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Preface

Number theory has a rich history. For many years it was one of the
purest areas of pure mathematics, studied because of the intellec-
tual fascination with properties of integers. More recently, it has
been an area that also has important applications to subjects such
as cryptography. The goal of this book is to present both sides of
the picture, giving a selection of topics that we find exciting.

The book is designed to be used at several levels. It should fit well
with an undergraduate course in number theory, but the book has
also been used in a course for advanced high school students. It
could also be used for independent study. We have included several
topics beyond the standard ones covered in classes in order to open
up new vistas to interested students.

The main thing to remember is number theory is supposed to be
fun. We hope you enjoy the book.

The Chapters. The flowchart (following this preface) gives the
dependencies of the chapters. When a section number occurs with
an arrow, it means that only that section is needed for the chap-
ter at the end of the arrow. For example, only the statement of
quadratic reciprocity (Section 9.1) from Chapter 9 is needed in
Chapter 10.

The core material is Chapters 1, 2, 4, 7, along with Sections 6.1
and 9.1. These should be covered if at all possible. At this point,
there are several possibilities. It is highly recommended that some
sections of Chapters 3, 5, and 8 be covered. These present some
of the exciting applications of number theory to various problems,
especially in cryptography. If time permits, some of the more ad-
vanced topics from Chapters 9 through 16 can be covered. These
chapters are mostly independent of one another, so the choices
depend on the interests of the audience.

We have tried to keep the prerequisites to a minimum. Appendix
A treats some topics such as induction and the binomial theorem.

xv



xvi Preface

Our experience is that many students have seen these topics but
that a review is worthwhile. The appendix also treats Fibonacci
numbers since they occur as examples in various places throughout
the book.

Notes to the reader. At the end of each chapter, we have a short
list of Chapter Highlights. We were tempted to use the label “If
you don’t know these, no one will believe you read the chapter.” In
other words, when you finish a chapter, make sure you thoroughly
know the highlights. (Of course, there is more that is worth know-
ing.) At the end of several sections, there are problems labeled
“CHECK YOUR UNDERSTANDING.” These are problems that
check whether you have learned some basic ideas. The solutions to
these are given at the ends of the chapters. You should not leave
a topic until you can do these problems easily.

Problems. At the end of every chapter, there are problems to
solve. The Exercises are intended to give practice with the con-
cepts and sometimes to introduce interesting ideas related to the
chapter’s topics. The Projects are more substantial problems. Of-
ten, they consist of several steps that develop ideas more exten-
sively. Although there are exceptions, generally they should take
much longer to complete. Several could be worked on in groups.
Computations have had a great influence on number theory and
the Computer Explorations introduce this type of experimenta-
tion. Sometimes they ask for specific data, sometimes they are
more open-ended. But they represent the type of exploration that
number theorists often do in their research.

Appendix B contains answers or hints for the odd-numbered prob-
lems. For the problems where the answer is a number, the answer
is given. When the exercise asks for a proof, usually a sketch or a
key step is given.

Computers. Many students are familiar with computers these
days and many have access to software packages such as
Mathematica c©, Maple c©, Matlab c©, Sage, or Pari that perform
number theoretical calculations with ease. Some of the exercises
(the ones that use numbers of five or more digits) are intended
to be used in conjunction with a computer. Many can probably
be done with an advanced calculator. The Computer Explorations
definitely are designed for students with computer skills.



xvii

Acknowledgments. Jim Kraft wants to thank the Gilman School
for its generous support during the writing of this book and his
students Rishi Bedi, John Chirikjian, Anthony Kim, and John Lee,
whose comments helped make this a better book. Many thanks are
also due to Manjit Bhatia, who made many very useful suggestions.
We both want to thank our many students over the years who have
taught us while we have taught them. This book would not have
been possible without them.

We welcome comments, corrections, and suggestions. Corrections
and related matter will be listed on the web site for the book
(www.math.umd.edu/∼lcw/numbertheory.html).

James S. Kraft
Gilman School
jkraft@gilman.edu

Lawrence C. Washington
University of Maryland
lcw@math.umd.edu



xviii Preface

Chapter 1
Divisibility

Chapter 2
Unique Fac-

torization

Chapter 4:
Congruences

Chapter 3:
Applications

of Unique
Factorization

Chapter 7:
Order and

Primitive Roots

Chapter 9:
Quadratic
Reciprocity

Chapter 10:
Primality and
Factorization

Chapter 6:
Polynomial

Congruences

Chapter 5:
Cryptographic
Applications

Chapter 8:
More Cryp-

tographic
Applications

Chapter 11:
Geometry

of Numbers

Chapter 12:
Arithmetic
Functions

Chapter 13:
Continued
Fractions

Chapter 14:
Gaussian Integers

Chapter 15:
Algebraic Integers

Chapter 16:
Analytic Methods

3.7

9.1

6.1

5.4



Chapter 0

Introduction

At Columbia University there is a Babylonian clay tablet called
Plimpton 322 that is over 3800 years old and not much larger
than a cell phone. Written in cuneiform script with four columns
and 15 rows, it contains numbers written in base 60 (just as base
10 is standard today, base 60 was standard in Babylon). Each row
gives a Pythagorean triple, that is, three whole numbers x, y, z
satisfying

x2 + y2 = z2

(for example, 32 + 42 = 52 and 127092 + 135002 = 185412 are
triples from the tablet). This is one of the earliest examples where
integers are studied for their interesting properties, not just for
counting objects.

Throughout history, there has been a fascination with whole num-
bers. For example, the Pythagorean school (ca. 500 BCE) believed
strongly that every quantity could be expressed in terms of inte-
gers or ratios of integers, and they successfully applied the idea
to the theory of musical scales. However, this overriding belief
received a sharp setback when one of Pythagoreans, possibly Hip-
pasus, proved that

√
2 is irrational. There is a story, which may

be apocryphal, that he discovered this at sea and was promptly
thrown overboard by his fellow Pythagoreans. Despite their at-
tempt at suppressing the truth, the news of this discovery soon
got out. Nevertheless, even though irrational numbers exist and
are plentiful, properties of integers are still important.

Approximately 200 years after Pythagoras, Euclid’s Elements, per-
haps the most important mathematics book in history, was pub-
lished. Although most people now think of the Elements as a book
concerning geometry, a large portion of it is devoted to the theory
of numbers. Euclid proves that there are infinitely many primes,

1
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demonstrates fundamental properties concerning divisibility of in-
tegers, and derives a formula that yields all possible Pythagorean
triples, as well as many other seminal results. We will see and prove
these results in the first three chapters of this book.

Number theory is a rich subject, with many aspects that are inex-
tricably intertwined but which also retain their individual charac-
ters. In this introduction, we give a brief discussion of some of the
ideas and some of the history of number theory as seen through
the themes of Diophantine equations, modular arithmetic, the dis-
tribution of primes, and cryptography.

0.1 Diophantine Equations

Diophantus lived in Alexandria, Egypt, about 1800 years ago. His
book Arithmetica gives methods for solving various algebraic equa-
tions and had a great influence on the development of algebra and
number theory for many years. The part of number theory called
Diophantine equations, which studies integer (and sometimes
rational) solutions of equations, is named in his honor. However,
the history of this subject goes back much before him. The Plimp-
ton tablet shows that the Babylonians studied integer solutions of
equations. Moreover, the Indian mathematician Baudhāyana (≈
800 BCE) looked at the equation x2 − 2y2 = 1 and found the
solutions (x, y) = (17, 12) and (577, 408). The latter gives the ap-
proximation 577/408 ≈ 1.4142157 for

√
2, which is the diagonal of

the unit square. This was a remarkable achievement considering
that at the time, a standardized system of algebraic notation did
not yet exist.

