
Computer Science

Combining knowledge with strategies, Data Structure Practice for Collegiate Program-
ming Contests and Education presents the first comprehensive book on data structure in
programming contests. This book is designed for training collegiate programming contest
teams in the nuances of data structures and for helping college students in computer-related
majors to gain deeper understanding of data structure.

Based on successful experiences in many world-level contests, the book includes 204 typical
problems and detailed analyses selected from the ACM International Collegiate Programming
Contest and other major programming contests since 1990. It is divided into four sections that
focus on:

•	 Fundamental programming skills

•	 Experiments for linear lists

•	 Experiments for trees

•	 Experiments for graphs

Each chapter contains a set of problems and includes hints. The book also provides test data
for most problems as well as sources and IDs for online judgments that help with improving
programming skills.

Introducing a multi-options model and considerations of context, Data Structure Practice for
Collegiate Programming Contests and Education encourages students to think creatively
in solving programming problems. By taking readers through practical contest problems from
analysis to implementation, it provides a complete source for enhancing understanding and
polishing skills in programming.

ISBN: 978-1-4822-1539-7

9 781482 215397

90000

K22004

w w w . c r c p r e s s . c o m

Data Structure
Practice

for Collegiate Programming
Contests and Education

Yonghui Wu and Jiande Wang

D
ata Stru

ctu
re P

ractice

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

W
u

W
ang

K22004 cvr mech.indd 1 12/9/15 9:01 AM

Data Structure
Practice

for Collegiate Programming
Contests and Education

Data Structure
Practice

for Collegiate Programming
Contests and Education

Yonghui Wu and Jiande Wang

Published with arrangement with the original publisher, Beijing Huazhang Graphics and Information Company.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2016 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20160126

International Standard Book Number-13: 978-1-4822-1540-3 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

v

Contents

Preface... xiii
Authors..xv

Section I  FUNDAMENTAL PROGRAMMING SKILLS

	 1	 Practice for Simple Computing...3
1.1	 Improving Programming Style... 3

1.1.1	 Financial Management.. 4
1.2	 Multiple Test Cases.. 5

1.2.1	 Doubles.. 5
1.2.2	 Sum of Consecutive Prime Numbers... 7

1.3	 Precision of Real Numbers... 9
1.3.1	 I Think I Need a Houseboat.. 9

1.4	 Improving Time Complexity by Dichotomy...11
1.4.1	 Hangover... 12
1.4.2	 Humidex...14

1.5	 Problems..17
1.5.1	 Sum..17
1.5.2	 Specialized Four-Digit Numbers...17
1.5.3	 Quicksum...18
1.5.4	 A Contesting Decision..19
1.5.5	 Dirichlet’s Theorem on Arithmetic Progressions...21
1.5.6	 The Circumference of the Circle.. 22
1.5.7	 Vertical Histogram.. 26
1.5.8	 Ugly Numbers... 27
1.5.9	 Number Sequence.. 28

	 2	 Simple Simulation...29
2.1	 Simulation of Direct Statement.. 29

2.1.1	 Speed Limit.. 29
2.1.2	 Ride to School..31

2.2	 Simulation by Sieve Method..33
2.2.1	 Self-Numbers..33

2.3	 Construction Simulation...35
2.3.1	 Bee..35

vi  ◾  Contents

2.4	 Problems... 37
2.4.1	 Gold Coins.. 37
2.4.2	 The 3n + 1 Problem.. 38
2.4.3	 Pascal Library.. 39
2.4.4	 Calendar...41
2.4.5	 Manager... 42

	 3	 Simple Recursion...45
3.1	 Calculation of Recursive Functions.. 46
3.2	 Solving Problems by Recursive Algorithms..47

3.2.1	 Red and Black.. 48
3.3	 Solving Recursive Datum..51

3.3.1	 Symmetric Order..51
3.4	 Problems... 54

3.4.1	 Fractal.. 54
3.4.2	 Sticks... 56

SUMMARY OF SECTION I

Section II E XPERIMENTS FOR LINEAR LISTS

	 4	 Linear Lists Accessed Directly..65
4.1	 Application of Arrays 1: Calculation of Dates..65

4.1.1	 Calendar.. 66
4.1.2	 What Day Is It?.. 68

4.2	 Application of Arrays 2: Calculation of High-Precision Numbers.......................... 72
4.2.1	 Adding Reversed Numbers...74
4.2.2	 Very Easy!.. 77

4.3	 Application of Arrays 3: Representation and Computation of Polynomials............ 80
4.3.1	 Polynomial Showdown..81
4.3.2	 Modular Multiplication of Polynomials... 83

4.4	 Application of Arrays 4: Calculation of Numerical Matrices.................................. 86
4.4.1	 Error Correction.. 87
4.4.2	 Matrix Chain Multiplication... 89

4.5	 Character Strings 1: Storage Structure of Character Strings................................... 93
4.5.1	 TEX Quotes.. 93

4.6	 Character Strings 2: Pattern Matching of Character Strings................................... 94
4.6.1	 Blue Jeans.. 95
4.6.2	 Oulipo... 99

4.7	 Problems..101
4.7.1	 Moscow Time...101
4.7.2	 Double Time...104
4.7.3	 Maya Calendar...105
4.7.4	 Time Zones...107
4.7.5	 Polynomial Remains...109
4.7.6	 Factoring a Polynomial...111
4.7.7	 What’s Cryptanalysis?...112

Contents  ◾  vii

4.7.8	 Run-Length Encoding..113
4.7.9	 Zipper...114
4.7.10	 Anagram Groups.. 115
4.7.11	 English Number Translator..117
4.7.12	 Message Decowding...118
4.7.13	 Common Permutation..119
4.7.14	 Human Gene Functions.. 120
4.7.15	 Palindrome.. 122
4.7.16	 Power Strings... 123
4.7.17	 Period.. 123
4.7.18	 Seek the Name, Seek the Fame.. 124
4.7.19	 Excuses, Excuses!..125
4.7.20	 Product.. 128
4.7.21	 Expression Evaluator.. 128
4.7.22	 Integer Inquiry..129
4.7.23	 Super-Long Sums... 130
4.7.24	 Exponentiation...131
4.7.25	 Number Base Conversion...132
4.7.26	 Super-Long Sums... 134
4.7.27	 Simple Arithmetics.. 134
4.7.28	 ab – ba... 136
4.7.29	 Fibonacci Number..137
4.7.30	 How Many Fibs..138
4.7.31	 Heritage..138

	 5	 Applications of Linear Lists for Sequential Access..141
5.1	 Application of Sequence Lists..142

5.1.1	 Children...142
5.1.2	 The Dole Queue..143

5.2	 Application of Stacks...145
5.2.1	 Rails..145
5.2.2	 Boolean Expressions.. 151

5.3	 Application of Queues...154
5.3.1	 A Stack or a Queue?..154
5.3.2	 Team Queue...156
5.3.3	 Printer Queue...161

5.4	 Problems..163
5.4.1	 Roman Roulette..163
5.4.2	 M*A*S*H..164
5.4.3	 Joseph...165
5.4.4	 City Skyline..166
5.4.5	 Anagrams by Stack...168

	 6	 Generalized List Using Indexes...171
6.1	 Solving Problems Using Dictionaries...171

6.1.1	 References...172
6.1.2	 Babelfish...176

viii  ◾  Contents

6.2	 Solving Problems Using a Hash Table and the Hash Method................................179
6.2.1	 10-20-30...179

6.3	 Problems..185
6.3.1	 Spell Checker..185
6.3.2	 Snowflake Snow Snowflakes...188
6.3.3	 Equations..188

	 7	 Sort of Linear Lists..191
7.1	 Using Sort Function in STL..191

7.1.1	 Hardwood Species..191
7.1.2	 Who’s in the Middle?..194
7.1.3	 ACM Rank Table..195

7.2	 Using Sort Algorithms...197
7.2.1	 Flip Sort..197
7.2.2	 Ultra-Quicksort..199

7.3	 Problems..201
7.3.1	 Ananagrams..201
7.3.2	 Grandpa Is Famous.. 202
7.3.3	 Word Amalgamation... 203
7.3.4	 Questions and Answers.. 205
7.3.5	 Find the Clones.. 206
7.3.6	 487-3279.. 207
7.3.7	 Holiday Hotel.. 209
7.3.8	 Train Swapping...210
7.3.9	 Unix ls..211
7.3.10	 Children’s Game...213
7.3.11	 DNA Sorting..214
7.3.12	 Exact Sum...215
7.3.13	 Shellsort..216
7.3.14	 Tell Me the Frequencies!...219
7.3.15	 Anagrams (II)...219
7.3.16	 Flooded!..221
7.3.17	 Football Sort.. 222
7.3.18	 Trees.. 225

SUMMARY OF SECTION II

Section III E XPERIMENTS FOR TREES

	 8	 Programming by Tree Structure...231
8.1	 Solving Hierarchical Problems by Tree Traversal...231

8.1.1	 Nearest Common Ancestor.. 232
8.1.2	 Hire and Fire... 236

8.2	 Union–Find Sets Supported by Tree Structure..241
8.2.1	 Find Them, Catch Them.. 243
8.2.2	 Cube Stacking.. 246

8.3	 Calculation of Sum of Weights of Subtrees by Binary Indexed Trees.................... 248
8.3.1	 Apple Tree...250

Contents  ◾  ix

8.4	 Problems... 254
8.4.1	 Friends... 254
8.4.2	 Wireless Network..255
8.4.3	 War...257
8.4.4	 Ubiquitous Religions..259
8.4.5	 Network Connections.. 260
8.4.6	 Building Bridges...261
8.4.7	 Family Tree.. 264
8.4.8	 Directory Listing..267
8.4.9	 Closest Common Ancestors... 268
8.4.10	 Who’s the Boss?... 269
8.4.11	 Disk Tree... 272
8.4.12	 Marbles on a Tree.. 273
8.4.13	 This Sentence Is False..275

