangle, there
are ∑m≥0 mam,n vertical dominoes. We compute

∑
n≥0

(
∑

m≥0
mam,n

)
xn =

[
∂

∂v

(
1

1− vx− x2

)]
v=1

=
x

(1− x− x2)2 .

Partial fractions then tell us that ∑m≥0 mam,n ∼ n
5

(
1+
√

5
2

)n+1
∼ 1√

5
nan.

Hence the fraction of vertical tiles in a random domino tiling of a 2×n rect-
angle converges to 1/

√
5 as n→ ∞.

So what is a good answer to an enumerative problem? Not surprisingly, there
is no definitive answer to this question. When we count a family of combinatorial
objects, we look for explicit formulas, recursive formulas, asymptotic formulas, and
generating functions. They are all useful. Generating functions are the most powerful
framework we have to relate these different kinds of answers and, ideally, find them
all.

1.3 Generating functions
In combinatorics, one of the most useful ways of “determining” a sequence of num-
bers a0,a1,a2, . . . is to compute its ordinary generating function

A(x) = ∑
n≥0

anxn = a0 +a1x+a2x2 +a3x3 +a4x4 + · · ·

or its exponential generating function

Aexp(x) = ∑
n≥0

an
xn

n!
= a0 +a1x+a2

x2

2
+a3

x3

6
+a4

x4

24
+ · · · .
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This simple idea is extremely powerful because some of the most common algebraic
operations on ordinary and exponential generating functions correspond to some of
the most common operations on combinatorial objects. This allows us to count many
interesting families of objects; this is the content of Section 1.3.2 (for ordinary gener-
ating functions) and Section 1.3.3 (for exponential generating functions). In Section
1.3.4 we see how nice generating functions can be turned into explicit, recursive, and
asymptotic formulas for the corresponding sequences.

Before we get to this interesting theory, we have to understand what we mean
by power series. Section 1.3.1 provides a detailed discussion, which is probably best
skipped the first time one encounters power series. In the meantime, let us summarize
it in one paragraph:

There are two main attitudes toward power series in combinatorics: the analytic
attitude and the algebraic attitude. To harness the full power of power series, one
should really understand both. Chapter 2 of this Handbook of Enumerative Combi-
natorics is devoted to the analytic approach, which treats A(x) as an honest analytic
function of x, and uses analytic properties of A(x) to derive combinatorial properties
of an. In this chapter we follow the algebraic approach, which treats A(x) as a for-
mal algebraic expression, and manipulates it using the usual laws of algebra, without
having to worry about any convergence issues.

1.3.1 The ring of formal power series

Enumerative combinatorics is full of intricate algebraic computations with power
series, where justifying convergence is cumbersome, and usually unnecessary. In
fact, many natural power series in combinatorics, such as ∑n≥0 n!xn, only converge
at 0, so analytic methods are not available to study them. For these reasons we often
prefer to carry out our computations algebraically in terms of formal power series.
We will see that even in this approach, analytic considerations are often useful.

In this section we review the definition and basic properties of the ring of formal
power series C[[x]]. For a more in-depth discussion, including the (mostly straight-
forward) proofs of the statements we make here, see [149].

Formal power series. A formal power series is an expression of the form

A(x) = a0 +a1x+a2x2 + · · · , a0,a1,a2, . . . ∈ C.

Formally, this series is just a sequence of complex numbers a0,a1,a2, . . . . We will
see that it is convenient to denote it A(x), but we do not consider it to be a function
of x.

Let C[[x]] be the ring of formal power series, where the sum and the product of
A(x) = ∑n≥0 anxn and B(x) = ∑n≥0 bnxn are

A(x)+B(x) = ∑
n≥0

(an +bn)xn, A(x)B(x) = ∑
n≥0

(
n

∑
k=0

akbn−k

)
xn.
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It is implicit in the definition, but worth mentioning, that ∑n≥0 anxn = ∑n≥0 bnxn if
and only if an = bn for all n≥ 0.

We define the degree of A(x) = ∑n≥0 anxn to be the smallest n such that an 6= 0.
We also write

[xn]A(x) := an, A(0) := [x0]A(x) = a0.

We also define formal power series inspired by series from analysis, such as

ex := ∑
n≥0

xn

n!
, − log(1− x) := ∑

n≥1

xn

n
, (1+ x)r := ∑

n≥0

(
r
n

)
xn,

for any complex number r, where
(r

n

)
:= r(r−1) · · ·(r−n+1)/n!.

The ring C[[x]] is commutative with 0 = 0+0x+ · · · and 1 = 1+0x+ · · · . It is an
integral domain; that is, A(x)B(x) = 0 implies that A(x) = 0 or B(x) = 0. It is easy to
describe the units:

∑
n≥0

anxn is invertible ⇐⇒ a0 6= 0.

For example, 1
1−x = 1+ x+ x2 + · · · because (1− x)(1+ x+ x2 + · · ·) = 1+ 0x+

0x2 + · · · .

Convergence. When working in C[[x]], we will not consider convergence of se-
quences or series of complex numbers. In particular, we will never substitute a com-
plex number x into a formal power series A(x).

However, we do need a notion of convergence for sequences in C[[x]]. We say
that a sequence A0(x),A1(x),A2(x), . . . of formal power series converges to A(x) =
∑n≥0 anxn if limn→∞ deg(An(x)−A(x)) = ∞; that is, if for any n ∈ N, the coefficient
of xn in Am(x) equals an for all sufficiently large m. This gives us a useful criterion
for convergence of infinite sums and products in C[[x]]:

∞

∑
j=0

A j(x) converges ⇐⇒ lim
j→∞

degA j(x) = ∞

∞

∏
j=0

(1+A j(x)) converges ⇐⇒ lim
j→∞

degA j(x) = ∞ (A j(0) = 0)

For example, the infinite sum ∑n≥0(x+ 1)n/2n does not converge in this topology.
Notice that the coefficient of x0 in this sum cannot be obtained through a finite com-
putation; it would require interpreting the infinite sum ∑n≥0 1/2n. On the other hand,
the following infinite sum converges:

∑
n≥0

1
n!

(
− ∑

m≥1

xm

m

)n

= 1− x. (1.6)

It is clear from the criterion above that this series converges; but why does it equal
1− x?
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Borrowing from analysis. In C[[x]], (1.6) is an algebraic identity which says that
the coefficients of xk in the left-hand side, for which we can give an ugly but finite
formula, equal 1,−1,0,0,0, . . .. If we were to follow a purist algebraic attitude, we
would give an algebraic or combinatorial proof of this identity. This is probably pos-
sible, but intricate and rather dogmatic. A much simpler approach is to shift toward
an analytic attitude, at least momentarily, and recognize that (1.6) is the Taylor series
expansion of

e− log(1−x) = 1− x

for |x|< 1. Then we can just invoke the following simple fact from analysis.

Theorem 1.3.1 If two analytic functions are equal in an open neighborhood of 0,
then their Taylor series at 0 are equal coefficient-by-coefficient; that is, they are equal
as formal power series.

Composition. The composition of two series A(x) = ∑n≥0 anxn and B(x) =

∑n≥0 bnxn with b0 = 0 is naturally defined to be

A(B(x)) = ∑
n≥0

an

(
∑

m≥0
bmxm

)n

.

Note that this sum converges if and only if b0 = 0. Two very important special cases
in combinatorics are the series 1

1−B(x) and eB(x).

“Calculus.” We define the derivative of A(x) = ∑n≥0 anxn to be

A′(x) = ∑
n≥0

(n+1)an+1xn.

This formal derivative satisfies the usual laws of derivatives, such as

(A+B)′ = A′+B′, (AB)′ = A′B+AB′, [A(B(x))]′ = A′(B(x))B′(x).

We can still solve differential equations formally. For example, if we know that
F ′(x) = F(x) and F(0) = 1, then (logF(x))′ = F ′(x)/F(x) = 1, which gives
logF(x) = x and F(x) = ex.

This concludes our discussion on the formal properties of power series. Now let
us return to combinatorics.

1.3.2 Ordinary generating functions

Suppose we are interested in enumerating a family A = A0tA1tA2t·· · of com-
binatorial structures, where An is a finite set consisting of the objects of “size” n.
Denote by |a| the size of a ∈A . The ordinary generating function of A is

A(x) = ∑
a∈A

x|a| = a0 +a1x+a2x2 + · · ·

where an is the number of elements of size n.
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We are not interested in the philosophical question of determining what it means
for A to be “combinatorial”; we are willing to call A a combinatorial structure as
long as an is finite for all n. We consider two structures A and B combinatorially
equivalent, and write A ∼= B, if A(x) = B(x).

More generally, we may consider a family A where each element a is given
a weight wt(a), often a constant multiple of x|a|, or a monomial in one or more
variables x1, . . . ,xn. Again, we require that there are finitely many objects of any
given weight. Then we define the weighted ordinary generating function of A to be
the formal power series

Awt(x1, . . . ,xn) = ∑
a∈A

wt(a).

Examples of combinatorial structures (with their respective size functions) are
words on the alphabet {0,1} (length), domino tilings of rectangles of height 2
(width), or Dyck paths (length). We may weight these objects by tk where k is, re-
spectively, the number of 1s, the number of vertical tiles, or the number of returns to
the x axis.

1.3.2.1 Operations on combinatorial structures and their generating functions

There are a few simple but very powerful operations on combinatorial structures, all
of which have nice counterparts at the level of ordinary generating functions. Many
combinatorial objects of interest may be built up from basic structures using these
operations.

Theorem 1.3.2 Let A and B be combinatorial structures.

1. (C =A +B: Disjoint union) If a C -structure of size n is obtained by choosing
an A -structure of size n or a B-structure of size n, then

C(x) = A(x)+B(x).

This result also holds for weighted structures if the weight of a C -structure is
the same as the weight of the respective A - or B-structure.

2. (C = A ×B: Product) If a C -structure of size n is obtained by choosing an
A -structure of size k and a B-structure of size n− k for some k, then

C(x) = A(x)B(x).

This result also holds for weighted structures if the weight of a C -structure is
the product of the weights of the respective A - and B-structures.

3. (C = Seq(B): Sequence) Assume |B0| = 0. If a C -structure of size n is ob-
tained by choosing a sequence of B-structures of total size n, then

C(x) =
1

1−B(x)
.

This result also holds for weighted structures if the weight of a C -structure is
the product of the weights of the respective B-structures.
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4. (C = A ◦B: Composition) Compositional formula. Assume that |B0| = 0.
If a C -structure of size n is obtained by choosing a sequence of (say, k) B-
structures of total size n and placing an A -structure of size k on this sequence
of B-structures, then

C(x) = A(B(x)).

This result also holds for weighted structures if the weight of a C -structure is
the product of the weights of the A -structure on its blocks and the weights of
the B-structures on the individual blocks.

5. (C = A −1: Inversion) Lagrange inversion formula.

(a) Algebraic version. If A<−1>(x) is the compositional inverse of A(x) then

n[xn]A<−1>(x) = [xn−1]

(
x

A(x)

)n

.

(b) Combinatorial version. Assume |A0|= 0, |A1|= 1, and let

A(x) = x−a2x2−a3x3−a4x4−·· ·

where an is the number of A -structures of size n for n≥ 2. ∗

Let an A -decorated plane rooted tree (or simply A -tree) be a rooted tree T
where every internal vertex v has an ordered set Dv of at least two “children,”
and each set Dv is given an A -structure. The size of T is the number of leaves.

Let C(x) be the generating function for A -decorated plane rooted trees. Then

C(x) = A<−1>(x).

This result also holds for weighted structures if the weight of a tree is the
product of the weights of the A -structures at its vertices.

Proof. 1. is clear. The identity in 2. is equivalent to cn = ∑k akbn−k, which cor-
responds to the given combinatorial description. Iterating 2., the generating func-
tion for k-sequences of B-structures is B(x)k, so in 3. we have C(x) = ∑k B(x)k =
1/(1−B(x)) and in 4. we have C(x) = ∑k akB(x)k. The weighted statements follow
similarly.

5(b). Observe that, by the Compositional Formula, an A ◦C structure is either
(i) an A -tree, or (ii) a sequence of k ≥ 2 A -trees T1, . . . ,Tk with an A -structure on
{T1, . . . ,Tk}.

The structure in (ii) is equivalent to an A -tree T , obtained by grafting T1, . . . ,Tk at
a new root and placing the A -structure on its offspring (which contributes a negative

∗Here, to simplify matters, we introduced signs into A(x). Instead we could let A(x) be the ordinary
generating function for A -structures, but we would need to give each A -tree the sign (−1)m, where m is
the number of internal vertices. Similarly, we could allow a1 6= 1 at the cost of some factors of a1 on the
A -trees.
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sign). This T also arises in (i) with a positive sign. These two appearances of T cancel
each other out in A(C(x)), and the only surviving tree is the trivial tree • with one
vertex, which only arises once and has weight x.

5(a). Let a sprig be a rooted plane tree consisting of a path r = v1v2 · · ·vk = l
starting at the root r and ending at the leaf l, and at least one leaf hanging from each
vi and to the right of vi+1 for 1 ≤ i ≤ k− 1. The trivial tree • is an allowable sprig
with k = 1.

An A -sprig is a sprig where the children of vi are given an A -structure for
1≤ i≤ k−1; its size is the number of leaves other than l minus 1. ∗ The right panel
of Figure 1.2 shows several A -sprigs. An A -sprig is equivalent to a sequence of
A -structures, with weights shifted by −1, so Theorem 1.3.2.3 tells us that

1
A(x)

=
1
x
· 1

1− (a2x+a3x2 + · · ·) = ∑
n≥−1

(# of A -sprigs of size n)xn

Hence [xn−1](x/A(x))n = [x−1](1/A(x))n is the number of sequences of n A -sprigs
of total size −1 by Theorem 1.3.2.2. We need to show that

n · (# of A -trees with n leaves) = (# of sequences of n A -sprigs of total size −1)

Figure 1.2
The map from A -trees to sequences of A -sprigs.

An A -tree T can be trimmed into a sequence of n A -sprigs S1, . . . ,Sn as follows.
At each step, look at the leftmost leaf and the path P to its highest remaining ancestor.
Remove P and all the branches hanging directly from P (which form an A -sprig), but
do not remove any other vertices. Repeat this until the tree is completely decomposed
into A -sprigs. The total size of these sprigs is −1. Figure 1.2 shows a tree of weight
x5+(−1)+0+(−1)+2+(−1)+(−1)+(−1)+(−1)+(−1)+0+(−1) = x−1. Notice that all the partial
sums of the sum 5+(−1)+ 0+(−1)+ 2+(−1)+ (−1)+ (−1)+ (−1)+ (−1)+
0+(−1) =−1 are non-negative.

Conversely, suppose we wish to recover the A -tree corresponding to a sequence
of sprigs S1, . . . ,Sn with |S1|+ · · ·+ |Sn|=−1. We must reverse the process, adding

∗We momentarily allow negative sizes, since the trivial A -sprig • has size −1. Thus we need to compute
with Laurent series, which are power series with finitely many negative exponents.
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S1, . . . ,Sn to T one at a time; at each step we must graft the new sprig at the leftmost
free branch. Note that after grafting S1, . . . ,Sk we are left with 1+ |S1|+ · · ·+ |Sk|
free branches, so a sequence of sprigs corresponds to a tree if and only if the partial
sums |S1|+ · · ·+ |Sk| are non-negative for k = 1, . . . ,n− 1. Finally, it remains to
observe that any sequence a1, . . . ,an of integers adding to −1 has a unique cyclic
shift ai, . . . ,an,a1, . . . ,ai−1 whose partial sums are all non-negative. Therefore, out of
the n cyclic shifts of S1, . . . ,Sn, exactly one of them corresponds to an A -tree. The
desired result follows. �

The last step of the proof above is a special case of the cycle lemma of Dvoret-
sky and Motzkin [192, Lemma 5.3.7], which is worth stating explicitly. Suppose
a1, . . . ,an is a string of 1s and −1s with a1 + · · ·+an = k > 0. Then there are exactly
k cyclic shifts ai,ai+1, . . . ,an,a1, . . . ,ai−1 whose partial sums are all non-negative.

1.3.2.2 Examples

Classical applications. With practice, these simple ideas give very easy solutions
to many classical enumeration problems.

1. (Trivial classes) It is useful to introduce the trivial class ◦ having only one
element of size 0, and the trivial class • having only one element of size 1.
Their generating functions are 1 and x, respectively.

2. (Sequences) The slightly less trivial class Seq= { /0,•,••,•••, . . .}= Seq(•)
contains one set of each size. Its generating function is ∑n xn = 1/(1− x).

3. (Subsets and binomial coefficients) Let Subset consist of the pairs ([n],A)
where n is a natural number and A is a subset of [n]. Let the size of that pair be
n. A Subset-structure is equivalent to a word of length n in the alphabet {0,1},
so Subset∼= Seq({0,1}) where |0|= |1|= 1, and

Subset(x) =
1

1− (x1 + x1)
= ∑

n≥0
2nxn.

We can use the extra variable y to keep track of the size of the subset A, by
giving ([n],A) the weight xny|A|. This corresponds to giving the letters 0 and 1
weights x and xy respectively, so we get the generating function

Subsetwt(x) =
1

1− (x+ xy)
= ∑

n≥k≥0

(
n
k

)
xnyk

for the binomial coefficients
(n

k

)
= n!

k!(n−k)! , which count the k-subsets of [n].

From this generating function, we can easily obtain the main re-
sults about binomial coefficients. Computing the coefficient of xnyk in(
∑
(n

k

)
xnyk

)
(1− x− xy) = 1 gives Pascal’s recurrence(

n
k

)
=

(
n−1

k

)
+

(
n−1
k−1

)
, n≥ k ≥ 1
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with initial values
(n

0

)
=
(n

n

)
= 1. Expanding Subsetwt(x) = 1

1−x(1+y) =

∑n≥0 xn(1+ y)n gives the Binomial theorem

(1+ y)n =
n

∑
k=0

(
n
k

)
yk.

4. (Multinomial coefficients) Let Wordsk ∼= Seq({1, . . . ,k}) consist of the words
in the alphabet {1,2, . . . ,k}. The words of length n are in bijection with the
ways of putting n numbered balls into k numbered boxes. The placements hav-
ing ai balls in box i, where a1 + · · ·+ak = n, are enumerated by the multino-
mial coefficient

( n
a1,...,ak

)
= n!

a1!···ak! .

Giving the letter i weight xi, we obtain the generating function

Wordsk(x1, . . . ,xk) = ∑
a1,...,ak≥0

(
a1 + · · ·+ak

a1, . . . ,ak

)
xa1

1 · · ·x
ak
k =

1
1− x1−·· ·− xk

from which we obtain the recurrence(
n

a1, . . . ,ak

)
=

(
n−1

a1−1,a2, . . . ,ak

)
+ · · ·+

(
n−1

a1, . . .ak−1,ak−1

)
and the multinomial theorem

(x1 + · · ·+ xk)
n = ∑

a1 ,...,ak≥0
a1+···+ak=n

(
n

a1, . . . ,ak

)
xa1

1 · · ·x
ak
k .

5. (Compositions) A composition of n is a way of writing n = a1 + · · ·+ ak
as an ordered sum of positive integers a1, . . . ,ak. For example, 523212 is a
composition of 15. A composition is just a sequence of natural numbers, so
Comp∼= Seq(N) where |a|= a. Therefore

Comp(x) =
1

1− (x+ x2 + x3 + · · ·) =
1− x
1−2x

= ∑
n≥1

2n−1xn.

and there are 2n−1 compositions of n.

If we give a composition of n with k summands the weight xnyk, the weighted
generating function is

Compwt(x) =
1

1− (xy+ x2y+ x3y+ · · ·) =
1− x

1− x(1+ y)
= ∑

n≥1

(
n−1
k−1

)
xnyk

so there are
(n−1

k−1

)
compositions of n with k summands.