The equation

x2 − ny2 = 1,

where n is a positive integer not a square, was studied by Brah-
magupta (598-668) and later mathematicians. In 1768, Joseph-
Louis Lagrange (1736-1813) presented the first published proof
that this equation always has a nontrivial solution (that is, with
y 6= 0). Leonhard Euler (1707-1783) mistakenly attributed some



Section 0.1 Diophantine Equations 3

work on this problem to the English mathematician John Pell
(1611-1685), and ever since it has been known as Pell’s equa-
tion, but there is little evidence that Pell did any work on it. In
Chapters 11 and 13, we show how to solve Pell’s equation, and in
Chapter 15, we discuss its place in algebraic number theory.

Perhaps x2 + y2 = z2, the equation for Pythagorean triples, is
the most well-known Diophantine equation. Since sums of two
nonzero squares can be a square, people began to wonder if this
could be generalized. For example, Abu Mohammed Al-Khodjandi,
who lived in the late 900s, claimed to have a proof that a sum of
nonzero cubes cannot be a cube (that is, the equation x3 +y3 = z3

has no nonzero solutions). Unfortunately, our only knowledge of
this comes from another manuscript, which mentions that Al-
Khodjandi’s proof was defective, but gives no evidence to sup-
port this claim. The real excitement began when the great French
mathematician Pierre de Fermat (1601-1665) penned a note in the
margin of his copy of Diophantus’s Arithmetica saying that it is
impossible to solve xn + yn = zn in positive integers when n ≥ 3
and that he had found a truly marvelous proof that the margin
was too small to contain. After Fermat’s son, Samuel Fermat, pub-
lished an edition of Diophantus’s book that included his father’s
comments, the claim became known as Fermat’s Last Theorem.
Today, it is believed that he actually had proofs only in the cases
n = 4 (the only surviving proof by Fermat of any of his results)
and possibly n = 3. But the statement acquired a life of its own
and led to many developments in mathematics. Euler is usually
credited with the first complete proof that Fermat’s Last Theo-
rem (abbreviated as FLT) is true for n = 3. Progress proceeded
exponent by exponent, with Adrien-Marie Legendre (1752-1833)
and Johann Peter Gustav Lejeune Dirichlet (1805-1859) each do-
ing the case n = 5 around 1825 and Gabriel Lamé (1795-1870)
treating n = 7 in 1839. Important general results were obtained
by Sophie Germain (1776-1831), who showed that if p < 100 is
prime and xyz is not a multiple of p, then xp + yp 6= zp.

The scene changed dramatically around 1850, when Ernst Eduard
Kummer (1810-1893) developed his theory of ideal numbers, which
are now known as ideals in ring theory. He used them to give
general criteria that allowed him to prove FLT for all exponents
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up to 100, and many beyond that. His approach was a major step
in the development of both algebraic number theory and abstract
algebra, and it dominated the research on FLT until the 1980s. In
the 1980s, new methods, based on work by Taniyama, Shimura,
Weil, Serre, Langlands, Tunnell, Mazur, Frey, Ribet, and others,
were brought to the problem, resulting in the proof of Fermat’s
Last Theorem by Andrew Wiles (with the help of Richard Taylor)
in 1994. The techniques developed during this period have opened
up new areas of research and have also proved useful in solving
many classical mathematical problems.

0.2 Modular Arithmetic

Suppose you divide 123425147 by 25147. What is the remainder?
Why should you care? A theorem of Fermat tells us that the re-
mainder is 1234. Moreover, as we’ll see, results of this type are
surprisingly vital in cryptographic applications (see Chapters 5
and 8).

Questions about divisibility and remainders form the basis of mod-
ular arithmetic, which we introduce in Chapter 4. This is a very
old topic and its development is implicit in the work of several
early mathematicians. For example, the Chinese Remainder The-
orem is a fundamental and essential result in modular arithmetic
and was discussed by Sun Tzu around 1600 years ago.

Although early mathematicians discovered number theoretical re-
sults, the true beginnings of modern number theory began with
the work of Fermat, whose contributions were both numerous and
profound. We will discuss several of them in this book. For ex-
ample, he proved that if a is a whole number and p is a prime
then ap− a is always a multiple of p. Results such as this are best
understood in terms of modular arithmetic.

Euler and Karl Friedrich Gauss (1777-1850) greatly extended the
work done by Fermat. Gauss’s book Disquisitiones Arithmeticae,
which was published in 1801, gives a treatment of modular arith-
metic that is very close to the present-day version. Many of the
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original ideas in this book laid the groundwork for subsequent re-
search in number theory.

One of Gauss’s crowning achievements was the proof of Quadratic
Reciprocity (see Chapter 9). Early progress towards this funda-
mental result, which gives a subtle relation between squares of
integers and prime numbers, had been made by Euler and by Leg-
endre. Efforts to generalize Quadratic Reciprocity to higher pow-
ers led to the development of algebraic number theory in the 1800s
by Kummer, Richard Dedekind (1831-1916), David Hilbert (1862-
1943), and others. In the first half of the 1900s, this culminated
in the development of class field theory by many mathematicians,
including Hilbert, Weber, Takagi, and Artin. In the second half of
the 1900s up to the present, the Langlands Program, which can be
directly traced back to Quadratic Reciprocity, has been a driving
force behind much number-theoretic research. Aspects of it played
a crucial role in Wiles’s proof of Fermat’s Last Theorem in 1994.

0.3 Primes and the Distribution
of Primes

There are two facts about the distribution of prime num-
bers of which I hope to convince you so overwhelmingly that
they will be permanently engraved in your hearts. The first
is that, despite their simple definitions and role as the build-
ing blocks of the natural numbers, the prime numbers belong
to the most arbitrary and ornery objects studied by mathe-
maticians: they grow like weeds among the natural numbers,
seeming to obey no other law than that of chance, and nobody
can predict where the next one will sprout. The second fact
is even more astonishing, for it states just the opposite: that
the prime numbers exhibit stunning regularity, that there are
laws governing their behavior, and that they obey these laws
with almost military precision. - Don Zagier

Euclid proved that there are infinitely many primes, but we can ask
for more precise information. Let π(x) be the number of primes
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less than or equal to x. Legendre and Gauss used experimental
data to conjecture that

π(x)

x/ lnx
≈ 1,

and this approximation gets closer to equality as x gets larger. For
example,

π(104)

104/ ln 104
= 1.132, and

π(1010)

1010/ ln 1010
= 1.048.

In 1852, Pafnuty Chebyshev (1821-1894) showed that the conjec-
ture of Legendre and Gauss is at least approximately true by show-
ing that, for sufficiently large values of x,

0.921 ≤ π(x)

x/ lnx
≤ 1.106,

a result we’ll discuss in Chapter 16. A few years later, Bernhard
Riemann (1826-1866) introduced techniques from the theory of
complex variables and showed how they could lead to more precise
estimates for π(x). Finally, in 1896, using Riemann’s ideas, Jacques
Hadamard (1865-1963) and Charles de la Valleé-Poussin (1866-
1962) independently proved that

lim
x→∞

π(x)

x/ lnx
= 1,

a result known as the Prime Number Theorem.

If we look at the list of all integers, we know that within that list
there is an infinite number of primes. Suppose we look at a list like
this:

1, 6, 11, 16, 21, 26, . . . ,

or like this:
3, 13, 23, 33, 43, 53, . . . ,

or like this:
1, 101, 201, 301, 401, . . . .

Does each of the three lists contain an infinite number of primes
as well? The answer is yes and we owe the proof of this remarkable



Section 0.4 Cryptography 7

fact to Dirichlet. In 1837, he proved that every arithmetic pro-
gression of the form a, a + b, a + 2b, a + 3b, . . . contains infinitely
many primes if a and b are positive integers with no common factor
greater than 1. We will not prove this result in this book; however,
special cases are Projects and Exercises in Chapters 1, 4, and 9.

