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PREFACE

This book is intended for statisticians wanting a fairly systematic 
development of the theory of statistics, placing main emphasis on 
general concepts rather than on mathematical rigour or on the de­
tailed properties of particular techniques. The book is meant also to 
be suitable as a text-book for a second or third course in theoretical 
statistics. It is assumed that the reader is familiar with the main 
elementary statistical techniques and further has some appreciation 
of the way statistical methods are used in practice. Also knowledge 
of the elements of probability theory and of the standard special 
distributions is required, and we assume that the reader has studied 
separately the theory of the linear model. This is used repeatedly as 
an illustrative example, however.

We have reluctantly decided to exclude numerical examples and 
to attempt no detailed discussion of particular advanced techniques 
or of specific applications. To have covered these would have length­
ened and changed the character of the book and to some extent 
would have broken the thread of the argument. However, in the 
training of students the working of set numerical exercises, the 
discussion of real applications and, if at all possible, involvement in 
current applied statistical work are of very great importance, so that 
this book is certainly not intended to be the basis of a self-contained 
course in statistics. To be quite specific, the more discursive parts of 
the book, for example on the usefulness and limitations of signifi­
cance tests, will probably not be understandable without some 
experience of applications.

The mathematical level has been kept as elementary as possible, 
and many of the arguments are quite informal. The “ theorem, proof” 
style of development has been avoided, and examples play a central 
role in the discussion. For instance, in the account of asymptotic 
theory in Chapter 9, we have tried to sketch the main results and to 
set out their usefulness and limitations. A careful account of the 
general theorems seems, however, more suited for a monograph than 
to a general book such as this.

Specialized topics such as time series analysis and multivariate

xi



PREFACE
analysis are mentioned incidentally but are not covered systemati­
cally.

A major challenge in writing a book on theoretical statistics is that 
o f keeping a strong link with applications. This is to some extent in 
conflict with the essential need for idealization and simplification in 
presentation and it is too much to hope that a satisfactory compro­
mise has been reached in this book. There is some discussion of the 
connexion between theory and applications in Chapter 1.

The book deals primarily with the theory of statistical methods 
for the interpretation of scientific and technological data. There are 
applications, however, where statistical data are used for more or 
less mechanical decision making, for example in automatic control 
mechanisms, industrial acceptance sampling and communication 
systems. An introduction to statistical decision theory is therefore 
included as a final chapter.

References in the text have been restricted largely to those giving 
direct clarification or expansion of the discussion. At the end of each 
chapter a few general references are given. These are intended partly 
to indicate further reading, partly to give some brief historical back­
ground and partly to give some of the main sources of the material 
in the text. We felt that a very extensive bibliography would be out 
of place in a general book such as this.

At the end of every chapter except the first, there is an outline of 
some of the topics and results that it has not been feasible to include 
in the text. These serve also as exercises, although as such the level of 
difficulty is very variable and in some cases much detailed work and 
reference to original sources will be necessary.

D.R. Cox 
D.V. Hinkley 

London, 1973



1 INTRODUCTION

1.1 Objectives of statistical analysis and theory
Statistical methods of analysis are intended to aid the interpretation 
of data that are subject to appreciable haphazard variability. The 
theory of statistics might then be expected to give a comprehensive 
basis for the analysis of such data, excluding only considerations 
specific to particular subject matter fields. In fact, however, the great 
majority of the theory, at any rate as presented in this book, is con­
cerned with the following narrower matter.

There is chosen a family ?  of probability models, often completely 
specified except for a limited number of unknown parameters. From 
the data under analysis it is required to answer questions of one or 
both of the following types:

(a) Are the data consistent with the family CS  ?
(b) Assuming provisionally that the data are derived from one of 

the models in J ,  what can be concluded about values of unknown 
parameters, or less commonly about the values of further obser­
vations drawn from the same model?
Problems (a) and (b) are related, but the distinction is a useful one.
To a very large extent arithmetical rather than graphical methods of 
analysis are considered.

To illustrate the discussion consider the standard normal-theory 
model of simple linear regression. According to this, for data con­
sisting of n pairs (x1; y , ) , ..., (xn , y n), it is supposed th a ty 1 ;..., y n 
correspond to random variables Yx, . . . ,  Yn independently normally 
distributed with constant variance o2 and with expected values

E(Yj) = y  + 0Xj ( / = 1, . . . , « ) ,  ( 1)
where y  and /3 are unknown parameters and x l 5 xn are regarded as 
known constants. This is a family 5  of models; a particular model is
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obtained by specifying values for the parameters 7 , 13 and a2. Often, 
but by no means always, primary interest would be in 0 .

The problem of type (a) would now be to examine the data for 
consistency with T, some possibly important types of departure 
including non-linearity of the dependence of E( Yj) on x}, non-con­
stancy of var(k}), lack of independence of the different T /s  and 
non-normality of the distribution of the Ĵ -’s. For problems of type 
(b) it would be assumed provisionally that the data are indeed de­
rived from one of the models in ?  and questions such as the follow­
ing would be considered:

Within what limits is it reasonable to suppose the parameter (3 to 
lie?
Are the data consistent with a particular theoretical value for, say, 
the parameter 13?
Let Y r be a further observation assumed to be obtained from the 
same model and parameter values as the original data, but with

E (Y f ) = 7  + /Jx+.
Within what limits is Y 'l expected to lie?
In the theoretical discussion, it will be usual to take a family of 

models as given. The task is to formulate meaningful and precise 
questions about such models and then to develop methods of analy­
sis that will use the data to answer these questions in a sensitive way.

In more detail, in order to deal with the first of these questions 
just mentioned, the first step is to formulate a precise meaning for 
such limits for |3; this is done in the concept of confidence limits 
(Section 7.2). Then, there usually being many ways of computing 
confidence limits, at least approximately, the next step is to define 
criteria giving the best such limits, or failing that, at least reasonably 
good confidence limits. Finally, general constructive procedures are 
required for computing good confidence limits for specific problems. 
This will lead to sensitive procedures for the analysis of data, as­
suming that the family ?  is well chosen. For example, in the special 
linear regression model ( 1), we would be led to a procedure for com­
puting from data limits for, say, the parameter )3 which will in a 
certain sense give the most precise analysis of the data given the 
family 3\

In this, and corresponding more general theoretical discussions, 
much emphasis is placed on finding optimal or near optimal pro­
cedures within a family of models.
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How does all this correspond with the problems of applied stat­

istics? The following points are relevant:
(i) The choice of the family J  of models is central. It serves first 

to define the primary quantities of interest, for example, possibly the 
parameter j3 in ( 1), and also any secondary aspects of the system 
necessary to complete the description. Some of the general consider­
ations involved in the choice of T are considered in Section 1.2.

(ii) Except occasionally in very simple problems the initial choice 
of ?  will be made after preliminary and graphical analysis of the data. 
Furthermore, it will often be necessary to proceed iteratively. The 
results of analysis in terms of a model T may indicate a different 
family which may either be more realistic or may enable the con­
clusions to be expressed more incisively.

(iii) When a plausible and apparently well-fitting family is available 
it is attractive and sometimes important to use techniques of analysis 
that are optimal or nearly so, particularly when data are rather lim­
ited. However, criteria of optimality must always be viewed critically. 
Some are very convincing, others much less so; see, for example, 
Sections 5.2(iii) and 8.2. More importantly, it would be poor to use 
an analysis optimal for a family T if under an undetectably different 
family the same analysis is very inefficient. A procedure that is 
reasonably good for a broad range of assumptions is usually prefer­
able to one that is optimal under very restrictive assumptions and 
poor otherwise. Thus it is essential to have techniques not only for 
obtaining optimal methods but also for assessing the performance of 
these and other methods of analysis under non-standard conditions.

(iv) At the end o f  an analysis, it is always wise to consider, even if 
only briefly and qualitatively, how the general conclusions would be 
affected by departures from the family 3 \ Often this is conveniently 
done by asking questions such as: how great would a particular type 
o f departure from cf  have to be for the major conclusions o f  the 
analysis to be altered?

(v) It is important to adopt formulations such that the statistical 
analysis bears as directly as possible on the scientific or technological 
meaning of the data, the relation with previous similar work, the 
connexion with any theories that may be available and with any 
practical application that may be contemplated. Nevertheless, often 
the statistical analysis is just a preliminary to the discussion of the 
underlying meaning of the data.

Some of these points can be illustrated briefly by the regression
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problem outlined above.

The minimal preliminary analysis is a plot of the points (xj, y}) on 
a scatter diagram. This would indicate, for example, whether a trans­
formation of the variables would be wise before analysing in terms of 
the model ( 1) and whether there are isolated very discrepant obser­
vations whose inclusion or exclusion needs special consideration. 
After an analysis in terms of (1), residuals, i.e. differences between 
observed values and estimated values using the model ( 1), would be 
calculated, and analysis of these, either graphically or arithmetically, 
might then suggest a different family of models. With a more com­
plex situation, an initial family of models may be complicated and 
one might hope to be able to pass to a simpler family, for example 
one in which there were appreciably fewer unknown parameters. In 
the present case, however, any change is likely to be in the direction 
of a more complex model; for instance it may be appropriate to allow 
var( Yj) to be a function of Xj.

It might be argued that by starting with a very complex model, 
some of the difficulties of (ii)—(iv) could be avoided. Thus one might 
set up a very general family of models involving additional unknown 
parameters describing, for example, the transformations of the x- and 
y-scales that are desirable, the change with x of var(T), the lack of 
independence of different observations and non-normality of the dis­
tributions. The best fitting model within this very general family 
could then be estimated.

While this type of approach is sometimes useful, there are two 
serious objections to it. First, it would make very heavy going of the 
analysis even of sets of data of simple structure. A more fundamental 
reason that a single formulation of very complex models is not in 
general feasible is the following.