	 9	 Applications of Binary Trees...281
9.1	 Converting Ordered Trees to Binary Trees..281

9.1.1	 Tree Grafting... 282
9.2	 Paths of Binary Trees.. 285

9.2.1	 Binary Tree.. 285
9.3	 Traversal of Binary Trees.. 287

9.3.1	 Tree Recovery.. 288
9.4	 Problems..291

9.4.1	 Tree Summing..291
9.4.2	 Trees Made to Order.. 292

	10	 Applications of Classical Trees..295
10.1	 Binary Search Trees.. 295

10.1.1	 BST... 296
10.1.2	 Falling Leaves.. 297

10.2	 Binary Heaps...301
10.2.1	 Windows Message Queue.. 303
10.2.2	 Binary Search Heap Construction... 306
10.2.3	 Decode the Tree... 309

10.3	 Huffman Trees..311
10.3.1	 Fence Repair...312

10.4	 Problems..314
10.4.1	 Cartesian Tree...314
10.4.2	 Argus..316
10.4.3	 Black Box..317
10.4.4	 Heap...319
10.4.5	 How Many Trees?.. 320
10.4.6	 The Number of the Same BST... 322
10.4.7	 The Kth BST..325
10.4.8	 The Prufer Code.. 330
10.4.9	 Code the Tree...331

SUMMARY OF SECTION III

x  ◾  Contents

Section IV E XPERIMENTS FOR GRAPHS

	11	 Applications of Graph Traversal..337
11.1	 BFS Algorithm..337

11.1.1	 Prime Path...338
11.2	 DFS Algorithm... 342

11.2.1	 House of Santa Claus... 342
11.3	 Topological Sort... 344

11.3.1	 Following Orders...345
11.3.2	 Sorting It All Out... 348

11.4	 Connectivity of Undirected Graphs...352
11.4.1	 Knights of the Round Table..356

11.5	 Problems... 362
11.5.1	 Ordering Tasks... 362
11.5.2	 Spreadsheet... 363
11.5.3	 Genealogical Tree..365
11.5.4	 Rare Order... 366
11.5.5	 Pushing Boxes...367
11.5.6	 Basic Wall Maze..373
11.5.7	 Firetruck..375
11.5.8	 Dungeon Master.. 377
11.5.9	 A Knight’s Journey..379
11.5.10	 Children of the Candy Corn...381
11.5.11	 Curling 2.0... 383
11.5.12	 Shredding Company.. 387
11.5.13	 Be Wary of Roses... 390
11.5.14	 Monitoring the Amazon..393
11.5.15	 Graph Connectivity.. 394
11.5.16	 The Net...395
11.5.17	 The Warehouse... 397

	12	 Algorithms of Minimum Spanning Trees...405
12.1	 Kruskal Algorithm... 405

12.1.1	 Constructing Roads... 406
12.2	 Prim Algorithm.. 408

12.2.1	 Agri-Net... 409
12.3	 Problems..412

12.3.1	 Network..412
12.3.2	 Truck History..413
12.3.3	 Slim Span..414
12.3.4	 The Unique MST..419
12.3.5	 Highways... 420

	13	 Algorithms of Best Paths...423
13.1	 Warshall Algorithm and Floyd–Warshall Algorithm.. 423

13.1.1	 Frogger... 424
13.1.2	 Arbitrage.. 427

Contents  ◾  xi

13.2	 Dijkstra’s Algorithm... 430
13.2.1	 Toll..431

13.3	 Bellman–Ford Algorithm... 434
13.3.1	 Minimum Transport Cost...435

13.4	 Shortest Path Faster Algorithm (SPFA Algorithm)... 439
13.4.1	 Longest Paths... 440

13.5	 Problems... 443
13.5.1	 Knight Moves... 443
13.5.2	 Big Christmas Tree... 444
13.5.3	 Stockbroker Grapevine... 446
13.5.4	 Domino Effect... 448
13.5.5	 106 miles to Chicago...452
13.5.6	 AntiFloyd..454

	14	 Algorithms of Bipartite Graphs and Flow Networks...457
14.1	 Maximum Matching in Bipartite Graphs..457

14.1.1	 Conference..458
14.2	 Flow Networks... 460

14.2.1	 Power Network..461
14.2.2	 Trash.. 467

14.3	 Problems..470
14.3.1	 A Plug for UNIX...470
14.3.2	 Machine Schedule...471
14.3.3	 Selecting Courses..473
14.3.4	 Software Allocation...474
14.3.5	 Crime Wave...475
14.3.6	 Pigs... 477
14.3.7	 Drainage Ditches...479
14.3.8	 Mysterious Mountain... 480

SUMMARY OF SECTION IV

Bibliography...489

Index..491

xiii

Preface

Since the 1990s, the ACM International Collegiate Programming Contest (ACM-ICPC) has
become a worldwide programming contest. Every year, more than 10,000 students and more than
1,000 universities participate in local contests, preliminary contests, and regional contests all over
the world. In the meantime, programming contests’ problems from all over the world can be got-
ten, analyzed, and solved by us. These contest problems can be used not only for programming
contest training, but also for education.

In our opinion, not only a programming contestant’s ability, but also a computer student’s
ability is based on his or her programming knowledge system and programming strategies for
solving problems. The programming knowledge system can be summarized as a famous formula:
algorithms + data structures = programs. It is also the foundation for the knowledge system of
computer science and engineering. Strategies solving problems are strategies for data modeling and
algorithm design. When data models and algorithms for problems are not standard, what strate-
gies we should take to solve these problems?

Based on the ACM-ICPC, we published a series of books, not only for systematic program-
ming contest training, but also for better polishing computer students’ programming skill, using
programming contests’ problems: “Data Structure Experiment: For Collegiate Programming
Contest and Education,” “Algorithm Design Experiment: For Collegiate Programming Contest
and Education,” and “Programming Strategies Solving Problems” in Mainland China. And the
traditional Chinese versions for “Data Structure Experiment: For Collegiate Programming Contest
and Education” and “Programming Strategies Solving Problems” were also published in Taiwan.

“Data Structure Practice: For Collegiate Programming Contests and Education” is the English
version for “Data Structure Experiment: For Collegiate Programming Contest and Education.”
There are 4 sections, 14 chapters, and 200 programming contest problems in this book. Section I,
“Fundamental Programming Skills,” focuses on experiments and practices for simple comput-
ing, simple simulation, and simple recursion, for students just learning programming languages.
Section II, “Experiments for Linear Lists,” Section III, “Experiments for Trees,” and Section IV,
“Experiments for Graphs,” focus on experiments and practices for data structure.

Characteristics of the book are as follows:

	 1.	The book’s outlines are based on the outlines of data structures. Programming contest prob-
lems and their analyses and solutions are used as experiments. For each chapter, there is a
“Problems” section to let students solve programming contests’ problems, and hints for these
problems are also shown.

	 2.	Problems in the book are all selected from the ACM-ICPC regional and world finals pro-
gramming contests, universities’ local contests, and online contests, and from 1990 to now.

xiv  ◾  Preface

	 3.	Not only analyses and solutions or hints to problems are shown, but also test data for most of
problems are provided. Sources and IDs for online judges for these problems are also given.
They can help readers better and more easily polish their programming skills.

Therefore, the book can be used not only as an experiment book, but also for systematic pro-
gramming contests’ training.

We appreciate Professors Steven Skiena, Rezaul Chowdhury, C. Jinshong Hwang, Ziliang
Zong, Hongchi Shi, and Rudolf Fleischer. They provided us platforms in which English is the
native language that improved our manuscript.

We appreciate our students Julaiti Alafate, Zheyun Yao, and Hao Zhang. They finished pro-
grams in the book.

The work is supported by the China Scholarship Council.
Online judge systems for problems in this book are as follows:

Online Judge Systems Abbreviations Website

Peking University Online Judge
System

POJ http://poj.org/

Zhejiang University Online Judge
System

ZOJ http://acm.zju.edu.cn/onlinejudge/

UVA Online Judge System UVA http://uva.onlinejudge.org/

http://livearchive.onlinejudge.org/

Ural Online Judge System Ural http://acm.timus.ru/

SGU Online Judge System SGU http://acm.sgu.ru/

If you discover anything you believe to be an error, please contact us through Yonghui Wu’s
email: yhwu@fudan.edu.cn. Your help is appreciated.

Yonghui Wu
Jiande Wang

xv

Authors

Yonghui Wu is associate professor at Fudan University. He acted as the coach of Fudan University
Programming Contest teams from 2001 to 2011. Under his guidance, Fudan University quali-
fied for Association for Computing Machinery International Collegiate Programming Contest
(ACM-ICPC) World Finals every year and won three medals (bronze medal in 2002, silver medal
in 2005, and bronze medal in 2010). Since 2012, he has published a series of books for program-
ming contests and education. Since 2013, he has given lectures in Oman, Taiwan, and the United
States for programming contest training. He is the chair of the ICPC Asia Programming Contest
1st Training Committee now.

Jiande Wang is a senior high school teacher and a famous coach for the Olympiad in Informatics
in China. He has published 24 books for programming contests since the 1990s. Under his guid-
ance, his students have won seven gold medals, three silver medals, and two bronze medals in the
International Olympiad in Informatics for China.

IFUNDAMENTAL
PROGRAMMING SKILLS

Programming language is an introductory course of data structures and algorithms. This course
enables students to program by programming languages. Programming languages, data struc-
tures, and algorithm designs are skills that computer students must polish. Therefore, polishing
fundamental programming skills is the first section for this book. There are three chapters in
Section I covering

	 1.	Computing
	 2.	Simulation
	 3.	Recursion

These three chapters are not only a review of programming languages, but also an introductory
course on data structure.