6. (Compositions into restricted parts) Given a subset A ⊆ N, an A-composition
of n is a way of writing n as an ordered sum n= a1+ · · ·+ak where a1, . . . ,ak ∈
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A. The corresponding combinatorial structure is A-Comp ∼= Seq(A) where
|a|= a, so

A-Comp(x) =
1

1− (∑a∈A xa)
.

For example, the number of compositions of n into odd parts is the Fibonacci
number Fn−1, because the corresponding generating function is

OddComp(x) =
1

1− (x+ x3 + x5 + · · ·) =
1− x2

1− x− x2 = 1+ ∑
n≥1

Fn−1xn.

7. (Multisubsets) Let Multisetm be the collection of multisets consisting of possi-
bly repeated elements of [m]. The size of a multiset is the number of elements,
counted with repetition. For example, {1,2,2,2,3,5} is a multisubset of [7]
of size 6. Then Multisetm ∼= Seq({1})× ·· · × Seq({m}), where |i| = 1 for
i = 1, . . . ,m, so the corresponding generating function is

Multisetm(x) =
(

1
1− x

)m

= ∑
n≥0

(−m
n

)
(−x)n,

and the number of multisubsets of [m] of size n is
((m

n

))
:= (−1)n

(−m
n

)
=(m+n−1

n

)
.

8. (Partitions) A partition of n is a way of writing n = a1 + · · ·+ ak as an
unordered sum of positive integers a1, . . . ,ak. We usually write the parts
in weakly decreasing order. For example, 532221 is a partition of 15 into
6 parts. Let Partition be the family of partitions weighted by xnyk where
n is the sum of the parts and k is the number of parts. Then Partition ∼=
Seq({1})× Seq({2})× ·· · , where wt(i) = xiy for i = 1,2, . . ., so the corre-
sponding generating function is

Partition(x,y) =
(

1
1− xy

)(
1

1− x2y

)(
1

1− x3y

)
· · ·

There is no simple explicit formula for the number p(n) of partitions of n,
although there is a very elegant and efficient recursive formula. Setting y =−1
in the previous identity, and invoking Euler’s pentagonal theorem [2]

∏
n≥0

(1− xn) = 1+ ∑
j≥1

(−1) j
(

x j(3 j−1)/2 + x j(3 j+1)/2
)

(1.7)

we obtain

p(n) = p(n−1)+ p(n−2)− p(n−5)− p(n−7)+ p(n−12)+ p(n−15)−·· ·

where 1,2,5,7,12,15,22,26, . . . are the pentagonal numbers.
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9. (Partitions into distinct parts) Let DistPartition be the family of partitions into
distinct parts, weighted by xnyk where n is the sum of the parts and k is the
number of parts. Then DistPartition∼= {1,1}×{2,2}×·· · , where wt(i) = xiy
and wt(i) = 1 for i = 1,2, . . ., so the corresponding generating function is

DistPartition(x,y) = (1+ xy)(1+ x2y)(1+ x3y) · · ·

10. (Partitions into restricted parts) It is clear how to adapt the previous generating
functions to partitions where the parts are restricted. For example, the identity

1
1− x

= (1+ x)(1+ x2)(1+ x4)(1+ x8)(1+ x16) · · ·

expresses the fact that every positive integer can be written uniquely in binary
notation, as a sum of distinct powers of 2. The identity

(1+ x)(1+ x2)(1+ x3)(1+ x4) · · ·= 1
1− x

· 1
1− x3 ·

1
1− x5 ·

1
1− x7 · · · ,

which may be proved by writing 1+xk = (1−x2k)/(1−xk), expresses that the
number of partitions of n into distinct parts equals the number of partitions of
n into odd parts.

11. (Partitions with restrictions on the size and the number of parts) Let p≤k(n)
be the number of partitions of n into at most k parts. This is also the number
of partitions of n into parts of size at most k. To see this, represent a partition
n = a1 + · · ·+ a j as a left-justified array of squares, where the ith row has ai
squares. Each partition λ has a conjugate partition λ ′ obtained by exchanging
the rows and the columns of the Ferrers diagram. Figure 1.3 shows the Ferrers
diagram of 431 and its conjugate partition 3221. It is clear that λ has at most k
parts if and only if λ ′ has parts of size at most k.

From the previous discussion it is clear that

∑
n≥0

p≤k(n)xn =
1

1− x
· 1

1− x2 · · ·
1

1− xk .

Now let p≤ j,≤k(n) be the number of partitions of n into at most j parts of size
at most k. Then

∑
n≥0

p≤ j,≤k(n)xn =
(1− x)(1− x2) · · ·(1− x j+k)

(1− x)(1− x2) · · ·(1− x j) · (1− x)(1− x2) · · ·(1− xk)
.

This is easily proved by induction, using that p≤ j,≤k(n) = p≤ j,≤k−1(n) +
p≤ j,≤k(n− k).

12. (Even and odd partitions) Setting y =−1 into the generating function for par-
titions into distinct parts of Example 9, we get

∑
n≥0

(edp(n)−odp(n))xn = ∏
j≥1

(1− x j) = 1− x− x2 + x5 + x7− x12− x15 + · · ·
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Figure 1.3
The Ferrers diagrams of the conjugate partitions 431 and 3221.

where edp(n) (respectively, odp(n)) counts the partitions of n into an even
(respectively, odd) number of distinct parts. Euler’s pentagonal formula (1.7)
says that edp(n)−odp(n) equals 0 for all n except for the pentagonal numbers,
for which it equals 1 or −1.

There are similar results for partitions into distinct parts coming from a given
set S.

• When S is the set of Fibonacci numbers, the coefficients of the generating
function

∏
n≥1

(1− xFn) = 1− x− x2 + x4 + x7− x8 + x11− x12− x13 + x14 + · · ·

are also equal to 0,1, or −1. [5, 168]

• This is also true for any “k-Fibonacci sequence” S = {a1,a2, . . .} given
by an = an−1+ · · ·+an−k for n> k and a j > a j−1+ · · ·+a1 for 1≤ j≤ k.
[67]

• The result also holds trivially for S = {2 j : j ∈N} since there is a unique
partition of any n into distinct powers of 2.

These three results seem qualitatively different from (and increasingly less
surprising than) Euler’s result, as these sequences S grow much faster than
{1,2,3, . . .}, and S-partitions are sparser. Can more be said about the sets S of
positive integers for which the coefficients of ∏n∈S(1− xn) are all 1,0 or −1?

13. (Set partitions) A set partition of a set S is an unordered collection of pair-
wise disjoint sets S1, . . . ,Sk whose union is S. The family of set partitions
with k parts is SetPartitionk ∼= • × Seq({1})× •× Seq({1,2})× ·· · × • ×
Seq({1,2, . . . ,k}), where the singleton • and all numbers i have size 1. To
see this, we regard a word such as w = •11•1221•31 as an instruction man-
ual to build a set partition S1, . . . ,Sk. The jth symbol w j tells us where to put
the number j: if w j is a number h, we add j to the part Sh; if w j is the ith •,
then we add j to a new part Si. The sample word above leads to the partition
{1,2,3,5,8,11},{4,6,7},{9,10}. This process is easily reversible. It follows
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that
∑
n≥0

S(n,k)xn =
x

1− x
· x

1−2x
· · · · · x

1− kx
,

where S(n,k) is the number of set partitions of [n] into k parts. These numbers
are called the Stirling numbers of the second kind.

The equation (1− kx)∑n≥0 S(n,k)xn = x∑n≥0 S(n,k− 1)xn gives the recur-
rence

S(n,k) = kS(n−1,k)+S(n−1,k−1), 1≤ k ≤ n,

with initial values S(n,0) = S(n,n) = 1. Note the great similarity with Pascal’s
recurrence.

14. (Catalan structures) It is often said that if you encounter a new family of math-
ematical objects, and you have to guess how many objects of size n there are,
you should guess “the Catalan number Cn =

1
n+1

(2n
n

)
.” The Catalan family has

more than 200 incarnations in combinatorics and other fields [185, 192]; let us
see three important ones.

(a) (Plane binary trees) A plane binary tree is a rooted tree where every
internal vertex has a left and a right child. Let PBTree be the family of
plane binary trees, where a tree with n internal vertices (and necessarily
n+1 leaves) has size n. A tree is either the trivial tree ◦ of size 0, or the
grafting of a left subtree and a right subtree at the root •, so PBTree ∼=
◦+(PBTree × • × PBTree). It follows that the generating function for
plane binary trees satisfies

T (x) = 1+T (x)xT (x).

We may use the quadratic formula ∗ and the binomial theorem to get

T (x) =
1−
√

1−4x
2x

= ∑
n≥0

1
n+1

(
2n
n

)
xn.

It follows that the number of plane binary trees with n internal vertices
(and n+1 leaves) is the Catalan number Cn =

1
n+1

(2n
n

)
.

(b) (Triangulations) A triangulation of a convex polygon is a subdivision
into triangles using only the diagonals of P. A triangulation of an (n+2)-
gon has n triangles; we say it has size n. If we fix an edge e of P, then a
triangulation of P is obtained by choosing the triangle T that will cover
e, and then choosing a triangulation of the two polygons to the left and
to the right of T . Therefore Triang∼= ◦+(Triang × • × Triang) and the
number of triangulations of an (n+ 2)-gon is also the Catalan number
Cn.

∗Since this is the first time we are using the quadratic formula, let us do it carefully. Rewrite the equation
as (1− 2xT (x))2 = 1− 4x , or (1− 2xT (x)−

√
1−4x)(1− 2xT (x) +

√
1−4x) = 0. Since C[[x]] is an

integral domain, one of the factors must be 0. From the constant coefficients we see that it must be the
first factor.
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(c) (Dyck paths) A Dyck path P of length n is a path from (0,0) to (2n,0)
that uses the steps (1,1) and (1,−1) and never goes below the x-axis. Say
P is irreducible if it touches the x-axis exactly twice, at the beginning
and at the end. Let D(x) and I(x) be the generating functions for Dyck
paths and irreducible Dyck paths.
A Dyck path is equivalent to a sequence of irreducible Dyck paths. Also,
an irreducible path of length n is the same as a Dyck path of length n−1
with an additional initial and final step. Therefore

D(x) =
1

1− I(x)
, I(x) = xD(x)

from which it follows that D(x) = 1−
√

1−4x
2x as well, and the number of

Dyck paths of length n is also the Catalan number.

Generatingfunctionology gives us fairly easy algebraic proofs that these three
families are enumerated by the Catalan numbers. Once we have discovered
this fact, the temptation to search for nice bijections is hard to resist.

Our algebraic analysis suggests a bijection φ from (b) to (a). The families of
plane binary trees and triangulations grow under the same recursive recipe, and
so we can let the bijection grow with them, mapping a triangulation T ×•×T ′

to the tree φ(T )×•× φ(T ′). A non-recursive description of the bijection is
the following. Consider a triangulation T of the polygon P, and fix an edge e.
Put a vertex inside each triangle of T , and a vertex outside P next to each edge
other than e. Then connect each pair of vertices separated by an edge. Finally,
root the resulting tree at the vertex adjacent to e. This bijection is illustrated in
Figure 1.4.

e

Figure 1.4
The bijection from triangulations to plane binary trees.
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Figure 1.5
The bijection from plane binary trees to Dyck paths.

A bijection from (a) to (c) is less obvious from our algebraic computations, but
is still not difficult to obtain. Given a plane binary tree T of size n, prune all
the leaves to get a tree T ′ with n vertices. Now walk around the periphery of
the tree, starting on the left side from the root, and continuing until we traverse
the whole tree. Record the walk in a Dyck path D(T ) : every time we walk up
(respectively, down) a branch we take a step up (respectively, down) in D(T ).
One easily checks that this is a bijection. See Figure 1.5 for an illustration.

Even if it may be familiar, it is striking that two different (and straightforward)
algebraic computations show us that two families of objects that look quite
different are in fact equivalent combinatorially. Although a simple, elegant bi-
jection can often explain the connection between two families more transpar-
ently, the algebraic approach is sometimes simpler, and better at discovering
such connections.

15. (k-Catalan structures) Let PTreek be the class of plane k-ary trees, where
every vertex that is not a leaf has k ordered children; let the size of such a tree
be its number of leaves. In the sense of Theorem 1.3.2.5(a), this is precisely
an A -tree, where A = {•,•k} consisting of one structure of size 1 and one of
size k. Therefore PTreek = (x− xk)<−1>. Lagrange inversion then gives

m[xm]A<−1>(x) = [xm−1]

(
1

1− xk−1

)m

= [xm−1] ∑
n≥0

(
m+n−1

n

)
x(k−1)n.

It follows that a plane k-ary tree must have m = (k− 1)n+ 1 leaves for some
integer n, and the number of such trees is the k-Catalan number

Ck
n =

1
(k−1)n+1

(
kn
n

)
.

This is an alternative way to compute the ordinary Catalan numbers Cn =C2
n .

The k-Catalan number Ck
n also has many different interpretations [100]; we

mention two more. It counts the subdivisions of an (n(k− 1)+ 2)-gon P into
(necessarily n) (k + 1)-gons using diagonals of P, and the paths from (0,0)
to (n,(k− 1)n) with steps (0,1) and (1,0) that never rise above the line y =
(k−1)x.
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Other applications. Let us now discuss a few other interesting applications that
illustrate the power of Theorem 1.3.2.

16. (Motzkin paths) The Motzkin number Mn is the number of paths from (0,0)
to (n,0) using the steps (1,1), (1,−1), and (1,0), which never go below the
x-axis. Imitating our argument for Dyck paths, we obtain a formula for the
generating function

M(x) =
1

1− (x+ xM(x)x)
=⇒ M(x) =

1− x−
√

1−2x−3x2

2x2 .

The quadratic equation x2M2 +(x−1)M+1 = 0 gives rise to the quadratic re-
currence Mn = Mn−1 +∑i MiMn−2−i. The fact that M(x) satisfies a polynomial
equation leads to a more efficient recurrence

(n+2)Mn = (2n+1)Mn−1 +(3n−3)Mn−2.

We will see this in Section 1.3.4.2.

17. (Schröder paths) The (large) Schröder number rn is the number of paths from
(0,0) to (2n,0) using steps NE = (1,1),SE = (1,−1), and E = (2,0) which
stays above the x-axis. Their generating function satisfies R(x) = 1/(1− x−
xR(x)), and therefore

R(x) =
1− x−

√
1−6x+ x2

2x
.

Theorem 1.3.2.3 is useful when we are counting combinatorial objects that “fac-
tor” uniquely into an ordered “product” of “irreducible” objects. It tells us that we
can count all objects if and only if we can count the irreducible ones. We have already
used that idea several times; let us see it in action in some other examples.

18. (Domino tilings of rectangles) In Section 1.2 we let an be the number of
domino tilings of a 2× n rectangle. Such a tiling is uniquely a sequence of
blocks, where each block is either a vertical domino (of width 1) or two hori-
zontal dominoes (of width 2). This truly explains the formula:

A(x) =
1

1− (x+ x2)
.

Similarly, if am,n is the number of domino tilings of a 2× n rectangle using v
vertical tiles, we immediately obtain

∑
m,n≥0

am,nvmxn =
1

1− (vx+ x2)
.

Sometimes the enumeration of irreducible structures is not immediate, but still
tractable.
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19. (Monomer-dimer tilings of rectangles) Let T (2,n) be the number of tilings
of a 2× n rectangle with dominoes and unit squares. Say a tiling is irre-
ducible if it does not contain an internal vertical line from top to bottom. Then
Tilings ∼= Seq(IrredTilings). It now takes some thought to recognize the irre-
ducible tilings in Figure 1.6.

Figure 1.6
The irreducible tilings of 2×n rectangles into dominoes and unit squares.

There are three irreducible tilings of length 2, and two of every other length
greater than or equal to 1. Therefore

∑
n≥0

T (2,n)xn =
1

1− (2x+3x2 +2x3 +2x4 + · · ·) =
1− x

1−3x− x2 + x3 .

We will see in Theorem 1.3.5.2 that this gives T (2,n) ∼ c ·αn where α ≈
3.214 . . . is the inverse of the smallest positive root of the denominator.

Sometimes the enumeration of all objects is easier than the enumeration of the irre-
ducible ones. In that case we can use Theorem 1.3.2.3 in the opposite direction.

20. (Irreducible permutations) A permutation π of [n] is irreducible if it does not
factor as a permutation of {1, . . . ,m} and a permutation of {m+ 1, . . . ,n} for
1≤m < n; that is, if π([m]) 6= [m] for all 1≤m < n. Clearly every permutation
factors uniquely into irreducibles, so

∑
n≥0

n!xn =
1

1− IrredPerm(x)
.

This gives the series for IrredPerm.

There are many interesting situations where it is possible, but not at all trivial, to
decompose the objects that interest us into simpler structures. To a combinatorialist
this is good news, the techniques of this section are useful tools, but are not enough.
There is no shortage of interesting work to do. Here is a great example.

21. (Domino towers) [91, 31, 221] A domino tower is a stack of horizontal 2×1
bricks in a brickwork pattern, so that no brick is directly above another brick,
such that the bricks on the bottom level are contiguous, and every higher brick
is (half) supported on at least one brick in the row below it. Let the size of a
domino tower be the number of bricks. See Figure 1.7 for an illustration.
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Figure 1.7
A domino tower of 19 bricks.

Remarkably, there are 3n−1 domino towers consisting of n bricks. Equally re-
markably, no simple bijection is known. The nicest argument known is as fol-
lows.

Figure 1.8
The decomposition of a domino tower into a pyramid and three half-pyramids.

We decompose a domino tower x into smaller pieces, as illustrated in Fig-
ure 1.8. Each new piece is obtained by pushing up the leftmost remaining
brick in the bottom row, dragging with it all the bricks encountered along the
way. The first piece p will be a pyramid, which we define to be a domino
tower with only one brick in the bottom row. All subsequent pieces h1, . . . ,hk
are half-pyramids, which are pyramids containing no bricks to the left of
the bottom brick. This decomposition is reversible. To recover x, we drop
hk,hk−1, . . . ,h1, p from the top in that order; each piece is dropped in its cor-
rect horizontal position, and some of its bricks may get stuck on the previ-
ous pieces. This shows that the corresponding combinatorial classes satisfy
X ∼= P×Seq(H).

Similarly, we may decompose a pyramid p into half-pyramids, as shown
in Figure 1.9. Each new half-pyramid is obtained by pushing up the left-
most remaining brick (which is not necessarily in the bottom row), drag-
ging with it all the bricks that it encounters along the way. This shows that
P∼= Seq≥1(H) := H +(H×H)+ · · · .
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Figure 1.9
A pyramid and its decomposition into half-pyramids.

Finally consider a half-pyramid h; there are two cases. If there are other bricks
on the same horizontal position as the bottom brick, consider the lowest such
brick, and push it up, dragging with it all the bricks it encounters along the way,
obtaining a half-pyramid h1. Now remove the bottom brick; what remains is
a half-pyramid h2. This is shown in Figure 1.10. As before, we can recover
h from h1 and h2. On the other hand, if there are no bricks above the bottom
brick, removing the bottom brick leaves either a half-pyramid or the empty set.
Therefore H ∼= (H×•×H)+(•×H)+•.

Figure 1.10
A (non-half-pyramid) pyramid and its decomposition into two half-pyramids and a
bottom brick.

The above relations correspond to the following identities for the correspond-
ing generating functions:

X =
P

1−H
, P =

H
1−H

, H = xH2 + xH + x.

Surprisingly cleanly, we obtain X(x) = x/(1−3x) = ∑n≥1 3n−1xn. This proves
that there are 3n−1 domino towers of size n.

Although we do not need this here, it is worth noting that half-pyramids are
enumerated by Motzkin numbers; their generating functions are related by
H(x) = xM(x).
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1.3.3 Exponential generating functions

Ordinary generating functions are usually not well suited for counting combinatorial
objects with a labeled ground set. In such situations, exponential generating functions
are a more effective tool.