In designing an experiment or scheme of observations, it is import­
ant to review beforehand the possible types of observations that can 
occur, so that difficulties of analysis and ambiguities of interpretation 
can be avoided by appropriate design. Yet experience suggests that 
with extensive data there will always be important unanticipated 
features. An approach to the analysis of data that confines us to 
questions and a model laid down in advance would be seriously in­
hibiting. Any family of models is to be regarded as an essentially 
tentative basis for the analysis of the data.

The whole question of the formulation of families of models in 
the light of the data is difficult and we shall return to it from time
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to time.

To sum up, the problems we shall discuss are closely related to 
those of applied statistics but it is very important to ensure that the 
idealization which is inevitable in formulating theory is not allowed 
to mislead us in practical work.

1.2 Criteria for the choice of families of models
In the previous section the importance has been explained of choos­
ing a family 5F of probabilistic models in terms of which questions are 
to be formulated and methods of statistical analysis derived. For the 
more elaborate parts of statistical theory we start from the represen­
tation of observations in terms of random variables and the idea that 
normally the parameters of the underlying probability distributions 
are the quantities of real interest. Yet this view needs to be treated 
with proper caution and should not be taken for granted. Where the 
data are obtained by the random sampling of a physically existing 
population, the parameters have a reasonably clear meaning as proper­
ties of the population. In other cases the probability distributions 
refer to what would happen if the experiment were repeated a large 
number of times under identical conditions; this is always to some 
extent hypothetical and with “unique” data, such as economic time 
series, repetition under identical conditions is entirely hypothetical. 
Nevertheless the introduction of probability distributions does seem 
a fruitful way of trying to separate the meaningful from the acciden­
tal features of data. Parameters are to be regarded sometimes as rep­
resenting underlying properties of a random system and sometimes as 
giving concise descriptions of observations that would be obtained by 
repetition under the same conditions.

The methods of most practical value are those that combine simple 
description of the data with efficient assessment of the information 
available about unknown parameters.

It is hard to lay down precise rules for the choice of the family of 
models, but we now list briefly some of the considerations involved. 
These include:

(a) The family should if possible usually establish a link with any 
theoretical knowledge about the system and with previous experimen­
tal work.

(b) There should be consistency with known limiting behaviour.
For example, it may be known or strongly suspected that a curve
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approaches an asymptote or passes through some fixed point such as 
the origin. Then, even though this limiting behaviour may be far from 
the region directly covered by the data, it will often be wise to use a 
family of models consistent with the limiting behaviour or, at least, to 
use a family reducing to the limiting behaviour for special parameter 
values.

(c) So far as possible the models should be put in a form such that 
the different parameters in the model have individually clear-cut 
general interpretations.

(d) Further, a description of the data containing few parameters is 
preferable. This may involve looking at a number of different families 
to find the most parsimonious representation. There is some chance 
of conflict with requirements (a) and (b). Indeed in some cases two 
different analyses may be desirable, one bringing out the link with 
some relevant theory, the other expressing things in their most econ­
omical form.

(e) It is, o f course, desirable that the statistical theory associated 
with the family of models should be as simple as possible.

A fairly recent trend in statistical work places some emphasis on 
the construction of special models, often by constructing stochastic 
processes representing the system under investigation. To be at all 
realistic these often have to be extremely complex. Indeed they may 
contain so many adjustable parameters that little can be learnt by 
fitting them to any but extremely extensive data. It is therefore 
worth stressing that very simple theoretical analyses can be valuable 
as a basis for statistical analysis. We then choose a family reducing to 
the theoretical model for special values of certain unknown param­
eters. In that way we can find how much of the variation present can 
be accounted for by the simple theory and also characterize the de­
partures from the theory that may be present. It is not at all necessary 
for a theory to be a perfect fit for it to be a useful tool in analysis.

It will be seen later that the statistical theory of a family is simpli­
fied appreciably whenever the family is of the exponential type; see 
Section 2.2(vi). This provides a fairly flexible set of models and it 
will often be best to start with a model of this type; for example, 
nearly all the procedures of multivariate analysis are closely associ­
ated with the family of multivariate normal models. The effect of 
departures can then be considered. It is, however, too much to hope 
that a reasonably adequate model of exponential type can always be 
found without violating some other more important requirement.



1.3] INTRODUCTION  7
The requirement of simplicity of statistical analysis may well be in 

conflict with one or more of the other requirements, for example (a) 
and (b). Thus the widely used procedure of fitting polynomial curves 
and surfaces leads to representations whose limiting behaviour is 
usually unreasonable. This may not matter where the polynomials are 
used in a limited way for interpolation but seems often likely to be a 
severe restriction on their usefulness in the interpretation of data; 
exceptions are when a small quadratic term is used to assess the di­
rection and magnitude of the departure from an expected linear 
relationship, and when local behaviour in the neighbourhood of a 
stationary value is under investigation.

1.3 The analysis of complex responses
A widely occurring problem in applied statistics, particularly where 
automatic recording equipment is used, is the analysis of data in 
which the response of each individual (subject, animal, batch of 
material, etc.) is complex and, for example, may consist of a long 
sequence of observations possibly of several types. Thus in some 
types of psychological experiment, there will be for each subject a 
response consisting of a long sequence of successes and failures at 
some task. In all there may be several such trials for each o f many 
subjects, the whole covering a number of experimental treatments.

It may sometimes be feasible to formulate a single family of 
models that will embrace all aspects of the data, but more commonly 
it will be wise to proceed in several steps. First we try to summarize 
each complex response in a small number of quantities. These may be 
derived from some formal theoretical analysis, for instance from a 
simplified mathematical theory of the phenomenon. Or again the 
formal techniques of time series analysis and multivariate analysis are 
often guides to the choice of summarizing values. Finally such quan­
tities may be derived from a qualitative inspection and graphical 
analysis of a sample of individual responses. That is, we construct a 
few quantities thought to summarize interesting features of the re­
sponse, such as, for example, average level, trend, amount and nature 
of local variability. With very complex data it may take much investi­
gation to find the best quantities for further analysis.

Then at the second stage of the analysis the output of the first 
stage is used as the input data to estimate treatment effects, etc., 
often by a linear model. There is the following important implication
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for the discussion in the rest of this book: the observations for analy­
sis and for which we set up a probability model may be the original 
data or they may be quantities derived from the preliminary analysis 
of more complex data. This fact gives the relatively simple models 
that we shall discuss much wider usefulness than would otherwise be 
the case.

1.4 Plan of the book
Chapter 2 introduces some fundamental ideas about likelihood and 
sufficiency which are central to much of the subsequent work. The 
second part of the chapter, which can be omitted on a first reading, 
compares some of the broad general approaches to statistical infer­
ence.

Chapters 3—7, which in some ways are the core of the book, deal 
with significance testing and with interval estimation. Chapter 8 is 
concerned with point estimation. Chapter 9 is on asymptotic theory. 
For large samples this gives approximate solutions to problems for 
which no simple “exact” solutions are possible by the techniques of 
Chapters 3—7.

Finally the last two chapters deal with procedures based on the 
availability of a prior probability distribution for the unknown par­
ameters of the family and with decision theory.

To some extent, the chapters can be taken in a different order.
For example, some readers may want to take the rather introductory 
Chapters 10 and 11 relatively early.

It would be very restricting to use throughout a single completely 
uniform notation and it is virtually impossible to avoid use of the 
same letter for different things in different contexts. However, as far 
as is practicable, the following conventions have been followed.

Random variables representing observations or functions calculated 
from observations are denoted by capital letters such as X, Y  and Z. 
For example, Y  denotes the set of random variables F 1 ;.. .,  Yn con­
sidered as a column vector. On the whole Y  is reserved for the obser­
vation under analysis. To distinguish between random variables and 
the particular realizations of them forming the data under analysis, 
the observed values will be denoted by corresponding lower case 
letters, for example y. It is, however, occasionally convenient to be 
inconsistent and to retain the capital letters for the observations, 
where there is no danger of confusion.
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Random variables that are not observable, for example “errors” , 

are sometimes denoted by the Greek letters e and 17. The Greek letter 
a  is almost exclusively reserved for certain probabilities arising in the 
study of tests and interval estimation.

Fixed constants are denoted by lower case letters a, b, c, ...
Unknown parameters are usually denoted by the Greek letters d,

4>,... They may be scalars or vectors depending on the context; when 
vectors they are to be considered as column vectors. In dealing with 
particular situations standard symbols are used; for example, the 
mean and variance of a normal distribution are denoted by p and a2.

For a random variable, say U, the cumulative distribution function 
is denoted by Fu(x), or by Fv (x ; 6) if it is required to stress depen­
dence on a parameter 6. That is, Fv {x) — pr(U < x ) ,  where prC4) 
denotes the probability of the event A. The corresponding probability 
density function, a term used for both continuous and discrete ran­
dom variables, is denoted by f v (x ) or f v (x ; d). Thus if U has a 
Poisson distribution of mean p, then

whereas if V has a normal distribution of mean p and variance a 2, 
w rittenN(p, o2). then

The p dimensional multivariate normal distribution of mean the 
column vector p. and covariance matrix Z is denoted by MNp{p, Z ).
A direct extension of the notation for densities is used for joint and 
conditional densities.

Standard notation is used for expectations, variances and covari­
ances. Where it is required to show the parameter value under which, 
say, an expectation is calculated, we write, for example, E ( Y ; 6).

Bold fount is restricted to matrices; the transpose of a matrix or 
vector is denoted by a superscript T.