3

Chapter 1

Practice for Simple Computing

The pattern of a programming contest problem is input–process–output. A problem for simple
computing is a problem whose process is simple. For such a problem, we should only consider
optimizing the process and dealing with input and output correctly. The goals of Chapter 1 are
as follows:

	 1.	Students master C/C++ or Java programming language.
	 2.	Students become familiar with online judge systems and programming environments.
	 3.	Students begin to learn how to transfer a practical problem into a computing process, imple-

ment the computing process by a program, and debug the program to pass all test cases.

“God is in the details.” In Chapter 1, problems are relatively simple. We should notice formats
of input and output, precision, and time complexity. Therefore, the following topics will be dis-
cussed in this chapter:

	 1.	Programming style
	 2.	Multiple test cases
	 3.	Precision of real numbers
	 4.	Improving time complexity by dichotomy

Normally, a complex problem consists of several subproblems for simple computing. “Even the
longest journey begins with a single step.” Polishing programming skills should begin with solving
simple computing problems.

1.1 I mproving Programming Style
A program’s writing style is not only for its visual sense, but also for examining the program and
debugging its errors. A program’s style also shows whether its programming idea is clear. It is hard
to say which kind of programming style is good, but there are some rules for programing style.
They are discussed in the following experiments.

4  ◾  Data Structure Practice: For Collegiate Programming Contests and Education

1.1.1  Financial Management

Larry graduated this year and finally has a job. He’s making a lot of money, but somehow never
seems to have enough. Larry has decided that he needs to get a hold of his financial portfolio and
solve his financial problems. The first step is to figure out what’s been going on with his money.
Larry has his bank account statements and wants to see how much money he has. Help Larry by
writing a program to take his closing balance from each of the past 12 months and calculate his
average account balance.

Input

The input will be 12 lines. Each line will contain the closing balance of his bank account for a
particular month. Each number will be positive and displayed to the penny. No dollar sign will
be included.

Output

The output will be a single number, the average (mean) of the closing balances for the 12 months.
It will be rounded to the nearest penny, preceded immediately by a dollar sign, and followed by
the end of the line. There will be no other spaces or characters in the output.

Sample Input Sample Output

100.00 $1581.42

489.12

12454.12

1234.10

823.05

109.20

5.27

1542.25

839.18

83.99

1295.01

1.75

Source: ACM Mid-Atlantic United States 2001.

IDs for online judges: POJ 1004, ZOJ 1048, UVA 2362.

Analysis
The problem’s pattern, input–process–output, is very simple: First, the income of 12 months
a[0 .. 11] is input by a for statement for(i = 0; i < 12; i++), and the total income

Practice for Simple Computing  ◾  5

	
sum a i

i

=
=
∑ []

0

11

is calculated. Then the average monthly income avg = sum/12 is calculated. Finally, avg is output
in accordance with the problem’s output format.

Program

#include<iostream>                      // Preprocessor Directive
using namespace std;                     // Using C++ Standard Library
int main()                              // Main function
{
      double avg, sum=0.0, a[12]={0};      // Real variable avg and sum,
and real array a
      int i;                              // Integer variable i
      for(i=0;i<12;i++){        // Input the income of 12 months a[0..11]
and summation
                cin>>a[i];
                sum+=a[i];
            }
      avg=sum/12;                      // Calculate the average monthly
income
      printf("$%.2f",avg);             // Output the average monthly
income
      return 0;
   }

From the above program, we can get the following:
First, the input and output of the program must meet formats for input and output. In this

problem, each input number will be positive and displayed to the penny, and the output will be
rounded to the nearest penny, preceded immediately by a dollar sign and followed by an end of
the line. If the program doesn’t meet formats for input and output, it will be judged as the wrong
answer.

Second, a program should be readable. The style of a program should be serration based on a
logical level.

Finally, program annotations should be given.

1.2  Multiple Test Cases
The financial management problem (Section 1.1.1) has only one test case. In order to guarantee the
correctness of a program, for most problems there are multiple test cases. In some circumstances,
the number of test cases is given; in other circumstances, the number of test cases isn’t given, but
the mark of the input end is given.

1.2.1  Doubles

As part of an arithmetic competency program, your students will be given randomly generated
lists of 2–15 unique positive integers and asked to determine how many items in each list are twice

6  ◾  Data Structure Practice: For Collegiate Programming Contests and Education

some other item in the same list. You will need a program to help you with the grading. This
program should be able to scan the lists and output the correct answer for each one. For example,
given the list

	 1 4 3  2  9  7 18 22

your program should answer 3, as 2 is twice 1, 4 is twice 2, and 18 is twice 9.

Input

The input file will consist of one or more lists of numbers. There will be one list of numbers per
line. Each list will contain from 2 to 15 unique positive integers. No integer will be larger than 99.
Each line will be terminated with the integer 0, which is not considered part of the list. A line with
the single number –1 will mark the end of the file. The example input below shows three separate
lists. Some lists may not contain any doubles.

Output

The output will consist of one line per input list, containing a count of the items that are double
some other item.

Sample Input Sample Output

1 4 3 2 9 7 18 22 0 3

2 4 8 10 0 2

7 5 11 13 1 3 0 0

–1

Source: ACM Mid-Central United States 2003.

IDs for online judges: POJ 1552, ZOJ 1760, UVA 2787.

Analysis
There are multiple test cases for the problem. Therefore, a loop statement is used to deal with mul-
tiple test cases. The loop enumerates every test case. –1 marks the end of the input. Therefore, –1
is the end condition of the loop. In the loop statement, there are two steps:

	 1.	A loop inputs a test case into array a and accumulates the number of elements n in the test
case. 0 marks the end of the test case.

	 2.	A double loop enumerates all pairs of a[i] and a[j] (0 <= i < n – 1, i + 1 <= j < n) in the test
case and determines whether (a[i]*2 == a[j] || a[j]*2 == a[i]) holds.

Program

#include <iostream>                    // Preprocessor Directive
using namespace std;                    // Using C++ standard library
int main()                             //Main function
{
     int i, j, n, count, a[20];                //  Integer variables i,
j, n, count and array a

Practice for Simple Computing  ◾  7

     cin>>a[0];                          // Input the first element
     while(a[0]!=-1)                    // If it is not the end of input,
input a new test case
     {  n=1;                            // Input array a
         for(; ; n++)
         {
           cin>>a[n];
           if (a[n]==0) break;
          }
          count=0;        // Determine how many items in each list are
twice some other item
          for (i=0; i<n-1; i++)                // Enumerate all pairs
          {
            for (j=i+1; j<n; j++)
            {
              if (a[i]*2==a[j] || a[j]*2==a[i])    // Accumulation
              count++;
              }
            }
            cout<<count<<endl;              // Output the result
            cin>>a[0];                      // Input the first element of
next test case
     }
     return 0;
   }

In this problem, the number of test cases and the size of a test case are unknown. Normally, a
double-loop statement is used for the program structure: the outer loop is used to enumerate every
test case, and the inner loop is used to deal with a test case.

In some problems, if the size of the test data is larger, all the test cases are dealt with by the
same method, and the result area is known, its time complexity can be improved by an offline
method. First, all solutions within the specified range are calculated and stored in a constant array.
Then the program deals with the constant array directly for each test case. It can avoid duplication
of computing.

1.2.2  Sum of Consecutive Prime Numbers

Some positive integers can be represented by a sum of one or more consecutive prime numbers.
How many such representations does a given positive integer have? For example, the integer 53
has two representations 5 + 7 + 11 + 13 + 17 and 53. The integer 41 has three representations:
2 + 3 + 5 + 7 + 11 + 13, 11 + 13 + 17, and 41. The integer 3 has only one representation, which is
3. The integer 20 has no such representations. Note that summands must be consecutive prime
numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid representation for the integer 20. Your
mission is to write a program that reports the number of representations for the given positive
integer.

Input

The input is a sequence of positive integers, each in a separate line. The integers are between 2 and
10,000, inclusive. The end of the input is indicated by a zero.

8  ◾  Data Structure Practice: For Collegiate Programming Contests and Education

Output

The output should be composed of lines each corresponding to an input line, except the last zero.
An output line includes the number of representations for the input integer as the sum of one or
more consecutive prime numbers. No other characters should be inserted in the output.

Sample Input Sample Output

2 1

3 1

17 2

41 3

20 0

666 0

12 1

53 2

0

Source: ACM Japan 2005.

IDs for online judges: POJ 2739, UVA 3399.

Analysis
Because the program needs to deal with consecutive prime numbers for each test case, and the
upper limit of prime numbers is 10,000, the offline method can be used to solve the problem.

First, all prime numbers less than 10,001 are obtained and stored in array prime[1 .. total] in
ascending order.

Then we deal with the test cases one by one:
Suppose the input number is n; the sum of consecutive prime numbers is cnt; the number of

representations for cnt == n is ans.
A double loop is used to get the number of representations for n:

◾◾ The outer loop i: for(int i = 0; n >= prime[i]; i++) enumerates all possible minimum
prime[i].

◾◾ The inner loop j: for(int j = i; j < total && cnt < n; j++), cnt += prime[j], is to calculate the
sum of consecutive prime numbers. If cnt ≥ n, then the loop ends, and if cnt == n, then the
number of representations is ans++.

When the outer loop ends, ans is the solution to the test case.