Consider a family A = A0 tA1 t A2 t ·· · of labeled combinatorial struc-
tures, where An consists of the structures that we can place on the ground set
[n] = {1, . . . ,n} (or, equivalently, on any other labeled ground set of size n). If a∈An,
we let |a| = n be the size of a. We also let an be the number of elements of size n.
The exponential generating function of A is

A(x) = ∑
a∈A

x|a|

|a|! = a0
x0

0!
+a1

x1

1!
+a2

x2

2!
+a3

x3

3!
+ · · · .

We may again assign a weight wt(a) to each object a, usually a monomial in
variables x1, . . . ,xn, and consider the weighted exponential generating function of
A to be the formal power series

Awt(x1, . . . ,xn,x) = ∑
a∈A

wt(a)
x|a|

|a|! .

Examples of combinatorial structures (with their respective size functions) are per-
mutations (number of elements), graphs (number of vertices), or set partitions (size
of the set). We may weight these objects by tk where k is, respectively, the number
or cycles, the number of edges, or the number of parts.

1.3.3.1 Operations on labeled structures and their exponential generating
functions

Again, there are some simple operations on labeled combinatorial structures, which
correspond to simple algebraic operations on the exponential generating functions.
Starting with a few simple structures, these operations are sufficient to generate many
interesting combinatorial structures. This will allow us to compute the exponential
generating functions for those structures.

Theorem 1.3.3 Let A and B be labeled combinatorial structures.

1. (C = A +B: Disjoint union) If a C -structure on a finite set S is obtained by
choosing an A -structure on S or a B-structure on S, then

C(x) = A(x)+B(x).

This result also holds for weighted structures if the weight of a C -structure is
the same as the weight of the respective A - or B-structure.

2. (C = A ∗B: Labeled Product) If a C -structure on a finite set S is obtained
by partitioning S into disjoint sets S1 and S2 and putting an A -structure on S1
and a B-structure on S2, then

C(x) = A(x)B(x).
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This result also holds for weighted structures if the weight of a C -structure is
the product of the weights of the respective A - and B-structures.

3. (C = Seq∗(B): Labeled Sequence) If a C -structure on a finite set S is obtained
by choosing an ordered partition of S into a sequence of blocks and putting a
B-structure on each block, then

C(x) =
1

1−B(x)
.

This result also holds for weighted structures if the weight of a C -structure is
the product of the weights of the respective B-structures.

4. (C = Set(B): Set) Exponential formula. If a C -structure on a finite set S
is obtained by choosing an unordered partition of S into a set of blocks and
putting a B-structure on each block, then

C(x) = eB(x).

This result also holds for weighted structures if the weight of a C -structure is
the product of the weights of the respective B-structures.

In particular, if ck(n) is the number of C -structures of an n-set that decompose
into k components (B-structures), we have

∑
n,k,≥0

ck(n)
xn

n!
yk = eyB(x) =C(x)y

5. (C = A ◦B: Composition) Compositional formula. If a C -structure on a
finite set S is obtained by choosing an unordered partition of S into a set of
blocks, putting a B-structure on each block, and putting an A -structure on
the set of blocks, then

C(x) = A(B(x)).

This result also holds for weighted structures if the weight of a C -structure
is the product of the weights of the A -structure on its set of blocks and the
weights of the B-structures on the individual blocks.

Again, Theorem 1.3.4.4 is useful when we are counting combinatorial objects
that “decompose” uniquely as a set of “indecomposable” objects. It tells us that we
can count all objects if and only if we can count the indecomposable ones. Amaz-
ingly, we also obtain for free the finer enumeration of the objects by their number of
components.

Proof. 1. is clear. The identity in 2. is equivalent to cn = ∑k
(n

k

)
akbn−k, which

corresponds to the given combinatorial description. Iterating 2., we see that the ex-
ponential generating functions for k-sequences of B-structures is B(x)k, and hence
the one for k-sets of B-structures is B(x)k/k!. This readily implies 3, 4, and 5. The
weighted statements follow similarly. �

The following statements are perhaps less fundamental, but also useful.
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Theorem 1.3.4 Let A be a labeled combinatorial structure.

1. (C = A+: Shifting) If a C -structure on S is obtained by adding a new element
t to S and choosing an A -structure on S∪{t}, then

C(x) = A′(x).

2. (C = A•: Rooting) If a C -structure on S is a rooted A -structure, obtained by
choosing an A -structure on S and an element of S called the root, then

C(x) = xA(x).

3. (Sieving by parity of size) If the C -structures are precisely the A -structures of
even size,

C(x) =
A(x)+A(−x)

2
.

4. (Sieving by parity of components) Suppose A -structures decompose uniquely
into components, so A = Set(B) for some B. If the C -structures are the A -
structures having only components of even size,

C(x) =
√

A(x)A(−x).

5. (Sieving by parity of number of components) Suppose A -structures decompose
uniquely into components, so A = Set(C ) for some C . If the C -structures are
precisely the A -structures having an even number of components,

C(x) =
1
2

(
A(x)+

1
A(x)

)
.

Similar sieving formulas hold modulo k for any k ∈ N.

Proof. We have cn = an+1 in 1., cn = nan in 2., and cn = 1
2 (an +(−1)nan) in 3.,

from which the generating function formulas follow. Combining 3. with the Expo-
nential Formula we obtain 4. and 5.

Similarly we see that the generating function for A -structures whose size is a
multiple of k is 1

k

(
A(x)+A(ωx)+ · · ·+A(ωk−1x)

)
where ω is a primitive kth root of

unity. If we wish to count elements of size i mod k, we use 1. to shift this generating
function i times. �

1.3.3.2 Examples

Classical applications. Once again, these simple ideas give very easy solutions to
many classical enumeration problems.
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1. (Trivial classes) Again we consider the trivial classes ◦ with only one element
of size 0, and • with only one element of size 1. Their exponential generating
functions are 1 and x, respectively.

2. (Sets) A slightly less trivial class of Set contains one set of each size. We also
let Set≥1 denote the class of non-empty sets, with generating function ex−1.
The exponential generating functions are

Set(x) = ex, Set≥1(x) = ex−1.

3. (Set partitions) In Section 1.3.2.2 we found the ordinary generating function
for Stirling numbers S(n,k) for a given k; but in fact it is easier to use ex-
ponential generating functions. Simply notice that SetPartition∼= Set(Set≥1),
and the Weighted Exponential Formula then gives

SetPartition(x,y) = ∑
n,k≥0

S(n,k)
xn

n!
yk = ey(ex−1).

4. (Permutations) Let Permn consist of the n! permutations of [n]. A permutation
is a labeled sequence of singletons, so Perm = Seq∗(•), and the generating
function for permutations is

Perm(x) = ∑
n≥0

n!
xn

n!
=

1
1− x

.

5. (Cycles) Let Cyclen consist of the cyclic orders of [n]. These are the ways of
arranging 1, . . . ,n around a circle, where two orders are the same if they differ
by a rotation of the circle. There is an n-to-1 mapping from permutations to
cyclic orders obtained by wrapping a permutation around a circle, so

Cycle(x) = ∑
n
(n−1)!xn/n! =− log(1− x).

There is a more indirect argument that will be useful to us later. Recall that a
permutation π can be written uniquely as a (commutative) product of disjoint
cycles of the form (i,π(i),π2(i), . . . ,πk−1(i)), where k is the smallest index
such that πk(i) = i. For instance, the permutation 835629741 can be written in
cycle notation as (18469)(235)(7). Then Perm = Set(Cycle) so 1/(1− x) =
eCycle(x).

6. (Permutations by number of cycles) The (signless) Stirling number of the
first kind c(n,k) is the number of permutations of n having k cycles. The
Weighted Exponential Formula gives

∑
n,k≥0

c(n,k)
xn

n!
yk = eyCycle(x) =

(
1

1− x

)y

= ∑
n≥0

y(y+1) · · ·(y+n−1)
xn

n!

so the Stirling numbers c(n,k) of the first kind are the coefficients of the poly-
nomial y(y+1) · · ·(y+n−1).
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Other applications. The applications of these techniques are countless; let us con-
sider a few more applications, old and recent.

7. (Permutations by cycle type) The type of a permutation π ∈ Sn is type(w) =
(c1, . . . ,cn) where ci is the number of cycles of length i. For indeterminates t =
(t1, . . . , tn), let ttype(w) = tc1

1 · · · tcn
n . The cycle indicator of the symmetric group

Sn is Zn = 1
n! ∑w∈Sn ttype(w). The Weighted Exponential Formula immediately

gives

∑
n≥0

Znxn = et1x+ t2x2/2+ t3x3/3+···.

Let us discuss two special cases of interest.

8. (Derangements) A derangement of [n] is a permutation such that π(i) 6= i
for all i ∈ [n]. Equivalently, a derangement is a permutation with no cycles of
length 1. It follows that Derangement = Set(Cycle≥2), so the number dn of
derangements of [n] is given by

Derangement(x) = ∑
n≥0

dn
xn

n!
= e− log(1−x)−x = e−x + xe−x + x2e−x + · · · ,

which leads to the explicit formula

dn = n!
(

1− 1
1!

+
1
2!
− 1

3!
+ · · ·± 1

n!

)
∼ n!

e
.

9. (Involutions) An involution of [n] is a permutation w such that w2 is the iden-
tity. Equivalently, an involution is a permutation with cycles of length 1 and 2,
so the number in of involutions of [n] is given by

Inv(x) = ∑
n≥0

in
xn

n!
= ex+ x2

2 .

Note that Inv′(x) = (x+1)Inv(x), which gives in = in−1 +(n−1)in−2. In Sec-
tion 1.3.4.2 we will explain the theory of D-finite power series, which turns
differential equations for power series into recurrences for the corresponding
sequences.

10. (Trees) A tree is a connected graph with no cycles. Consider a “birooted”
tree (T,a,b) on [n] with two (possibly equal) root vertices a and b. Regard the
unique path a= v0,v1, . . . ,vk = b as a “spine” for T ; the rest of the tree consists
of rooted trees hanging from the vis; direct their edges toward the spine. Now
regard v1 . . .vk as a permutation in one-line notation, and rewrite it in cycle
notation, while continuing to hang the rooted trees from the respective vi’s.
This transforms (T,a,b) into a directed graph consisting of a disjoint collection
of cycles with trees directed toward them. Every vertex has outdegree 1, so this
defines a function f : [n]→ [n]. A moment’s thought will convince us that this
is a bijection. Therefore there are nn birooted trees on [n], and hence there are
nn−2 trees on [n]. See Figure 1.11 for an illustration.
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Figure 1.11
A tree on [8] birooted at a= 3 and b= 5, and the corresponding function f : [8]→ [8].

11. (Trees, revisited) Let us count trees in a different way. Let a rooted tree be
a tree with a special vertex called the root, and a planted forest be a graph
with no cycles where each connected component has a root. Let tn,rn, fn and
T (x),R(x),F(x) be the sequences and exponential generating functions enu-
merating trees, rooted trees, and planted forests, respectively.

653

148
2 9

7

653

148
2 9

Figure 1.12
A rooted tree seen as a root attached to the roots of a planted forest.

Planted forests are vertex-disjoint unions of rooted trees, so F(x) = eR(x). Also,
as illustrated in Figure 1.12, a rooted tree T consists of a root attached to the
roots of a planted forest, so R(x) = xF(x). It follows that x = R(x)e−R(x), so

R(x) = (xe−x)<−1>.

Lagrange inversion gives n · rn
n! = [xn−1]enx = nn−1

(n−1)! , so

rn = nn−1, fn = (n+1)n−1, tn = nn−2.

We state a finer enumeration; see [192, Theorem 5.3.4] for a proof. The de-
gree sequence of a rooted forest on [n] is (deg1, . . . ,degn) where deg i is the
number of children of i. For example the degree sequence of the rooted tree in
Figure 1.12 is (3,1,0,0,0,0,2,0,2). Then the number of planted forests with
a given degree sequence (d1, . . . ,dn) and (necessarily) k = n− (d1 + · · ·+ dn)
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components is (
n−1
k−1

)(
n− k

d1, . . . ,dn

)
.

The number of forests on [n] is given by a more complicated alternating sum;
see [197].

12. (Permutations, revisited) Here is an unnecessarily complicated way of prov-
ing there are n! permutations of [n]. A permutation π of [n+ 1] decomposes
uniquely as a concatenation π = L(n+ 1)R for permutations L and R of two
complementary subsets of [n]. Therefore Shift(Perm) = (Perm)∗ (Perm), and
the generating function P(x) for permutations satisfies P′(x) = P(x)2 with
P(0) = 1. Solving this differential equation gives P(x) = 1

1−x = ∑n≥0 n! xn

n! .

13. (Alternating permutations) The previous argument was gratuitous for permu-
tations, but it will now help us to enumerate the class Alt of alternating per-
mutations w, which satisfy w1 < w2 > w3 < w4 > · · · . The Euler numbers are
En = |Altn|; let E(x) be their exponential generating function. We will need
the class RevAlt of permutations w with w1 > w2 < w3 > w4 < · · · . The map
w=w1 . . .wn 7→w′= (n+1−w1) . . .(n+1−wn) on permutations of [n] shows
that Alt∼= RevAlt.

Now consider alternating permutations L and R of two complementary subsets
of [n]. For n≥ 1, exactly one of the permutations L(n+1)R and L′(n+1)R is
alternating or reverse alternating, and every such permutation arises uniquely
in that way. For n = 0 both are alternating. Therefore Shift(Alt+RevAlt) =
Alt ∗Alt+ ◦, so 2E ′(x) = E(x)2 + 1 with E(0) = 1. Solving this differential
equation we get

E(x) = ∑
n≥0

En
xn

n!
= secx+ tanx.

Therefore secx and tanx enumerate the alternating permutations of even and
odd length, respectively. The Euler numbers are also called secant and tangent
numbers. This surprising connection allows us to give combinatorial interpre-
tations of various trigonometric identities, such as 1+ tan2 x = sec2 x.

14. (Graphs) Let g(v) and gconn(v) be the number of simple graphs and connected
graphs on [v], respectively. (A graph is simple if it contains no loops and no
multiple edges.) The Exponential Formula tells us that their exponential gener-
ating functions are related by G(x)= eGconn(x). In this case it is hard to count the
connected graphs directly, but it is easy to count all graphs: to choose a graph
we just have to decide whether each edge is present or not, so g(v) = 2(

v
2). This

gives us

∑
v≥0

gconn(v)
xv

v!
= log

(
∑
v≥0

2(
v
2)

xv

v!

)
.

We may easily adjust this computation to account for edges and components.
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There are
(v(v−1)/2

e

)
graphs on [v] with e edges; say g(v,c,e) of them have c

components, and give them weight ycze. Then

∑
v,c,e≥0

g(v,c,e)
xv

v!
ycze =

(
∑

v,e≥0

((v
2

)
e

)
xv

v!
ze

)y

= F(x,1+ z)y

where

F(α,β ) = ∑
n≥0

αn β (
n
2)

n!

is the deformed exponential function of [179].

15. (Signed graphs) A signed graph G is a set of vertices, with at most one “pos-
itive” edge and one “negative” edge connecting each pair of vertices. We say
G is connected if and only if its underlying graph G (ignoring signs) is con-
nected. A cycle in G corresponds to a cycle of G; we call it balanced if it
contains an even number of negative edges, and unbalanced otherwise. We
say that G is balanced if all its cycles are balanced. Let s(v,c+,c−,e) be the
number of signed graphs with v vertices, e edges, c+ balanced components,
and c− unbalanced components; we will need the generating function

S(x,y+,y−,z) = ∑
G signed graph

s(v,c+,c−,e)
xv

v!
yc+
+ yc−
− ze

in order to carry out a computation in Section 1.8.9; we follow [11].

Let S(x,y+,y−,z), B(x,y+,z), C+(x,z), and C−(x,z) be the generating func-
tions for signed, balanced, connected balanced, and connected unbalanced
graphs, respectively. The Weighted Exponential Formula gives

B = ey+C+ , S = ey+C++y−C− ,

so if we can compute C+ and C− we will obtain B and S. In turn, these equa-
tions give

C+(x,z) =
1
2

logB(x,2,z), C+(x,z)+C−(x,z) = logS(x,1,1,z),

and we now compute the right-hand side of these two equations. (In the first
equation, we set t+ = 2 because, surprisingly, B(x,2,z) is easier to compute
than B(x,1,z).) One is easy:

S(x,1,1,z) = ∑
e,v≥0

(
v(v−1)

e

)
xv

v!
ze = F(x,(1+ z)2).

For the other one, we count balanced signed graphs by relating them with
marked graphs, which are simple graphs with a sign + or − on each ver-
tex. [95] A marked graph M gives rise to a balanced signed graph G by as-
signing to each edge the product of its vertex labels. Furthermore, if G has c
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Figure 1.13
The two marked graphs that give rise to one balanced signed graph.

components, then it arises from precisely 2c different marked graphs, obtained
from M by choosing some connected components and changing their signs.
This correspondence is illustrated in Figure 1.13. It follows that B(x,2y,z) =
∑B balanced 2c b(v,c,e) xv

v! ycze = ∑M marked m(v,c,e) xv

v! ycze is the generating func-
tion for marked graphs, and hence B(x,2,z) may be computed easily:

B(x,2,z) = ∑
e,v

((v
2

)
e

)
2v xv

v!
ze = F(2x,1+ z).

Putting these equations together yields

S(x,y+,y−,z) = F(2x,1+ z)(y+−y−)/2F(x,(1+ z)2)y− .

1.3.4 Nice families of generating functions

In this section we discuss three nice properties that a generating function can have:
being rational, algebraic, or D-finite. Each one of these properties gives rise to useful
properties for the corresponding sequence of coefficients.

1.3.4.1 Rational generating functions

Many sequences in combinatorics and other fields satisfy three equivalent proper-
ties: They satisfy a recursive formula with constant coefficients, they are given by an
explicit formula in terms of polynomials and exponentials, and their generating func-
tions are rational. We understand these sequences very well. The following theorem
tells us how to translate any one of these formulas into the others.

Theorem 1.3.5 [194, Theorem 4.1.1] Let a0,a1,a2, . . . be a sequence of complex
numbers and let A(x) = ∑n≥0 anxn be its ordinary generating function. Let q(x) =
1+ c1x+ · · ·+ cdxd = (1− r1x)d1 · · ·(1− rkx)dk be a complex polynomial of degree
d. The following are equivalent:

1. The sequence satisfies the linear recurrence with constant coefficients

an + c1an−1 + · · ·+ cdan−d = 0 (n≥ d).
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2. There exist polynomials f1(x), . . . , fk(x) with deg fi(x)< di for 1≤ i≤ n such
that

an = f1(n)rn
1 + · · ·+ fk(n)rn

k .

3. There exists a polynomial p(x) with deg p(x)< d such that A(x) = p(x)/q(x).

Notice that Theorem 1.3.5.2 gives us the asymptotic growth of an immediately.
Let us provide more explicit recipes.

(1⇒ 2) Extract the inverses ri of the roots of q(x) = 1+ c1x+ · · ·+ cdxd and their
multiplicities di. The d1 + · · ·+dk = d coefficients of the fis are the unknowns in the
system of d linear equations an = f1(n)rn

1 + · · ·+ fk(n)rn
k (n = 0,1, . . . ,d−1), which

has a unique solution.

(1⇒ 3) Read off q(x) = 1+c1x+ · · ·+cdxd from the recurrence; the coefficients of
p(x) are [xk]p(x) = ak + c1ak−1 + · · ·+ cdak−d for 0≤ k < d, where ai = 0 for i < 0.

(2⇒ 1) Compute the cis using q(x) = ∏
k
i (1− rix)deg fi+1.

(2 ⇒ 3) Let q(x) = ∏i(1− rix)deg fi+1, and compute the first k terms of p(x) =
A(x)q(x); the others are 0.

(3⇒ 1) Extract the cis from the denominator q(x).

(3⇒ 2) Compute the partial fraction decomposition p(x)/q(x) = ∑
k
i=1 pi(x)/(1−

rix)di where deg pi(x) < di and use (1− rix)−di = ∑n
(di+n−1

di−1

)
rn

i xn to extract an =

[xn]p(x)/q(x).