An estimate of a parameter 6 will sometimes be denoted 6; the 
notation 6 will be restricted to maximum likelihood and least squares 
estimates. All such estimates 6 are functions of the data, i.e. corre­
spond to random variables. Therefore if the general conventions were 
to be followed a capital letter would be used for the random variable, 
but this is often inconvenient. Sums of squares and mean squares

f u ( x ] p )  = (x = 0 , 1 , 2 , ...),jc!
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arising in linear model analyses have been denoted SS and MS, some­
times with an appropriate suffix, it being clear from the context 
whether random variables or observed values are involved.

Asterisks are very largely reserved for tabulated constants arising 
in significance tests, etc. By convention we use values corresponding 
to an upper tail area. For example, k* denotes the upper a  point of 
the standard normal distribution, i.e. 4>(A:*) = 1 — a, where 4>(.) is 
the standard normal integral.

Abbreviations have been kept to a minimum. The only ones widely 
used are i.i.d. (independent and identically distributed), p.d.f. (prob­
ability density function), referring to both continuous and discrete 
random variables, and m.l.e. (maximum likelihood estimate).

Bibliographic notes
Discussion of the relation between theory and application is most 
often found in reports of general lectures. Presidential addresses to 
the Royal Statistical Society by Fisher (1953), Pearson (1956), 
Kendall (1961), Bartlett (1967), Yates (1968) and Barnard (1972) 
all in part bear on this issue; see also Kempthorne (1966). Neyman 
(1960) emphasizes the role of special stochastic models. Tukey and 
Wilk (1966) have argued in favour of an increased emphasis on 
graphical methods and on descriptive statistics generally, i.e. on 
methods which are not based on explicit probabilistic arguments.

Of the many books on statistical methods, that of Daniel and 
Wood (1971) particularly well illustrates the interplay between the 
analysis of data and the choice of model. Of those on theory, the 
later chapters of Kempthorne and Folks (1971) give an introduction 
to many of the topics o f the present book from a viewpoint similar 
to that taken here. Silvey (1970) gives a concise mathematical intro­
duction. The comprehensiye book of Rao (1973) emphasizes distri­
bution theory and the linear model. The three volumes df Kendall 
and Stuart (1967—69) are particularly valuable in providing an 
introduction to a wide range of special topics.

A connected account of the history of statistical inference is not 
available at the time of writing. A collection of papers on various 
historical topics is edited by Pearson and Kendall (1970); there are a 
number of biographical articles in International Encyclopedia o f  
Social Sciences {Sills, 1968).



2 SOME GEN ERAL CONCEPTS

2.1 The likelihood
(i) Definition
Let observations y = (y l5 .. .,  y„) be realised values of random 
variables Y  = (Y 1}...,  Yn) and suppose that an analysis of y  is to be 
based on the provisional assumption that the probability density 
function (p.d.f.) o f Y  belongs to some given family 3\ It is not 
known, however, which particular p.d.f. in ?  is the true one. Any 
particular p.d.f. / (y )  specifies how the density varies across the 
sample space of possible y  values. Often, it is useful to invert this 
property, and to examine how the density changes at the particular 
observed value y  as we consider different possible functions in 3\  
This results in a comparison between possible densities based on 
ability to “explain” y ,  and to emphasise this we define the likelihood 
of / ( .)  at a particular y  by

Usually it is convenient to work with the natural logarithm, denoted 
by /{ /( .) ;  y} and called the log likelihood

In most applications, we consider families 3  in which the func­
tional form of the p.d.f. is specified but in which a finite number of 
unknown parameters 0 =  (0l5 . . . ,  0„) are unknown. Then the p.d.f. 
of Y  for given 0 can be written / ( y  ; 0) or, where desirable, as 
f y ( y  ; 0)- The set o f allowable values for 0, denoted by f l , or some­
times by £le , is called the parameter space. Then the likelihood (1) 
is a function of 0 and we can write, always for 0 E J2 ,

lik {/(.) ;y} = / (y ) . (1)

l { f ( . ) ; y }  = log /(y ) . (2)

lik(0 ;y) = / ( y ; 0 ), lid ;y ) = l o g / ( y ; 0 ). (3)

11
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If it is required to stress the particular random variable for which the 
likelihood is calculated we add a suffix, as in liky(0 ;y). It is crucial 
that in these definitions 6 is the argument of a function and can take 
any value in £2. A very precise notation would distinguish between 
this use of 6 and the particular value that happens to be true, but 
fortunately this is unnecessary, at least in the present chapter.

Suppose that Y is a continuous vector random variable and that 
we consider a one-one transformation to a new vector random vari­
able Z with non-vanishing Jacobian dy/dz. Then to any f Y(-) in ?  
there corresponds a p.d.f. for Z given by

where z is the transformed value of y. Thus, taking the parametric 
case for simplicity, we see that the likelihood function based on the 
observed value z of Z is

This result suggests that if we are interested in comparing two poss­
ible values 6 1 and d2 of 6 in the light of the data and wish to use the 
likelihood, it is ratios of likelihood values, rather than, say, differ­
ences, that are relevant. For such a comparison cannot reasonably 
depend on the use of y  rather than z.

Very commonly the component random variables Yt , . . . ,  Yn are 
mutually independent for all densities in 3\ Then we can write

say, and in the parametric case we have for the log likelihood

When the densities f j(y )  are identical, we unambiguously write f l y ) .
(ii) Some examples
The following examples give some instances of the calculation of 
likelihoods and of particular results that will be required later.

3yf z (z) = f y ( y )  ~

(4)

n nf v i y )  = n /y y O ’y) = u j j i y j ) ,

n nly{e ;y) = .Slog M yj- ,6 )  = .S 1 0  ;yj). (5)

Example 2.1. Bernoulli trials. Consider n independent binary
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observations, i.e. the /'th observation is either a “success” , y t = 1, or 
a “failure” , yj = 0 , the probability 0 of success being the same for all 
trials (/' = 1, . . .,  n). The observations y  = , . . . ,  y n) then form a
sequence of n ones and zeroes and the probability of any particular 
sequence is a product of terms 0 and 1 — 0 , there being a 0 for every 
one and a 1 — 0 for every zero. Thus

where r = 'Eyj is the number of ones in the observed y. To complete 
the specification we must give the parameter space which would 
usually, but not necessarily, be the closed interval 0  <  0 <  1.
Example 2.2. Number o f  successes in n Bernoulli trials. Suppose that 
we have exactly the situation of the previous example, except that 
instead of observing the sequence y  we observe only the total num­
ber r of successes. We represent this by a random variable R  having a 
binomial distribution. Then

Note that if we are interested in the ratio of likelihoods at say 6̂  and 
d2, then (7) and (6 ) are equivalent.
Example 2.3. Inverse Bernoulli sampling. Suppose that again we have 
Bernoulli trials but that new trials continue until a preassigned num­
ber r of successes has been obtained and that the total number n of 
trials necessary to achieve this is observed. Then n is the observed 
value of a random variable N  having a negative binomial distribution 
and

Again this is equivalent to (6 ) and (7) in the sense explained in 
Example 2.2. Different random systems are, however, involved in the 
three cases.
Example 2.4. Normal-theory linear model. Suppose that the obser­
vations y ,  considered as an n X 1 column vector, form a realization 
of the vector random variable Y  with E{Y) = x/J, where x is a known 
n x qx matrix of rank qx <  n, and j3 is a qx x 1 column vector of

liky (0  \y )  = 0 r( l - 0 )" -r , (6)

(7)

(8)



unknown parameters. Suppose also that Yx, . . . ,  Yn are independently 
normally distributed with unknown variance o2. Then

, n ? x ^  x - * »  - n  I ( T  -  xj3)T(y -  Xj3)) liky (j3, a 2;y) = (2ir) 2 a e x p -------------— -----------  . (9)

We define the residual sum o f squares SSres and least squares estimates 
P in the usual way by

(xTx)p = x Ty , SSres =  ( y - x j 3 ) T(y ~xp) .
Then it is easily shown that

, n  2  X x -  5- n  - n  f S S r e s  (P ~  P f x TX 0  ~  j3)] , ,liky (|3, o2;y)  = (2tt) 2 a exp —  — ----------  .(10)

Thus the likelihood depends on y  only through SSres and |3. Note that 
if qx =  n, then SSres = 0 and the likelihood is unbounded at a = 0.

The result (10) covers in particular the special case when Yt , . . . ,  Yn 
are i.i.d. in a normal distribution of unknown mean p and unknown 
variance a2, N(p, a 2), say. Then (10) is easily seen to simplify to

,  x x-i -n - n  I 2 ( y ;- - y . ) 2 +  « ( y . - j u ) 2liky (ju,o 2;y) = (2tr) 2 a e x p -----------------— ---------------  , ( 1 1 )
where y. =  2 y ; /n.
Example 2.5. Discrete time stochastic process. We can always write 
the joint probability density of random variables Y j,. . .,  Yn in the 
form

/y (y )  = /V1(y i)/y 2iv1(y 2 ly i)/y3iy2,Y'1(y 3ly2 >yi) • ••
fYn i Yn_   y ,(y jy n -i, - -^yi)-

This is particularly useful for processes developing in time and in 
particular for Markov processes for which

/y riyr. 2 y,(yrlyr-i> • • • > yi) = /y r |yl..,(yrlyr-i)>
so that for such processes

/ y ( y )  =  / y / y ’i)  /Vy i y j  _ ,(>'; I } ’j  - 1 ) • (1 2 )