Program

#include <iostream>                    // Preprocessor Directive
using namespace std;                   // Using C++ Standard Library
const int maxp = 2000, n = 10000;      // Set the size of prime array and
the upper limit of  prime numbers
int prime[maxp], total = 0;              // Initialization

Practice for Simple Computing  ◾  9

bool isprime(int k)                    // Determine whether k is a
prime number or not
{
    for (int i = 0; i < total; i++)
        if (k % prime[i] == 0)
            return false;
    return true;
}
int main(void)                        // Main Function
{
    for (int i = 2; i <= n; i++)           //  get all prime numbers
less than 10001
      if (isprime(i))
            prime[total++] = i;
    prime[total] = n + 1;
    int m;
    cin >> m;                         // Input the first positive integer
    while (m) {
        int ans = 0;                    // Initialization
        for (int i = 0; m >= prime[i]; i++) { // Enumerate the least
prime number
            int cnt = 0;                // Calculate the sum of
consecutive prime numbers
            for (int j = i; j < total && cnt < m; j++)
                cnt += prime[j];
            if (cnt == m)              // if cnt==n, then ++ans
                ++ans;
        }
        cout << ans << endl;           // Output the result
        cin >> m;                    // Input the next positive integer
    }
    return 0;
}

1.3  Precision of Real Numbers
In some cases, we need to deal with real numbers and real arithmetics to solve problems, such as
judging whether two real numbers are equal, and so on. For a programming language, precision of
real numbers is limited. And sometime programs are required to meet requirements for accuracy
errors of real numbers. If the program can’t deal with such details well, it will lead to the wrong
answer even though its algorithm is correct.

1.3.1  I Think I Need a Houseboat

Fred Mapper is considering purchasing some land in Louisiana to build his house on. In the
process of investigating the land, he learned that the state of Louisiana is actually shrinking by
50 square miles each year, due to erosion caused by the Mississippi River. Since Fred is hoping to
live in this house for the rest of his life, he needs to know if his land is going to be lost to erosion.

After doing more research, Fred has learned that the land that is being lost forms a semicircle.
This semicircle is part of a circle centered at (0, 0), with the line that bisects the circle being the X

10  ◾  Data Structure Practice: For Collegiate Programming Contests and Education

axis. Locations below the X axis are in the water. The semicircle has an area of 0 at the beginning
of year 1. (The semicircle is illustrated in Figure 1.1.).

Input

The first line of input will be a positive integer indicating how many data sets will be included (N).
Each of the next N lines will contain the X and Y Cartesian coordinates of the land Fred is

considering. These will be floating-point numbers measured in miles. The Y coordinate will be
nonnegative. (0, 0) will not be given.

Output

For each data set, a single line of output should appear. This line should take the form of

	 Property N: This property will begin eroding in year Z.

where N is the data set (counting from 1) and Z is the first year (start from 1) this property will be
within the semicircle AT THE END OF YEAR Z. Z must be an integer. After the last data set,
this should print out “END OF OUTPUT.”

Sample Input Sample Output

2 Property 1: This property will begin eroding in year 1.

1.0 1.0 Property 2: This property will begin eroding in year 20.

25.0 0.0 END OF OUTPUT.

Source: ACM Mid-Atlantic United States 2001.

Note: No property will appear exactly on the semicircle boundary: it will be
either inside or outside. This problem will be judged automatically. Your
answer must match exactly, including the capitalization, punctuation,
and white space. This includes the periods at the ends of the lines. All
locations are given in miles.

IDs for online judges: POJ 1005, ZOJ 1049, UVA 2363.

Analysis
The number of test cases n is given. Therefore, a for repetition statement is used to deal with all test
cases. Each test case contains only X and Y Cartesian coordinates. The ith test case (Xi, Yi) and the
center of the circle (0, 0) constitute the semicircle that will be eroded. Each year 50 square miles

y

x

(0, 0)

Figure 1.1 T he land that is being lost forms a semicircle.

Practice for Simple Computing  ◾  11

of land is eroded. And the number of years is an integer. When (Xi, Yi) is in water, the number of
years must be the least integer that is greater than

	

Area of the semicircle
50

and function ceil(x) is used to round up the fare.

Program

#include <stdio.h>                   // Preprocessor Directive
#include <math.h>
#define M_PI 3.14159265
int num_props;                     // The number of test cases
float x, y;                          // X and Y Cartesian coordinates
int i;
double calc;                        // The area of the semicircle/50
int years;                          // The number of years
int main()                    // Main function
{
   scanf("%d", &num_props);       // Input the number of test cases
   for (i = 1; i <= num_props; i++)
   {
     scanf("%f %f", &x, &y);        // Input the i-th test case
     calc = (x*x + y*y)* M_PI / 2 / 50; // Calculate the area of the
semi-circle/50
     years = ceil(calc);
     printf("Property %d: This property will begin eroding in year %d.n",
i, years); //Output
   }
   printf("END OF OUTPUT.n");
}

In real arithmetic, sometimes we need to determine whether real number x and real number y
are equal. Using y – x == 0 as the condition may result in error of precision. The method avoiding
error of precision is to set a constant of precision delta. If |y – x| < delta, then we can judge x and
y are equal. The hangover problem (Section 1.4.1) shows such an example.

1.4 I mproving Time Complexity by Dichotomy
In some cases, the data area of a problem is an ordered interval. Dichotomy is used to divide the
interval into two subintervals and then determine if the process of computation is in the left sub-
interval or the right subinterval. If the solution isn’t obtained, then repeat the above steps. For a
problem whose time complexity is O(n), if dichotomy can be used to solve it, its time complexity
can be improved to O(log2(n)).

Dichotomy is used in many algorithms, such as binary search, recursive halving method, quick
sort, merge sort, binary search tree, and segment tree. Among these methods, binary search and
recursive halving method are relatively simple algorithms.

The idea for binary search is as follows: Suppose the data area is an interval in ascending order.
The search begins by comparing x with the number in the middle of the interval. If x equals this

12  ◾  Data Structure Practice: For Collegiate Programming Contests and Education

number, the search terminates. If x is smaller than the number, then we need only search in the
left half; if x is greater than the number, then we need only search in the right half. We repeat the
above steps until the search ends.

1.4.1  Hangover

How far can you make a stack of cards overhang a table? If you have one card, you can create a
maximum overhang of half a card length. (We’re assuming that the cards must be perpendicu-
lar to the table.) With two cards, you can make the top card overhang the bottom one by half a
card length, and the bottom one overhang the table by a third of a card length, for a total maxi-
mum overhang of 1/2 + 1/3 = 5/6 card lengths. In general, you can make n cards overhang by
1/2 + 1/3 + 1/4 + … + 1/(n + 1) card lengths, where the top card overhangs the second by 1/2, the
second overhangs the third by 1/3, the third overhangs the fourth by 1/4, and so on, and the bot-
tom card overhangs the table by 1/(n + 1). This is illustrated in Figure 1.2.

Input

The input consists of one or more test cases, followed by a line containing the number 0.00 that
signals the end of the input. Each test case is a single line containing a positive floating-point num-
ber c whose value is at least 0.01 and at most 5.20; c will contain exactly three digits.

Output

For each test case, output the minimum number of cards necessary to achieve an overhang of at
least c card lengths. Use the exact output format shown in the examples.

Sample Input Sample Output

1.00 3 card(s)

3.71 61 card(s)

0.04 1 card(s)

5.19 273 card(s)

0.00

Source: ACM Mid-Central United States 2001.

IDs for online judges: POJ 1003, UVA 2294.

Analysis
The problem’s data area is little. Therefore, first lengths that cards achieve are calculated, and the
length is at most 5.20 card lengths. Suppose the total is the number of cards and len[i] is the length

Figure 1.2  A stack of cards overhangs a table.

Practice for Simple Computing  ◾  13

that i cards achieve. That is, len[i] = len[i – 1] + 1/(i + 1), where i ≥ 1 and len[0] = 0. Obviously,
array len is in ascending order.

Because elements of len and x are real numbers, the accuracy error must be controlled. Suppose
delta = 1e – 8, and function zero(x) marks x is a positive real number, a negative real number, or a
zero. Function zero(x) is defined as follows:

	

zero x

x delta

x delta

otherwise

() =
>

− < −







1

1

0

Initially len[0] = 0. Array len can be obtained through the following loop:

for (total=1; zero(len[total-1]-5.20)<0; total++)
len[total]=len[total-1]+1.0/double(total+1);

After array len is obtained, the program inputs the first test data x and enters the loop of
while(zero(x)). In each loop, dichotomy is used to get the minimum number of cards necessary
to achieve an overhang of at least x card lengths, and then the next test data x is input. The loop
terminates when x = 0.00.

The procedure of dichotomy is as follows:
The initial interval [l, r] = [1, total] and mid = [(l + r)/2]. If zero(len[mid] – x) < 0, then search

the right half (l = mid); otherwise, search the left half (r = mid). Repeat the above steps in interval
[l, r] until l + 1 ≥ r. r is the minimum number of cards.

Program

#include <iostream>         // Preprocessor Directive
using namespace std;        // Using C++ Standard Library
const int maxn = 300;        // Size of array len
const double delta = 1e-8;    // Set the accuracy error
int zero(double x)          // In the area of accuracy error delta, if x
is a negative real number less than 0, then return -1; if x is a positive
real number larger than 0, then return 1; and if x is 0, then return 0.
{
    if (x < -delta)
        return -1;
    return x > delta;
}
int main(void)            // Main Function
{
    double len[maxn];     // Define array len and the length of len
    int total;
    len[0] = 0.0;      // Calculate array len, and len[i] is the length
that i cards achieve
    for (total = 1; zero(len[total - 1] - 5.20) < 0; total++)
        len[total] = len[total - 1] + 1.0 / double(total + 1);
    double x;
    cin >> x;            // Input the first test case x
    while (zero(x)) {      // Using dichotomy to get the minimum number
of cards necessary to achieve an overhang of at least x card lengths.