Characterizing polynomials. As a special case of Theorem 1.3.5, we obtain a
useful characterization of sequences given by a polynomial. The difference operator
∆ acts on sequences, sending the sequence {an : n ∈ N} to the sequence {∆an : n ∈
N} where ∆an = an+1−an.

Theorem 1.3.6 [194, Theorem 4.1.1] Let a0,a1,a2, . . . be a sequence of complex
numbers and let A(x) = ∑n≥0 anxn be its ordinary generating function. Let d be a
positive integer. The following are equivalent:

1. We have ∆d+1an = 0 for all n ∈ N.

2. There exists a polynomial f (x) with deg f ≤ d such that an = f (n) for all n∈N.

3. There exists a polynomial p(x) with deg p(x) ≤ d such that A(x) =
p(x)/(1− x)d+1.

We have already seen some combinatorial polynomials and generating functions
whose denominator is a power of 1− x; we will see many more examples in the
following sections.
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1.3.4.2 Algebraic and D-finite generating functions

When the generating function A(x) =∑n anxn we are studying is not rational, the next
natural question to ask is whether A(x) is algebraic. If it is, then just as in the rational
case, the sequence an still satisfies a linear recurrence, although now the coefficients
are polynomial in n. This general phenomenon is best explained by introducing the
wider family of “D-finite” (also known as “differentially finite” or “holonomic”)
power series. Let us discuss a quick example before we proceed to the general theory.

We saw that the ordinary generating function for the Motzkin numbers satisfies
the quadratic equation

x2M2 +(x−1)M+1 = 0 (1.8)

which gives rise to the quadratic recurrence Mn = Mn−1 +∑i MiMn−2−i with M0 = 1.
This is not a bad recurrence, but we can find a better one. Differentiating (1.8) we
can express M′ in terms of M. Our likely first attempt leads us to M′ = −(2xM2 +
M)/(2x2M+x−1), which is not terribly enlightening. However, using (1.8) and a bit
of purposeful algebraic manipulation, we can rewrite this as a linear equation with
polynomial coefficients:

(x−2x2−3x3)M′+(2−3x−3x2)M−2 = 0.

Extracting the coefficient of xn we obtain the much more efficient recurrence relation

(n+2)Mn− (2n+1)Mn−1− (3n−3)Mn−2 = 0. (n≥ 2)

We now explain the theoretical framework behind this example.

Rational, algebraic, and D-finite series. Consider a formal power series A(x) over
the complex numbers. We make the following definitions.

A(x) is rational There exist polynomials p(x) and q(x) 6= 0 such that

q(x)A(x) = p(x).

A(x) is algebraic There exist polynomials p0(x), . . . , pd(x) such that

p0(x)+ p1(x)A(x)+ p2(x)A(x)2 + · · ·+ pd(x)A(x)d = 0.

A(x) is D-finite There exist polynomials q0(x), . . . ,qd(x),q(x) such that

q0(x)A(x)+q1(x)A′(x)+q2(x)A′′(x)+ · · ·+qd(x)A(d)(x)= q(x).

Now consider the corresponding sequence a0,a1,a2 . . . and make the following
definitions.
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{a0,a1, . . .} is
c-recursive

There are constants c0, . . . ,cd ∈ C such that for all n≥ d

c0an + c1an−1 + · · ·+ cdan−d = 0

{a0,a1, . . .} is
P-recursive

There are complex polynomials c0(x), . . . ,cd(x) such that for
all n≥ d

c0(n)an + c1(n)an−1 + · · ·+ cd(n)an−d = 0

These families contain most (but certainly not all) series and sequences that we
encounter in combinatorics. They are related as follows.

Theorem 1.3.7 Let A(x) = a0 +a1x+a2x2 + · · · be a formal power series. The fol-
lowing implications hold.

A(x) is rational =⇒ A(x) is algebraic =⇒ A(x) is D-finite

m m

{a0,a1, . . .} is c-recursive =⇒ {a0,a1, . . .} is P-recursive

Proof. We already discussed the correspondence between rational series and c-
recursive functions, and rational series are trivially algebraic. Let us prove the re-
maining statements.

(Algebraic ⇒ D-finite) Suppose A(x) satisfies an algebraic equation of degree d.
Then A is algebraic over the field C(x), and the field extension C(x,A) is a vector
space over C(x) having dimension of at most d.

Taking the derivative of the polynomial equation satisfied by A, we get an ex-
pression for A′ as a rational function of A and x. Taking derivatives repeatedly, we
find that all derivatives of A are in C(x,A). It follows that 1,A,A′,A′′, . . . ,A(d) are
linearly dependent over C(x), and a linear relation between them is a certificate for
the D-finiteness of A.

(P-recursive⇔ D-finite) If q0(x)A(x)+q1(x)A′(x)+ · · ·+qd(x)A(d)(x) = q(x), com-
paring the coefficients of xn gives a P-recursion for the ais. In the other direction,
given a P-recursion for the ais of the form c0(n)an + · · ·+ cd(n)an−d = 0, it is easy
to obtain the corresponding differential equation after writing ci(x) in terms of the
basis {(x+ i)k : k ∈ N} of C[x], where (y)k = y(y−1) · · ·(y− k+1). �

The converses are not true. For instance,
√

1+ x is algebraic but not rational, and
ex and log(1− x) are D-finite but not algebraic.

Corollary 1.3.8 The ordinary generating function ∑n anxn is D-finite if and only if
the exponential generating function ∑n an

xn

n! is D-finite.
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Proof. This follows from the observation that {an : n ∈ N} is P-recursive if and
only if {an/n! : n ∈ N} is P-recursive. �

A few examples. Before we discuss general tools, we collect some examples. We
will prove all of the following statements later in this section.

The power series for subsets, Fibonacci numbers, and Stirling numbers are ratio-
nal:

∑
n≥0

2nxn =
1

1−2x
, ∑

n≥0
Fnxn =

x
1− x− x2 , ∑

n≥k
S(n,k)xn =

x
1− x

· x
1−2x

· · · x
1− kx

.

The “diagonal binomial,” k-Catalan, and Motzkin series are algebraic but not
rational:

∑
n≥0

(
2n
n

)
xn =

1√
1−4x

, ∑
n≥0

1
(k−1)n+1

(
kn
n

)
xn,

and

∑
n≥0

Mnxn =
1− x−

√
1−2x−3x2

2x2 .

The following series are D-finite but not algebraic:

ex, log(1+ x), sinx, cosx, arctanx, ∑
n≥0

(
2n
n

)2

xn, ∑
n≥0

(
3n

n,n,n

)
xn

The following series are not D-finite:√
1+ log(1+ x2), secx, tanx, ∑

n≥0
p(n)xn = ∏

k≥0

1
1− xk .

Recognizing algebraic and D-finite series. It is not always obvious whether a
given power series is algebraic or D-finite, but there are some tools available. Fortu-
nately, algebraic functions behave well under a few operations, and D-finite functions
behave even better. This explains why these families contain most examples arising
in combinatorics.

The following table summarizes the properties of formal power series that are
preserved under various key operations. For example, the fifth entry on the bottom
row says that if A(x) and B(x) are D-finite, then the composition A(B(x)) is not
necessarily D-finite.

cA A+B AB 1/A A◦B A?B A′
∫

A A〈−1〉

rational Y Y Y Y Y Y Y N N
algebraic Y Y Y Y Y N Y N Y
D-finite Y Y Y N N Y Y Y N
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Here A?B(x) := ∑n≥0 anbnxn denotes the Hadamard product of A(x) and B(x),∫
A(x) := ∑n≥1

an−1
n xn is the formal integral of A(x), and A〈−1〉(x) is the composi-

tional inverse of A(x). In the fourth column we are assuming that A(0) 6= 0 so that
1/A(x) is well-defined, in the fifth column we are assuming that B(0) = 0 so that
A(B(x)) is well-defined, and in the last column we are assuming that A(0) = 0 and
A′(0) 6= 0, so that A〈−1〉(x) is well-defined.

For proofs of the “Yes” entries, see [183], [192], and [79]. For the “No” entries,
we momentarily assume the statements of the previous subsection. Then we have the
following counterexamples:

• cosx is D-finite but 1/cosx = secx is not.

•
√

1+ x and log(1+ x2) are D-finite but their composition
√

1+ log(1+ x2)
is not.

• A(x) = ∑n≥0
(2n

n

)
xn is algebraic but A?A(x) = ∑n≥0

(2n
n

)2
xn is not.

• 1/(1+ x) is rational and algebraic but its integral log(1+ x) is neither.

• x+ x2 is rational but its compositional inverse (−1+
√

1+4x)/2 is not.

• arctanx is D-finite but its compositional inverse tanx is not.

Some of these negative results have weaker positive counterparts:

• If A(x) is algebraic and B(x) is rational, then A(x)?B(x) is algebraic.

• If A(x) is D-finite and A(0) 6= 0, 1/A(x) is D-finite if and only if A′(x)/A(x)
is algebraic.

• If A(x) is D-finite and B(x) is algebraic with B(0) = 0, then A(B(x)) is D-
finite.

See [192, Proposition 6.1.11], [96], and [192, Theorem 6.4.10] for the respective
proofs.

The following result is also useful.

Theorem 1.3.9 [192, Section 6.3] Consider a multivariate formal power series
F(x1, . . . ,xd) that is rational in x1, . . . ,xd and its diagonal:

F(x1, . . . ,xd) = ∑
n1,...,nd≥0

an1,...,nd xn1
1 · · ·x

nd
d , diag F(x) = ∑

n≥0
an,...,nxn.

1. If d = 2, then diag F(x) is algebraic.

2. If d > 2, then diag F(x) is D-finite but not necessarily algebraic.
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Now we are ready to prove our positive claims about the series at the beginning
of this section. The first three expressions are visibly rational, and the diagonal bi-
nomial and Motzkin series are visibly algebraic. We proved that the k-Catalan series
is algebraic in Section 1.3.2.2. The functions ex, log(1+ x), sinx, cosx, arctanx sat-
isfy the differential equations y′ = y, (1+x)y′ = 1, y′′ =−y, y′′ =−y, (1+x2)y′ = 1,
respectively. The series ∑n≥0

(2n
n

)2
xn is the Hadamard product of (1− 4x)−1/2 with

itself, and hence D-finite. Finally, ∑n≥0
( 3n

n,n,n

)
xn is the diagonal of the rational func-

tion 1
1−x−y−z = ∑a,b,c≥0

(a+b+c
a,b,c

)
xaybzc, and hence D-finite.

Proving the negative claims requires more effort and, often, a bit of analytic ma-
chinery. We briefly outline some key results.

Recognizing series that are not algebraic. There are a few methods available to
prove that a series is not algebraic. The simplest algebraic and analytic criteria are
the following.

Theorem 1.3.10 (Eisenstein’s theorem [155]) If a series A(x) =∑n≥0 anxn with ra-
tional coefficients is algebraic, then there exists a positive integer m such that anmn

is an integer for all n > 0.

This shows that ex, log(1+ x),sinx,cosx, and arctanx are not algebraic.

Theorem 1.3.11 [111] If the coefficients of an algebraic power series A(x) =

∑n≥0 anxn satisfy an ∼ cnrαn for nonzero c,α ∈ C and r < 0, then r cannot be a
negative integer.

Stirling’s approximation n! ∼
√

2πn(n/e)n gives
(2n

n

)2 ∼ c ·16n/n and
( 3n

n,n,n

)
∼

c ·27n/n, so the corresponding series are not algebraic.
Another useful analytic criterion is that an algebraic series A(x) must have a

Newton-Puiseux expansion at any of its singularities. See [79, Theorem VII.7] and
[78] for details.

Recognizing series that are not D-finite. The most effective methods to show that
a function is not D-finite are analytic.

Theorem 1.3.12 [97, Theorem 9.1] Suppose that A(x) is analytic at x = 0, and it is
D-finite, satisfying the equation q0(x)A(x)+ q1(x)A′(x)+ · · ·+ qd(x)A(d)(x) = q(x)
with qd(x) 6= 0. Then A(x) can be extended to an analytic function in any simply
connected region of the complex plane not containing the (finitely many) zeroes of
qd(x).

Since secx and tanx have a pole at every odd multiple of π , they are not D-finite.
Similarly, ∑n p(n)xn = ∏

∞
k=1

1
1−xk is not D-finite because it has the circle |x|= 1 as a

natural boundary of analyticity.
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There are other powerful analytic criteria to prove a series is not D-finite. See
[78, Theorem VII.7] for details and further examples.

Sometimes it is possible to give ad hoc proofs that series are D-finite. For in-
stance, consider y =

√
1+ log(1+ x2). By induction, for any k ∈ N there exist poly-

nomials r1(x), . . . ,rk(x) such that y(k) = r1/y+ r2/y3 + · · ·+ rk/y2k−1. An equation
of the form ∑

d
i=0 qi(x)y(i) = q(x) would then give rise to a polynomial equation sat-

isfied by y. This would also make y2−1 = log(1+x2) algebraic; but this contradicts
Theorem 1.3.10.

1.4 Linear algebra methods
There are several important theorems in enumerative combinatorics that express a
combinatorial quantity in terms of a determinant. Of course, evaluating a determinant
is not always straightforward, but there is a wide array of tools at our disposal.

The goal of Section 1.4.1 is to reduce many combinatorial problems to “just com-
puting a determinant”; examples include walks in a graph, spanning trees, Eulerian
cycles, matchings, and routings. In particular, we discuss the transfer matrix method,
which allows us to encode many combinatorial objects as walks in graphs, so that
these linear algebraic tools apply. These problems lead us to many beautiful, myste-
rious, and highly non-trivial determinantal evaluations. We will postpone the proofs
of the evaluations until Section 1.4.2, which is an exposition of some of the main
techniques in the subtle science of computing combinatorial determinants.

1.4.1 Determinants in combinatorics

1.4.1.1 Preliminaries: Graph matrices

An undirected graph, or simply a graph G = (V,E) consists of a set V of vertices
and a set E of edges {u,v} where u,v ∈ V and u 6= v. In an undirected graph, we
write uv for the edge {u,v}. The degree of a vertex is the number of edges incident
to it. A walk is a set of edges of the form v1v2,v2v3, . . . ,vk−1vk. This walk is closed
if vk = v1.

A directed graph or digraph G = (V,E) consists of a set V of vertices and a set
E of oriented edges (u,v) where u,v ∈V and u 6= v. In an undirected graph, we write
uv for the directed edge (u,v). The outdegree (respectively, indegree) of a vertex is
the number of edges coming out of it (respectively, coming into it). A walk is a set
of directed edges of the form v1v2,v2v3, . . . ,vk−1vk. This walk is closed if vk = v1.

We will see in this section that many graph theory problems can be solved using
tools from linear algebra. There are several matrices associated to graphs that play a
crucial role; we review them here.
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Directed graphs. Let G = (V,E) be a directed graph.

• The adjacency matrix A = A(G) is the V ×V matrix whose entries are

auv = number of edges from u to v.

• The incidence matrix M = M(G) is the V ×E matrix with

mve =


1 if v is the final vertex of edge e,
−1 if v is the initial vertex of edge e,
0 otherwise.

• The directed Laplacian matrix −→L =
−→
L (G) is the V ×V matrix whose en-

tries are

−→
l uv =

{
−(number of edges from u to v) if u 6= v,
outdeg(u) if u = v.

Undirected graphs. Let G = (V,E) be an undirected graph.

• The (undirected) adjacency matrix A = A(G) is the V ×V matrix whose
entries are

auv = number of edges connecting u and v.

This is the directed adjacency matrix of the directed graph on V containing
edges u→ v and v→ u for every edge uv of G.

• The (undirected) Laplacian matrix L=L(G) is the V×V matrix with entries

luv =

{
−(number of edges connecting u and v) if u 6= v
degu if u = v

If M is the incidence matrix of any orientation of the edges of G, then L =
MMT .

1.4.1.2 Walks: the transfer matrix method

Counting walks in a graph is a fundamental problem, which (often in disguise) in-
cludes many important enumerative problems. The transfer matrix method addresses
this problem by expressing the number of walks in a graph G in terms of its adjacency
matrix A(G), and then uses linear algebra to count those walks.
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Directed or undirected graphs. The transfer matrix method is based on the
following simple, powerful observation, which applies to directed and undirected
graphs:

Theorem 1.4.1 Let G = (V,E) be a graph and let A = A(G) be the V ×V adjacency
matrix of G, where auv is the number of edges from u to v. Then

(An)uv = number of walks of length n in G from u to v.

Proof. Observe that

(An)uv = ∑
w1,...,wn−1∈V

auw1aw1w2 · · ·awn−1v

and there are auw1aw1w2 · · ·awn−1v walks of length n from u to v visiting vertices
u,w1, . . . ,wn−1,v in that order. �

Corollary 1.4.2 The generating function ∑n≥0(An)uvxn for walks of length n from u
to v in G is a rational function.

Proof. Using Cramer’s formula, we have

∑
n≥0

(An)uvxn = ((I− xA)−1)uv = (−1)u+v det(I− xA : v,u)
det(I− xA)

where (M : v,u) is the cofactor of M obtained by removing row v and column u. �

Corollary 1.4.3 If CG(n) is the number of closed walks of length n in G, then

CG(n) = λ
n
1 + · · ·+λ

n
k , ∑

n≥1
CG(n)xn =

−xQ′(x)
Q(x)

where λ1, . . . ,λk are the eigenvalues of adjacency matrix A and Q(x) = det(I− xA).

Proof. Theorem 1.4.1 implies that CG(n) = tr(An) = λ n
1 + · · ·+ λ n

k . The second
equation then follows from Q(x) = (1−λ1x) · · ·(1−λkx). �

In view of Theorem 1.4.1, we want to be able to compute powers of the adjacency
matrix A. As we learn in linear algebra, this is very easy to do if we are able to
diagonalize A. This is not always possible, but we can do it when A is undirected.

Undirected graphs. When our graph G is undirected, the adjacency matrix A(G)
is symmetric, and hence diagonalizable.

Theorem 1.4.4 Let G = (V,E) be an undirected graph and let λ1, . . . ,λk be the
eigenvalues of the adjacency matrix A = A(G). Then for any vertices u and v there
exist constants c1, . . . ,ck such that

number of walks of length n from u to v = c1λ
n
1 + · · ·+ ckλ

n
k .
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Proof. The key fact is that a real symmetric k× k matrix A has k real orthonormal
eigenvectors q1, . . . ,qk with real eigenvalues λ1, . . . ,λk. Equivalently, the k×k matrix
Q with columns q1, . . . ,qk is orthogonal (so QT = Q−1) and diagonalizes A:

Q−1AQ = D = diag(λ1, . . . ,λk)

where D = diag(λ1, . . . ,λk) is the diagonal matrix with diagonal entries λ1, . . . ,λk.
The result then follows from An = QDnQ−1 = Qdiag(λ n

1 , . . . ,λ
n
k )QT , with ct =

qitq jt . �

Applications. Many families of combinatorial objects can be enumerated by first
recasting the objects as walks in a “transfer graph” and then applying the transfer
matrix method. We illustrate this technique with a few examples.

1. (Colored necklaces) Let f (n,k) be the number of ways of coloring the beads
of a necklace of length n with k colors so that no two adjacent beads have the
same color. (Different rotations and reflections of a coloring are considered
different.) There are several ways to compute this number, but a very efficient
one is to notice that such a coloring is a graph walk in disguise. If we label the
beads 1, . . . ,n in clockwise order and let ai be the color of the ith bead, then
the coloring corresponds to the closed walk a1,a2, . . . ,an,a1 in the complete
graph Kn. The adjacency graph of Kn is A = J− I where J is the matrix all of
whose entries equal 1, and I is the identity. Since J has rank 1, it has n− 1
eigenvalues equal to 0. Since the trace is n, the last eigenvalue is n. It follows
that the eigenvalues of A = J− I are −1,−1, . . . ,−1,n− 1. Then Corollary
1.4.3 tells us that

f (n,k) = (n−1)k +(n−1)(−1)k.