In particular consider the two-state Markov chain with transition 
matrix

14 THEOR E TIC A L ST  A TIS TICS [2.1
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$00 $01 

$10 $11

If the state of the system is assumed known at time zero all the terms 
in ( 1 2 ) are given by one o f the 6rs’s, so that

lik(0 ;y ) =  n C ,  (13)
r,s

where the elements of the matrix ((mrs)) give the number o f one-step 
transitions from state r to state s. Note that the result (13) applies 
directly to all discrete state Markov chains with stationary transition 
matrices.
Example 2.6. Time-dependent Poisson process. To calculate the 
likelihood for a stochastic process in continuous time involves in 
principle a new idea in that we are no longer dealing with a finite 
number or even with a countable number of random variables. How­
ever, if we consider a suitable limiting process a likelihood can 
usually be calculated. Consider a non-stationary Poisson process of 
rate pit)  observed for the time interval [0, t 0). Let events be observed 
at times y x, . . . , y n. Divide the interval [0, t 0) into a large number m 
of sub intervals each of length ft so that mh =  t0, and denote these 
intervals by [a,, a} + ft) for / = 1 ,. . . ,  m. Then by the defining proper­
ties of the Poisson process, the sub interval [a,-, a, + ft) contributes a 
factor p(aj)h +  o(ft) =  p(yt)h + o(ft) to the likelihood if aj <  
aj + ft for some i, whereas if an event did not occur in [ah  at + ft) the 
contribution is 1 — p(aj)h + oih). Probabilities referring to disjoint 
intervals are independent, so that the likelihood is

n  {p{ydh + o(ft)} n*{l ~p(aj)h + o{h)}, (14)
where n*  is the product over all / such that [ah  a, + h) contains 
none of y x, . . . ,  y n. As h -* 0 this second product tends to

Iexp j— f  p(u)du ( o
If we omit the factor ft" in (14), the omission corresponding to the 
conversion from a probability to a probability density, it follows that 
we may take

lik{p(t);Ti, ■■■,yn} = n p ( f t )  exp j - / p ( u ) d u | . (15)
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In particular if p{t) =  aeet, the likelihood is

and in the stationary Poisson case with j3 = 0
lik(a ; ,  . . . , y n) = ane ' at°. (17)

Example 2 .7. A likelihood that cannot be specified simply. For most 
probability models the likelihood can be written down immediately, 
once the model is properly specified. This is not always the case, 
however, as the following example shows. Suppose that a series of 
point events is observed in continuous time and that the model is as 
follows. Points with integer coordinates are displaced by random 
amounts that are i.i.d. in N(0, a 2). Only the displaced points are ob­
served; the corresponding order of the originating events is not 
known. The likelihood can then not be written down in a useful 
form as a function of o, especially when a is large compared with 
one.
(iii) Mathematical difficulties
There are some mathematical difficulties in a general definition of 
likelihood for continuous random variables arising from the non­
uniqueness of probability density functions. These can be changed 
on sets of measure zero without changing the probability distribution, 
and hence likelihood also is in a sense not uniquely defined. However 
in particular applications there is a “regular” form for the density and 
it is sensible to define likelihood in terms of this. While a measure- 
theoretic treatment is possible the fact that all observations are 
rounded, i.e. essentially discrete, justifies the use of the “regular” 
version. Indeed in a few cases it will be crucial to remember that 
continuous distributions are used only as approximations. Similar 
remarks apply to the likelihood for stochastic processes in continuous 
time.
(iv) Extended definitions o f likelihood
In the definitions (1) and (3) o f likelihood, we take the p.d.f. of all 
the random variables representing the data. Sometimes in dealing 
with complex problems it is useful to apply a one-one transform­
ation of Y into a new vector random variable which is partitioned
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into two parts V and W. Provided that the transformation does not 
depend on the unknown parameters, and this we assume, we can 
transform the data y  into (y, w).

The function of the unknown parameters obtained by considering 
the p.d.f. of V at the observed value v, i.e.

liky (0 \v) = f v (v ;d )  (18)
is called the marginal likelihood for the original problem, based on V. 
It is the likelihood that we would get if v alone were observed. Again, 
in some situations we may work with the distribution of W condition­
ally on F  =  n, i.e. define

likw(v(0 ; w|v) = f W\V(w\v ;0 ), (19)
which we call a conditional likelihood for the original problem.

We consider (18) and (19) only in order to obtain functions sim­
pler than liky (0 ;y). While we could consider (18) and (19) for any 
convenient V and W, there would in general be a loss of information 
relevant to 0 in so doing. We would like to use (18) or (19) only 
when, for the particular purpose intended, all or nearly all of the 
information is retained. Unfortunately it is difficult to express this 
precisely and for that reason we shall not make extensive direct use 
of marginal and conditional likelihoods, although they will be im­
plicit in much of the discussion of Chapter 5. An example will illus­
trate the possible gain of simplicity.
Example 2.8. One-way analysis o f  variance. Consider data represented 
by random variables (yn , Y12; Y21, Y22; .. .;  Yml, Ym2) that are inde­
pendently normally distributed with variance o2 and E(YJk) = p}
(J =  1, . . . ,  m). That is, there are m pairs of observations, each pair 
having a different mean. The following discussion extends immedi­
ately if there are more than two observations in each group. The 
unknown parameter is 0 = (/q , . . . ,  pm, a 2), and the likelihood of the 
full data is

liky(0 \y )  = (27ra2r me x p { - Z 2 ( y ;fe- / i J)7 (2a2)}
= (27ra2)_m exp { -  2 (y y. -  pj)2/o 2} exp { -  2 2 ( y Jfe ~Ty.)2/(2a2)},

(20)
where is the mean of the y'th pair; note that Z 2 ( y jk — y}, )2 = SS  ̂
is the usual within-groups sum of squares. It is tempting to conclude 
that, although o occurs throughout (2 0 ), the information about a is
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largely contained in the final factor. Direct examination of (20) is, 
however, difficult especially for large m, because it is a function of 
m + 1 parameters.

The situation is clarified somewhat by considering a marginal like­
lihood. Introduce the orthogonal transformation

vi = ( y j i—y n W 2 ,  wi =  (k ji+ k ;2 ) /V 2 ( / =  1, •
The corresponding random variables are independently normally dis­
tributed with variance o2 because of the orthogonality of the trans­
formation. Further, F j , . . . ,  Vm are i.i.d. in N(0, a2) and hence the 
marginal likelihood based on V is

likv (a 2 ;z>) = (2 ira2)-7m exp = (2iro2)~Tm exp '
(21)

Note that only part of the leading factor in (20) appears in (21). 
Consideration of the marginal likelihood has replaced a problem with 
m + 1 unknown parameters by a problem with a single parameter. In 
this particular case, because V and W are independently distributed,
(2 1 ) can be regarded equally as the conditional likelihood based on 
V  given W = w.

If we are concerned solely with a, and fix, . . . ,  fxm are unknown 
and arbitrary, use of (21) is certainly convenient. Is there, however, 
any loss of information about a when w is ignored? The distribution 
of W, a vector of m components, involves all m + 1 unknown par­
ameters and it is plausible that, not knowing Hi, • • •, Mm > we cannot 
extract any information about a from w. It is difficult to make this 
notion precise; the topic is mentioned again in Section 9.2.

2.2 Sufficient statistics
(i) Definition
Suppose that observations y  = ( y v, . . . ,  y n) form a realization of a 
random variable Y  and that a family T of possible distributions is 
specified. A statistic is a function T — t(Y); in general T  is a vector. 
Corresponding to the random variable T  is an observed value t = t(y).  
Note that the distinction between a statistic and an estimate is that 
the former is not necessarily calculated with the objective o f being 
close to a meaningful parameter.
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A statistic S  is said to be sufficient for the family 5  if the con­

ditional density
/Vis (k Is)

is the same for all the distributions in T. In a parametric case this 
means that

f Y\s(y\s;0)  (2 2 )
does not depend upon 6 ,9  €E £2. For the reason explained in Section
2 .1  (iii), possible non-uniqueness of the conditional density for con­
tinuous random variables need not worry us.

Note that if S  is sufficient, so is any one-one function of S.
Example 2.9. Poisson distribution. Suppose that ?  specifies that 
Yx, .. .,  Yn are i.i.d. in a Poisson distribution of mean p. Then 
S  = y, -I- ... + Yn is sufficient. To prove this, we calculate the con­
ditional distribution (22). To obtain this, note that

» e”" V yy'/v ( t ;m )  = n  — 7 -  = - 7 — 7- ,  yj\ Tfyjlwhereas e - n\n p .y/s(s;m ) = 5!
It follows that

f (Zy;)! - ^  ... ,
/Vis ( t I s ; m) = I m  y r  Sh

0  ( 2 y ,* s ) . (23)

Because this does not involve ju, the sufficiency is proved. Note that 
(23) is the multinomial distribution with s — 'Eyj trials and prob­
abilities (1 In , . . . ,  \/n), a result o f practical value. The sufficient 
statistic could equally well be taken as the mean XYj/n.
Example 2.10. Uniform distribution. Suppose that Yx, .. . ,  Yn are
i.i.d. in a uniform distribution over (0, 6), and that S  =  max(y,). 
Now

f l ie n (s < 6),
f r ( y ; 0 )  = ( 0  otherwise,
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nsn~ 70" ( s < 6 ) ,

0 otherwise, 
it being assumed that all the observations are non-negative. Thus

( 1——  (max(y,-) = s <  6 ),/ ns
/ yis(t Is i 0) =  | (24)( 0 otherwise.

At first sight (24) does depend on 6. However, the restriction s <  0 
in (24) is automatically satisfied for all values of 6 for which the 
conditional distribution is defined.
Example 2.11. Order statistics. Suppose that Yx, .. .,  Yn are i.i.d. in a 
continuous distribution and that ?  consists o f all densities of con­
tinuous random variables. Let S  be the set of order statistics 
(T(1), . . . ,  T(n)), where F(1) <  F(2) <  ... <  T(n). The main distribu­
tional properties of order statistics are summarized in Appendix 2. 
Now

fy(y) = n /O',),j=i

in\ ,n f(Sj) (Si < s2 < . . . < s„),
fs(s) =

I 0 otherwise.
Thus the conditional density of Y  given S  = s is

II /n ! if {y} is a permutation of {5}, (25)
0 otherwise.