14  ◾  Data Structure Practice: For Collegiate Programming Contests and Education

        int l, r;
        l = 0;           // Set left pointer l and right pointer r for
the interval
        r = total;
        while (l + 1 < r) {
            int mid = (l + r) / 2;
            if (zero(len[mid] - x) < 0)      // If the middle value is
less than x, then search the right half, else search the left half.
                l = mid;
            else
                r = mid;
        }
        cout << r << " card(s)" << endl;    // Output the minimum number
of cards
        cin >> x;                      //Input the next test case
    }
    return 0;
}

Dichotomy can be used not only in a data search, but also in function calculation. Suppose
there are variables x1, x2, and x3 and function x1 = f(x2, x3) holds. The recursive halving method
can be used to calculate x3 when x1 and x2 are known. The method is as follows:

Halving is to halve the data area of a problem (such as the data area of x3), and the property of the
problem (such as x1 = f(x2, x3)) is not changed. Suppose the size of data area for the problem is n. We
can first make use of some methods to change the original problem into c subproblems with half of the
data area (c is a constant, is related to the problem, and is not related to the data area), and then solve
the problem by solving subproblems whose size of data area is n/2. Properties for these subproblems are
the same as those for the original problem, but the size of the data area for these subproblems is smaller.

Recursion is to repeat the above halving steps. A problem whose size of data area is n/2 is
changed into c subproblems whose size is n/4, and so on. Repeat the above steps until the subprob-
lems can be solved easily.

1.4.2  Humidex

The humidex is a measurement used by Canadian meteorologists to reflect the combined effect
of heat and humidity. It differs from the heat index used in the United States in using dew point
rather than relative humidity.

When the temperature is 30°C (86°F) and the dew point is 15°C (59°F), the humidex is 34
(note that humidex is a dimensionless number, but the number indicates an approximate tem-
perature in Celsius). If the temperature remains 30°C and the dew point rises to 25°C (77°F), the
humidex rises to 42.3.

The humidex tends to be higher than the U.S. heat index at equal temperature and relative
humidity.

The current formula for determining the humidex was developed by J.M. Masterton and F.A.
Richardson of Canada’s Atmospheric Environment Service in 1979.

According to the Meteorological Service of Canada, a humidex of at least 40 causes “great
discomfort” and above 45 is “dangerous.” When the humidex hits 54, heat stroke is imminent.

The record humidex in Canada occurred on June 20, 1953, when Windsor, Ontario, hit 52.1.
(The residents of Windsor would not have known this at the time, since the humidex had yet

Practice for Simple Computing  ◾  15

to be invented.) More recently, the humidex reached 50 on July 14, 1995, in both Windsor and
Toronto.

The humidex formula is as follows:

	 humidex = temperature + h
	 h = (0.5555)*(e – 10.0)
	 e = 6.11*exp [5417.7530*((1/273.16) – (1/(dewpoint + 273.16)))]

where exp(x) is 2.718281828 raised to the exponent x.
While humidex is just a number, radio announcers often announce it as if it were the tempera-

ture, for example, “It’s 47° out there … with the humidex.” Sometimes weather reports give the
temperature and dew point, or the temperature and humidex, but rarely do they report all three
measurements. Write a program that, given any two of the measurements, will calculate the third.

You may assume that for all inputs, the temperature, dew point, and humidex are all between
–100°C and 100°C.

Input

Input will consist of a number of lines. Each line except the last will consist of four items separated
by spaces: a letter, a number, a second letter, and a second number. Each letter specifies the mean-
ing of the number that follows it and will be either T, indicating temperature; D, indicating dew
point; or H, indicating humidex. The last line of input will consist of the single letter E.

Output

For each line of input except the last, produce one line of output. Each line of output should have
the form:

	 T number D number H number

where the three numbers are replaced with the temperature, dew point, and humidex. Each value
should be expressed rounded to the nearest tenth of a degree, with exactly one digit after the deci-
mal point. All temperatures are in degrees Celsius.

Sample Input Sample Output

T 30 D 15 T 30.0 D 15.0 H 34.0

T 30.0 D 25.0 T 30.0 D 25.0 H 42.3

E

Source: Waterloo Local Contest, July 14, 2007.

ID for online judge: POJ 3299.

Analysis
Based on the humidex formula humidex = temperature + h, h is proportional to the dew point. If
the dew point and temperature (or humidex) are known, the value of h can be inferred, and the
humidex or temperature can be calculated by the humidex formula. If temperature and humidex
are known, the recursive halving method can be used to calculate the dew point.

The program sets an initial value 0 to the dew point and enters a loop: the initial value of the
increment for dew point is 100; halve the increment value each time as the loop is performed. If
the humidex obtained from the formula is larger than the announced humidex, then the value of

16  ◾  Data Structure Practice: For Collegiate Programming Contests and Education

the dew point decreases an increment (i.e., h↘; decrease the humidex to be close to the announced
humidex); otherwise, the value of the dew point increases an increment (i.e., h↗; increase the
humidex to be close to the announced humidex). The repetition condition is the increment value
greater than 0.0001. When the loop ends, the dew point is the answer.

Program

#include <stdio.h>                  // Preprocessor Directive
#include <math.h>
#include <assert.h>
char a,b;                          //Two characters for Test Mark
double A,B,temp,hum,dew;
double dohum(double tt, double dd){ // Calculate humidex based on
temperature tt and dew point dd
   double e = 6.11 * exp (5417.7530 * ((1/273.16) - (1/(dd+273.16))));
   double h = (0.5555)*(e - 10.0);
   return tt + h;                  // Return humidex
}
double dotemp(){         // Calculate temperature based on dew point dew
and humidex hum
   double e = 6.11 * exp (5417.7530 * ((1/273.16) - (1/(dew+273.16))));
   double h = (0.5555)*(e - 10.0);
   return hum - h;               // Return temperature
}
double dodew(){                //Calculate dew point based on
temperature temp and humidex hum
   double x = 0;               // Initialization of dew point and
increment
   double delta=100;
//Loop; Halve the increment value each time the loop is performed. If
humidex gotten from the formula is larger than the announced humidex,
then the value of dew point decrease an increment; otherwise the value of
dew point increase an increment. Repeat the procedure until the increment
value delta<=0.0001.
   for (delta=100; delta>.00001; delta *=.5) {
      if (dohum(temp, x)>hum) x -= delta;
      else x += delta;
   }
   return x;                      //Return dew point x
}
int main()                            // main function
{      //Loop: each loop inputs two measurements and loop-end condition
is 'E'.
                          
   while (4 == scanf(" %c %lf %c %lf",&a,&A,&b,&B) && a != 'E'){
      temp = hum = dew = -99999;  // Initialization of temperature,
humidex and dew point
      if (a == 'T') temp = A;    // The first measurement is temperate.
      if (a == 'H') hum = A;     // The first measurement is humidex.
      if (a == 'D') dew = A;     // The first measurement is dew point.
      if (b == 'T') temp = B;    // The second measurement is temperate.
      if (b == 'H') hum = B;     // The second measurement is humidex.
      if (b == 'D') dew = B;     // The second measurement is dew point.

Practice for Simple Computing  ◾  17

      if (hum == -99999) hum = dohum(temp, dew);// Calculate humidex
based on temperate and dew point.
      if (dew == -99999) dew=dodew();   // Calculate dew point based on
temperate and humidex.
      if (temp == -99999) temp = dotemp();   // Calculate temperate
based on humidex and dew point.
      printf("T %0.1lf D %0.1lf H %0.1lfn",temp, dew,hum);  //Output
temperate, dew point and humidex.
   }
   assert(a == 'E');                         //  Loop-end condition is 'E'.
}

1.5  Problems
1.5.1  Sum

Your task is to find the sum of all integer numbers lying between 1 and N inclusive.

Input

The input consists of a single integer N that is not greater than 10,000 by its absolute value.

Output

Write a single integer number that is the sum of all integer numbers lying between 1 and N inclusive.

Sample Input Sample Output

–3 –5

Source: ACM 2000, Northeastern European
Regional Programming Contest (test
tour).

ID for online judge: Ural 1068.

Hint
Based on the summation formula of arithmetic progression s = 1 + 2 + … N, if N is an integer
larger than 0, then s = [(1 + N)/2]*N; otherwise, s = [(1 – N)/2]*N + 1.

1.5.2  Specialized Four-Digit Numbers

Find and list all four-digit numbers in decimal notation that have the property that the sum of
their four digits equals the sum of their digits when represented in hexadecimal (base 16) notation
and also equals the sum of their digits when represented in duodecimal (base 12) notation.

For example, the number 2991 has the sum of (decimal) digits 2 + 9 + 9 + 1 = 21. Since 299
1 = 1*1728 + 8*144 + 9*12 + 3, its duodecimal representation is 189312, and these digits also sum
up to 21. But in hexadecimal, 2991 is BAF16, and 11 + 10 + 15 = 36, so 2991 should be rejected
by your program.

The next number (2992), however, has digits that sum to 22 in all three representations (includ-
ing BB016), so 2992 should be on the listed output. (We don’t want decimal numbers with fewer
than four digits—excluding leading zeros—so that 2992 is the first correct answer.)

18  ◾  Data Structure Practice: For Collegiate Programming Contests and Education

Input

There is no input for this problem.

Output

Your output is to be 2992 and all larger four-digit numbers that satisfy the requirements (in strictly
increasing order), each on a separate line, with no leading or trailing blanks, ending with a new-line
character. There are to be no blank lines in the output. The first few lines of the output are shown
below:

Sample Input Sample Output

2992

2993

2994

2995

2996

2997

2998

2999

…

Source: ACM Pacific Northwest 2004.

IDs for online judges: POJ 2196, ZOJ 2405, UVA
3199.