There are many other questions that can be asked about primes.
One of the most famous is the Goldbach Conjecture. In 1742,
Christian Goldbach (1690-1764) conjectured that every even in-
teger greater than 2 is a sum of two primes (for example, 100 =
83+17). Much progress has been made on this conjecture over the
last century. In 1937, I. M. Vinogradov (1891-1983) proved that
every sufficiently large odd integer is a sum of three primes, and
in 1966, Jingrun Chen (1933-1996) proved that every sufficiently
large even integer is either a sum of two primes or the sum of a
prime and a number that is the product of two primes (for exam-
ple, 100 = 23 + 7 · 11). These results require very delicate analytic
techniques. Work on Goldbach’s Conjecture and related questions
remains a very active area of modern research in number theory.

0.4 Cryptography

For centuries, people have sent secret messages by various means.
But in the 1970s, there was a dramatic change when Fermat’s the-
orem and Euler’s theorem (a generalization of Fermat’s theorem),
along with other results in modular arithmetic, became fundamen-
tal ingredients in many cryptographic systems. In fact, whenever
you buy something over the Internet, it is likely that you are using
Euler’s theorem.

In 1976, Whitfield Diffie and Martin Hellman introduced the con-
cept of public key cryptography and also gave a key establishment
protocol (see Chapter 8) that uses large primes. A year later, Ron
Rivest, Adi Shamir, and Len Adleman introduced the RSA cryp-
tosystem (see Chapter 5), an implementation of the public key
concept. It uses large prime numbers and its security is closely
tied to the difficulty of factoring large integers.
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Topics such as factorization and finding primes became very pop-
ular and soon there were several major advances in these subjects.
For example, in the mid-1970s, factorization of 40-digit numbers
was the limit of technology. As of 2013, the limit was 230 digits.
Some of these factorization methods will be discussed in Chapter
10.

Cryptography brought about a fundamental change in how num-
ber theory is viewed. For many years, number theory was regarded
as one of the purest areas of mathematics, with little or no appli-
cation to real-world problems. In 1940, the famous British number
theorist G. H. Hardy (1877-1947) declared, “No one has yet dis-
covered any warlike purpose to be served by the theory of numbers
or relativity, and it seems unlikely that anyone will do so for many
years” (A Mathematician’s Apology, section 28). Clearly this state-
ment is no longer true.

Although the basic purpose of cryptography is to protect com-
munications, its ideas have inspired many related applications. In
Chapter 8, we’ll explain how to sign digital documents, along with
more light-hearted topics such as playing mental poker and flip-
ping coins over the telephone.



Chapter 1

Divisibility

1.1 Divisibility

A large portion of this book will be spent studying properties of the
integers. You can add, subtract and multiply integers and doing
so always gives you another integer. Division is a little trickier.
Sometimes when you divide one integer by another you get an
integer (12 divided by 3) and sometimes you don’t (12 divided by
5). Because of this, the first idea we have to make precise is that
of divisibility.

Definition 1.1. Given two integers a and d with d non-zero, we
say that d divides a (written d | a) if there is an integer c with
a = cd. If no such integer exists, so d does not divide a, we write
d - a. If d divides a, we say that d is a divisor of a.

Examples. 5 | 30 since 30 = 5 · 6, and 3 | 102 since 102 = 3 · 34,
but 6 - 23 and 4 - −3. Also, −7 | 35, 8 | 8, 3 | 0, −2 | −10, and
1 | 4.

Remark. There are two technical points that need to be men-
tioned. First, we never consider 0 to be a divisor of anything. Of
course, we could agree that 0 | 0, but it’s easiest to avoid this case
completely since we never need it. Second, if d is a divisor of a,
then −d is a divisor of a. However, whenever we talk about the set
of divisors of a positive integer, we follow the convention that we
mean the positive divisors. So we say that the divisors of 6 are 1,
2, 3, and 6 (and ignore −1, −2, −3, −6).

There are several basic results concerning divisibility that we will
be using throughout this book.

9
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Proposition 1.2.1 Assume that a, b, and c are integers. If a | b
and b | c, then a | c.

Proof. Since a | b, we can write b = ea and since b | c, we can write
c = fb with e and f integers. Then, c = fb = f(ea) = (fe)a. So,
by definition, a | c.

Example. The proposition implies, for example, that a multiple
of 6 is even: Let a = 2 and b = 6, and let c be an arbitrary integer.
Then a | b. If 6 | c, the proposition says that 2 | c, which says that
c is even.

Proposition 1.3. Assume that a, b, d, x, and y are integers. If
d | a and d | b then d | ax+ by.

Proof. Write a = md and b = nd. Then

ax+ by = (md)x+ (nd)y = d(mx+ ny),

so d | ax+ by by definition.

Often, ax+ by is called a linear combination of a and b, so Propo-
sition 1.3 says that every divisor of both a and b is also a divisor
of each linear combination of a and b.

Corollary 1.4. Assume that a, b, and d are integers. If d | a and
d | b, then d | a+ b and d | a− b.

Proof. To show that d | a+b, set x = 1 and y = 1 in the proposition
and to show that d | a−b, set x = 1 and y = −1 in the proposition.

Examples. Since 3 | 9 and 3 | 21, the proposition tells us that
3 | 5·9+4·21 = 129. Since 5 | 20 and 5 | 30, we have 5 | 20+30 = 50.
Since 10 | 40 and 10 | 60, we have 10 | 40− 60 = −20.

1There is a set of names for results: A theorem is an important result that
is usually one of the highlights of the subject. A proposition is an important
result, but not as important as a theorem. A lemma is a result that helps to
prove a proposition or a theorem. It is often singled out because it is useful and
interesting in its own right. A corollary is a result that is an easy consequence
of a theorem or proposition.
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CHECK YOUR UNDERSTANDING2

1. Does 7 divide 1001?
2. Show that 7 - 1005.

1.2 Euclid’s Theorem

Fundamental to the study of the integers is the idea of a prime
number.

Definition 1.5. A prime number is an integer p ≥ 2 whose only
divisors are 1 and p. A composite number is an integer n ≥ 2
that is not prime.

You may be wondering why 1 is not considered to be prime. After
all, its only divisors are 1 and itself. Although there have been
mathematicians in the past who have included 1 in the list of
primes, nobody does so anymore. The reason for this is that math-
ematicians want to say there’s exactly one way to factor an integer
into a product of primes. If 1 were a prime, and we wanted to fac-
tor 6, for example, we’d have 6 = 2 · 3 = 2 · 3 · 1 = 2 · 3 · 1 · 1, ... and
we would have an infinite number of ways to factor an integer into
primes. So, to avoid this, we simply declare that 1 is not prime.

The first ten prime numbers are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29.

Notice that 2 is prime because its only divisors are 1 and 2, but no
other even number can be prime because every other even number
has 2 as a divisor.

It’s natural to ask if the list of primes ever terminates. It turns out
that it doesn’t; that is, there are infinitely many primes. This fact
is one of the most basic results in number theory. The first written
record we have of it is in Euclid’s Elements, which was written over

2Answers are at the end of the chapter.
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2300 years ago. In the next section, we’ll discuss Euclid’s original
proof. Before we do that, here’s a proof that is a variation of his
idea. We begin with a lemma.

Lemma 1.6. Every integer greater than 1 is either prime or is
divisible by a prime.

Proof. If an integer n is not a prime, then it is divisible by some
integer a1, with 1 < a1 < n. If a1 is prime, we’ve found a prime
divisor of n. If a1 is not prime, it must be divisible by some integer
a2 with 1 < a2 < a1. If a2 is prime, then since a2 | a1 and a1 | n,
we have a2 | n, and a2 is a prime divisor of n. If a2 is not prime,
we continue and get a decreasing sequence of positive integers

a1 > a2 > a3 > a4 > · · · ,

all of which are divisors of n. Since you can’t have a sequence of
positive integers that decreases forever, this sequence must stop at
some am. The fact that the sequence stops means that am must
be prime, which means that am is a prime divisor of n.

Example. In the proof of the lemma, suppose n = 72000 = 720×
100. Take a1 = 720 = 10× 72. Take a2 = 10 = 5× 2. Finally, take
a3 = 5, which is prime. Working backwards, we see that 5 | 72000.

Euclid’s Theorem. There are infinitely many primes.