Because this does not depend on the density /( .) , the sufficiency of 
S  is proved. Note that (25) expresses nothing more than the obvious 
fact that, given the ordered values, all permutations of them are 
equally likely under? .

Example 2.12. The likelihood ratio. Suppose that there are just two 
possible densities for the vector Y, namely f 0(y)  and f i(y ) .  Let 
S  =  f i ( Y ) / f0(Y). That is, two points with the same value of S  have 
the same ratio of likelihoods. We prove the sufficiency of S, taking

fs is ' ,0 )  =
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the discrete case for simplicity. Let 2* denote summation over all y  
such that / iO )//o O ) = s. Then

A similar argument applies if there are more than two possible 
densities in 3\ Thus if there are q + 1 possible densities / 0( y ) , ...,  
f q(y), the set of likelihood ratios

is sufficient. The choice of f 0(y)  as a reference point is arbitrary and 
there is an obvious modification if f 0( y ) = 0. In the parametric case 
the corresponding result is that for a fixed 0O the set of all values

for 0 E £2 forms a sufficient statistic. That is, if two points y x and y 2 
have proportional likelihood functions, they have the same value of a 
sufficient statistic. This result is pursued in part (iv) o f this section, 
in connexion with minimal sufficiency.
(ii) Factorization theorem
The examples of the previous section illustrate the idea of a sufficient 
statistic but do not show how to find the sufficient statistic in any 
particular case. Example 2.12 does, however, suggest that it is the 
structure of the likelihood function that indicates the form of the 
sufficient statistic. This is expressed formally in the factorization 
theorem:
A necessary and sufficient condition that S  be sufficient for  0 in the 
family *5 is that there exist functions m f  s, 0 ) and m 2{y) such that 
for ail e e n ,

pr(T = y f ) S  = s ; f 0) 
pr(5 = s \ f 0)

fo(y) _  sf0(y)
s f / o O O  s .V o O O

f i ( y )
2 */iOO

/iOO/ZoO), ■■■Jg(y)/fo(y)

f ( y  ; d ) / f(y  ;0o) -  lik(0  ;y)/lik(0 o;T) (26)

lik(0 ;y )  = m ^s ,  d )m 2(y). (27)
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If S  is sufficient, then /VisCvIs) does not depend on 9 and can be 

written as m 2{y). Thus
lik (0 ;y ) =  f Y( y ; d )  = f Y\S(y\s)fs(s ;9)

= m l(j>,e)m2(y),
say. Conversely if (27) holds, we may calculate /y |s(y |s  5 9) as

fs(s ; 9) f Y(y  ; 9)1 f . .. / f Y(z ; 0) \J\dz  in continuous case.
In the second formula we have changed to new variables (s, z), intro­
duced a Jacobian, J, and integrated with respect to z. If we substitute 
(27) into (28), the term m x{s, 9) cancels and the conditional distri­
bution thus does not involve 9.

Note that in (27) we can, if we wish, arrange that m x(s, 9) is the 
p.d.f. o f S. We call (27) the factorization theorem ', it will be used 
repeatedly later. Two examples suffice for now.
Example 2.13. Poisson distribution (ctd). For the situation of 
Example 2.9, where yj,. . . ,  Yn are i.i.d. in a Poisson distribution of 
mean ju, the joint probability is

We may take the two factors in this as respectively m x(s, p) and 
tn2(y), so that S  = ZYj is sufficient.
Example 2.14. Cauchy distribution. If yj,. . . ,  Yn are i.i.d. in a 
Cauchy distribution of location parameter 9, the joint density is

and no factorization involving a function s of fewer than n dimen­
sions is possible; see Example 2.16 for proof. By the general result 
of Example 2.11 the order statistics of the sample are sufficient.

f r ( y , 9 ) f v i y  ; 9)1 2  /y(z  ; 9) in discrete case,
z :s(z)=s

(28)

1 n 1
*"/?! (1 + O V - 0 )2}

(iii) Interpretation o f sufficiency
Consider two individuals both involved in observations associated
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with the family as follows:

Individual I observes y , a value of the random variable Y ;
Individual II proceeds in two stages:

(a) he observes s, a value of the random variable S  having the 
p.d.f. f s (s-,d),

(b) he then observes y ,  a value of a random variable having 
the p.d.f. /yisCHs), not depending on 0.

The following two statements are very plausible.
(1) Because the final distributions of Y  for the two individuals are 

identical, the conclusions to be reached from a given y  are identical 
for the two individuals.

(2) Because Individual II, in stage (b), is sampling a fixed distri­
bution, i.e. is in effect drawing values from a table of random num­
bers, only stage (a) is informative, so long as the correctness of ?  is 
postulated.

If both (1) and (2) are accepted, it follows that if y  is observed 
then the conclusions to be drawn about 0 depend only on s = sO ), 
so long as 5F is the basis of the analysis.

We shall discuss this further later. The argument can be looked at 
in two slightly different ways. On the one hand the argument can be 
thought convincing enough to make it a basic principle that, so long 
as the correctness of 3  is accepted, the conclusions to be drawn 
should depend only on s. Alternatively one may simply note that all 
the optimality criteria that we shall consider later lead to the use of 
s and we may regard the above argument as an explanation of that.

Note that although restriction to the use of 5 may achieve a big 
reduction in dimensionality we still have to decide what to do with s, 
or how to interpret it.
(iv) Minimal sufficiency
If in a particular problem S  is a sufficient statistic for 0 , then so too 
is (.S, 7) for any statistic T  = t(Y ).  Of course, we would rather deal 
with S  than with (S, T) since our object is to summarize the data 
concisely. If no further reduction from S  while retaining sufficiency 
is possible, then S  is said to be minimal sufficient; S  is necessarily a 
function of all other sufficient statistics that can be constructed.
Example 2.15. Binomial distribution. Let Ylt . . . ,Y „  be independent 
Bernoulli random variables with parameter 6 and S = 'LYj . Then 
V  =  g(S) is a summary or simplification of S  only if g(r{) = g(r2) — v
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for some v and 0 <  rx =£ r2 <  n. But for s -  r x, r2

0*(1 — 0 )n ~s

dr' ( l - d ) n~r' + 6rK 1 —0 ) " ' r2

which depends on 0. Thus V is not sufficient and S  is minimal suf­
ficient.

We want to use minimal sufficient statistics wherever possible. 
Sometimes the appropriate factorization of the likelihood is obvious 
on inspection, particularly for a single parameter. In other cases we 
can use an important close relationship between minimal sufficiency 
and ratios of likelihoods to derive the minimal sufficient statistic.

Any statistic, and therefore in particular any sufficient statistic S, 
divides the sample space into equivalence classes, each class contain­
ing all possible observations y  with a common value of 5 . The fact 
that if S  is minimal sufficient so too is any one-one function of S  
indicates that it is the set o f equivalence classes that determines the 
essential nature of the reduction by minimal sufficiency, rather than 
the particular labelling of the equivalence classes.

Consider the partition created by putting all points with pro­
portional likelihood functions into the same equivalence class, i.e. 
define the classes

$  O') = z ; {-y f  a! ~ h (z ,y ) ,  for all 0 €E £2 | ; (29)( f v i y ' , 0 )  )
ifz  efD (yj) andJ)(y2), thenJK yj) = 'D(y2). This partitioning is 
minimal sufficient. To see that it is sufficient, note that the conditional 
distribution of Y  within its equivalence class is independent of 0. To 
show that it is minimal sufficient, consider any other sufficient stat­
istic V = v(Y) which, by the factorization theorem (27), is such that

if y  and z are such that v(y) = v(z). But this implies that y  and z are
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equivalent in the sense of (29). Therefore the partition (29) includes 
that based on V, proving the minimal sufficiency of (29).

Thus we inspect the likelihood ratio f Y(z ; d ) / fY(y  ; 0 ) in order to 
find which y  and z should be assigned the same value of the minimal 
sufficient statistic.
Example 2.16. Cauchy distribution (ctd). If Yt , . . .,  Yn are i.i.d. in 
the Cauchy distribution of Example 2.14, the likelihood ratio is

/ y ( z ; 0 ) = n { i + ( y j - d ) 2}
M y ;  6) n { l + ( Z j - d ) 2}

and is thus a rational function of 8. For the ratio to be independent 
of 8, all powers of 8 must have identical coefficients in numerator 
and denominator. This happens if and only if ( jq , . . . ,  y n) is a permu­
tation of (z j, . . . ,  z„). Therefore the minimal sufficient statistic is the 
set of order statistics (T(1), . . . ,  ! « ) •

It was shown in Example 2.11 that the order statistics are suf­
ficient for the full family of continuous distributions; it follows from 
their minimal property for the Cauchy distribution that a fortiori 
they are minimal for the larger family.

From now on, by sufficient statistic we always mean minimal 
sufficient statistic.
(v) Examples
We now consider three further examples which serve both to 
illustrate the factorization theorem and to give some results of 
intrinsic importance.
Example 2.17. Normal-theory linear model (ctd). The likelihood for 
the normal-theory linear model was calculated in ( 1 0 ) and involves 
the observations only through (j3, SSres). These are therefore sufficient 
statistics for the unknown parameters 0 ,  o2). If, however, the vari­
ance is known and equal to say ol  we can in ( 1 0 ) separate o ff the 
factor

and treat it as the function m 2(y) in the factorization theorem (27). 
It then follows that |3 is sufficient for j3. In particular, when the
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random variables are i.i.d., the sample mean and estimate of variance 
are sufficient and when the variance is known the mean is sufficient.
Example 2.18. Uniform distribution o f  zero mean. Suppose that 
T ,, . ..,  Yn are i.i.d. with uniform density over (—0, 0). Then the 
likelihood is

Hence the sufficient statistic is max | Yj |, or equivalently 
max(— y(1), T(n)), where y (1) = min(y,), Y(n) = max(l^) are the 
extreme order statistics.