It is possible to give a bijective proof of this formula, but this algebraic proof
is much simpler.

2. (Words with forbidden subwords, 1) Let hn be the number of words of length
n in the alphabet {a,b} that do not contain aa as a consecutive subword. This
is the same as a walk of length n−1 in the transfer graph with vertices a and b
and edges a→ b, b→ a and b→ b. The absence of the edge a→ a guarantees
that these walks produce only the valid words we wish to count. The adjacency
matrix and its powers are

A =

(
0 1
1 1

)
, An =

(
Fn−1 Fn
Fn Fn+1

)
,

where the Fibonacci numbers F0,F1, . . . are defined recursively by F0 = 0,F1 =
1, and Fk = Fk−1 +Fk−2 for k ≥ 2.

Since hn is the sum of the entries of An−1, we get that hn =Fn+2, and gn∼ c ·αn

where α = 1
2 (1+

√
5)≈ 1.6179 . . . is the golden ratio. Of course there are eas-

ier proofs of this fact, but this approach works for any problem of enumerating
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words in a given alphabet with given forbidden consecutive subwords. Let us
study a slightly more intricate example, which should make it clear how to
proceed in general.

3. (Words with forbidden subwords, 2) Let gn be the number of cyclic words of
length n in the alphabet {a,b} that do not contain aa or abba as a consecutive
subword. We wish to model these words as walks in a directed graph. At first
this may seem impossible because, as we construct the word sequentially, the
validity of a new letter depends on more than just the previous letter. However,
a simple trick resolves this difficulty: We can introduce more memory into the
vertices of the transfer graph. In this case, since the validity of a new letter
depends on the previous three letters, we let the vertices of the transfer graph
be aba,abb,bab,bba,bbb (the allowable “windows” of length 3) and put an
edge wxy→ xyz in the graph if the window wxy is allowed to precede the
window xyz; that is, if wxyz is an allowed subword. The result is the graph of
Figure 1.14, whose adjacency matrix A satisfies

det(I− xA) = det


1 0 −x 0 0
0 1 0 0 −x
−x −x 1 0 0
0 0 −x 1 0
0 0 0 −x 1− x

=−x4 + x3− x2− x+1.

abb

bba

bbbbababa

Figure 1.14
The transfer graph for words on the alphabet {a,b} avoiding aa and abba as consec-
utive subwords.

The valid cyclic words of length n correspond to the closed walks of length
n in the transfer graph, so Corollary 1.4.3 tells us that the generating function
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for gn is

∑
n≥0

gnxn =
x+2x2−3x3 +4x4

1− x− x2 + x3− x4

= x+3x2 + x3 +7x4 +6x5 +15x6 +15x7 +31x8 +37x9 + · · · .

Theorem 1.3.5.2 then tells us that gn ≈ c ·αn where α ≈ 1.5129 is the inverse
of the smallest positive root of 1−x−x2+x3−x4 = 0. The values of g1,g2,g3
may surprise us. Note that the generating function does something counterin-
tuitive: it does not count the words a (because aa is forbidden), aba (because
aa is forbidden), or abb (because abba is forbidden).

This example serves as a word of caution: When we use the transfer matrix
method to enumerate “cyclic” objects using Corollary 1.4.3, the initial values of
the generating function may not be the ones we expect. In a particular problem of
interest, it will be straightforward to adjust those values accordingly.

To illustrate the wide applicability of this method, we conclude this section with
a problem where the transfer graph is less apparent.

4. (Monomer-dimer problem) An important open problem in statistical mechan-
ics is the monomer-dimer problem of computing the number of tilings
T (m,n) of an m×n rectangle into dominoes (2×1 rectangles) and unit squares.
Equivalently, T (m,n) is the number of partial matchings of an m× n grid,
where each node is matched to at most one of its neighbors.

There is experimental evidence, but no proof, that T (n,n)∼ c ·αn2
where α ≈

1.9402... is a constant for which no exact expression is known. The transfer-
matrix method is able to solve this problem for any fixed value of m, proving
that the generating function ∑n≥0 T (m,n)xn is rational. We carry this out for
m = 3.

Let t(n) be the number of tilings of a 3× n rectangle into dominoes and unit
squares. As with words, we can build our tilings sequentially from left to right
by covering the first column, then the second column, and so on. The tiles
that we can place on a new column depend only on the tiles from the previous
column that are sticking out, and this can be modeled by a transfer graph.

More specifically, let T be a tiling of a 3× n rectangle. We define n + 1
triples v0, . . . ,vn which record how T interacts with the n + 1 vertical grid
lines of the rectangle. The ith grid line consists of three unit segments, and
each coordinate of vi is 0 or 1 depending on whether these three segments are
edges of the tiling or not. For example, Figure 1.15 corresponds to the triples
111,110,011,101,010,111.

The choice of vi is restricted only by vi−1. The only restriction is that vi−1 and
vi cannot both have a 0 in the same position, because this would force us to put
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Figure 1.15
A tiling of a 3×5 rectangle into dominoes and unit squares.

two overlapping horizontal dominoes in T . These compatibility conditions are
recorded in the transfer graph of Figure 1.16. When vi−1 = vi = 111, there are
three ways of covering column i. If vi−1 and vi share two 1s in consecutive po-
sitions, there are two ways. In all other cases, there is a unique way. It follows
that the tilings of a 3× n rectangle are in bijection with the walks of length n
from 111 to 111 in the transfer graph.

111

100
011

101

010

001
110

000

Figure 1.16
The transfer graph for tilings of 3×n rectangles into dominoes and unit squares.
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Since the adjacency matrix is

A =



000 001 110 010 101 001 110 111
000 0 0 0 0 0 0 0 1
001 0 0 1 0 0 0 0 1
110 0 1 0 0 1 0 1 2
010 0 0 0 0 1 0 0 1
101 0 0 1 1 0 0 1 1
001 0 0 0 0 0 0 1 1
110 0 0 1 0 1 1 0 2
111 1 1 2 1 1 1 2 3


Theorem 1.4.1 tells us that

∑
n≥0

t(n)xn =
det(I− xA : 111,111)

det(I− xA)

=
(1+ x− x2)(1−2x− x2)

(1+ x)(1−5x−9x2 +9x3 + x4− x5)

= 1+3x+22x2 +131x3 +823x4 +5096x5 +31687x6 + · · ·

By Theorem 1.3.5.2, tn ∼ c ·αn where α ≈ 6.21207 . . . is the inverse of the
smallest positive root of the denominator (1+x)(1−5x−9x2+9x3+x4−x5).

1.4.1.3 Spanning trees: the matrix-tree theorem

In this section we discuss two results: Kirkhoff’s determinantal formula for the num-
ber of spanning trees of a graph, and Tutte’s generalization to oriented spanning trees
of directed graphs.

Undirected matrix-tree theorem. Let G = (V,E) be a connected graph with no
loops. A spanning tree T of G is a collection of edges such that for any two vertices
u and v, T contains a unique path between u and v. If G has n vertices, then

• T contains no cycles,

• T spans G; that is, there is a path from u to v in T for any vertices u 6= v, and

• T has n−1 edges.

Furthermore, any two of these properties imply that T is a spanning tree. Our goal in
this section is to compute the number c(G) of spanning trees of G.

Orient the edges of G arbitrarily. Recall that the incidence matrix M of G is the
V ×E matrix whose eth column is ev− eu if e = u→ v, where ei is the ith basis
vector. The Laplacian L = MMT has entries

luv =

{
−(number of edges connecting u and v) if u 6= v
degu if u = v
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Note that L(G) is singular because all its row sums are 0. A principal cofactor Lv(G)
is obtained from L(G) by removing the vth row and vth column for some vertex v.

Theorem 1.4.5 (Kirkhoff’s Matrix-Tree Theorem) The number c(G) of spanning
trees of a connected graph G is

c(G) = detLv(G) =
1
n

λ1 · · ·λn−1,

where Lv(G) is any principal cofactor of the Laplacian L(G), and λ1, . . . ,λn−1,λn =
0 are the eigenvalues of L(G).

Proof. We use the Binet-Cauchy formula, which states that if A and B are m× n
and n×m matrices, respectively, with m < n, then

detAB = ∑
S⊆[n] : |S|=m

detA[S]detB[S]

where A[S] (respectively, B[S]) is the n× n matrix obtained by considering only the
columns of A (respectively, the rows of B) indexed by S.

We also use the following observation: If Mv is the “reduced” adjacency matrix
M with the vth row removed, and S is a set of n−1 edges of E, then

detMv[S] =

{
±1 if S is a spanning tree,
0 otherwise.

This observation is easily proved: If S is not a spanning tree, then it contains a cycle
C, which gives a linear dependence among the columns indexed by the edges of C.
Otherwise, if S is a spanning tree, think of v as its root, and “prune” it by repeatedly
removing a leaf vi 6= v and its only incident edge ei for 1≤ i≤ n−1. Then if we list
the rows and columns of M[S] in the orders v1, . . . ,vn−1 and e1, . . . ,en−1, respectively,
the matrix will be lower triangular with 1s and −1s in the diagonal.

Combining these two equations, we obtain the first statement:

detLv(G) = ∑
S⊆[n] : |S|=m

detM[S]detMT [S] = ∑
S⊆[n] : |S|=m

detM[S]2 = c(G).

To prove the second one, observe that the coefficient of −x1 in the characteristic
polynomial det(L− xI) = (λ1− x) · · ·(λn−1− x)(0− x) is the sum of the n principal
cofactors, which are all equal to c(G). �

The matrix-tree theorem is a very powerful tool for computing the number of
spanning trees of a graph. Let us state a few examples.

The complete graph Kn has n vertices and an edge joining each pair of vertices.
The complete bipartite graph Km,n has m “top” vertices and n “bottom” vertices,
and mn edges joining each top vertex to each bottom vertex. The hyperoctahedral
graph ♦n has vertices {1,1′,2,2′, . . . ,n,n′} and its only missing edges are ii′ for 1≤
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i ≤ n. The n-cube graph Cn has vertices (ε1, . . . ,εn) where εi ∈ {0,1}, and an edge
connecting any two vertices that differ in exactly one coordinate. The n-dimensional
grid of size m, denoted mCn, has vertices (ε1, . . . ,εn) where εi ∈ {1, . . . ,m}, and an
edge connecting any two vertices that differ in exactly one coordinate i, where they
differ by 1.

Theorem 1.4.6 The number of spanning trees of some interesting graphs are as fol-
lows.

1. (Complete graph) c(Kn) = nn−2

2. (Complete bipartite graph) c(Km,n) = mn−1nm−1

3. (Hyperoctahedral graph) c(♦n) = 22n−2(n−1)nnn−2

4. (n-cube) c(Cn) = 22n−n−1
∏

n
k=1 k(

n
k)

5. (n-dimensional grid of size m) c(mCn) = mmn−n−1
∏

n
k=1 k(

n
k)(m−1)k

We will see proofs of the first and third example in Section 1.4.2. For the others,
and many additional examples, see [55].

Directed matrix-tree theorem. Now let G=(V,E) be a directed graph containing
no loops. An oriented spanning tree rooted at v is a collection of edges T such that
for any vertex u there is a unique path from u to v. The underlying unoriented graph
T is a spanning tree of the unoriented graph G. Let c(G,v) be the number of spanning
trees rooted at G.

Recall that the directed Laplacian matrix −→L has entries

−→
l uv =

{
−(number of edges from u to v) if u 6= v
outdeg u if u = v

Now the matrix
−→
L (G) is not necessarily symmetric, but it is still singular.

Theorem 1.4.7 (Tutte’s Directed Matrix-Tree Theorem) Let G be a directed
graph and v be a vertex. The number c(G,v) of oriented spanning trees rooted at
v is

c(G,v) = det
−→
L v(G)

where
−→
L v(G) is obtained from L(G) by removing the vth row and column. Further-

more, if G is balanced, so indeg v = outdeg v for all vertices v, then

c(G,v) =
1
n

λ1 · · ·λn−1

where λ1, . . . ,λn−1,λn = 0 are the eigenvalues of L(G).



Algebraic and Geometric Methods in Enumerative Combinatorics 53

Proof. Proceed by induction. Consider a vertex w 6= v and an edge e starting at w.
Let G′ = G−e be obtained from G by removing e. If e is the only edge starting at w,
then every spanning tree must use it, and we have

c(G,v) = c(G′,v) = det
−→
L v(G′) = det

−→
L v(G).

Otherwise, let G′′ be obtained from G by removing all edges starting at w other than
e. There are c(G′,v) oriented spanning trees rooted at v that do not contain e, and
c(G′′,v) that do contain e, so we have

c(G,v) = c(G′,v)+ c(G′′,v) = det
−→
L v(G′)+det

−→
L v(G′′) = det

−→
L v(G)

where the last equality holds since determinants are multilinear.
We postpone the proof of the second statement to the next section, where it will

be an immediate consequence of Theorem 1.4.9. �

1.4.1.4 Eulerian cycles: the BEST theorem

One of the earliest combinatorial questions is the problem of the Seven Bridges of
Königsberg. In the early 1700s, the Prussian city of Königsberg was separated by
the Pregel river into four regions, connected to each other by seven bridges. In the
map of Figure 1.17 we have labeled the regions N,S,E, and I; there are two bridges
between N and I, two between S and I, and three bridges connecting E to each of
N, I, and S. The problem was to find a walk through the city that crossed each bridge
exactly once. Euler proved in 1735 that it was impossible to find such a walk; this is
considered to be the first paper in graph theory.

N

I

S

E

Figure 1.17
The seven bridges of Königsberg. Public domain map by Merian-Erben, 1652.
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Euler’s argument is simple, and relies on the fact that every region of Königsberg
is adjacent to an odd number of bridges. Suppose there existed such a walk, starting
at region A and ending at region B. Now consider a region C other than A and B.
Then our path would enter and leave C the same number of times; but then it would
not use all the bridges adjacent to C, because there is an odd number of such bridges.

In modern terminology, each region of the city is represented by a vertex, and
each bridge is represented by an edge connecting two vertices. We will be more
interested in the directed case, where every edge has an assigned direction. An Eu-
lerian path is a path in the graph that visits every edge exactly once. If the path
starts and ends at the same vertex, then it is called an Eulerian cycle. We say G is an
Eulerian graph if it has an Eulerian cycle.

Theorem 1.4.8 A directed graph is Eulerian if and only if it is connected and every
vertex v satisfies indeg(v) = outdeg(v).

Proof. If a graph has an Eulerian cycle C, then C enters and leaves each vertex v
the same number of times. Therefore indeg(v) = outdeg(v).

To prove the converse, let us start by arbitrarily “walking around G until we get
stuck.” More specifically, we start at any vertex v0, and at each step, we exit the
current vertex by walking along any outgoing edge we have not used yet. If there is
no available outgoing edge, we stop.

Whenever we enter a vertex v 6= v0, we will also be able to exit it since indeg(v) =
outdeg(v); so the walk can only get stuck at v0. Hence the resulting walk C is a cycle.
If C uses all edges of the graph, we are done. If not, then since G is connected we
can find a vertex v′ of C with an unused outgoing edge, and we use this edge to start
walking around the graph G−C until we get stuck, necessarily at v′. The result will
be a cycle C′. Starting at v′ we can traverse C and then C′, thus obtaining a cycle
C∪C′ that is longer than C. Repeating this procedure, we will eventually construct
an Eulerian cycle. �

There is a remarkable formula for the number of Eulerian cycles, due to de Bruijn,
van Ardenne-Ehrenfest, Smith, and Tutte.

Theorem 1.4.9 (BEST Theorem) If G is an Eulerian directed graph, then the num-
ber of Eulerian cycles of G is

c(G,v) ·∏
w∈V

(outdeg(w)−1)!

for any vertex v, where c(G,v) is the number of oriented spanning trees rooted at v.

Proof. We fix an edge e starting at v, and let each Eulerian cycle start at e. For each
vertex w let Ew be the set of outgoing edges from w.

Consider an Eulerian cycle C. For each vertex w 6= v, let ew be the last outgoing
edge from w that C visits, and let πw (respectively, πv) be the ordered set Ew− ew
(respectively, Ev− e) of the other outgoing edges from w (respectively, v), listed in
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the order that C traverses them. It is easy to see that T = {ew : w 6= v} is an oriented
spanning tree rooted at v.

Conversely, an oriented tree T and permutations {πw : w∈V} serve as directions
to tour G. We start with edge e. Each time we arrive at vertex w, we exit it by using
the first unused edge according to πw. If we have used all the edges Ew− ew of πw,
then we use ew ∈ T . It is not hard to check that this is a bijection. This completes the
proof. �

Corollary 1.4.10 In an Eulerian directed graph, the number of oriented spanning
trees rooted at v is the same for all vertices v; it equals

c(G,v) =
1
n

λ1 · · ·λn−1

where λ1, . . . ,λn−1,λn = 0 are the eigenvalues of
−→
L (G).

Proof. The BEST theorem implies that c(G,v) is independent of v, and then the
argument in the proof of Theorem 1.4.5 applies to give the desired formula. �

The BEST theorem can be used beautifully to enumerate a very classical, and
highly nontrivial, family of objects. A k-ary de Bruijn sequence of order n is a
cyclic word W of length kn in the alphabet {1, . . . ,k} such that the kn consecutive
subwords of W of length n are the kn distinct words of length n. For example, the
2-ary deBruijn sequences of order 3 are 11121222 and 22212111; these “memory
wheels” were described in Sanskrit poetry several centuries ago [112]. Their exis-
tence and enumeration was proved by Flye Saint-Marie in 1894 for k = 2 and by van
Aardenne-Ehrenfest and de Bruijn in 1951 in general.

Theorem 1.4.11 [80, 58] The number of k-ary de Bruijn sequences of order n is
(k!)kn−1

/kn.

Proof. Consider the de Bruijn graph whose vertices are the kn−1 sequences of
length n−1 in the alphabet {1, . . . ,k}, and where there is an edge from a1a2 . . .an−1
to the word a2a3 . . .an for all a1, . . . ,an. It is natural to label this edge a1a2 . . .an. It
then becomes apparent that k-ary de Bruijn sequences are in bijection with the Eu-
lerian cycles of the de Bruijn graph. Since indeg(v) = outdeg(v) = k for all vertices
v, this graph is indeed Eulerian, and we proceed to count its Eulerian cycles. Notice
that for any vertices u and v there is a unique path of length n from u to v. Therefore
the kn−1×kn−1 adjacency matrix A satisfies An = J, where J is the matrix whose en-
tries are all equal to 1. We already saw that the eigenvalues of J are 0, . . . ,0,kn. Since
the trace of A is k, the eigenvalues of A must be 0, . . . ,0,k. Therefore the Laplacian
L = kI−A has eigenvalues k, . . . ,k,0. It follows from Corollary 1.4.10 that the de
Bruijn graph has c(G,v) = 1

kn−1 k(k
n−1−1) = kkn−1−n oriented spanning trees rooted at

any vertex v, and

c(G,v) ·∏
w∈V

(outdeg(w)−1)! = kkn−1−n · (k−1)!kn−1

Eulerian cycles, as desired. �
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1.4.1.5 Perfect matchings: the Pfaffian method

A perfect matching of a graph G = (V,E) is a set M of edges such that every vertex
of G is on exactly one edge from M. We are interested in computing the number m(G)
of perfect matchings of a graph G. We cannot expect to be able to do this in general;
in fact, even for bipartite graphs G, the problem of computing m(G) is #P-complete.
However, for many graphs of interest, including all planar graphs, there is a beautiful
technique that produces a determinantal formula for m(G).

Determinants and Pfaffians. Let A be a skew-symmetric matrix of size 2m×2m,
so AT = −A. The Pfaffian is a polynomial encoding the matchings of the complete
graph K2m. A perfect matching M of the complete graph K2m is a partition M of [2m]
into disjoint pairs {i1, j1}, . . . ,{im, jm}, where ik < jk for 1≤ k≤m. Draw the points
1, . . . ,2m in order on a line and connect each ik to jk by a semicircle above the line.
Let cr(M) be the number of crossings in this drawing, and let sign(M) = (−1)cr(M).
Let aM = ai1 j1 · · ·aim jm . The Pfaffian of A is

Pf(A) = ∑
M

sign(M)aM

summing over all perfect matchings M of the complete graph Km.