Proof. We assume that there is a finite number of primes and
arrive at a contradiction. So, let

2, 3, 5, 7, 11, ..., pn (1.1)

be the list of all the prime numbers. Form the integer

N = 2 · 3 · 5 · 7 · 11 · · · pn + 1.

To begin, N can’t be prime since it’s larger than pn and pn is
assumed to be the largest prime. So, we can use the previous lemma
to choose a prime divisor p of N . Since equation (1.1) is a list of
every prime, p is equal to one of the pi and therefore must divide
2 · 3 · 5 · 7 · 11 · · · pn. But p now divides both N and N − 1 =
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2 · 3 · 5 · 7 · 11 · · · pn. By Corollary 1.4, p divides their difference,
which is 1. This is a contradiction: p - 1 because p > 1. This means
that our initial assumption that there is a finite number of primes
must be incorrect.

Since mathematicians like to prove the same result using different
methods, we’ll give several other proofs of this result throughout
the book. As you’ll see, each new proof will employ a different
idea in number theory, reflecting the fact that Euclid’s theorem is
connected with many of its branches.

Here’s one example of an alternative proof.

Another Proof of Euclid’s Theorem. We’ll show that for each
n > 0, there is a prime number larger than n. Let N = n! + 1 and
let p be a prime divisor of N . Either p > n or p ≤ n. If p > n, we’re
done. If p ≤ n, then p is a factor of n!, so p | N − 1. Recall that
p was chosen so that p | N , so we now have p | N and p | N − 1.
Therefore, p | N − (N − 1) = 1, which is impossible. This means
that p ≤ n is impossible, so we must have p > n.

In particular, if n is prime, there is a prime p larger than n, so
there is no largest prime. This means that there are infinitely many
primes. �

CHECK YOUR UNDERSTANDING

3. Explain why 5 - 2 · 3 · 5 · 7 + 1.

1.3 Euclid’s Original Proof

Here is Euclid’s proof that there is an infinite number of primes, us-
ing the standard translation of Sir Thomas Heath. Euclid’s state-
ments are written in italics. Since his terminology and notation
may be unfamiliar, we have added comments in plaintext where
appropriate. It will be helpful to know that when Euclid says “A
measures B ” or “B is measured by A,” he means that A divides
B or, equivalently, that B is a multiple of A.



14 Chapter 1 Divisibility

Euclid’s Statements Explanation

Let A, B, and C be the as- This is the assumption that
signed prime numbers. there is a finite number of

primes. Instead of assuming
that there are n of them as
we did, Euclid assumes that
there are only three. You can
think of this as represent-
ing some arbitrary, unknown
number of primes.

I say that there are more I will show that no finite list
prime numbers than A, B, could have all primes in it.
and C.

Take the least number DE In this step, Euclid multi-
measured by A, B, and C. plies all the primes together
Add the unit DF to DE. and then adds 1. So, DE is

the least common multiple
of A, B, and C, and EF =
DE + 1.

Then EF is either prime or Either EF is prime or it’s
not. Let it be prime. not. First, assume that it’s

prime.

Then the prime numbers A, This contradicts our assump-
B, C, and EF have been tion that A, B, and C is the
found which are more than list of all primes.
A, B, and C.

Next, let EF not be prime. Next, assume that EF is not
Therefore it is measured by prime. Then, EF is a multi-
some prime number. Let it ple of some prime G.
be measured by the prime
number G.

I say that G is not the same We will now show that G is
with any of the numbers A, not in our list of all possible
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B, and C. primes.

For if possible, let it be so. Assume that G is in our list.
Now A, B, and C measure Since DE is a multiple of A,
DE, therefore G also will and of B, and of C and since
measure DE. G is one of the listed primes,

DE must also be a multiple
of G.

But it also measures EF. But EF is also a multiple of
G.

Therefore G, being a num- Since EF is a multiple of G
ber, will measure the re- and DE = EF + 1 is a multi-
mainder, the unit DF, which ple of G, their difference (EF
is absurd. + 1 − EF ), which equals 1,

is also a multiple of G. This
is a contradiction.

Therefore G is not the same So G is a prime number that
with any one of the numbers is not in our list of all possi-
A, B, and C. And by hy- ble primes, and so there can
pothesis it is prime. There- be no finite list of all primes.
fore the prime numbers A, Therefore, there is an infi-
B, C, and G have been nite number of primes.
found which are more than
the assigned multitude of A,
B, and C. Therefore, prime
numbers are more than any
assigned multitude of prime
numbers. Q.E.D.

1.4 The Sieve of Eratosthenes

Eratosthenes was born in Cyrene (in modern-day Libya) and lived
in Alexandria, Egypt, around 2300 years ago. He made important
contributions to many subjects, especially geography. In number
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theory, he is famous for a method of producing a list of prime
numbers up to a given bound without using division. To see how
this works, we’ll find all the prime numbers up to 50.

List the integers from 1 to 50. Ignore 1 and put a circle around 2.
Now cross out every second number after 2. This yields (we give
just the beginning of the list)

1 2© 3 4/ 5 6/ 7 8/ 9 10//

11 12// 13 14// 15 16// 17 18// 19 20//

Now look at the next number after 2 that is not crossed out. It’s
3. Put a circle around 3 and cross out every third number after 3.
This yields

1 2© 3© 4/ 5 6/ 7 8/ 9/ 10//

11 12// 13 14// 15// 16// 17 18// 19 20//

The first number after 3 that is not crossed out is 5, so circle 5
and cross out every 5th number after 5. After we do this, the next
number after 5 that is not crossed out is 7, so we cross out every
7th number after 7. Listing all numbers up to 50, we now have

1 2© 3© 4/ 5© 6/ 7© 8/ 9/ 10//

11 12// 13 14// 15// 16// 17 18// 19 20//

21// 22// 23 24// 25// 26// 27// 28// 29 30//

31 32// 33// 34// 35// 36// 37 38// 39// 40//

41 42// 43 44// 45// 46// 47 48// 49// 50//.

The numbers that remain are 1 and the prime numbers up to 50.
We can stop at 7 because of the following.

Proposition 1.7. If n is composite, then n has a prime factor
p ≤
√
n.

Proof. Since n is composite, we can write n = ab with 1 < a ≤
b < n. Then

a2 ≤ ab = n,

so a ≤
√
n. Let p be a prime number dividing a. Then p ≤ a ≤√

n.
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The proposition says that the composite numbers up to 50 all have
prime factors at most

√
50 ≈ 7.07, so we could stop after crossing

out the multiples of 7. If we want to list the primes up to 1000,
we need to cross out the multiples of only the primes through 31
(since

√
1000 ≈ 31.6).

Why is the process called a sieve? In our example, the multiples of
the primes 2, 3, 5, 7 created a net. The numbers that fell through
this net are the prime numbers.

CHECK YOUR UNDERSTANDING

4. Use the Sieve of Eratosthenes to compute the prime numbers
less than 20.

1.5 The Division Algorithm

If a and b are integers, when we divide a by b we get an integer
if and only if b | a. What can we say when b does not divide a?
We can still make a statement using only integers by considering
remainders. For example, we can say that 14 divided by 3 is 4 with
a remainder of 2. We write this as

14 = 3 · 4 + 2

to emphasize that our division statement can be written using ad-
dition and multiplication of integers. This is just the division with
remainder that is taught in elementary school. Our next theorem
says that this can always be done.

The Division Algorithm. Let a and b be integers with b > 0.
Then there exist unique integers q (the quotient) and r (the re-
mainder) so that

a = bq + r

with 0 ≤ r < b.

Proof. Let q be the largest integer less than or equal to a/b, so

q ≤ a/b < q + 1.
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Multiplying by b yields bq ≤ a < bq + b, which implies that 0 ≤
a− bq < b. Let r = a− bq. Then

0 ≤ r < b.

Since a = bq + r, we have proved that the desired q and r exist.