Hint
First, function calc(k, b) is designed to calculate and return the sum of digits of number k repre-
sented in base b. Then every number i in [2992 … 9999] is enumerated: if calc(i, 10) == calc(i,
12) == calc(i, 16), then output i.

1.5.3  Quicksum

A checksum is an algorithm that scans a packet of data and returns a single number. The idea
is that if the packet is changed, the checksum will also change, so checksums are often used for
detecting transmission errors, validating document contents, and in many other situations where
it is necessary to detect undesirable changes in data.

For this problem, you will implement a checksum algorithm called quicksum. A quicksum
packet allows only uppercase letters and spaces. It always begins and ends with an uppercase letter.
Otherwise, spaces and letters can occur in any combination, including consecutive spaces.

A quicksum is the sum of the products of each character’s position in the packet times the
character’s value. A space has a value of zero, while letters have a value equal to their position in the
alphabet. So, A = 1, B = 2, and so on, through Z = 26. Here are example quicksum calculations
for the packets “ACM” and “MID CENTRAL”:

Practice for Simple Computing  ◾  19

ACM: 1*1 + 2*3 + 3*13 = 46
MID CENTRAL: 1*13 + 2*9 + 3*4 + 4*0 + 5*3 + 6*5 + 7*14 + 8*20 + 9*18 + 10*1 + 11*12

= 650

Input

The input consists of one or more packets followed by a line containing only # that signals the end
of the input. Each packet is on a line by itself, does not begin or end with a space, and contains
from 1 to 255 characters.

Output

For each packet, output its quicksum on a separate line in the output.

Sample Input Sample Output

ACM 46

MID CENTRAL 650

REGIONAL PROGRAMMING 4690

CONTEST 49

ACN 75

A C M 14

ABC 15

BBC

#

Source: ACM Mid-Central United States 2006.

IDs for online judges: POJ 3094, ZOJ 2812, UVA 3594.

Hint
Function value(c) is implemented as follows: if character c == '_', then return 0; otherwise, return
the corresponding value of c: c – 'A' + 1.

The process is a loop. Each loop inputs a test case and calculates its Quicksum.
First, the location of character c and Quicksum are initialized 0, and string s is initialized NULL.

Repeatedly input character c and add c into s until c is EOF or '\n'. If s is “#,” the program ends.

	
Quicksum i value s i

i

s size

= +
=

−

∑ () * ([])
.

1
0

1

1.5.4  A Contesting Decision

Judging a programming contest is hard work, with demanding contestants, tedious decisions,
and monotonous work—not to mention the nutritional problems of spending 12 hours with only
donuts, pizza, and soda for food. Still, it can be a lot of fun.

20  ◾  Data Structure Practice: For Collegiate Programming Contests and Education

Software that automates the judging process is a great help, but the notorious unreliability of
some contest software makes people wish that something better were available. You are part of a
group trying to develop better, open-source, contest management software, based on the principle
of modular design.

Your component is to be used for calculating the scores of programming contest teams and deter-
mining a winner. You will be given the results from several teams and must determine the winner.

Scoring

There are two components to a team’s score. The first is the number of problems solved. The second
is penalty points, which reflect the amount of time and incorrect submissions made before the
problem is solved. For each problem solved correctly, penalty points are charged equal to the time
at which the problem was solved plus 20 minutes for each incorrect submission. No penalty points
are added for problems that are never solved.

So if a team solved problem 1 on their second submission at 20 minutes, they are charged
40 penalty points. If they submit problem 2 three times, but do not solve it, they are charged no
penalty points. If they submit problem 3 once and solve it at 120 minutes, they are charged 120
penalty points. Their total score is two problems solved with 160 penalty points.

The winner is the team that solves the most problems. If teams tie for solving the most prob-
lems, then the winner is the team with the fewest penalty points.

Input

For the programming contest your program is judging, there are four problems. You are guaran-
teed that the input will not result in a tie between teams after counting penalty points.

Line 1: < nTeams >
Line 2: n+1 < Name > < p1Sub > < p1Time > < p2Sub > < p2Time > …
< p4Time >

The first element on the line is the team name, which contains no white space. Following that,
for each of the four problems, is the number of times the team submitted a run for that problem
and the time at which it was solved correctly (both integers). If a team did not solve a problem,
the time will be zero. The number of submissions will be at least one if the problem was solved.

Output

The output consists of a single line listing the name of the team that won, the number of problems
they solved, and their penalty points.

Sample Input Sample Output

4 Penguins 3 475

Stars 2 20 5 0 4 190 3 220

Rockets 5 180 1 0 2 0 3 100

Penguins 1 15 3 120 1 300 4 0

Marsupials 9 0 3 100 2 220 3 80

Source: ACM Mid-Atlantic 2003.

IDs for online judges: POJ 1581, ZOJ 1764, UVA 2832.

Practice for Simple Computing  ◾  21

Hint
Suppose the name of the winner is wname, the number of problems that winner solved is wsol,
and the winner’s penalty points is wpt; the name of the current team is name, the number of
problems that the current team solved is sol, and the current team’s penalty points is pt. The
submission number of the current problem is sub, and the time at which of the current problem
is solved is time.

If the problem is solved (time > 0), then we accumulate the number of problems the current
team solved (++sol) and compute the current team’s penalty points pt (pt += (sub – 1)*20 + time).

After we deal with a team’s case, if the number of problems the current team solved is the most,
or the current team and other teams all solved the most number of problems, and the current team
is with the fewest penalty points, that is, (sol > wsol || (sol == wsol && wpt > pt)) holds, then the
current team is set as winner, and its team name, the number of solved problems, and its penalty
points are recorded, that is, wname = name, wsol = sol, wpt = pt.

Obviously, after we deal with all teams’ cases, wname, wsol, and wpt are solutions to the problem.

1.5.5  Dirichlet’s Theorem on Arithmetic Progressions

If a and d are relatively prime positive integers, the arithmetic sequence beginning with a and
increasing by d, that is, a, a + d, a + 2d, a + 3d, a + 4d, …, contains infinitely many prime
numbers. This fact is known as Dirichlet’s theorem on arithmetic progressions, which had been
conjectured by Johann Carl Friedrich Gauss (1777–1855) and was proved by Johann Peter Gustav
Lejeune Dirichlet (1805–1859) in 1837.

For example, the arithmetic sequence beginning with 2 and increasing by 3, that is,

2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80,
83, 86, 89, 92, 95, 98, ….

contains infinitely many prime numbers:

	 2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, …

Your mission, should you choose to accept it, is to write a program to find the nth prime num-
ber in this arithmetic sequence for given positive integers a, d, and n.

Input

The input is a sequence of data sets. A data set is a line containing three positive integers a, d,
and n separated by a space. a and d are relatively prime. You may assume a ≤ 9307, d ≤ 346, and
n ≤ 210.

The end of the input is indicated by a line containing three zeros separated by a space. It is not
a data set.

Output

The output should be composed of as many lines as the number of the input data sets. Each line
should contain a single integer and should never contain extra characters.

The output integer corresponding to a data set a, d, n should be the nth prime number among
those contained in the arithmetic sequence beginning with a and increasing by d.

For your information, it is known that the result is always less than 106 (1 million) under this
input condition.

22  ◾  Data Structure Practice: For Collegiate Programming Contests and Education

Sample Input Sample Output

367 186 151 92809

179 10 203 6709

271 37 39 12037

103 230 1 103

27 104 185 93523

253 50 85 14503

1 1 1 2

9075 337 210 899429

307 24 79 5107

331 221 177 412717

259 170 40 22699

269 58 102 25673

0 0 0

Source: ACM Japan 2006, Domestic.

ID for online judge: POJ 3006.

Hint
A test case consists of integers a, d, and n in an arithmetic sequence, and the end of the input is
indicated by a line containing 0 0 0. Therefore, a while repetition statement is used for test cases.
After the first a, d, and n are input, the program enters the while(a || d || n) loop. In the loop body,
the steps are as follows:

	 1.	Initialize the number of prime numbers cnt 0.
	 2.	Construct an arithmetic sequence with n prime numbers through the loop statement

for(m = a; cnt < n; m += d). The control variable m is initialized with a, and the loop-
continuation condition is cnt < n. In each loop, if m is a prime number, then cnt++, and d is
added to control variable m.

	 3.	Output the nth prime number m – d. (Because of the for loop, output m – d.)
	 4.	Input a, d, and n for the next arithmetic sequence.

1.5.6  The Circumference of the Circle

To calculate the circumference of a circle seems to be an easy task—provided you know its diam-
eter. But what if you don’t?

You are given the Cartesian coordinates of three noncollinear points in the plane.
Your job is to calculate the circumference of the unique circle that intersects all three

points.

Practice for Simple Computing  ◾  23

Input

The input file will contain one or more test cases. Each test case consists of one line containing six real
numbers, x1, y1, x2, y2, x3, y3, representing the coordinates of the three points. The diameter of the circle
determined by the three points will never exceed 1 million. Input is terminated by the end of the file.

Output

For each test case, print one line containing one real number telling the circumference of the circle
determined by the three points. The circumference is to be printed accurately rounded to two
decimals. The value of π is approximately 3.141592653589793.

Sample Input Sample Output

0.0 –0.5 0.5 0.0 0.0 0.5 3.14

0.0 0.0 0.0 1.0 1.0 1.0 4.44

5.0 5.0 5.0 7.0 4.0 6.0 6.28

0.0 0.0 –1.0 7.0 7.0 7.0 31.42

50.0 50.0 50.0 70.0 40.0 60.0 62.83

0.0 0.0 10.0 0.0 20.0 1.0 632.24

0.0 –500000.0 500000.0 0.0 0.0 3141592.65

500000.0

Source: Ulm Local Contest 1996.

IDs for online judges: POJ 2242, ZOJ 1090.