This may be compared with the rather simpler result of Example
2 .1 0  that for the uniform distribution over (0 , 0 ) the largest value 
is sufficient.

A simple extension of (30) shows that for the uniform distribution 
with both terminals unknown, the smallest and largest values are to­
gether sufficient. The same sufficient statistics apply for a uniform 
distribution of known range but unknown mean, e.g. the uniform 
distribution from 0 — 1 to 0 + 1 .

These results generalize immediately to a known distribution 
truncated at unknown points, i.e. to the density

where p(.)  is a known non-negative function and one or both of 0 j 
and 02 are unknown parameters. Again the relevant extreme order 
statistics are sufficient.
Example 2.19. Life-testing with an exponential distribution o f  life. 
Suppose that in observations on n individuals, r “die” after times 
yi, . . . , y r, whereas the remaining m = n — r are still “alive” after 
times under test of y [ , . . . ,  y'm ; there are a number of situations in 
life-testing where data have to be analysed with an appreciable num­
ber of lives incomplete. If completed lives are represented by random 
variables Yt , . . . ,  Yn which are i.i.d. with p.d.f. pe~py (y  >  0), the 
likelihood is

(30)

(dl < y < e 2), (31)
/  p(u)due
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r m 'n pe~pyi n e~pyk, (32)j = 1 k = 1

the terms for the incomplete lives being the probabilities of times to 
death exceeding y[, Thus the likelihood is

where y. =  Ey;- + Xyl  is the total time at risk; the sufficient statistic 
is (R , F). This result is the continuous time analogue of the result 
that in any set of Bernoulli trials the number of successes and the 
total number of trials form the sufficient statistic.
(vi) Exponential family o f distributions
Suppose first that there is a single parameter and that F ,, . . . ,  Y„ are 
mutually independent with

= exp {a(6)bj(y) + cj(d) + dj(y)}, (33)
where #(.), &,(.), c; (.), dj(.) are known functions. Then

f Y( y ; 6 )  = exp{a(0)Z&,(yy) + Z q(0) +  Xdj(yj)}, (34)
so that ItbjiYj) is sufficient. In particular, if the Yj are identically 
distributed, 'Lb{Yj ) is sufficient. Several interesting special distri­
butions have the form

exp {a(6)b(y) + c(6) + d(y)},  (35)
among them the normal, gamma, binomial and Poisson distributions. 
For example, to see that the gamma distribution with known index 
k 0 belongs to the family we write

f r ( y , P ) = P & y P ' '  e~py/ r ( k 0)
= exp {—py + k 0 log p + ( £ 0 -  l) log y  — log r(fc0)}.

Thus aifi) = —p, b(y) = y ,  c(p) = k 0 logp — log Y(k0) and d(y) =
(k0 — 1 )log y, and the sufficient statistic for p from i.i.d. random 
variables Yu  . . . ,  F„ is 'Lb{Yi ) = XYj.

One-one transformations of variable or parameter do not affect 
the general form of (35), i.e. whether or not a distribution belongs 
to the simple exponential family. Thus we can, provided that a(.) 
and b(.) are monotonic, transform to a new parameter <j> = ~a(d) 
and a new variable Z = b(Y). The p.d.f. for Z has the simple form
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f z (z;<j>) = exp {-z<p + cf (<t>) + (z)}, (36)

and the sufficient statistic for 0  based on i.i.d. random variables 
Z x, . . . ,  Z„ is Z Z j . The new parameter 0  is often called the natural 
parameter for the problem, for several technical and practical 
reasons. One of these is that the ratio of likelihood functions at 4>i 
and 02  <  0i is an increasing function of the sufficient statistic. Also 
it will turn out that comparisons of different sets o f data are most 
easily achieved in terms of comparisons of the natural parameter 
values. For example, the natural parameter for the binomial distri­
bution is 0  =  log (0/(1 — 0)}, the so-called log odds ratio. The theory 
of the comparison o f two binomial distributions is simplest not in 
terms o f 0j — d2 but in terms o f 0 j — 0 2. Whether this is really the 
best parametrization in terms of which to make the comparison 
depends in addition on circumstances other than mathematical 
simplicity.
Example 2.20. Exponential family linear model. Suppose that the 
Y f  s independently have p.d.f.’s /^.(y,- ; 0,) belonging to the same 
exponential family but with different parameter values 0;-, all of 
which are themselves functions of a single parameter 0 ; that is,
6j = 0,(0). The joint distribution in the simplified form (36) is

f z (z ; 0 j, . . . , 0 „) = exp - 2  z,0 , + 2  c+(0 ,) + 2  d f (Zj)j = l ; = i ; = i
Thus if the dependence of 0y on 0 implies a linear relationship,
0y = a,-0, with aj constant, then 2 a}Zj is sufficient for 0 . Linearity 
on any other scale will not produce a single sufficient statistic for 0 .

The generalization of the exponential family to vector parameters 
is to consider the density for Yj given 0 = (0 t , . . . ,  0q) as

f Y. ( y j ; 0 ) = e x p j j ^ ( 0 )bjk(yy-) + c,(0 ) + rfy(y; )J . (37)
Then the joint p.d.f. for independent variables y1}. ..,  Yn can be 
written as .

/y (k  ; 0) = exp ( 2  ak(0)sk(y) + c.(0) +  d.(y)} (38)
where '

sk(y ) = Z b jk(yj) (k =  1, . . . , m).
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The sufficient statistic for 6 is therefore S = (Si, The dimen­
sions m and q of s and 6 respectively are not necessarily equal. The 
case m < q  might occur if some non-linear relationship exists be­
tween the components of 0, but usually this will not happen. Most 
common is the case m — q, which arises in Example 2.4, the normal- 
theory linear model of full rank. There the dimensionality of 
6 =  (j3, a 2) is q = qx +  1 and it follows directly from (10) that 
m = q, the sufficient statistic being (J3, SSres).

The case m > q ,  while not very common in applications, can arise 
in a perfectly natural way. We give one example.
Example 2.21. Normal distribution with known coefficient o f  
variation. Consider a normal distribution in which the ratio 7 0 of 
standard deviation to mean is known, a = y 0p, say. The p.d.f. is

which is of the form (37) with m = 2. If Y j,..., Yn are i.i.d. with 
this distribution, the sufficient statistic is (EYj, 'EY2) or equivalently 
( 7 ,  MS) with f  = 2 7 ^  and MS = E ( Y j -  f  )2/(n -  1).

Similar examples can be formed from other distributions. A rather 
different situation is illustrated by Example 2.19, with censored data 
from an exponential distribution. Here again q = 1, m = 2, with the 
sufficient statistic being number of uncensored observations and the 
total time on test.

When q = m, the p.d.f. (37) can, by transformation of variables 
and parameters, be taken in a simple form somewhat analogous to 
(36), namelv

It is then appealing to assign components of the sufficient statistic

( y - p ) 2

exp 27oM2 ToM 2 y l  2

7oP\/(2n) 6XP |  2yha
+  * I b-  — log(2iT7i)M2)

to the corresponding components of <p. This will be done implicitly
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in Section 5.2, in connexion with testing hypotheses about com­
ponents of d, but for the moment we keep to the original definition 
where the whole sufficient statistic is a vector associated with the 
whole parameter as a vector.

In general, the dimension of the sufficient statistic will not be 
smaller than the sample size unless the distribution is a member of 
the exponential family. This is illustrated by Example 2.14, the 
Cauchy distribution, by the Weibull distribution of unknown index, 
and by Example 2.11, showing that when J  is the family of all con­
tinuous distributions, the order statistics are sufficient; it is easily 
shown in this last example that no further reduction is possible. We 
do not here attempt to prove the equivalence of sufficient reduction 
and the exponential family, but for the one-dimensional case 
(m = q = 1) Exercise 2.11 outlines a method of establishing the 
connexion.

To emphasise that sufficiency is a property of the sampling model, 
as well as of the distributions being sampled, we give the following 
example.
Example 2.22. Change-point model. Suppose that ux, .. .,  un are 
fixed constants, all different, and that for some unknown %, Yj has 
the distribution N(Q, 1) if u, <  % and the distribution N(p, 1) if 
Uj >  %. Then the sufficient statistic for the unknown parameter 
0 = (M; t)  is the full set Yx, . . .,  Yn, and no reduction is possible.
(vii) Completeness
A mathematically important idea is that of completeness. If S  is a 
sufficient statistic for d in the family of distributions indexed by 
6 G SI, then S  is called complete if a necessary condition for

except possibly on sets of measure zero with respect to all the dis­
tributions concerned. A weaker concept is that of bounded com­
pleteness, for which h(S) must be bounded. The property o f com­
pleteness guarantees uniqueness o f certain statistical procedures 
based on S; this we discuss in later chapters.

E{h(S)]d} = 0 (O e S l)  
h(S) = 0 (0 G a )

(39)
is

Example 2.23. Normal mean. Let Yt , . . .,  Yn be i.i.d. inN(p, 1), and
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let S = Y' = 'LYj/n. Then, because T. isN(p, l/n), the identity (39) 
becomes

But the integral is a bilateral Laplace transform, so that by the 
appropriate inversion theorem we deduce that h(s) exp(— \n s 2) is 
identically zero except on sets of Lebesgue measure zero. Thus 
h(s) =  0, and S  is complete.
Example 2.24. Binomial distribution (ctd). Let yt , . . . ,  Yn be inde­
pendent Bernoulli random variables with parameter 0 . Then S = XYj 
is sufficient for 0. Values of his) other than for s = 0 , . . . ,  n have 
zero probability and are of no concern; let h(s) = hs. The identity
(39) becomes

Here the sum is a polynomial of degree n which is identically zero, 
which implies h x = ... = hn = 0, so that again S  is complete. In fact 
the vanishing of the hs's follows if (40) holds for at least n +  1 dis­
tinct values of 0. That is, S  is complete for much smaller parameter 
spaces than [0 , 1 ].