It remains to prove that q and r are unique. If

a = bq + r = bq1 + r1

with 0 ≤ r, r1 < b then

b(q − q1) = r1 − r.

Since the left-hand side of this equation is a multiple of b, so is
r1 − r. Because 0 ≤ r, r1 < b, we must have

−b < r1 − r < b. (1.2)

The only multiple of b that satisfies equation (1.2) is 0, so r1 −
r = 0. Therefore, r1 = r and the choice of r is unique. Since
b(q − q1) = r1 − r, we now have b(q − q1) = 0. Finally, because
b 6= 0, we get that q1 − q = 0, so q1 = q and q is also unique. This
completes the proof.

Examples: (a) Let a = 27, b = 7. Then 27 = 7 · 3 + 6, so q = 3
and r = 6.
(b) Let a = −27, b = 7. Then −27 = 7 · (−4) + 1, so q = −4 and
r = 1.
(c) Let a = 24, b = 8. Then 24 = 8 · 3, so q = 3 and r = 0.
(d) Let a = 0 and b = 5. Then 0 = 5 · 0 + 0, so q = 0 and r = 0.

CHECK YOUR UNDERSTANDING

5. Let a = 200, b = 7. Compute q and r such that a = bq + r and
0 ≤ r < b.
6. Let a = −200, b = 7. Compute q and r such that a = bq+ r and
0 ≤ r < b.
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1.5.1 A Cryptographic Application

Here’s an amusing cryptographic application of the Division Algo-
rithm. Let’s say there is a 16-person committee that has to vote to
approve a budget. The members prefer to keep their votes anony-
mous. Here’s a mathematical way to have every person vote Yes,
vote No, or Abstain, while ensuring that all votes are kept secret.

We’ll call the chair A1 and the other 15 members A2, A3, ..., A16.
The chair takes a blank piece of paper, writes a large number, say
7923, on it, and passes this to A2. Then A2 adds 17 for Yes, 1
for No, or 0 for Abstain. A2 writes this sum on a new piece of
paper, hands the new number to A3, and returns the paper with
7923 written on it back to the chair. A3 now has a piece of paper
with either 7940 (if A2 voted Yes), 7924 (if A2 voted No), or 7923
(if A2 abstained). Because A3 does not know the original number,
there is no way to know how A2 voted. This process continues with
A3 adding 17 for Yes, 1 for No, or 0 for an abstention, and then
passing the result to A4. They continue until A16 gives a number
to A1, who adds a number for A1’s vote. Let’s say the final sum is
8050. The chair subtracts the secret number 7923 from 8050 and
gets 127. Then 127 is divided by 17 using the Division Algorithm:

127 = 7 · 17 + 8

The chair announces that 7 people voted Yes, 8 people voted No,
and there was 1 abstention (since 7 + 8 is one less than 16, one
person must have abstained).

Why do we count a Yes vote as 17 in this example? It’s one more
than the number of voters. If we used 16 for a Yes vote, we couldn’t
tell the difference between 16 No votes, and one Yes plus 15 ab-
stentions since both give a total of 16.

Let’s do another example with 23 people voting. Let’s say the
chair’s random number is 27938. Now, committee members add
24 if they vote Yes and 1 if they vote No. We’ll tell you what the
votes were so that you can see why the method works. Let’s say
there are 16 Yes votes, 5 No votes, and 2 abstentions. Then the
chair receives the number

27938 + 16 · 24 + 5 + 2 · 0 = 27938 + 389 = 28327.
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Of course, when the chair subtracts 27938 from 28327 the answer
is 389, and the Division Algorithm says that

389 = 16 · 24 + 5.

The voting scheme does have a security flaw. If A2 and A4 compare
notes, they can figure out how A3 voted. Therefore, this method
should be used only with a friendly committee.

1.6 The Greatest Common Divisor

The divisors of 12 are 1, 2, 3, 4, 6, and 12. The divisors of 18 are 1,
2, 3, 6, 9, and 18. Then {1, 2, 3, 6} is the set of common divisors of
12 and 18. Notice that this set has a largest element, 6. If you have
any two non-zero integers a and b, you can always form the set of
their common divisors. Since 1 is a divisor of every integer, this
set is nonempty. Because this set is finite, it must have a largest
element. This idea is so basic, we make special note of it:

Definition 1.8. Assume that a and b are integers and they are
not both zero. Then the set of their common divisors has a largest
element d, called the greatest common divisor of a and b. We
write d = gcd(a, b).

Examples. gcd(24, 52) = 4, gcd(9, 27) = 9, gcd(14, 35) = 7,
gcd(15, 28) = 1.

Definition 1.9. Two integers a and b are said to be relatively
prime if gcd(a, b) = 1.

Examples. 14 and 15 are relatively prime. So are 21 and 40.

Remark. If a 6= 0, then gcd(a, 0) = a. However, we do not de-
fine gcd(0, 0). Since arbitrarily large integers divide 0, there is no
largest divisor. This is the reason we often explicitly write that at
least one of a and b is nonzero when we are going to make a state-
ment about gcd(a, b). In any case, whenever we write gcd(a, b), it
is implicitly assumed that at least one of a and b is nonzero.
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We saw that gcd(24, 52) = 4, so 24 and 52 are not relatively prime.
If we divide both 24 and 52 by 4, we get 6 and 13, which are rela-
tively prime. This makes sense, since we’ve divided these numbers
by their gcd, which is the largest possible common divisor. We
now prove in the following that dividing two integers by their gcd
always results in two relatively prime integers.

Proposition 1.10. If a and b are integers with d = gcd(a, b), then

gcd

(
a

d
,
b

d

)
= 1.

Proof. If c = gcd(a/d, b/d), then c | (a/d) and c | (b/d). This
means that there are integers k1 and k2 with

a

d
= ck1 and

b

d
= ck2,

which tells us that a = cdk1 and b = cdk2. So, cd is a common
divisor of a and b. Since d is the greatest common divisor and
cd ≥ d, we must have c = 1.

We’ll see later that calculating the greatest common divisor has
important applications. So, it’s natural to ask, how do we go about
finding the gcd when the answer is not immediately obvious? One
way would be to factor each integer into primes and then take the
product of all the primes that they have in common, including
repetitions. For example, to find gcd(84, 264), we write

84 = 2 · 2 · 3 · 7 and 264 = 2 · 2 · 2 · 3 · 11,

so their common primes are 2, 2, and 3. We see that gcd(84, 264) =
2 · 2 · 3 = 12. This may seem to be quite efficient but as we’ll see
later on, for the numbers of the size (i.e., hundreds of digits) that
we’ll be interested in, factoring is so slow as to be completely
impractical. It’s much easier to calculate gcd(a, b) by the method
of the next section.

For reasonably small numbers, Proposition 1.3 is useful for cal-
culating gcd’s. For example, suppose we want to calculate d =
gcd(1005, 500). Then d | 1005 and d | 500, so d | 1005 − 2 · 500.
Therefore, d | 5, which means that d = 1 or 5. Since 5 | 1005 and
5 | 500, we see that 5 = gcd(1005, 500).
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As another example, suppose n is an integer and we want to find
all possibilities for d = gcd(2n+ 3, 3n− 6). By Proposition 1.3,

d | 2n+ 3, d | 3n− 6 =⇒ d | 3(2n+ 3)− 2(3n− 6) = 21,

so d = 1, 3, 7, or 21. In fact, all possibilities occur: when n = 1 we
have d = gcd(5,−3) = 1, when n = 3 we have d = gcd(9, 3) = 3,
when n = 2 we have d = gcd(7, 0) = 7, and when n = 9 we have
d = gcd(21, 21) = 21.

CHECK YOUR UNDERSTANDING

7. Evaluate gcd(24, 42).
8. Find an n with 1 < n < 10 such that gcd(n, 60) = 1.
9. Let n be an integer. Show that gcd(n, n+ 3) = 1 or 3, and show
that both possibilities occur.