Hint
The key to the problem is to find the center of a circle that intersects all three points. Suppose the
Cartesian coordinates of three points are (x0, y0), (x1, y1), and (x2, y2), and the Cartesian coordi-
nates of the center of the circle are (xm, ym). There are two solutions.

Determinant

Calculate the Cartesian coordinates of the center of the circle that intersects all three points:

	

x
x x

y y

y y
x x

x x
y y

y y y y

x x x

m = + + −

− −

−
−

− −
− −

1 2
2 1

1 0
2 0

0 1
2 0

1 0 1 2

0 1 2

2

2

2() *

xx

y
y y

x x

y y
x x

x x
y y

y y y y

x

m

1

1 2
1 2

1 0
2 0

0 1
2 0

1 0 1 2

0

2

2

2, () *=
+

+ −

− −

−
−

− −
−− −x x x1 2 1

Based on this, the radius of the unique circle

	 r x x y ym m= − + −() ()0
2

0
2

24  ◾  Data Structure Practice: For Collegiate Programming Contests and Education

and 2πr is the circumference of the unique circle that intersects all three points: (x0, y0), (x1, y1),
and (x2, y2).

Theorem 1.1

The Cartesian coordinates of the center of the unique circle that intersects all three points (x0, y0),
(x1, y1), and (x2, y2) are (xm, ym).

Proof
Suppose the Cartesian coordinate of the center of a circle is P = (xm, ym); the perpendicular bisec-
tors from P to AB and BC are PN and PM , respectively. The point of intersection of PN and
AB is N, and the point of intersection of PM and BC is M. Obviously, the Cartesian coordi-

nates of M are [(x1 + x2)/2, (y1 + y2)/2]), and point (y2 – y1, x2 – x1) is on PM (Figure 1.3).
Because PM BC⊥ ,

	

y
y y

x
x x

y y
x x

m

m

−
+

− +
−
−

= −

1 2

1 2

2 1

2 1

2

2

1*

Suppose

	
k

y
y y

x x

m

=
−

+

−
=

1 2

2 1

2

x
x x

y y

m − +

−

1 2

2 1

2

Now we need to prove

B(x1, y1)

C(x2, y2)

A(x0, y0)

P(xm, ym)
N

(y2–y1, x2–x1)

M ,2
x1 + x2

2
y1 + y2

Figure 1.3 T hree points and the center of the circle.

Practice for Simple Computing  ◾  25

	

k

y y
x x

x x
y y

y y y y

x x x x

=

− −

−
−

− −
− −

1 0
2 0

0 1
2 0

1 0 1 2

0 1 2 1

2

2 (*)

Because PN AB⊥ ,

	

y
y y

x
x x

y y
x x

m

m

−
+

− +
−
−

= −

0 2

0 2

1 0

1 0

2

2

1*

Because

	
x

x x
y y km () *= + + −1 2

2 1
2

,

and

	
y

y y
x x km () *=

+
+ −1 2

1 2
2

	

()

()
*

x x k
y y

y y k
x x

y y
x x

1 2
2 0

2 1
2 0

1 0

1 0

2

2

1
− +

−

− + −
−
−

= −

holds. Therefore, (*) holds.

Elementary Geometry

Suppose a AB b BC c CA= = =     , , , and

	 p
a b c= + +

2
.

Based on Heron’s formula,

	 s p p a p b p c= − − −()()()

the formula for calculating the area of a triangle

	
s

a b ab= ∠* * sin()
2

26  ◾  Data Structure Practice: For Collegiate Programming Contests and Education

and sine theorem

	
a

bc
b

ac
c

absin() sin() sin()∠
=

∠
=

∠ = diameter of circumcircle d

we can calculate the diameter of circumcircle d = (a*b*c)/(2*s) and the circumference of circum-
circle l = d*π.

1.5.7  Vertical Histogram

Write a program to read four lines of uppercase (i.e., all CAPITAL LETTERS) text input (no
more than 72 characters per line) from the input file and print a vertical histogram that shows how
many times each letter (but not blanks, digits, or punctuation) appears in the all-uppercase input.
Format your output exactly as shown.

Input

Lines 1–4: Four lines of uppercase text, no more than 72 characters per line.

Output

Lines 1–?: Several lines with asterisks and spaces followed by one line with the uppercase alphabet
separated by spaces. Do not print unneeded blanks at the end of any line. Do not print any lead-
ing blank lines.

Sample Input Sample Output

THE QUICK BROWN
FOX JUMPED OVER
THE LAZY DOG.

*

THIS IS AN EXAMPLE
TO TEST FOR YOUR

HISTOGRAM
PROGRAM.

*

HELLO! * *

* * * *

* * * *

* * * * * *

* * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * *

* *

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Source: USACO, February 2003, Orange.

ID for online judge: POJ 2136.

Practice for Simple Computing  ◾  27

Hint
The sequence of drawing a vertical histogram is from top to bottom and left to right. From top
to bottom means dealing with every line in the frequency’s descending order. From left to right
means dealing with letters in the current line in the ordinal number’s ascending order.

Suppose cnt is the frequency array for letters, where cnt[0] is the number of ‘A’, …, cnt[25] is
the number of ‘Z’, and

	
Maxc cnt i

i
=

≤ ≤
max { []}
0 25

that is, Maxc is the height of the highest “pillar” in the vertical histogram. The algorithm is as
follows:

	 1.	Input a test case and count array cnt;
	 2.	Getting the value of Maxc;
	 3.	�From the highest “pillar” in the vertical histogram, draw the vertical histogram from top to

bottom. A repetition statement for (int i = 1; i ≤ Maxc; i++) implements it as follows:
	 •	� Find the right boundary for the current line. That is, in array cnt, from 25 to 0, find the

first letter whose serial number is l1–1, where cnt[l1–1] > Maxc–i.
	 •	� For letters whose serial numbers are in [0..l1–1], if cnt[j] > Maxc – i (0 ≤ j ≤ l1 – 1), then

output '*_'; otherwise, output '_ _'.
	 4.	Output the last line 'A_B_..... _Z'.

1.5.8  Ugly Numbers

Ugly numbers are numbers whose only prime factors are 2, 3, or 5. The sequence 1, 2, 3, 4, 5, 6,
8, 9, 10, 12, … shows the first 10 ugly numbers. By convention, 1 is included.

Given the integer n, write a program to find and print the nth ugly number.

Input

Each line of the input contains a positive integer n (n ≤ 1500). Input is terminated by a line with
n = 0.

Output

For each line, output the nth ugly number. Don’t deal with the line with n = 0.

Sample Input Sample Output

1 1

2 2

9 10

0

Source: New Zealand 1990, Division I.

IDs for online judges: POJ 1338, UVA 136.

28  ◾  Data Structure Practice: For Collegiate Programming Contests and Education

Hint
An offline method is used to solve the problem. The first 1500 ugly numbers are calculated and
stored in array a[1 .. 1500].

Suppose the upper limit for the largest ugly number limit = 1,000,000,000. The outer
loop (control variable i) enumerates multiples of 2. For each time, i←i*2 is performed.
The loop-continuation condition is i < limit. The middle loop (control variable j) enumer-
ates multiples of 3. For each time, j←j*3 is performed. The loop-continuation condition is
i*j < limit. The inner loop (control variable k) enumerates multiples of 5. For each time, ugly
number i*j*k is stored in array a and k←k*5 is performed. The loop-continuation condition
is i*j*k < limit.

Then array a is sorted such that a[x] is the xth large ugly number (1 ≤ x ≤ 1500).

1.5.9  Number Sequence

A single positive integer i is given. Write a program to find the digit located in the position i in
the sequence of number groups S1S2 … Sk. Each group Sk consists of a sequence of positive integer
numbers ranging from 1 to k, written one after another.

For example, the first 80 digits of the sequence are as follows:
1121231234123451234561234567123456781234567891234567891012345678910111234567

8910

Input

The first line of the input file contains a single integer t (1 ≤ t ≤ 10), the number of test cases,
followed by one line for each test case. The line for a test case contains the single integer i
(1 ≤ i ≤ 2147483647).

Output

There should be one output line per test case containing the digit located in the position i.

Sample Input Sample Output

2 2

8 2

3

Source: ACM Tehran 2002, First Iran Nationwide
Internet Programming Contest.

IDs for online judges: POJ 1019, ZOJ 1410.

Hint
First, two functions are implemented. The first function is to calculate the length for the first j
groups (i.e., the number of digits for the first j groups) and is stored in an array. The second func-
tion is to return the digit located in the position l in a group Sm. Then dichotomy is used to find
the group Sn containing the digit located in the position i. Finally, in the group Sn, the digit located
in the position i is returned.

29

Chapter 2

Simple Simulation

In the real world, there are many problems that we can solve by simulating their processes. Such prob-
lems are called simulation problems. For these problems, solution procedures and rules are showed in
problem descriptions. Programs must simulate procedures or implement rules based on descriptions.

Normally there are two kinds of simulations: stochastic simulation and process simulation.
Problems for stochastic simulation show or imply probabilities. Programmers make use of

random functions and round functions to set the random value for a range, making the random
value meet the probability as a parameter. Then programmers design the algorithm by simulating
the mathematical model. Because of uncertainty, there are fewer problems for stochastic simula-
tion in programming contests.

Problems for process simulation require programmers to design parameters for mathematical
models, and to observe changes of states caused by parameters. Programmers design algorithms
based on process simulation. Programs depend entirely on authenticity and correctness of the
process simulation without any uncertainties.