It can be shown (Lehmann, 1959, Section 4.3) that for random 
variables i.i.d. in the exponential family density (38), dim(.S') = 
dim(0), i.e. m = q, is necessary and sufficient for S  to be complete. 
Thus in the situation of Example 2.21, the normal distribution with 
known coefficient of variation, with m > q ,  the sufficient statistic 
i'EYj, 'EY2) is not complete; this is easily verified directly because

has expectation zero for all p.. In general if a sufficient statistic is 
boundedly complete it is minimal sufficient (Lehmann and Scheffe, 
1950, 1955); the converse is false.
(viii) Ancillary statistics
Consider the situation where S  is the minimal sufficient statistic for 
0 and dimCS) >  dim(0). Then it sometimes happens that we can

/  h(s)e~'^ enstlds = 0  ( - ° ° < m < ° ° ) .

(40)
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write S — (T , C), where C has a marginal distribution not depending 
on 6. If this is so, C is called an ancillary statistic. Some writers then 
refer to T  as conditionally sufficient, because T  is used as a sufficient 
statistic in inference conditionally on C = c. The ancillary statistic C 
is chosen to have maximum dimension.
Example 2.25. Random sample size. Let N  be a random variable with 
a known distribution pn = pr(N =  « ) ( « =  1 ,2 ,...) , and let Y1, . . . , Y N 
be i.i.d. with the exponential family density (35). Then the likelihood 
of the data («, y l t . . . , y n ) is

is sufficient for 6, and N  is an ancillary statistic, whereas 'Lb( Yj ) is 
only conditionally sufficient. Any sample size not fixed in advance, 
but with known distribution independent of 6 , is an ancillary stat­
istic.
Example 2.26. Mixture o f  normal distributions. Suppose that a ran­
dom variable Y  is equally likely to be N(p, o f)  or N(p, of), where cq 
and o2 are different and known. An indicator random variable C is 
observed, taking the value 1 or 2 according to whether Y  has the 
first or the second distribution. Thus it is known from which distri­
bution y  comes. Then the likelihood of the data (c , y ) is

fc ,y (c ,y )  = i(27ra*)- ’ exp{— (y — p)2/(2of)},
so that S — (C, T) is sufficient for p with of and a\  known. Because 
pr(C = 1) = pr(C = 2) =  $ independent of p, C is ancillary.
Example 2.27. Normal-theory linear model (ctd). In a linear re­
gression problem, suppose that the values of the explanatory variable 
have a known joint p.d.f. fx(x), and that, conditionally o n I  =  r ,  
the y j , . . .,  Yn are independent, Yj having the distribution 
N(7  + 13xj, a2). Then the full likelihood of the data is

n nfN .y (n ,y )  = pnexp a(0) 2^ b(yj) + nc(d) +
Thus

f x . v ( x ,y )  = fx (x ) (2 ito 2) 5"exp (y;- - 7 - j3x-y) 2 j .
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The sufficient statistic for (7 , |3, a2) is

5  =  ( 7 , M s res,Z X ,- ,2 X /) , (41)
the last two components of which form an ancillary statistic. That is, 
even if the explanatory variable is random, conditioning on the 
ancillary statistic would lead to treating the explanatory variable as 
fixed. The argument extends immediately to the general normal- 
theory linear model.

These simple examples are intended to suggest that inference 
about 0 should be conditional on the ancillary statistic. We can 
regard the observed value c as describing that part of the total 
sample space relevant to the problem at hand. For instance, in 
Example 2.26, the ancillary statistic tells us which normal distri­
bution was in fact applicable. The fact that some other normal 
distribution might have been used, but actually was not, seems 
irrelevant to the interpretation of y .  However some difficulties are 
encountered with ancillary statistics. First, there is no general 
method for constructing C. Secondly, C may not be unique. The 
following example, given by Basu (1964) in an extended discussion 
of ancillarity, illustrates both difficulties.
Example 2.28. Special multinomial distribution. Let Yx, .. .,  Yn be
i.i.d. with the discrete distribution

pr(T,- = 1) = * (1 - 0 ), pr(T, = 2 ) -  * (1 + 0 ),
Pr(5> =  3) =  * ( 2 - 0 ) ,  pr(l} =  4) =  *(2 +  0).

If nt is the number of observations equal to /(/ = 1, . . . ,  4), then the 
joint probability of a particular sequence is

f Y ( y ; 9 )  =  6“"(1 — 0)"‘(1 +  0)"2(2 — 0)"3(2 +  0 )"4 . (42 )
The statistic S  = (N l , N2,N 3,N 4) is minimal sufficient; of course one 
component can be omitted in view of the identity 5W, = n. The par­
ticular structure here leads to two possible ancillary statistics, 
namely Cx = (Nx + N 2,N 3 + N4) and C2 = (Nx + N4,N 2 + N 3).
Which of these to use in inference about 0 depends on which one 
best separates all possible sets of data into equally informative sets; 
see also Example 2.37 and Exercise 4.11.
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While such non-uniqueness arises rather rarely in applications, the 

possibility is theoretically disturbing.
The next example indicates a very general set of ancillary statistics.

Example 2.29. Location family. Let y j , . . .,  Yn be i.i.d. in the 
location family with density h(y — 6). The order statistics H i) , . . . ,  
Y(n) are sufficient by the arguments of Example 2.11. Except when 
log h(y)  is a polynomial in y  of degree less than n, the order stat­
istics are minimal sufficient. The contrasts between these, as deter­
mined, for example, by C2 = Y(2) — F(1), C3 = y(3) -  y(1), . . . ,
Q  = y<„) ~  y<i), are distributed independently of 6 and hence form 
an ancillary statistic. The remaining component of the sufficient 
statistic can be taken as T  = y(1), or equivalently as any function of 
T  and C, such as F  . The consequences of studying the conditional 
distribution of T  given the ancillary statistic will be taken up in 
Example 4.15. The statistic C = (C2, __ , C„) is called the configur­
ation.

It would have been possible to have defined ancillary statistics 
without the preliminary reduction by minimal sufficiency. However, 
the fact that inference is wherever possible carried out in terms of 
the minimal sufficient statistic makes the present definition appeal­
ing. The alternative would be to define an ancillary statistic as any 
function of Y  with a distribution independent of 0. That this would 
lead to additional complications is shown by the following example.
Example 2.30. Bivariate normal distribution with unknown corre­
lation coefficient. Suppose that (y ,,  Z x), . . . , ( Y n, Z„) are i.i.d. in a 
bivariate normal distribution with zero means, unit variances and 
unknown correlation coefficient p. The joint p.d.f. is

1 ( L C Z + i?)  , p S » l  . . . .
( 2 ;r )" (l — p 2/  f  ’

so that the minimal sufficient statistic is S = {LYjZj, h(Yj2 + Z /)} . 
There does not seem to be an ancillary statistic, i.e. a function of S  
with a p.d.f. independent of p, although C' = 2 {Yj2 + Z/2) is in some 
reasonable sense approximately ancillary, C' having an expectation 
2 n independent of p and variance 4 « (1  + p 2) not too strongly de­
pendent on p.
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If, however, we allow ancillary statistics that are not functions of 

S, the position is quite different, because both 2  Y 2 and 2 Z / separ­
ately are ancillary, the corresponding random variables having chi- 
squared distributions with n degrees of freedom. Clearly there can 
be no basis for preferring one of 2  Y 2 and 2 Z / to the other as an 
ancillary statistic, so that if the broader definition of ancillarity were 
adopted, the problem of non-uniqueness would be accentuated.

The definition of ancillary statistics given earlier is restrictive. For 
instance, in Example 2.25, concerned with random sample size, it is 
not really crucial that the distribution of sample size should be 
known. The essential points in that example are that (i) the observed 
value of sample size by itself should give no information about 9 and 
that (ii) the conditional distribution of the other component given 
the ancillary statistic depends only on the parameter of interest. The 
same points arise in connexion with Example 2.27 concerned with 
random explanatory variables in regression, where the regression 
parameters y, j3 and o2 are of primary interest.

To formulate this extended notion of ancillarity, suppose that the 
unknown parameter 6 is partitioned into two parts 6 = ( 1//, X), where 
X is not of direct interest. We assume that the parameter space is such 
that any possible value of \p could arise in conjunction with any 
possible value of X, i.e. that Yle = £2  ̂ x in an obvious notation, 
the cross denoting Cartesian product. Let S  be the minimal sufficient 
statistic for 9 and suppose that S  = (T, C), where

(a) the p.d.f. of C depends on X but not on 1{/;
(b) the conditional p.d.f. of T given C = c depends on 1// but not 

on X, for all values of c.
Then we call C ancillary for 1p in the extended sense, and T  condition­
ally sufficient for \p in the presence of the nuisance parameter X.

With this new definition, we can deal with the situations of 
Examples 2.25—2.27 when the distributions of sample size, etc. are 
arbitrary and unknown, or belong to some parametric family, pro­
vided that the variation of the ancillary statistic is independent of 
the parameter of interest in the way just specified.
(ix) Asymptotic sufficiency
In some problems the minimal sufficient statistic may be o f dimen­
sion n, the number of observations, and yet approximately for large 
n a statistic of much lower dimension may be “almost sufficient” in
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a reasonable sense. This is one aspect of the important m atter of 
finding procedures for complex problems that will have desirable 
properties asymptotically as n -*■ °°, and which therefore should have 
good properties for large but finite n. Chapter 9 develops this topic 
in detail. Here we give two examples to establish the connexion with 
sufficiency.