1.7 The Euclidean Algorithm

The Euclidean Algorithm is one of the oldest and most useful
algorithms in all of number theory. It is found as Proposition 2 in
Book VII of Euclid’s Elements. One of its features is that it allows
us to compute gcd’s without factoring. In cryptographic situations,
where the numbers often have several hundred digits and are hard
to factor, this is very important.

Suppose that we want to compute gcd(123, 456). Consider the fol-
lowing calculation:

456 = 3 · 123 + 87

123 = 1 · 87 + 36

87 = 2 · 36 + 15

36 = 2 · 15 + 6

15 = 2 · 6 + 3

6 = 2 · 3 + 0.

By looking at the the prime factorizations of 456 and 123 we see
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that the last non-zero remainder, namely 3, is the gcd. Let’s look
at what we did. We divided the smaller of the original two numbers
into the larger and got the remainder 87. Then we shifted the 123
and the 87 to the left, did the division, and got a remainder of 36.
We continued the “shift left and divide” procedure until we got a
remainder of 0.

Let’s try another example. Compute gcd(119, 259):

259 = 2 · 119 + 21

119 = 5 · 21 + 14

21 = 1 · 14 + 7

14 = 2 · 7 + 0.

Again, the last non-zero remainder is the gcd. Why does this work?
Let’s start by showing why 7 is a common divisor in the second
example. The fact that the remainder on the last line is 0 says
that 7 | 14. Since 7 | 7 and 7 | 14, the next-to-last line says that
7 | 21, since 21 is a linear combination of 7 and 14. Now move up
one line. We have just shown that 7 | 14 and 7 | 21. Since 119 is a
linear combination of 21 and 14, we deduce that 7 | 119. Finally,
moving to the top line, we see that 7 | 259 because 259 is a linear
combination of 119 and 21, both of which are multiples of 7. Since
7 | 119 and 7 | 259, we have proved that 7 is a common divisor of
119 and 259.

We now want to show that 7 is the largest common divisor. Let d
be any divisor of 119 and 259. The top line implies that 21, which
is a linear combination of 259 and 119 (namely, 259 − 2 · 119), is
a multiple of d. Next, go to the second line. Both 119 and 21 are
multiples of d, so 14 must be a multiple of d. The third line tells
us that since d | 21 and d | 14, we must have d | 7. In particular,
d ≤ 7, so 7 is the greatest common divisor, as claimed. We also
have proved the additional fact that any common divisor must
divide 7.

All of this generalizes to the following:

Euclidean Algorithm. Let a and b be non-negative integers and
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assume that b 6= 0. Do the following computation:

a = q1b + r1, with 0 ≤ r1 < b

b = q2r1 + r2, with 0 ≤ r2 < r1

r1 = q3r2 + r3, with 0 ≤ r3 < r2
...

rn−3 = qn−1rn−2 + rn−1, with 0 ≤ rn−1 < rn−2

rn−2 = qnrn−1 + 0.

The last non-zero remainder, namely rn−1, equals gcd(a, b).

The proof that rn−1 = gcd(a, b) follows exactly the steps used in
the example of 7 = gcd(259, 119). Since the last remainder is 0,
rn−1 divides rn−2. The next-to-last line yields rn−1 | rn−3. Moving
up, line by line, we eventually find that rn−1 is a common divisor
of a and b.

Now suppose that d is a common divisor of a and b. The first
line yields d | r1. Since d | b and d | r1, the second line yields
d | r2. Continuing downwards, line by line, we eventually find that
d | rn−1. Therefore, d ≤ rn−1, so rn−1 is the largest divisor, which
means that rn−1 = gcd(a, b). We also obtain the extra fact that
each common divisor of a and b divides gcd(a, b).

H3,3L

H6,3L

H6,21L

H48,21L

FIGURE 1.1: Computation of gcd(48, 21)

There is a geometrical way to view the Euclidean Algorithm. For
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example, suppose we want to compute gcd(48, 21). Start at the
point (48, 21) in the plane. Move to the left in steps of size 21
until you land on or cross the line y = x. In this case, we take two
steps of size 21 and move to (6, 21). Now move downward in steps
of size 6 (the smaller of the two coordinates) until you land on or
cross the line y = x. In this case, we take three steps of size 6 and
move to (6, 3). Now move to the left in steps of size 3. In one step
we end up at (3, 3) on the line y = x. The x-coordinate (also the
y-coordinate) is the gcd.

In each set of moves, the number of steps is the quotient in the
Euclidean Algorithm and the remainder is the amount that the
last step overshoots the line y = x.

1.7.1 The Extended Euclidean Algorithm

The Euclidean Algorithm yields an amazing and very useful fact:
gcd(a, b) can be expressed as a linear combination of a and b. That
is, there exist integers x and y such that gcd(a, b) = ax + by. For
example,

3 = gcd(456, 123) = 456 · 17− 123 · 63

7 = gcd(259, 119) = 259 · 6− 119 · 13.

The method for obtaining x and y is called the Extended Eu-
clidean Algorithm. Once you’ve used the Euclidean Algorithm
to arrive at gcd(a, b), there’s an easy and very straightforward
way to implement the Extended Euclidean Algorithm. We’ll show
you how it works with the two examples we’ve just calculated.

When we computed gcd(456, 123), we performed the following cal-
culation:

456 = 3 · 123 + 87

123 = 1 · 87 + 36

87 = 2 · 36 + 15

36 = 2 · 15 + 6

15 = 2 · 6 + 3

6 = 2 · 3 + 0.
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We’ll form a table with three columns and explain how they arise
as we compute them.

We begin by forming two rows and three columns. The first entries
in the rows are the numbers we started with. In this case these
numbers are 456 and 123. The columns tell us how to form each
of these numbers as a linear combination of 456 and 123. In other
words, we will always have

entry in first column = 456x+ 123y,

where x and y are integers. Initially, this is trivial: 456 = 1 · 456 +
0 · 123 and 123 = 0 · 456 + 1 · 123:

x y
456 1 0 (456 = 1 · 456 + 0 · 123)
123 0 1 (123 = 0 · 456 + 1 · 123).

Now things get more interesting. If we look at the first line in our
gcd(456, 123) calculation, we see 456 = 3 · 123 + 87. We rewrite
this as 87 = 456− 3 · 123. Using this as a guide, we compute

(1st row) − 3 · (2nd row),

yielding the following

x y
456 1 0
123 0 1
87 1 −3 (1st row) − 3·(2nd row).

The last line tells us that 87 = 456 · 1 + 123 · (−3).

We now move to the second row of our gcd calculation. This says
that 123 = 1 · 87 + 36, which we rewrite as 36 = 123 − 1 · 87.
Again, in the column and row language, this tells us to compute
(2nd row) − (3rd row). We write this as
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x y
456 1 0
123 0 1
87 1 −3
36 −1 4 (2nd row) − (3rd row).

The last line tells us that 36 = 456 · (−1) + 123 · 4.

Moving to the third row of our gcd calculation, we see that 15 =
87−2·36 =(3rd row)−2·(4th row) in our row and column language.
This becomes

x y
456 1 0
123 0 1
87 1 −3
36 −1 4
15 3 −11 (3rd row) − 2·(4th row).

We continue in this way and end when we have 3 = gcd(456, 123)
in the first column:

x y
456 1 0
123 0 1
87 1 −3
36 −1 4
15 3 −11
6 −7 26 (4th row) − 2·(5th row)
3 17 −63 (5th row) − 2·(6th row).

This tells us that 3 = 456 · 17 + 123 · (−63).

Notice that as we proceeded, we were doing the Euclidean Algo-
rithm in the first column. The first entry of each row is a remainder
from the gcd calculation and the second and third entries allow us
to express the number in the first column as a linear combination
of 456 and 123. The quotients in the Euclidean Algorithm told us
what to multiply a row by before subtracting it from the previous
row.
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Here’s another example, where we calculate gcd(259, 119). You
should go step-by-step to make sure that you understand how we’re
arriving at the numbers in each row.

x y
259 1 0
119 0 1
21 1 −2 (1st row) − 2·(2nd row)
14 −5 11 (2nd row) − 5·(3rd row)
7 6 −13 (3rd row) − (4th row).