This chapter focuses on process simulation. There are three kinds of process simulation:

	 1.	Simulation of direct statement
	 2.	Simulation by sieve method
	 3.	Simulation by construction

2.1  Simulation of Direct Statement
For problems for simulation of direct statement, programmers are required to solve them by strictly
following rules showed in the problems’ descriptions. Programmers must read such problems carefully
and simulate processes based on descriptions. A problem for simulation of direct statement gets harder
as the number of rules increases. It causes the amount of code to grow and become more illegible.

2.1.1  Speed Limit

Bill and Ted are taking a road trip. But the odometer in their car is broken, so they don’t know
how many miles they have driven. Fortunately, Bill has a working stopwatch, so they can record
their speed and the total time they have driven. Unfortunately, their record-keeping strategy is a

30  ◾  Data Structure Practice: For Collegiate Programming Contests and Education

little odd, so they need help computing the total distance driven. You are to write a program to
do this computation.

For example, if their log shows

Speed in Miles per Hour Total Elapsed Time in Hours

20 2

30 6

10 7

this means they drove 2 hours at 20 miles per hour, then 6 – 2 = 4 hours at 30 miles per hour,
then 7 – 6 = 1 hour at 10 miles per hour. The distance driven is then (2)(20) + (4)(30) + (1)
(10) = 40 + 120 + 10 = 170 miles. Note that the total elapsed time is always since the beginning
of the trip, not since the previous entry in their log.

Input

The input consists of one or more data sets. Each set starts with a line containing an integer n,
1 ≤ n ≤ 10, followed by n pairs of values, one pair per line. The first value in a pair, s, is the speed
in miles per hour, and the second value, t, is the total elapsed time. Both s and t are integers,
1 ≤ s ≤ 90 and 1 ≤ t ≤ 12. The values for t are always in strictly increasing order. A value of –1 for
n signals the end of the input.

Output

For each input set, print the distance driven, followed by a space, followed by the word miles.

Sample Input Sample Output

3 170 miles

20 2 180 miles

30 6 90 miles

10 7

2

60 1

30 5

4

15 1

25 2

30 3

10 5

–1

Source: ACM Mid-Central United States 2004.

IDs for online judges: POJ 2017, ZOJ 2176, UVA 3059.

Simple Simulation  ◾  31

Analysis
This is a simple problem of direct statement. We can simulate the stopwatch’s running to compute
the total distance driven: if the last total elapsed time in hours is z, the current speed in miles
per hour is x, and the current total elapsed time in hours is y, then the current distance driven is
(y – z)*x, and we add it to the total distance driven.

Program

#include <iostream>                     // Preprocessor Directive
using namespace std;                    // Using C++ Standard Library
int main()                             //Main Function
{
   int n, i, x, y, z, ans;
   // Multiple test cases are dealt with by a while loop statement
   while (cin >> n, n > 0)
   {
      ans = z = 0;
    // Simulate the stopwatch to calculate
      for (i = 0; i < n; i++)              // Input and calculate the
current data set
      {
         cin >> x >> y;               //Input the speed and the total
elapsed time
         ans += (y - z) * x;            // Accumulate the distance driven
         z = y;                      //Record the total elapsed time
      }
      cout << ans << " miles" << endl;  //Output the distance driven for
the current data set
   }
   return 0;
}

2.1.2  Ride to School

Many graduate students of Peking University are living on Wanliu Campus, which is 4.5 kilometers
from the main campus—Yanyuan. Students in Wanliu have to either take a bus or ride a bike to go
to school. Due to the bad traffic in Beijing, many students choose to ride a bike.

We may assume that all the students except “Charley” ride from Wanliu to Yanyuan at a fixed
speed. Charley is a student with a different riding habit—he always tries to follow another rider
to avoid riding alone. When Charley gets to the gate of Wanliu, he will look for someone who
is setting off to Yanyuan. If he finds someone, he will follow that rider, or if not, he will wait for
someone to follow. On the way from Wanliu to Yanyuan, at any time if a faster student surpasses
Charley, he will leave the rider he is following and speed up to follow the faster one.

We assume the time that Charley gets to the gate of Wanliu is zero. Given the set-off time and
speed of the other students, your task is to give the time when Charley arrives at Yanyuan.

Input

There are several test cases. The first line of each case is N(1 ≤ N ≤ 10,000) representing the num-
ber of riders (excluding Charley). N = 0 ends the input. The following N lines are information of
N different riders, in such format:

	 Vi [TAB] Ti

32  ◾  Data Structure Practice: For Collegiate Programming Contests and Education

Vi is a positive integer ≤ 40, indicating the speed of the ith rider (kilometers per hour). Ti is the
set-off time of the ith rider, which is an integer and counted in seconds. In any case, it is ensured
that there always exists a nonnegative Ti.

Output

The output is one line for each case: the arrival time of Charley. Round up (ceiling) the value when
dealing with a fraction.

Sample Input Sample Output

4 780

20 0 771

25 –155

27 190

30 240

2

21 0

22 34

0

Source: ACM Beijing 2004, Preliminary.

IDs for online judges: POJ 1922, ZOJ 2229.

Analysis
There is no mathematical formula to solve the problem. We can calculate the arrival time of
Charley by simulating each student leaving from Wanliu to Yanyuan. For each test case, the time
that Charley gets to the gate of Wanliu is zero. From it we calculate the arrival time of each stu-
dent. Obviously, the earliest arrival time is the arrival time of Charley.

Suppose min is the earliest arrival time for the first i – 1 riders, the speed of the ith rider is v,
and the set-off time of the ith rider is t. Then the time when the ith rider arrives at Yanyuan is
x = t + (4.5*3600)/v. If x < min, then min is adjusted as x. Obviously, after the arrival time of all
riders is calculated, min is the arrival time of Charley.

There is a trap in the test data. If Ti is a negative integer, we should neglect it. It doesn’t affect
the arrival time of Charley.

Program

#include <iostream>                     // Preprocessor Directive
#include <cmath>
using namespace std;                    // Using C++ Standard Library
int main()                             //Main function
{  
    const double DISTANCE = 4.50;     //The distance between Yanyuan and
Wanliu
    while(true)                       //A while statement deals with test
cases
    {
        int n;                        //The number of riders except Charley
        scanf("%d", &n);  

Simple Simulation  ◾  33

        if (n == 0) break;              //Input ends
        double v, t, x, min = 1e100;      //min is initialized 10100
        for(int i = 0; i < n; ++i)         // A while statement deals
with riders
        {
           scanf("%lf%lf", &v, &t);    // the speed and the set off time
of the i-th rider
// Calculate time x when the i-th rider arrives at Yanyuan. If x<min,
then min is adjusted to x.
           if (t >= 0 && (x = DISTANCE * 3600 / v + t) < min)
           min = x;
        }
        printf("%.0lf\n", ceil(min));     //Output the arrival time of
Charley
    }
    return 0;
}

2.2  Simulation by Sieve Method
The simulation by sieve method is to get constraints in the problem description, and such con-
straints constitute a sieve. And then all possible solutions are put in the sieve to filter out solutions
that do not meet constraints from time to time. Finally, solutions settling in the sieve are solutions
to the problem. The structure and idea for the simulation by sieve method is concise and clear, but
also blind. Therefore, maybe the time efficiency is not good. The key to the simulation by sieve
method is to find the constraints. Any errors and omissions will lead to failure. Because filtering
rules do not need complex algorithm design, such problems are usually simple simulation problems.

2.2.1  Self-Numbers

In 1949, the Indian mathematician D.R. Kaprekar discovered a class of numbers called self-
numbers. For any positive integer n, define d(n) to be n plus the sum of the digits of n. (The d
stands for digitadition, a term coined by Kaprekar.) For example, d(75) = 75 + 7 + 5 = 87. Given
any positive integer n as a starting point, you can construct the infinite increasing sequence of
integers n, d(n), d(d(n)), d(d(d(n))), …. For example, if you start with 33, the next number is
33 + 3 + 3 = 39, the next is 39 + 3 + 9 = 51, the next is 51 + 5 + 1 = 57, and so on, and you gener-
ate the sequence

	 33, 39, 51, 57, 69, 84, 96, 111, 114, 120, 123, 129, 141, …

The number n is called a generator of d(n). In the sequence above, 33 is a generator of 39, 39 is
a generator of 51, 51 is a generator of 57, and so on. Some numbers have more than one generator;
for example, 101 has two generators, 91 and 100. A number with no generators is a self-number.
There are 13 self-numbers less than 100: 1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, and 97.

Input

There is no input for this problem.

Output

Write a program to output all positive self-numbers less than 10,000 in increasing order, one per line.

34  ◾  Data Structure Practice: For Collegiate Programming Contests and Education

Sample Input Sample Output

1

3

5

7

9

20

31

42

53

64

|

 a lot more numbers

|

9903

9914

9925

9927

9938

9949

9960

9971

9982

9993

Source: ACM Mid-Central United States 1998.

IDs for online judges: POJ 1316, ZOJ 1180, UVA 640.

Analysis
The simulation by sieve method is used to solve the problem. Suppose the sieve is array g, where
g[y] = x means y is a number in ascending sequence for x. Based on d(x) = x + the sum of the
digits of x, a subprogram generate_sequence(x) is to generate the ascending sequence [d(x), d(d(x)),
d(d(d(x))), …] for x. Suppose x is the generation number for every number in the sequence:

	 g[d(x)] = g[d(d(x))] = g[d(d(d(x)))] = … = x

If a number is in ascending sequence for x, it is not a self-number and should be sieved from
sieve g. The process will repeat until the generated number ≥1000 or the generated number has
been generated before (g[x] ≠ x). If x has been generated, it is not a self-number.

The algorithm is as follows:

First, g[i] is initialized as i (1 ≤ i ≤ 1000). Then generate_sequence(1) … generate_sequence(1000) are
called to calculate g[1..1000]. Finally, numbers left in the sieve, that is, g[x]==x, are self-numbers.