Theorem 1.4.12 If A is a skew-symmetric matrix, so AT =−A, then

det(A) = Pf(A)2.

Sketch of Proof. The first step is to show that the skew symmetry of A causes many
cancellations in the determinant, and

detA = ∑
π∈ECSn

sign(π)aπ

where ECSn ⊂ Sn is the set of permutations of [n] having only cycles of even
length. Then, to prove that this equals (∑M sign(M)aM)2, we need a bijection be-
tween ordered pairs (M1,M2) of matchings and permutations π in ECSn such that
aM1aM2 = aπ and sign(M1)sign(M2) = sign(π). We now describe such a bijection.

Draw the matchings M1 and M2 above and below the points 1, . . . ,n on a line,
respectively. Let π be the permutation given by the cycles of the resulting graph,
where each cycle is oriented following the direction of M1 at its smallest element.
This is illustrated in Figure 1.18. It is clear that aM1aM2 = aπ , while some care is
required to show that sign(M1)sign(M2) = sign(π). For details, see [2]. �

Counting perfect matchings via Pfaffians. Suppose we wish to compute the num-
ber m(G) of perfect matchings of a graph G = (V,E) with no loops. After choosing
an orientation of the edges, we define the V ×V signed adjacency matrix S(G)
whose entries are

si j =


1 if i→ j is an edge of G
−1 if j→ i is an edge of G
0 otherwise.
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Figure 1.18
The pair of matchings {1,3},{2,6},{4,8},{5,7} and {1,5},{2,4},{3,7},{6,8}
gives the permutation (1375)(2684) with (−a13a26a48a57)(−a15a24a37a68) =
a13a37a75a51a26a68a84a42.

Then, for {i1 j1 . . . im jm} = {1, . . . ,2m}, sM = si1 j1 · · ·sim jm is nonzero if and only if
{i1, j1}, . . . ,{im, jm} is a perfect matching of G.

We say that our edge orientation is Pfaffian if all the perfect matchings of G
have the same sign. At the moment there is no efficient test to determine whether
a graph admits a Pfaffian orientation. There is a simple combinatorial restatement:
An orientation is Pfaffian if and only if every even cycle C for which G\V (C) has a
perfect matching has an odd number of edges in each direction.

Fortunately, we have the following result of Kasteleyn [115, 131]:

Every planar graph has a Pfaffian orientation.

This is very desirable, because Theorem 1.4.12 implies the following:

For a Pfaffian orientation of G, m(G) =
√

detS(G).

Therefore the number of matchings of a planar graph is reduced to the evaluation
of a combinatorial determinant. We will see in Section 1.4.2 that there are many
techniques at our disposal to carry out this evaluation.

Let us illustrate this method with an important example, due to Kasteleyn [115]
and Temperley–Fisher [198].

Theorem 1.4.13 The number m(Ra,b) of matchings of the a×b rectangular grid Ra,b
(where we assume b is even) is

m(Ra,b) = 4ba/2c(b/2)
ba/2c
∏
j=1

b/2

∏
k=1

(
cos2 π j

a+1
+ cos2 πk

b+1

)
∼ c · e G

π
ab ∼ c ·1.3385ab,

where G = 1− 1
9 +

1
25 − 1

49 + · · · is Catalan’s constant.

Clearly this is also the number of domino tilings of an a×b rectangle.
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Sketch of Proof. Orient all columns of Ra,b going up, and let the rows alternate
between going right or left, assigning the same direction to all edges of the same
row. The resulting orientation is Pfaffian because every square has an odd number
of edges in each direction. The adjacency matrix S satisfies m(Ra,b) =

√
detS. To

compute this determinant, it is slightly easier ∗ to consider the following mn×mn
matrix B:

bi j =


1 if i and j are horizontal neighbors
i if i and j are vertical neighbors
0 otherwise.

We can obtain B from the S by scaling the rows and columns by suitable powers
of i, so we still have m(Ra,b) =

√
|detB|. We will prove the product rule for this

determinant in Section 1.4.2.
We then use this product formula to give an asymptotic formula for m(Ra,b). Note

that logm(Ra,b)/ab may be regarded as a Riemann sum; as m,n→ ∞ it converges to

c =
1

π2

∫
π/2

0

∫
π/2

0
log(4cos2 x+4cos2 y)dxdy =

G
π

where G is Catalan’s constant. Therefore

m(Ra,b)≈ e
G
π

ab ≈ 1.3385ab.

Loosely speaking, this means that in a matching of the rectangular grid there are
about 1.3385 degrees of freedom per vertex. �

Obviously, this beautiful formula is not an efficient method of computing the
exact value of m(Ra,b) for particular values of a and b; it is not even clear why it
gives an integer! There are alternative determinantal formulas for this quantity that
are more tractable; see for example [2, Section 10.1].

1.4.1.6 Routings: the Lindström–Gessel–Viennot lemma

Let G be a directed graph with no directed cycles, which has a weight wt(e) on each
edge e. We are most often interested in the unweighted case, where all weights are
1. Let S = {s1, . . . ,sn} and T = {t1, . . . , tn} be two (not necessarily disjoint) sets of
vertices, which we call sources and sinks, respectively. A routing from S to T is a set
of paths P1, . . . ,Pn from the n sources s1, . . . ,sn to the n sinks t1, . . . , tn such that no
two paths share a vertex. Let π be the permutation of [n] such that Pi starts at source
si and ends at sink tπ(i), and define sign(R) = sign(π).

Let the weight of a path or a routing be the product of the weights of the edges it
contains. Consider the n×n path matrix Q whose (i, j) entry is

qi j = ∑
P path from si to t j

wt(P).

∗In fact, this is the matrix that Kasteleyn uses in his computation.
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Theorem 1.4.14 (Lindström–Gessel–Viennot lemma) Let G be a directed acyclic
graph with edge weights, and let S = {s1, . . . ,sn} and T = {t1, . . . , tn} be sets of
vertices in G. Then the determinant of the n×n path matrix Q is

detQ = ∑
R routing from S to T

sign(R)wt(R).

In particular, if all edge weights are 1 and if every routing takes si to ti for all i, then

detQ = number of routings from S to T .

Proof. We have detA = ∑P sign(P)wt(P) summing over all path systems P =
{P1, . . . ,Pn} from S to T ; we need to cancel out the path systems that are not rout-
ings. For each such P, consider the lexicographically first pair of paths Pi and Pj that
intersect, and let v be their first vertex of intersection. Now exchange the subpath of
Pi from si to v and the subpath of Pj from s j to v, to obtain new paths P′i and P′j.
Replacing {Pi,Pj} with {P′i ,P′j}, we obtain a new path system ϕ(P) from S to T .
Notice that ϕ(ϕ(P)) = P, and sign(ϕ(P))wt(ϕ(P))+ sign(P)wt(P) = 0; so for all
non-routings P, the path systems P and ϕ(P) cancel each other out. �

This theorem was also anticipated by Karlin and McGregor [114] in the context
of birth-and-death Markov processes.

Determinants via routings. The Lindström-Gessel-Viennot lemma is also a useful
combinatorial tool for computing determinants of interest, usually by enumerating
routings in a lattice. We illustrate this with several examples.

1. (Binomial determinants) Consider the binomial determinant(
a1, . . . ,an

b1, . . . ,bn

)
= det

[(
ai

b j

)]
1≤i, j≤n

where 0≤ a1 < · · ·< an and 0≤ b1 < · · ·< bn are integers. These determinants
arise as coefficients of the Chern class of the tensor product of two vector
bundles. [129] This algebro-geometric interpretation implies these numbers
are positive integers; as combinatorialists, we would like to know what they
count.

A SE path is a lattice path in the square latticeN2 consisting of unit steps south
and east. Consider the sets of points A = {A1, . . . ,An} and B = {B1, . . . ,Bn}
where Ai = (0,ai) and Bi = (bi,bi) for 1≤ i≤ n. Since there are

(ai
b j

)
SE paths

from Ai to B j, and since every SE routing from A to B takes Ai to Bi for all i,
we have (

a1, . . . ,an

b1, . . . ,bn

)
= number of SE routings from A to B.

This is the setting in which Gessel and Viennot discovered Theorem 1.4.14;
they also evaluated these determinants in several special cases. [88] We now
discuss one particularly interesting special case.
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2. (Counting permutations by descent set) The descent set of a permutation π is
the set of indices i such that πi > πi+1. We now prove that(

c1, . . . ,ck,n
0,c1, . . . ,ck

)
= number of permutations of [n] with descent set {c1, . . . ,ck},

for any 0 < c1 < · · ·< ck < n. It is useful to define c0 = 0,ck+1 = n.

Encode such a permutation π by a routing as follows. For each i let fi be the
number of indices j ≤ i such that π j ≤ πi. Note that the descents c1, . . . ,ck of
π are the positions where f does not increase. Splitting f at these positions,
we are left with k+1 increasing subwords f 1, . . . , f k+1. Now, for 1≤ i≤ n+1
let Pi be the NW path from (ci−1,ci−1) to (0,ci) taking steps north precisely at
the steps listed in f i. These paths give one of the routings enumerated by the
binomial determinant in question, and this is a bijection. See Figure 1.19 for
an illustration. [88]

A2

A4

A3

A1

B1

B4

B3

B2

1
2

2
3

1

4

5
7

Figure 1.19
The routing corresponding to π = 28351674 and f (π) = 12.23.157.4.

3. (Rhombus tilings and plane partitions) Let Rn be the number of tilings of a
regular hexagon of side length n using unit rhombi with angles 60◦ and 120◦.
Their enumeration is due to MacMahon [133]. There are several equivalent
combinatorial models for this problem, illustrated in Figure 1.20, which we
now discuss.

Firstly, it is almost inevitable to view these tilings as three-dimensional pic-
tures. This shows that Rn is also the number of ways of stacking unit cubes into
the corner of a cubical box of side length n. Incidentally, this three-dimensional
view makes it apparent that there are exactly n2 rhombi of each one of the three
possible orientations.

Secondly, we may consider the triangular grid inside our hexagon, and place
a dot on the center of each triangle. These dots form a hexagonal grid, where
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Figure 1.20
Four models for the rhombus tilings of a hexagon.

two dots are neighbors if they are at distance 1 from each other. Finally, join
two neighboring dots when the corresponding triangles are covered by a tile.
The result is a perfect matching of the hexagonal grid.

Next, on each one of the n2 squares of the floor of the box, write down the
number of cubes above it. The result is a plane partition: an array of non-
negative integers (finitely many of which are non-zero) that is weakly decreas-
ing in each row and column. We conclude that Rn is also the number of plane
partitions whose non-zero entries are at most n, and fit inside an n×n square.

Finally, given such a rhombus tiling, construct n paths as follows. Each path
starts at the center of one of the vertical edges on the western border of the
hexagon, and successively crosses each tile splitting it into equal halves. It
eventually comes out at the southeast side of the diamond, at the same height
where it started (as is apparent from the 3-D picture). The final result is a
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routing from the n sources S1, . . . ,Sn on the left to the sinks T1, . . . ,Tn on the
right in the “rhombus” graph shown below. It is clear how to recover the tiling
from the routing. Since there are

( 2n
n+i− j

)
paths from Si to Tj, the Lindström–

Gessel–Viennot lemma tells us that Rn is given by the determinant

Rn = det
[(

2n
n+ i− j

)]
1≤i, j≤n

=
n

∏
i, j,k=1

i+ j+ k−1
i+ j+ k−2

.

We will prove this product formula in Section 1.4.2.

4. (Catalan determinants, multitriangulations, and Pfaffian rings) The Hankel
matrices of a sequence A = (a0,a1,a2, . . .) are

Hn(A) =


a0 a1 · · · an
a1 a2 · · · an+1
...

...
. . .

...
an an+1 · · · a2n

 ,

and

H ′n(A) =


a1 a2 · · · an+1
a2 a3 · · · an+2
...

...
. . .

...
an+1 an+2 · · · a2n+1

 .

Note that if we know the Hankel determinants detHn(A) and detH ′n(A) and
they are nonzero for all n, then we can use them as a recurrence relation to
recover each ak from a0, . . . ,ak−1.

There is a natural interpretation of the Hankel matrices of the Catalan sequence
C = (C0,C1,C2, . . .). Consider the “diagonal” grid on the upper half plane with
steps (1,1) and (1,−1). Let Ai = (−2i,0) and Bi = (2i,0). Then there are Ci+ j
paths from Ai to B j, and there is clearly a unique routing from (A0, . . . ,An) to
(B0, . . . ,Bn). See Figure 1.21 for an illustration. This proves that detHn(C)= 1,
and an analogous argument proves that detH ′n(C) = 1. Therefore

detHn(A) = detH ′n(A) = 1 for all n≥ 0 ⇐⇒ A is the Catalan sequence.

The Hankel determinants of the shifted Catalan sequences also arise naturally
in several contexts; they are given by:

det


Cn−2k Cn−2k+1 · · · Cn−k−1

Cn−2k+1 Cn−2k+2 · · · Cn−k
...

...
. . .

...
Cn−k−1 Cn−k · · · Cn−2

= ∏
i+ j≤n−2k−1

i+ j+2(k−1)
i+ j

.

(1.9)
There are several ways of proving this equality; for instance, it is a conse-
quence of [122, Theorem 26]. We describe three appearances of this determi-
nant.
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Figure 1.21
Routing interpretation of the Hankel determinant Hn(C).

(a) A k-fan of Dyck paths of length 2n is a collection of k Dyck paths from
(−n,0) to (n,0) that do not cross (although they necessarily share some
edges). Shifting the (i+ 1)th path i units up and adding i upsteps at the
beginning and i downsteps at the end, we obtain a routing of k Dyck paths
starting at the points A = {−(n+k−1), . . . ,−(n+1),−n} and ending at
the points B = {n,n+ 1, . . . ,n+ k− 1} on the x-axis. See Figure 1.22
for an illustration. It follows that the number of k-fans of Dyck paths of
length 2(n−2k) is given by (1.9).

Figure 1.22
A k-fan of Dyck paths.

(b) There is also an extension of the classical one-to-one correspondence be-
tween Dyck paths and triangulations of a polygon. Define a k-crossing in
an n-gon to be a set of k diagonals that cross pairwise. A k-triangulation
is a maximal set of diagonals with no (k + 1)-crossings. The main
enumerative result, due to Jonsson [110], is that the number of k-
triangulations of an n-gon is also given by (1.9). A subtle bijection with
fans of Dyck paths is given in [177].
Several properties of triangulations extend non-trivially to this context.
For example, every k-triangulation has exactly k(2n−2k−1) diagonals
[148, 69]. The k-triangulations are naturally the facets of a simplicial
complex called the multiassociahedron, which is topologically a sphere
[109]; it is not currently known whether it is polytopal. There is a fur-
ther generalization in the context of Coxeter groups, with connections to
cluster algebras [49].
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(c) These determinants also arise naturally in the commutative algebraic
properties of Pfaffians, defined earlier in this section. Let A be a skew-
symmetric n×n matrix whose entries above the diagonal are indetermi-
nates {ai j : 1 ≤ i < j ≤ n} over a field k. Consider the Pfaffian ideal
Ik(A) generated by the

( n
2k

)
Pfaffian minors of A of size 2k×2k, and the

Pfaffian ring Rk(A) = k[ai j]/Ik(A). Then the multiplicity of the Pfaffian
ring Rk(X) is also given by (1.9). [99, 89]

5. (Schröder determinants and Aztec diamonds) Recall from Section 1.3.2.2 that
a Schröder path of length n is a path from (0,0) to (2n,0) using steps NE =
(1,1),SE = (1,−1), and E = (2,0) that stays above the x-axis. The Hankel
determinant detHn(R) counts the routings of Schröder paths from the points
A = {0,−2, . . . ,−(2n)} to the points B = {0,2, . . . ,2n} on the x-axis.

These Hankel determinants have a natural interpretation in terms of tilings.
Consider the Aztec diamond ∗ ADn consisting of 2n rows centered horizon-
tally, consisting successively of 2,4, . . . ,2n,2n, . . . ,4,2 squares. We are inter-
ested in counting the tilings of the Aztec diamond into dominoes.

Figure 1.23
A tiling of the Aztec diamond and the corresponding routing.

Given a domino tiling of ADn, construct n paths as follows. Each path starts
at the center of one of the vertical unit edges on the southwest border of
the diamond, and successively crosses each tile that it encounters following
a straight line through the center of the tile. It eventually comes out at the

∗This shape is called the Aztec diamond because it is reminiscent of designs of several Native American
groups. Perhaps the closest similarity is with Mayan pyramids, such as the Temple of Kukulcán in Chichén
Itzá; the name Mayan diamond would have been more appropriate.
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southeast side of the diamond, at the same height where it started. See Fig-
ure 1.23 for an illustration. If we add i initial NE steps and i final SE steps to
the (i+1)th path for each i, the result will be a routing of Schröder paths from
A = {−(2n), . . . ,−2,0} to B = {0,2, . . . ,2n}. In fact this correspondence is a
bijection [76].

We will prove in Section 1.4.2 that{
detHn(A) = 2n(n−1)/2

detH ′n(A) = 2n(n+1)/2 for all n≥ 0 ⇐⇒ A is the Schröder sequence.

It will follow that

number of domino tilings of the Aztec diamond ADn = 2n(n+1)/2.

This elegant result is originally due to Elkies, Kuperberg, Larsen, and Propp.
For several other proofs, see [73, 74].

1.4.2 Computing determinants

In light of Section 1.4.1, it is no surprise that combinatorialists have become talented
at computing determinants. Fortunately, this is a very classical topic with connections
to many branches of mathematics and physics, and by now there are numerous gen-
eral techniques and guiding examples available to us. Krattenthaler’s surveys [122]
and [123] are excellent references that have clearly influenced the exposition in this
section. We now highlight some of the key tools and examples.

1.4.2.1 Is it known?

Of course, when we wish to evaluate a new determinant, one first step is to check
whether it is a special case of some known determinantal evaluation. Starting with
classical evaluations such as the Vandermonde determinant

det(x j−1
i )1≤i, j≤n = ∏

1≤i< j≤n
(x j− xi), (1.10)

there is now a wide collection of powerful results at our disposal. A particularly
useful one [122, Lemma 3] states that for any x1, . . . ,xn,a2, . . . ,an,b2, . . . ,bn we have:

det
[
(xi +b2) · · ·(xi +b j)(xi +a j+1) · · ·(xi +an)

]
1≤i, j≤n

= ∏
1≤i< j≤n

(x j− xi) ∏
1≤i< j≤n

(bi−a j). (1.11)

For instance, as pointed out in [89] and [122], the Catalan determinant (1.9) is a
special case of this formula. Recognizing it as such is not immediate, but the product
formula for Catalan numbers gives an indication of why this is feasible.
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In fact, here is a counterintuitive principle: Often the easiest way to prove a deter-
minantal identity is to generalize it. It is very useful to introduce as many parameters
as possible into a determinant, while making sure that the more general determi-
nant still evaluates nicely. We will see this principle in action several times in what
follows.

1.4.2.2 Row and column operations

A second step is to check whether the standard methods of computing determinants
are useful: Laplace expansion by minors, or performing row and column operations
until we get a matrix whose determinant we can compute easily. For example, recall
the determinant L0(Kn) of the (n− 1)× (n− 1) reduced Laplacian of the complete
graph Kn, discussed in Section 1.4.1.3. We can compute it by first adding all rows to
the first row, and then adding the first row to all rows:

detL0(Kn) =

∣∣∣∣∣∣∣∣∣
n−1 −1 · · · −1
−1 n−1 · · · −1

...
...

. . .
...

−1 −1 · · · n−1

∣∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣∣

1 1 · · · 1
−1 n−1 · · · −1

...
...