The end result is 7 = 259 · 6− 119 · 13.

To summarize, we state the following.

Theorem 1.11. Let a and b be integers with at least one of a, b
non-zero. There exist integers x and y, which can be found by the
Extended Euclidean Algorithm, such that

gcd(a, b) = ax+ by.

Proof. Although it would be fairly straightforward to write a de-
tailed proof that follows the reasoning of the examples, the numer-
ous indices and variables would make the proof rather unenlighten-
ing. Therefore, we spare the reader. Instead, we give the following
non-constructive proof that gcd(a, b) is a linear combination of a
and b.

Let S be the set of integers that can be written in the form ax+by
with integers x and y. Since a, b, −a, and −b are in S, we see that S
contains at least one positive integer. Let d be the smallest positive
integer in S (this is an application of the Well Ordering Principle;
see Appendix A). Since d ∈ S, we know that d = ax0 + by0 for
some integers x0 and y0. We claim that a and b are multiples of
d, so d is a common divisor of both a and b. To see this, write
a = dq + r with integers q and r such that 0 ≤ r < d. Since

r = a− dq = a− (ax0 + by0)q = a(1− x0q) + b(−y0q),

we have that r ∈ S. Since d is the smallest positive element of
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S and 0 ≤ r < d, we must have r = 0. This means that d | a.
Similarly, d | b, so d is a common divisor of a and b.

Now suppose that e is any common divisor of a and b. Proposition
1.3 implies that e divides ax0 + by0 = d, so e ≤ d. Therefore,
d is the greatest common divisor. By construction, d is a linear
combination of a and b.

Finally, we give a version of Theorem 1.11 that applies to more
than two numbers.

Theorem 1.12. Let n ≥ 2 and let a1, a2, . . . , an be integers (at
least one of them must be nonzero). Then there exist integers
x1, x2, . . . , xn such that

gcd(a1, a2, . . . , an) = a1x1 + a2x2 + · · ·+ anxn.

Proof. We’ll use mathematical induction (see Appendix A). By
Theorem 1.11, the result is true for n = 2. Assume that it is true
for n = k. Then

gcd(a1, a2, · · · , ak) = a1y1 + a2y2 + · · ·+ akyk (1.3)

for some integers y1, y2, . . . , yk. But

gcd(a1, a2, . . . , ak+1) = gcd(gcd(a1, a2, . . . , ak), ak+1)

= gcd(a1, a2, . . . , ak)x+ ak+1y

for some integers x and y, again by Theorem 1.11. Substituting
(1.3) into this equation yields

gcd(a1, a2, . . . ,ak+1) = (a1y1 + a2y2 + · · ·+ akyk)x+ ak+1y

= a1(xy1) + a2(xy2) + · · ·+ ak(xyk) + ak+1yk+1,

which is the desired result, with xi = xyi for 1 ≤ i ≤ k and
xk+1 = y. Therefore, the result is true for n = k+ 1. By induction,
the result holds for all positive integers n ≥ 2.

Theorem 1.11 (and its generalization 1.12) are among the most
important tools in number theory and they’ll be used to deduce
many fundamental properties of the integers. The following is an
example.
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Proposition 1.13. Let a, b, c be integers with a 6= 0 and
gcd(a, b) = 1. If a | bc then a | c.

Proof. Theorem 1.11 says that we can write 1 = ax+ by for some
integers x and y. Multiply by c to obtain c = acx+ bcy. Since a | a
and a | bc, Proposition 1.3 implies that a | c.

CHECK YOUR UNDERSTANDING

10. Compute gcd(654, 321) without factoring.
11. Find x and y such that 17x+ 12y = 1.

1.8 Other Bases

The numbers that we use in our everyday life are written using
base 10 notation. For example, 783 means 7 · 102 + 8 · 101 + 3 ·
100. The position of each digit tells us what power of 10 that
digit will be multiplied by to give us our number, so 58 and 85
represent different numbers because of the positions of the 5 and
8. In the past there have been other ways to represent integers.
When Abraham Lincoln wrote the Gettysburg Address, he didn’t
begin with “Eighty-seven years ago,” but with “Four score and
seven years ago” using the word score (which comes from the Norse
skar, meaning mark or tall) for the number 20. In Britain, people
still say they weigh 10 stone 7 pounds instead of 147 pounds, using
the word stone for 14 from an old unit of measurement.

Our reliance on base 10 is most likely an accident of evolution, and
is a reflection of the ten fingers that we use to count. The Baby-
lonians used a base 60 for their number system, and the Mayans
used base 20. (Perhaps they also used their toes.) Computers are
based on a binary system and often use base 16 (= 24) to represent
numbers.

If we have a number in a different base, let’s say base 7, then it’s
easy to rewrite it as a base 10 number. Let’s say we had 35247
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where the subscript 7 means we are working in base 7. Then,

35247 = 3·73+5·72+2·71+4·70 = 3·343+5·49+2·7+4·1 = 129210.

We can also convert a number from base 10 to any other base with
the use of the Division Algorithm.

We give three examples to show how this works.

Example. Convert the base 10 number 21963 to a base 8 number.

We proceed by dividing 21963 by 8, then dividing the quotient
by 8, and continuing until the quotient is 0. At the end of the
example, we’ll show why the process works.

21963 = 2745 · 8 + 3
2745 = 343 · 8 + 1
343 = 42 · 8 + 7
42 = 5 · 8 + 2
5 = 0 · 8 + 5.

This tells us that 2196310 = 527138. To see why this works, we
start from the beginning, making sure to group our factors of 8
together.

21963 = 2745 · 8 + 3 = (343 · 8 + 1)8 + 3 =

343 · 82 + 1 · 8 + 3 = (42 · 8 + 7)82 + 1 · 8 + 3 =

42 · 83 + 7 · 82 + 1 · 8 + 3 = (5 · 8 + 2)83 + 7 · 82 + 1 · 8 + 3 =

5 · 84 + 2 · 83 + 7 · 82 + 1 · 8 + 3 =

527138.

Example. Convert the base 10 number 1671 to base 2.

1671 = 835 · 2 + 1
835 = 417 · 2 + 1
417 = 208 · 2 + 1
208 = 104 · 2 + 0
104 = 52 · 2 + 0
52 = 26 · 2 + 0
26 = 13 · 2 + 0
13 = 6 · 2 + 1
6 = 3 · 2 + 0
3 = 1 · 2 + 1
1 = 0 · 2 + 1.
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So, 167110 = 110100001112.

Example. It’s always a good idea to make sure that any math-
ematical method works for an example where you already know
the answer. This serves as a type of “reality check.” So, let’s take
a base 10 number, say 314159, and use the above algorithm to
“convert” it to base 10:

314159 = 31415 · 10 + 9
31415 = 3141 · 10 + 5
3141 = 314 · 10 + 1
314 = 31 · 10 + 4
31 = 3 · 10 + 1
3 = 0 · 10 + 3.

It should be reassuring that this gives back the original 314159.

CHECK YOUR UNDERSTANDING

12. Convert 123410 to base 7.
13. Convert 3215 to base 10.

1.9 Linear Diophantine Equations

As we mentioned in the introduction, Diophantus lived in Alexan-
dria, Egypt, about 1800 years ago. His book Arithmetica gave
methods for solving various algebraic equations and had a great
influence on the development of algebra and number theory for
many years. The part of number theory called Diophantine equa-
tions, which studies integer (and sometimes rational) solutions of
equations, is named in his honor.

In this section we study the equation

ax+ by = c

where a, b, and c are integers. Our goal is to find out when integer
solutions to this equation exist, and when they do exist, to find all
of them.
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Equations of this form can arise in real life. For example, how many
dimes and quarters are needed to pay someone $1.05? This means
we have to solve 10x + 25y = 105. One solution is x = 3, y = 3.
Another solution is x = 8, y = 1. There are also solutions such as
x = −2, y = 5, which means you pay 5 quarters and get back 2
dimes.