Example 2.31. Maximum likelihood estimates. Suppose that Yx, . . . ,  
Yn are i.i.d. with density f Yj(y  ; 0). The asymptotic results of Section
9.2 show that, under certain conditions on f Y(y  ; 0), the value 0 
which maximizes the likelihood is such that for a suitably defined 
function / (0 ), the likelihood is given over the range of interest by

where rn(y ; 0) is negligible for large n. Comparing this with the 
factorization criterion (27), we see that 0 satisfies this in the limit 
and hence can reasonably be called asymptotically sufficient.
Example 2.32. Change-point model (ctd). Suppose Y j,. . .,  Yy to 
be i.i.d. iniV(0, 1) and Y7+1, . . .,  Yn to be i.i.d. in N(p, 1) with y  
and ju both unknown. Suppose also that there is a restriction on the 
true value y, namely 1 <  y  <  y 0 with 7 0 fixed and known. Roughly 
speaking, for large n we know that there is a change in distribution 
of the random variables Yj near the start of the sequence. Then if 7  
is the value of 7  at which the likelihood is maximized the statistic

is asymptotically sufficient for p. The heuristic reason is that Tn(y) 
and Tn{7 ) differ by a negligible amount for large n and the latter 
statistic is sufficient for known 7 .

Some explicit details of this problem are given by Hinkley (1972).

2.3 Some general principles of statistical inference
(i) General remarks
In the remainder of this book we develop the theory of a number of 
types of statistical procedure. One general theme is that the argu­
ments to be used depend both on the type of question of interest
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and on the depth to which it is possible to formulate the problem 
quantitatively. Thus in Chapter 3 we consider situations where only 
one hypothesis is formulated, whereas in Chapter 11 not only is a full 
model available for the data, but also there are quantitative specifi­
cations of the additional knowledge available and of the consequences 
of the various possible decisions, one of which is to be chosen in the 
light of the data. Now it is to be expected on general grounds that 
once the very much more detailed specification of Chapter 11 is regar­
ded as given, the ideas necessary to develop “optimum” procedures 
should be relatively straightforward and uncontroversial, whereas 
when the specification is much weaker there is relatively more need 
for ad hoc arguments and somewhat arbitrary criteria of optimality.

The types of problem that it is worth discussing can be settled 
only by consideration of applications. We believe that all the levels 
of specification discussed in the subsequent chapters are useful. 
Because of this there is no one approach or set of requirements that 
are universally compelling. The reader may prefer to go straight to 
the detailed development starting with Chapter 3. On the other hand, 
there are some general principles that have bearing on the various 
approaches to be discussed and therefore we now outline these; it is 
instructive in thinking about particular arguments to consider which 
of these general principles are obeyed. Some forward reference is 
inevitable in this and the next section, but has been kept to a mini­
mum.

Throughout, the provisional and approximate character of models 
has to be borne in mind.
(ii) Sufficiency principle
Suppose that we have a model according to which the observations 
y  correspond to a random variable Y  having p.d.f. f Y(y  ; 6) and that 
S  is minimal sufficient for 6. Then, according to the sufficiency prin­
ciple, so long as we accept the adequacy of the model, identical con­
clusions should be drawn from data y l and y 2 with the same value 
of s.

The argument for this has already been given in Section 2.2 (iii). 
Once the value of 5 is known the rest of the data can be regarded as 
if generated by a fixed random mechanism not depending on, and 
therefore uninformative about, 0 , so long as the assumed model is 
correct.

A subsidiary but still very important aspect o f the sufficiency
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principle is that the adequacy of the model can be tested by seeing 
whether the data y ,  given S = s, are reasonably in accord with the 
known conditional distribution.
(Hi) Conditionality principle
Suppose that C is an ancillary statistic either in the simple sense 
first introduced in Section 2.2 (viii), or in the second and extended 
sense where nuisance parameters are present. Then the conditionality 
principle is that the conclusion about the parameter of interest is to 
be drawn as if C were fixed at its observed value c. The arguments 
for this are best seen from Examples 2.26 and 2.27. Suppose that in 
Example 2.26 it is known that the observations are obtained from 
N(p, Oi). How can it affect the interpretation of these data to know 
that if the experiment were repeated some other variance might ob­
tain? We may think of c as an indicator of which “experiment” was 
actually performed to produce the data. The following hypothetical 
example further illustrates the relevance of the conditionality prin­
ciple.
Example 2.33. Two measuring instruments. A measurement can be 
taken from one of two measuring instruments (2 x and (2 2, with a 
view to determining whether a physical parameter 0 is equal to 0 t or 
02. The possible values of the measurement represented by the ran­
dom variable Y  are one and two, such that

pr(T = 1 |(2 i ; 0 2) = p r ( y = 2 |C 1 ; 0 ,) = 1 ,
pr(T= l i e 2 ;02) = pr(y = 2 | e 2 ;0,) = 0.01.

The experiment consists of choosing an instrument at random, where 
pr(select (E i ) = 0.9 and pr(select(22) = 0.1, and then taking a 
measurement y.  It is known which instrument is used. Suppose now 
that y  = 1, and th a t<2 2 was used. Then we calculate that

pr(y = 1 ;0 ,) = 0.099, pr(y= 1 ;02) = 0.901,
which suggests that 0 =  0 2; but the probabilities conditional on (2 2 
are 0.99 and 0.01, which strongly suggests that 0 = 0 j. In the 
former, our view is heavily influenced by what might have happened 
if the more likely instrument (2 j had been used. Thus directly con-
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flicting evidence about 6 is given if we do not condition on the 
information “ C2 was used,” which is ancillary.

(iv) Weak likelihood principle
With the same information as in (ii), the weak likelihood principle is 
that two observations with proportional likelihood functions lead to 
identical conclusions. That is, if y 2 and y 2 are such that for all 6

/yO 'ijfl) = h (y i , y 2)fY(y2  >0 )
then y2 and y 2 lead to identical conclusions, so long as we accept the 
adequacy of the model.

It follows from the construction of Section 2.2 (iv) that this is 
identical with the sufficiency principle.

(v) Strong likelihood principle
Suppose now that two different random systems are contemplated, 
the first giving observations y  corresponding to a vector random 
variable Y, and the second giving observations z on a vector variable 
Z, the corresponding p.d.f.’s being f Y(y  ; 0) and / z (z ; 0 ) with the 
same parameter 0 and the same parameter space Cl. Then the strong 
likelihood principle is that if y  and z give proportional likelihood 
functions, the conclusions drawn from y  and z should be identical, 
assuming of course the adequacy of both models. That is, if for all

f v ( y  ; 0) =  h{y, z ) fz ( z  ; 0), (44)
then identical conclusions about 0 should be drawn from y  and 
from z.

Examples 2.1—2.3 concerning Bernoulli trials can be used to illus­
trate this. The log likelihood function corresponding to r successes 
in n trials is essentially the same whether (a) only the number of 
successes in a preassigned number of trials is recorded, or (b) only 
the number of trials necessary to achieve a preassigned number of 
successes is recorded, or (c) whether the detailed results of individual 
trials are recorded, with an arbitrary data-dependent “ stopping rule” . 
In all cases the log likelihood is, apart from a constant k(r, n),

r log 0 +  in — r) log( 1 — 0 ),
and if the strong likelihood principle is accepted, then the conclusions
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drawn about 0 cannot depend on the particular sampling scheme 
adopted.

These results are very special cases of ones applying whenever we 
have a “stopping rule” depending in some way on the data currently 
accumulated but not on further information about the unknown 
parameter.
Example 2.34. Sequential sampling. Suppose that observations are 
taken one at a time and that after each observation a decision is 
taken as to whether to take one more observation. Given m — 1 ob­
servations yx, . . . ,  ym. x, there is a probability pm. x (yx, . . . ,  y m. x) that 
one more observation is in fact taken. The conditional p.d.f. o f Ym 
given Yj =  y x, . . . ,  Ym. x = ym. x is written in the usual way. Note that 
this includes very general forms of sequential sampling in which ob­
servations may be taken singly or in groups.

Suppose that the data are (n, y x, . . . ,  y n). Then the likelihood, i.e. 
the joint probability that observations are taken in the way specified 
and give the values actually observed, is

P o / y , ( Y i  > Q )P \ ( } ’l ) / y , |  Y , (> ’2 Iy\  > 0 )  ■ ■ ■ P n -l  ( } ’l j • • • > > ’n -1  )  

/ l ^ l Y , , . ,  ...... Y . O ' i . I j ' n - l .  - - - . Y l  5 0 )  { 1  “ A , O ' 1 ,

Thus, so long as the probabilities defining the sampling scheme 
are known they form a constant factor in the likelihood function 
and the dependence on the parameters is fixed by the observations 
actually obtained, in fact by the joint p.d.f. o f Y j,. . . ,  Y„. Therefore, 
if the strong likelihood principle were accepted, the conclusion to be 
drawn about 0 would be the same as if n were fixed. Note, however, 
that N  is not in general an ancillary statistic and that conditioning on 
its value is not a consequence o f the conditionality principle as for­
mulated above.

We noted at the end of the previous subsection that the weak 
likelihood principle and the sufficiency principle are equivalent. The 
deduction of the strong likelihood principle from the sufficiency 
principle plus some form of the conditionality principle has been 
considered by Bimbaum (1962, 1969, 1970), Barnard, Jenkins and 
Winsten (1962), Durbin (1970), Savage (1970), Kalbfleisch (1974) 
and Basu (1973). We shall not go into details, but the following 
seems the essence of the matter.