. . .
...

−1 −1 · · · n−1

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
0 n · · · 0
...

...
. . .

...
0 0 · · · n

∣∣∣∣∣∣∣∣∣= nn−2,

reproving Theorem 1.4.6.1.

1.4.2.3 Identifying linear factors

Many n × n determinants of interest have formulas of the form detM(x) =
cL1(x) · · ·Ln(x) where c is a constant and the Li(x) are linear functions in the vari-
ables x = (x1, . . . ,xk). We may prove such a formula by first checking that each Li(x)
is indeed a factor of M, and then computing the constant c.

The best known application of this technique is the proof of the formula (1.10)
for Vandermonde’s determinant V (x1, . . . ,xn). If xi = x j for i 6= j, then rows i and
j are equal, and the determinant is 0. It follows that xi− x j must be a factor of the
polynomial detV (x1, . . . ,xn). Since this polynomial is homogeneous of degree

(n
2

)
, it

must equal a constant times ∏i< j(xi−x j). Comparing the coefficients of x0
1x1

2 · · ·xn−1
n

we see that the constant equals 1.
A similar argument may be used to prove the more general formula (1.11).
To use this technique, it is sometimes necessary to introduce new variables into

our determinant. For example, the formula det(i j−1)1≤i, j≤n = 1n−12n−2 · · ·(n− 1)1

cannot immediately be treated with this technique. However, the factorization of the
answer suggests that this may be a special case of a more general result where this
method does apply; in this case, Vandermonde’s determinant.
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1.4.2.4 Computing the eigenvalues

Sometimes we can compute explicitly the eigenvalues of our matrix, and multiply
them to get the determinant. One common technique is to produce a complete set of
eigenvectors.

1. (The Laplacian of the complete graph Kn) Revisiting the example above, the
Laplacian of the complete graph is L(Kn)= nI−J where I is the identity matrix
and J is the matrix all of whose entries equal 1. We first find the eigenvalues
of J: 0 is an eigenvalue of multiplicity n−1, as evidenced by the linearly inde-
pendent eigenvectors e1−e2, . . . ,en−1−en. Since the sum of the eigenvalues is
tr(J) = n, the last eigenvalue is n; an eigenvector is e1+ · · ·+en−1. Now, if v is
an eigenvector for J with eigenvalue λ , then it is an eigenvector for nI−J with
eigenvalue n−λ . Therefore the eigenvalues of nI− J are n,n, . . . ,n,0. Using
Theorem 1.4.5, we have reproved yet again that detL0(Kn) =

1
n (n

n−1) = nn−2.

2. (The Laplacian of the n-cube Cn) A more interesting example is the re-
duced Laplacian L0(Cn) of the graph of the n-dimensional cube, from The-
orem 1.4.6.4. By producing explicit eigenvectors, one may prove that if the
Laplacians L(G) and L(H) have eigenvalues {λi : 1 ≤ i ≤ a} and {µ j : i ≤
j ≤ b} then the Laplacian of the product graph L(G×H) has eigenvalues
{λi + µ j : 1 ≤ i ≤ a,1 ≤ j ≤ b}. Since C1 has eigenvalues 0 and 2, this im-
plies that Cn = C1×·· ·×C1 has eigenvalues 0,2,4, . . . ,2n with multiplicities(n

0

)
,
(n

1

)
, . . . ,

(n
n

)
, respectively. Therefore the number of spanning trees of the

cube Cn is

detL0(Cn) =
1
2n 2(

n
1)4(

n
2) · · ·(2n)(

n
n) = 22n−n−11(

n
1)2(

n
2) · · ·n(n

n).

3. (The perfect matchings of a rectangle) An even more interesting example
comes from the perfect matchings of the a×b rectangle, which we discussed
in Section 1.4.1.5. Let V be the 4mn-dimensional vector space of functions
f : [2m]× [2n]→C, and consider the linear transformation L : V →V given by

(L f )(x,y) = f (x−1,y)+ f (x+1,y)+ i f (x,y−1)+ i f (x,y+1),

where f (x,y) = 0 when x ∈ {0,a+1} or y ∈ {0,b+1}. The matrix of this lin-
ear transformation is precisely the one we are interested in. A straightforward
computation shows that the following are eigenfunctions and eigenvalues of L:

gk,l(x,y) = sin
kπx

a+1
sin

lπy
b+1

, λk,l = 2cos
kπ

a+1
+2icos

lπ
b+1

for 1≤ k≤ a and 1≤ l≤ b. (Note that gk,l(x,y)= 0 for x∈{0,a} or y∈{0,b}.)
This is then the complete list of eigenvalues for L, so

detL = 2ab
a

∏
k=1

b

∏
l=1

(
cos

kπ

a+1
+ icos

lπ
b+1

)
,

which is easily seen to equal the expression in Theorem 1.4.13.
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1.4.2.5 LU factorizations

A classic result in linear algebra states that, under mild hypotheses, a square matrix
M has a unique factorization

M = LU

where L is a lower triangular matrix and U is an upper triangular matrix with all diag-
onal entries equal to 1. Computer algebra systems can compute the LU-factorization
of a matrix, and if we can guess and prove such a factorization it will follow imme-
diately that detM equals the product of the diagonal entries of L.

An interesting application of this technique is the determinant

det(gcd(i, j))1≤i, j≤n =
n

∏
i=1

ϕ(i), (1.12)

where ϕ(k) = {i ∈ N : (gcd(i,k) = 1 and 1≤ i≤ k} is Euler’s totient function. This
is a special case of a more general formula for semilattices that is easier to prove.
For this brief computation, we assume familiarity with the Möbius function µ and
the zeta function ζ of a poset; these will be treated in detail in Section 1.5.5.3.

Let P be a finite meet semilattice and consider any function F : P×P→ k. We
will prove the Lindström–Wilf determinantal formula:

detF(p∨q, p)p,q∈P = ∏
p∈P

(
∑
r≥p

µ(p,r)F(r, p)

)
. (1.13)

Computing some examples will suggest that the LU factorization of F is F = MZ
where

Mpq =

{
∑r≥q µ(q,r)F(r, p) if p≤ q,
0 otherwise,

Zpq =

{
1 if p≥ q,
0 otherwise.

This guess is easy to prove, and it immediately implies (1.13). In turn, applying the
Lindström–Wilf to the poset of integers {1, . . . ,n} ordered by reverse divisibility and
the function F(x,y) = x, we obtain (1.12).

Another interesting special case is the determinant

det(xrank(p∨q))p,q∈P = ∏
p∈P

(
xrank(p)

χ[p,1̂](1/x)
)
,

where χ[p,1̂](x) is the characteristic polynomial of the interval [x, 1̂]. When P is the
partition lattice Πn, this determinant arises in Tutte’s work on the Birkhoff-Lewis
equations [203].

1.4.2.6 Hankel determinants and continued fractions

For Hankel determinants, the following connection with continued fractions [209] is
extremely useful. If the expansion of the generating function for a sequence f0, f1, . . .
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as a J-fraction is
∞

∑
n=0

fnxn =
f0

1+a0x− b1x2

1+a1x− b2x2
1+a2x−···

,

then the Hankel determinants of f0, f1, . . . equal

detHn(A) = f n
0 bn−1

1 bn−2
2 · · ·b2

n−2bn−1

For instance, using the generating function for the Schröder numbers rn, it is easy to
prove that

∞

∑
n=0

rnxn =
1

1−2x− 2x2

1−3x− 2x2
1−3x−···

,
∞

∑
n=0

rn+1xn =
2

1−3x− 2x2

1−3x− 2x2
1−3x−···

.

Therefore
detHn(R) = 2n(n−1)/2, detH ′n(R) = 2n(n+1)/2,

as stated in Example 5 of Section 1.4.1.6.
By computer calculation, it is often easy to guess J-fractions experimentally. With

a good guess in place, there is an established procedure for proving their correctness,
rooted in the theory of orthogonal polynomials; see [122, Section 2.7].

Dodgson condensation. It is often repeated that Lewis Carroll, author of Alice in
Wonderland, was also an Anglican deacon and a mathematician, publishing under his
real name, Rev. Charles L. Dodgson. His contributions to mathematics are discussed
less often, and one of them is an elegant method for computing determinants.

To compute an n× n determinant A, we create a square pyramid of numbers,
consisting of n+1 levels of size n+1,n . . . ,1, respectively. On the bottom level we
place an (n+1)× (n+1) array of 1s, and on the next level we place the n×n matrix
A. Each subsequent floor is obtained from the previous two by the following rule:
Each new entry is given by f = (ad− bc)/e where f is directly above the entries(

a b
c d

)
and two floors above the entry e. ∗ The top entry of the pyramid is the

determinant. For example, the computation
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

→


2 7 5 4
1 9 7 7
2 3 2 1
5 7 6 3

→
 11 4 7
−15 −3 −7
−1 4 0

→( 3 −1
−21 28

)
→
(
21
)

shows that the determinant of the 4×4 determinant is 21.
Dodgson’s condensation method relies on the following fact, due to Jacobi. If A

is an n× n matrix and Ai1,...,ik ; j1,..., jk denotes the matrix A with rows i1, . . . , ik and
columns j1, . . . , jk removed, then

detA ·detA1,n ;1,n = detA1;1 ·detAn ;n−detA1;n ·detAn ;1. (1.14)

∗Special care is required when 0s appear in the interior of the pyramid.
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This proves that the numbers appearing in the pyramid are precisely the determinants
of the “contiguous” submatrices of A, consisting of consecutive rows and columns.

If we have a guess for the determinant of A, as well as the determinants of its
contiguous submatrices, Dodgson condensation is an extremely efficient method to
prove it. All we need to do is to verify that our guess satisfies (1.14).

To see how this works in an example, let us use Dodgson condensation to prove
the formula in Section 1.4.1.6 for Rn = det

( 2n
n+i− j

)
1≤i, j≤n

, the number of stacks of
unit cubes in the corner of an n×n×n box. The first step is to guess the determinant
of the matrix in question, as well as all its contiguous submatrices; they are all of the
form R(a,b,c) = det

( a+b
a+i− j

)
1≤i, j≤c

, where a+b= 2n. This more general determinant
is equally interesting combinatorially: it counts the stacks of unit cubes in the corner
of an a× b× c box. By computer experimentation, it is not too difficult to arrive at
the following guess:

R(a,b,c) = det
[(

a+b
a+ i− j

)]
1≤i, j≤c

=
a

∏
i=1

b

∏
j=1

c

∏
k=1

i+ j+ k−1
i+ j+ k−2

.

Proving this formula by Dodgson condensation is then straightforward; we just need
to check that our conjectural product formula holds for c = 0,1 and that it satisfies
(1.14); that is,

R(a,b,c+1)R(a,b,c−1) = R(a,b,c)2−R(a+1,b−1,c)R(a−1,b+1,c).

For more applications of Dodgson condensation, see for example [3].
There is a wonderful connection between Dodgson condensation, Aztec dia-

monds, and alternating sign matrices, which we now describe. Let us construct
a square pyramid of numbers where levels n+2 and n+1 are given by two matrices
y = (yi j)1≤i, j≤n+2 and x = (xi j)1≤i, j≤n+1, respectively, and levels n− 1, . . . ,2,1 are
computed in terms of the lower rows using Dodgson’s recurrence f = (ad− bc)/e.
Let fn(x,y) be the entry at the top of the pyramid.

Remarkably, all the entries of the resulting pyramid will be Laurent monomials
in the xi js and yi js; that is, their denominators are always monomials. This is obvious
for the first few levels, but it becomes more and more surprising as we divide by
more and more intricate expressions.

The combinatorial explanation for this fact is that each entry in the (n−k)th level
of the pyramid encodes the domino tilings of an Aztec diamond ADk. For instance,
if n = 3, the entry at the top of the pyramid is

f2(x,y) =
x11x22x33

y22y33
− x11x23x32

y22y33
− x12x21x33

y22y33
+

x12x21x23x32

x22y22y33

− x12x21x23x32

x22y23y32
+

x12x23x31

y23y32
+

x13x21x32

y23y32
− x13x31x32

y23y32

There is a simple bijection between the eight terms of f3 and the eight domino
tilings of AD2. Regard a tiling of AD2 as a graph with vertices on the underlying
lattice, and add a vertical edge above and below the tiling, and a horizontal edge to the



Algebraic and Geometric Methods in Enumerative Combinatorics 71

3 4 3
3 2

3 3 4
2 3

4 3 3 

0 1 0
0 -1

0 0 1
-1 0

1 0 0

Figure 1.24
A domino tiling of AD2 and the corresponding monomial in f2(x,y).

left and to the right of T . Now rotate the tiling 45◦. Record the degree of each vertex,
ignoring the outside corners on the boundary of the diamond, and subtract 3 from
each vertex. This leaves us with an n×n grid of integers within an (n+1)× (n+1)
grid of integers. Assign to it the monomial whose x exponents are given by the outer
grid and whose y exponents are given by the inner grid. For example, the tiling in
Figure 1.24 corresponds to the monomial (x12x23x31)/(y23y32).

In general, this gives a bijection between the terms of fn(x,y) and the domino
tilings of the Aztec diamond ADn. One may also check that there are no cancella-
tions, so Dodgson condensation tells us that the number mn of terms in fn satisfies
mn−1mn+1 = 2m2

n. This gives an alternative proof that the Aztec diamond ADn has
2n(n+1)/2 domino tilings.

We may also consider the patterns formed by the xi js by themselves (or of the
yi js by themselves). In each individual monomial of fn(x,y), the exponents of the
xi js form an n×n alternating sign matrix (ASM): a matrix of 1s, 0s, and −1s such
that the nonzero entries in any row or column alternate 1,−1, . . . ,−1,1. Similarly,
the negatives of the exponents of the yi js form an ASM of size n−1.

Alternating sign matrices are fascinating objects in their own right, with connec-
tions to representation theory, statistical mechanics, and other fields. The number of
alternating sign matrices of size n is

1!4!7! · · ·(3n−2)!
n!(n+1)!(n+2)! · · ·(2n−1)!

.

For details on the history and solution of this difficult enumeration problem see [44,
167, 222].

1.5 Posets
This section is devoted to the enumerative aspects of the theory of partially ordered
sets (posets). Section 1.5.1 introduces key definitions and examples. Section 1.5.2
discusses some families of lattices that are of special importance. In Section 1.5.3 we
count chains and linear extensions of posets.
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The remaining sections are centered around the Möbius Inversion Formula,
which is perhaps the most useful enumerative tool in the theory of posets. This for-
mula helps us count sets that have an underlying poset structure; it applies to many
combinatorial settings of interest.

In Section 1.5.4 we discuss the Inclusion-Exclusion Formula, a special case of
great importance. In Section 1.5.5 we introduce Möbius functions and the Möbius
Inversion Formula. In particular, we catalog the Möbius functions of many important
posets. The incidence algebra, a nice algebraic framework for understanding and
working with the Möbius function, is discussed in Section 1.5.5.3. In Section 1.5.5.4
we discuss methods for computing Möbius functions of posets, and sketch proofs for
the posets of Section 1.5.5. Finally, in Section 1.5.6, we discuss Eulerian posets and
the enumeration of their flags, which gives rise to the ab-index and cd-index.

1.5.1 Basic definitions and examples

A partially ordered set or poset (P,≤) is a set P together with a binary relation ≤,
called a partial order, such that

• For all p ∈ P, we have p≤ p.

• For all p,q ∈ P, if p≤ q and q≤ p then p = q.

• For all p,q,r ∈ P, if p≤ q and q≤ r then p≤ r.

We say that p < q if p≤ q and p 6= q. We say that p and q are comparable if p < q
or p > q, and they are incomparable otherwise. We say that q covers p if q > p and
there is no r ∈ P such that q > r > p. When q covers p we write qm p.

Example 1.5.1 Many sets in combinatorics come with a natural partial order, and
often the resulting poset structure is very useful for enumerative purposes. Some of
the most important examples are the following:

1. (Chain) The poset n = {1,2, . . . ,n} with the usual total order. (n≥ 1)

2. (Boolean lattice) The poset 2A of subsets of a set A, where S≤ T if S⊆ T .

3. (Divisor lattice) The poset Dn of divisors of n, where c ≤ d if c divides d.
(n≥ 1)

4. (Young’s lattice) The poset Y of integer partitions, where λ ≤ µ if λi ≤ µi for
all i.

5. (Partition lattice) The poset Πn of set partitions of [n], where π ≤ ρ if π refines
ρ; that is, if every block of ρ is a union of blocks of π . (n≥ 1)

6. (Non-crossing partition lattice) The subposet NCn of Πn consisting of the non-
crossing set partitions of [n], where there are no elements a < b < c < d such
that a,c are together in one block and b,d are together in a different block.
(n≥ 1)
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7. (Bruhat order on permutations) The poset Sn of permutations of [n], where π

covers ρ if π is obtained from ρ by choosing two adjacent numbers ρi = a <
b = ρi+1 in ρ and exchanging their positions. (n≥ 1)

8. (Subspace lattice) The poset L(Fn
q) of subspaces of a finite dimensional vector

space Fn
q, where U ≤V if U is a subspace of V . (n≥ 1, q a prime power)

9. (Distributive lattice) The poset J(P) of order ideals of a poset P (subsets I ⊆ P
such that j ∈ P and i < j imply i ∈ P) ordered by containment.

10. (Face poset of a polytope) The poset F(P) of faces of a polytope P, ordered by
inclusion.

11. (Face poset of a subdivision of a polytope) The poset T̂ of faces of a subdi-
vision T of a polytope P ordered by inclusion, with an additional maximum
element.

12. (Subgroup lattice of a group) The poset L(G) of subgroups of a group G, or-
dered by containment.

The Hasse diagram of a finite poset P is obtained by drawing a dot for each
element of P and an edge going down from p to q if p covers q. Figure 1.25 shows
the Hasse diagrams of some of the posets above. In particular, the Hasse diagram of
2[n] is the 1-skeleton of the n-dimensional cube.

1

2

3

4

1 2 3

12 13 23

123

Ø 1

3

9
2

6

18

1|2|3

13|2 1|2312|3

123

132 213

312 231

321

123 

Figure 1.25
The Hasse diagrams of the chain 4, Boolean lattice 2[3], divisor lattice D18, partition
lattice Π3, and Bruhat order S3.

A subset Q of P is a chain if every pair of elements is comparable, and it is
an antichain if every pair of elements is incomparable. The length of a chain C is
|C| − 1. If there is a rank function r : P→ N such that r(x) = 0 for any minimal
element x and r(y) = r(x)+ 1 whenever ym x, then P is called graded or ranked.
The largest rank is called the rank or height of P. The rank-generating function of
a finite graded poset is

R(P;x) = ∑
p∈P

xr(p).

All the posets of Example 1.5.1 are graded except for subgroup lattices.
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A poset P induces a poset structure on any subset Q⊆ P; a special case of interest
is the interval [p,q] = {r ∈ P : p ≤ r ≤ q}. We call a poset locally finite if all its
intervals are finite. Given posets P and Q on disjoint sets, the direct sum P+Q is
the poset on P∪Q inheriting the order relations from P and Q, and containing no
additional order relations between elements of P and Q. The direct product P×Q
is the poset on P×Q where (p,q)≤ (p′,q′) if p≤ p′ and q≤ q′.

We have already seen examples of product posets. The Boolean lattice is 2A ∼=
2×·· ·×2. Also, if n = pt1

1 · · · p
tk
k is the prime factorization of n, then Dn ∼= (t1 +1)×

·· ·× (tk +1).

1.5.2 Lattices

A poset is a lattice if every two elements p and q have a least upper bound p∨q and
a greatest lower bound p∧ q, called their meet and join, respectively. We will see
this additional algebraic structure can be quite beneficial for enumerative purposes.

Example 1.5.2 All the posets in Example 1.5.1 are lattices, except for the Bruhat
order. In most cases, the meet and join have easy descriptions. In n, the meet and
join are the minimum and maximum, respectively. In 2A they are the intersection and
union. In Dn they are the greatest common divisor and least common multiple. In Y
they are the componentwise minimum and maximum. In Πn and in NCn the meet of
two partitions π and ρ is the collection of intersections of a block of π and a block
of ρ . In L(Fn

q) the meet and join are the intersection and the span. In J(P) they are
the intersection and the union. In F(P) the meet is the intersection. In L(G) the meet
is the intersection.

Any lattice must have a unique minimum element 0̂ and maximum element 1̂. An
element covering 0̂ is called an atom; an element covered by 1̂ is called a coatom.
To prove that a finite poset P is a lattice, it is sufficient to check that it has a 1̂ and that
any x,y ∈ P have a meet; then the join of x and y will be the (necessarily non-empty)
meet of their common upper bounds. Similarly, it suffices to check that P has a 0̂ and
that any x,y ∈ P have a join.

Distributive lattices. A lattice L is distributive if the join and meet operations
satisfy the distributive properties:

x∨ (y∧ z) = (x∨ y)∧ (x∨ z), x∧ (y∨ z) = (x∧ y)∨ (x∧ z) (1.15)

for all x,y,z ∈ L. To prove that L is distributive, it is sufficient to verify that one of
the equations in (1.15) holds for all x,y,z ∈ L.

Example 1.5.3 There are several distributive lattices in Example 1.5.1: the chains
n, the Boolean lattices 2A, the divisor lattices Dn, and Young’s lattice Y . This follows
from the fact that the pairs of operations (min,max), (gcd, lcm) and (∩,∪) satisfy
the distributive laws. The others are not necessarily distributive; for example, Π3
and S3.
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The most important, and in fact, the only, source of finite distributive lattices is
the construction of Example 1.5.1.9: Given a poset P, a downset or order ideal I is
a subset of P such that if i ∈ I and j < i then j ∈ I. A principal order ideal is one of
the form P≤p = {q ∈ P : q≤ p}. Let J(P) be the poset of order ideals of P, ordered
by inclusion.

Theorem 1.5.4 (Fundamental Theorem for Finite Distributive Lattices) A poset
L is a distributive lattice if and only if there exists a poset P such that L∼= J(P).

Sketch of Proof. Since the collection of order ideals of a poset P is closed under
union and intersection, J(P) is a sublattice of 2P. The distributivity of 2P then implies
that J(P) is a distributive lattice.

For the converse, let L be a distributive lattice, and let P be the set of join-
irreducible elements of L; that is, the elements p > 0̂ that cannot be written as
p = q∨ r for q,r < p. These are precisely the elements of L that cover exactly one
element. The set P inherits a partial order from L, and this is the poset such that
L∼= J(P). The isomorphism is given by

φ : J(P) −→ L

I 7−→
∨
p∈I

p

and the inverse map is given by φ−1(l) = {p ∈ P : p≤ l}. �

Ø

a

d

b

c

a

abcd

abdabc

bdab

b

Figure 1.26
A poset and the corresponding distributive lattice.

Theorem 1.5.4 extends to some infinite posets with minor modifications. Let
J f (P) be the set of finite order ideals of a poset P. Then the map P 7→ J f (P) is a
bijection between the posets whose principal order ideals are finite and the locally
finite distributive lattices with 0̂.
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Example 1.5.5 The posets P of join-irreducibles of the distributive lattices L∼= J(P)
of Example 1.5.3 are as follows. For L = n, P = n−1 is a chain. For L = 2A, P =
1+ · · ·+1 is an antichain. For L = Dn, where n = pt1

1 · · · p
tk
k , P = t1 + · · ·+ tk is the

disjoint sum of k chains. For L = Y , P = N×N is a “quadrant.”

Theorem 1.5.4 explains the abundance of cubes in the Hasse diagram of a dis-
tributive lattice L. For any element l ∈ L covered by n elements l1, . . . , ln of L, the
joins of the 2n subsets of {l1, . . . , ln} are distinct, and form a copy of the Boolean
lattice 2[n] inside L. The dual result holds as well.

The width of a poset P is the size of the largest antichain of P. Dilworth’s the-
orem [68] states that this is the smallest integer w such that P can be written as the
disjoint union of w chains.

Theorem 1.5.6 The distributive lattice J(P) can be embedded as an induced sub-
poset of the poset Nw, where w is the width of P.

Proof. Decompose P as the disjoint union of w chains C1, . . . ,Cc. The map

φ : J(P) −→ Nw

I 7−→ (|I∩C1|, . . . , |I∩Cw|)

gives the desired inclusion. �

Geometric lattices. Now we introduce another family of lattices of great impor-
tance in combinatorics. We say that a lattice L is:

• semimodular if the following two equivalent conditions hold:

– L is graded and r(p)+ r(q)≥ r(p∧q)+ r(p∨q) for all p,q ∈ L.

– If p and q both cover p∧q, then p∨q covers both p and q.

• atomic if every element is a join of atoms.

• geometric if it is semimodular and atomic.

Example 1.5.7 In Figure 1.25, the posets 2[3] and Π3 are geometric, while the posets
4, D18, and S3 are not.

Not surprisingly, the prototypical example of a geometric lattice comes from a
natural geometric construction, illustrated in Figure 1.27. Let A = {v1, . . . ,vn} be a
set of vectors in a vector space V . A flat is a subspace of V generated by a subset of
A. We identify a flat with the set of vis that it contains. Let LA be the set of flats of A,
ordered by inclusion. Then LA is a geometric lattice.

The theory of geometric lattices is equivalent to the rich theory of matroids,
which is the subject of Section 1.8.
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Figure 1.27
A vector configuration t,u,v,w (where t,u,v are coplanar inR3) and the correspond-
ing geometric lattice.

Supersolvable lattices. A lattice L is supersolvable if there exists a maximal
chain, called an M-chain, such that the sublattice generated by C and any other chain
of L is distributive. [182]

Again unsurprisingly, an important example comes from supersolvable groups,
but there are several other interesting examples. Here is a list of supersolvable lat-
tices, and an M-chain in each case.

1. Distributive lattices: every maximal chain is an M-chain.

2. Partition lattice Πn: 1|2| · · · |n < 12|3| · · · |n < 123|4| · · · |n < · · ·< 123 · · ·n.

3. Noncrossing partition lattice NCn: the same chain as above.

4. Lattice of subspaces L(Fn
q) of the vector space Fn

q over a finite field Fq: every
maximal chain is an M-chain.

5. Subgroup lattices of finite supersolvable groups G: an M-chain is given by any
normal series 1 = H0 /H1 / · · ·/Hk = G where each Hi is normal and Hi/Hi−1
is cyclic of prime order.

Fortunately, there is a simple criterion to verify semimodularity. An R-labeling
of a poset P is a labeling of the edges of the Hasse diagram of P with integers such
that for any s≤ t there exists a unique maximal chain C from s to t.

Theorem 1.5.8 [139] A finite graded lattice of rank n is supersolvable if and only if
it has an R-labeling for which the labels on every maximal chain are a permutation
of {1, . . . ,n}.

1.5.3 Zeta polynomials and order polynomials

The zeta polynomial of a finite poset P counts the multichains of various lengths
in P. A multichain of length k in P is a sequence of possibly repeated elements
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t0, t1, . . . , tk ∈ P such that t0 ≤ t1 ≤ ·· · ≤ tk. Let

ZP(k) = number of multichains of length k−2 in P (k ≥ 2). (1.16)

There is a unique polynomial ZP(k) satisfying (1.16) for all integers k≥ 2; it is given
by

ZP(k) = ∑
i≥2

bi

(
k−2
i−2

)
, (1.17)

where bi is the number of chains of length i− 2 in P. This polynomial is called the
zeta polynomial of P.

Example 1.5.9 The following posets have particularly nice zeta polynomials:

1. P = n:

Z(k) =
(

n+ k−2
n−1

)
2. P = Bn:

Z(k) = kn

3. P = NCn: (Kreweras, [124])

Z(k) =
1
n

(
kn

n−1

)
The order polynomial of P counts the order-preserving labelings of P; it is de-

fined by

ΩP(k) = number of maps f : P→ [k] such that p < q implies f (p)≤ f (q)

for k ∈N. The next proposition shows that, once again, there is a unique polynomial
taking these values at the natural numbers.

Proposition 1.5.10 For any poset P, ΩP(k) = ZJ(P)(k).

Proof. An order-preserving map f : P→ [k] gives rise to a sequence of order ideals
f−1({1}) ⊆ f−1({1,2}) ⊆ ·· · f−1({1, . . . ,k}), which is a multichain in J(P). Con-
versely, every sequence arises uniquely in this way. �

A linear extension of P is an order-preserving labeling of the elements of P with
the labels 1, . . . ,n = |P|, which extends the order of P; that is, a bijection f : P→ [n]
such that p < q implies f (p)< f (q). Let

e(P) = number of linear extensions of P.

It follows from Proposition 1.5.10 and (1.17) that the order polynomial ΩP has degree
|P|, and leading coefficient e(P)/|P|!.

The following is a method for computing e(P) recursively.
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Proposition 1.5.11 Define e : J(P)→ N recursively by

e(I) =

1 if I = 0̂,

∑
JlI

e(J) otherwise.

Then e(1̂) is the number e(P) of linear extensions of P.

Proof. Let p1, . . . , pk be the maximal elements of P. In a linear extension of P, one
of p1, . . . , pk has to be labeled n, and therefore

e(P) = e(P\{p1})+ · · ·+ e(P\{pk}).

This is equivalent to the desired recurrence. �

It is useful to keep in mind that J(P) is a subposet of Nw for w = w(P). The
recurrence of Proposition 1.5.11 generalizes Pascal’s triangle, which corresponds to
the case P = N+N. When we apply it to P = N+ · · ·+N, we get the recursive
formula for multinomial coefficients.

Example 1.5.12 In some special cases, the problem of enumerating linear exten-
sions is of fundamental importance.

• e(n1 + · · ·+nk) =
(n1+···+nk

n1,...,nk

)
• e(2×n) =Cn =

1
n+1

(2n
n

)
.

• Let T be a tree poset of n elements, such that the Hasse diagram is a tree
rooted at 0̂. For each vertex v let tv = |T≥v|= |{w ∈ T : w≥ v}|. Then

e(T ) =
n!

∏v∈T tv
.

• Let λ be a Ferrers diagram of n cells, partially ordered by decreeing that
each cell is covered by the cell directly below and the cell directly to the
right, if they are in λ . The hook Hc of a cell c consists of cells on the same
row and to the right of c, those on the same column and below c, and c itself.
Let hc = |Hc|. Then

e(λ ) =
n!

∏c∈D hc
.

This is the dimension of the irreducible representation of the symmetric group
Sn corresponding to λ . [173]

1.5.4 The inclusion-exclusion formula

Our next goal is to discuss one of the most useful enumerative tools for posets:
Möbius functions and the Möbius inversion theorem. Before we do that, we de-
vote this section to a special case that preceded and motivated them: the inclusion-
exclusion formula.
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Theorem 1.5.13 (Inclusion-Exclusion Formula) For any finite sets A1, . . . ,An⊆X,
we have

1. |A1∪·· ·∪An|=∑
i
|Ai|−∑

i< j
|Ai∩A j|+ ∑

i< j<k
|Ai∩A j∩Ak|−· · ·±|A1∩·· ·∩An|.

2. |A1∩·· ·∩An|= |X |−∑
i
|Ai|+∑

i< j
|Ai∩A j|− · · ·± |A1∩·· ·∩An|.

Proof. It suffices to prove one of these two equivalent equations. To prove the first
one, consider an element x appearing in k≥ 1 of the given sets. The number of times
that x is counted in the right-hand side is k−

(k
2

)
+ · · ·±

(k
k

)
= 1. �

We now present a slightly more general formulation.

Theorem 1.5.14 (Inclusion-Exclusion Formula) Let A be a set and consider two
functions f=, f≥ : 2A −→ k from 2A to a field k. Then

1. f≥(S) = ∑
T⊇S

f=(T ) for S⊆ A ⇐⇒ f=(S) = ∑
T⊇S

(−1)|T−S| f≥(T ) for S⊆ A.

2. f≤(S) = ∑
T⊆S

f=(T ) for S⊆ A ⇐⇒ f=(S) = ∑
T⊆S

(−1)|S−T | f≤(T ) for S⊆ A.

The most common interpretation is the following. Suppose we have a set U of
objects and a set A of properties that each object in U may or may not satisfy. If we
know, for each S ⊆ A, the number f≥(S) of elements having at least the properties
in S (or the number f≤(S) of elements having at most the properties in S), then we
obtain, for each S⊆ A, the number f=(S) of elements having exactly the properties in
S. We are often interested in the number f=( /0) or f=(A) of elements satisfying none
or all of the given properties.

Theorem 1.5.14 has a simple linear algebraic interpretation. Consider the two
2A× 2A matrices C,D whose non-zero entries are CS,T = 1 for S ⊆ T , and DS,T =

(−1)|T−S| for S ⊆ T . Then the inclusion-exclusion formula is equivalent to the as-
sertion that C and D are inverse matrices. This can be proved directly, but we prefer
to deduce it as a special case of the Möbius inversion formula (Theorem 1.5.16). We
now present two applications.

Derangements. One of the classic applications of the inclusion-exclusion formula
is the enumeration of the derangements of [n], which are the permutations π ∈ Sn
such that π(i) 6= i for all i. Let A= {A1, . . . ,An}where Ai is the property that π(i) = i.
Then f≥(T ) = (n−|T |)!, so the number Dn of derangements of [n] is

Dn = f=( /0) = ∑
T
(−1)|T | f≥(T ) =

n

∑
k=0

(
n
k

)
(−1)k(n− k)!

= n!
(

1
0!
− 1

1!
+

1
2!
−·· ·± 1

n!

)
.

It follows that Dn is the integer closest to n!/e.
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Discrete derivatives. Consider the k-vector space Γ of functions f : Z→ k. The
discrete derivative of f is the function ∆ f given by ∆ f (n) = f (n+ 1)− f (n). We
now wish to show that, just as with ordinary derivatives,

∆
d+1 f = 0 if and only if f is a polynomial of degree at most d.

This was part of Theorem 1.3.6. Regarding ∆ as a linear operator on Γ, we have
∆ = E − 1 where E f (n) = f (n+ 1) and 1 is the identity. Then ∆k = (E − 1)k =

∑
k
i=0
(k

i

)
E i(−1)k−i, so the kth discrete derivative is ∆k f (n)=∑

k
i=0(−1)k−i

(k
i

)
f (n+i).

The functions f≤(S) = f (n+ |S|) and f=(S) =∆k f (|S|) satisfy Theorem 1.5.14.2,
so we have f (n + k) = ∑

k
i=0
(k

i

)
∆i f (n). (This is equivalent to Ek = (∆ + 1)k.) If

∆d+1 f = 0, this gives f (k) = ∑
d
i=0
(k

i

)
∆i f (0), which is a polynomial in k of degree

at most d. The converse follows from the observation that ∆ lowers the degree of a
polynomial by 1.

1.5.5 Möbius functions and Möbius inversion

1.5.5.1 The Möbius function

Given a locally finite poset P, let Int(P) = {[x,y] : x,y ∈ P, x ≤ y} be the set of
intervals of P. The (two-variable) Möbius function of a poset P is the function µ :
Int(P)→ Z defined by

∑
p≤r≤q

µ(p,r) =

{
1 if p = q,
0 otherwise.

(1.18)

Here we are denoting µ(p,q) = µ([p,q]). We will later see that the Möbius function
can be defined equivalently by the equations:

∑
p≤r≤q

µ(r,q) =

{
1 if p = q,
0 otherwise.

(1.19)

When P has a minimum element 0̂, the (one-variable) Möbius function µ : P→
Z is µ(x) = µ(0̂,x). If P also has a 1̂, the Möbius number of P is µ(P) = µ(0̂, 1̂).

Computing the Möbius function is a very important problem, because the Möbius
function is the poset analog of a derivative; and as such, it is a fundamental invariant
of a poset. This problem often leads to very interesting enumerative combinatorics,
as can be gleaned from the following gallery of Möbius functions.

Theorem 1.5.15 The Möbius functions of some key posets are as follows.

1. (Chain) P = n:

µn(i, j) =


1 if j = i
−1 if j = i+1
0 otherwise.
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2. (Boolean lattice) P = 2A:

µ2A(S,T ) = (−1)T−S.

3. (Divisor lattice) P = Dn: We have µDn(k, l) = µ(l/k) where

µ(m) =

{
(−1)t if m is a product of t distinct primes, and
0 otherwise.

is the classical Möbius function from number theory.

4. (Young’s lattice) P = Y :

µ(λ ,µ) =

{
(−1)|µ−λ | if µ−λ has no two adjacent squares, and
0 otherwise.

5. (Partition lattice) P = Πn: The Möbius number of Πn is

µ(Πn) = (−1)n−1(n−1)!,

from which a (less elegant) formula for the complete Möbius function can be
derived.

6. (Non-crossing partition lattice) P = NCn: The Möbius number of NCn is

µ(NCn) = (−1)n−1Cn−1,

where Cn−1 is the (n−1)th Catalan number. This gives a (less elegant) formula
for the complete Möbius function.

7. (Bruhat order) P = Sn:

µ(u,v) = (−1)`(v)−`(u),

where the length `(w) of a permutation w ∈ Sn is the number of inversions
(i, j) where 1≤ i < j ≤ n and wi > w j. (There is a generalization of this result
to the Bruhat order on any Coxeter group W, or even on a parabolic subgroup
W J; see Section 1.5.5.4.)

8. (Subspace lattice) P = L(Fn
q):

µ(U,V ) = (−1)dq(
d
2),

where d = dimV −dimU.

9. (Distributive lattice) L = J(P):

µ(I,J) =

{
(−1)|J−I| if J− I is an antichain in P, and
0 otherwise.
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10. (Face poset of a polytope) L = F(P):

µ(F,G) = (−1)dimG−dimF .

11. (Face poset of a subdivision T of a polytope P) L = T̂ :

µ(F,G) =


(−1)dimG−dimF if G < 1̂
(−1)dimP−dimF+1 if G = 1̂ and F is not on the boundary of P
0 if G = 1̂ and F is on the boundary of P.

12. (Subgroup lattice of a finite p-group) If |G| = pn for p prime, n ∈ N, then in
L = L(G):

µ(A,B) =

{
(−1)k p(

k
2) if A is a normal subgroup of B and B/A∼= Zk

p, and
0 otherwise.

Some of the formulas above follow easily from the definitions, while others re-
quire more sophisticated methods. In the following sections we will develop some
of the basic theory of Möbius functions and discuss the most common methods for
computing them. Along the way, we will sketch proofs of all the formulas above.

It is worth remarking that a version of item 11 of Theorem 1.5.15 holds more
generally for the face poset of any finite regular cell complexes Γ such that the un-
derlying space |Γ| is a manifold with or without boundary; see [194, Prop. 3.8.9] for
details.

1.5.5.2 Möbius inversion

In enumerative combinatorics, there are many situations where we have a set U of
objects, and a natural way of assigning to each object u of U an element f (u) of
a poset P. We are interested in counting the objects in U that map to a particular
element p ∈ P. Often we find that it is much easier to count the objects in s that map
to an element less than or equal to ∗ p in P. The following theorem tells us that
this easier enumeration is sufficient for our purposes, as long as we can compute the
Möbius function of P.

Theorem 1.5.16 (Möbius Inversion formula) Let P be a poset and let f ,g : P→ k

be functions from P to a field k. Then

1. ∀p ∈ P g(p) = ∑
q≥p

f (q) ⇐⇒ ∀p ∈ P f (p) = ∑
q≥p

µ(p,q)g(q) and

2. ∀p ∈ P g(p) = ∑
q≤p

f (q) ⇐⇒ ∀p ∈ P f (p) = ∑
q≤p

µ(q, p)g(q).

In his paper [169], which pioneered the use of the Möbius inversion formula as
a tool for counting in combinatorics, Rota described this enumerative philosophy as
follows:

∗or greater than or equal to