Before we get to the main result of this section, we look at two
more examples that will help us understand the general situation.
First, consider 6x − 9y = 20. Notice that 3 must divide the left-
hand side but 3 is not a divisor of the right-hand side. This tells
us that this equation can never have an integer solution. To make
things notationally simpler, let d = gcd(a, b). We then see that in
order for ax+ by = c to have a solution, we must have d | c. Now
let’s look at an example where this does occur, say 6x+ 9y = 21.
We can divide both sides by 3, giving us 2x+ 3y = 7. After a brief
inspection, we see that x = 2 and y = 1 is a solution. Are there
others? It’s easy to see that if t is any integer, then x = 2 + 3t and
y = 1− 2t is also a solution. Let’s verify this by substituting these
expressions for x and y into the original equation, 6x+ 9y = 21:

6(2 + 3t) + 9(1− 2t) = 12 + 18t+ 9− 18t = 21,

so our single solution gives rise to an infinite number of them. This
can be generalized in the following theorem:

Theorem 1.14. Assume that a, b, and c are integers where at least
one of a, b is non-zero. Then the equation

ax+ by = c (1.4)

has a solution if and only if gcd(a, b) | c. If it has one solution,
then it has an infinite number. If (x0, y0) is any particular solution,
then all solutions are of the form

x = x0 +
b

gcd(a, b)
t, y = y0 −

a

gcd(a, b)
t (1.5)

with t an integer.

Proof. We begin by setting gcd(a, b) = d. We have already seen
that if d - c, then there are no solutions. Now, assume d | c. From
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Theorem 1.11 we know that there are integers r and s so that
ar + bs = d. Since d | c, we have that df = c for some integer f .
Therefore,

a(rf) + b(sf) = df = c.

So, x0 = rf and y0 = sf is a solution to ax+ by = c.

Now let

x = x0 +
b

d
t and y = y0 −

a

d
t.

Then

ax+ by = a(x0 +
b

d
t) + b(y0 −

a

d
t) = ax0 + by0 +

ab

d
t− ba

d
t = c.

This shows that a solution to (1.4) exists (assuming that gcd(a, b)
divides c) and that once we have one solution, we have an infinite
number of a specific form.

Next, we need to prove that every solution of equation (1.4) is
of the stated form. Fix one solution x0, y0 and let u, v be any
solution of equation (1.4). (Any solution continues to mean any
integer solution.) Then

au+ bv = c (1.6)

and
ax0 + by0 = c. (1.7)

Subtracting equation (1.7) from equation (1.6) gives us

a(u− x0) + b(v − y0) = 0,

so
a(u− x0) = −b(v − y0) = b(y0 − v). (1.8)

After dividing both sides of equation (1.8) by d, we get

a

d
(u− x0) =

b

d
(y0 − v). (1.9)

There is a small technicality that needs to be dealt with. If a = 0,
then we can’t say that a/d divides the right-hand side, because we
don’t allow 0 to divide anything. But if a = 0 then our original
equation is by = c. This means that v = y0 = c/b and x can be
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arbitrary, since there is no restriction on x. This is exactly the
conclusion of the theorem, which says that all solutions have the
form y = y0 and x = x0 + t (since gcd(a, b) = gcd(0, b) = b). For
the rest of the proof, we now assume that a 6= 0.

Equation (1.9) implies that

(a/d) | (b/d)(y0 − v).

Since gcd(a/d, b/d) = 1, Proposition 1.13 implies that (a/d) di-
vides (y0 − v). By definition, this means that there is an integer t
with

y0 − v = t
a

d
. (1.10)

Substituting the value for y0 − v from (1.10) into (1.9), we get

a

d
(u− x0) =

b

d

(a
d
t
)
. (1.11)

Multiplying both sides by
d

a
, we have

u− x0 =
b

d
t or u = x0 +

b

d
t. (1.12)

Combining (1.10) and (1.12), we have

u = x0 +
b

d
t and v = y0 −

a

d
t. (1.13)

Since u and v were arbitrary solutions of (1.4), we have completed
the proof.

In practice, if we want to solve equation (1.4), we first verify that
d | c. If it doesn’t, we’re done since there are no solutions. If it
does, we divide both sides by d to get a new equation

a′x+ b′y = c′

and in this equation, gcd(a′, b′) = 1. For example, if we want to
solve 6x+15y = 30, we divide by 3 and instead solve 2x+5y = 10.
This means that we will usually be using the following:
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Corollary 1.15. Assume that a, b, and c are integers with at least
one of a, b non-zero. If gcd(a, b) = 1, then the equation

ax+ by = c

always has an infinite number of solutions. If (x0, y0) is any par-
ticular solution, then all solutions are of the form

x = x0 + bt, y = y0 − at

with t an integer.

It may seem that we’ve ignored the problem of actually finding
a solution to a linear Diophantine equation; however, the Ex-
tended Euclidean Algorithm from the previous section provides
an efficient method. For example, to solve 13x+ 7y = 5, we write
gcd(7, 13) = 1 as a linear combination of 7 and 13 and then mul-
tiply our solution by 5. Here’s how it works.

We begin by calculating gcd(7, 13) using the Euclidean Algorithm.

13 = 1 · 7 + 6

7 = 1 · 6 + 1

6 = 6 · 1 + 0.

Now, we use the Extended Euclidean Algorithm to express 1 as a
linear combination of 7 and 13:

x y
13 1 0
7 0 1
6 1 −1 (1st row) − (2nd row)
1 −1 2 (2nd row) − (3rd row).

We see that 1 = −1 · 13 + 2 · 7, so that x = −1, y = 2 is a solution
to 13x+ 7y = 1:

13(−1) + 7(2) = 1.

Multiplying both x and y by 5 gives us x = −5, y = 10 is the
desired solution to the original equation, 13x+ 7y = 5:

13(−5) + 7(10) = 5.
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Theorem 1.14 tells us that all solutions have the form

x = −5 + 7t, y = 10− 13t,

where t is an integer.

Here is another example. Let’s find all solutions of 10x+25y = 105,
the equation for paying $1.05 in dimes and quarters. First, divide
by 5 = gcd(10, 25) to get

2x+ 5y = 21.

At this point, you can find a solution by any method. For example
you can try values until something works or use the Extended
Euclidean Algorithm. In any case, one solution is x0 = 8, y0 = 1.
The set of all solutions is

x = 8 + 5t, y = 1− 2t.

The solution x = 3, y = 3 given at the beginning of this section
is obtained by letting t = −1. The solution with x = −2, y = 5 is
obtained by letting t = −2.

Now, a warning. It’s quite possible that two people working on
the same problem may get correct answers that look different. If
a problem says find all solutions to 5x − 3y = 1, you may notice
that (2, 3) is a particular solution, so all solutions look like x =
2−3t, y = 3−5t. A friend may choose a particular solution to be
(−1,−2) and say that all solutions are of the form x = −1−3t, y =
−2−5t. These two apparently different sets of solutions are in fact
the same, as the following shows:

Solutions of the form x = 2− 3t, y = 3− 5t :

. . . , (−4,−7), (−1,−2), (2,3), (5, 8), (8, 13), (11, 18), . . .

Solutions of the form x = −1− 3t, y = −2− 5t :

. . . , (−4,−7), (−1,−2), (2, 3), (5, 8), (8, 13), (11, 18), . . .

CHECK YOUR UNDERSTANDING

14. Find all integer solutions to 6x+ 8y = 4.
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1.10 The Postage Stamp Problem

If you went to the post office to mail a letter and discovered that
they had only three-cent and five-cent stamps, what postage values
would you be able to put on your mail? What values are unob-
tainable from these two stamps? These questions are special cases
of what is called the Postage Stamp Problem.

The Postage Stamp Problem: If a and b are positive integers,
what positive integers can be written as ax+ by with both x and
y non-negative?

To begin, notice that we want to consider only the case where a and
b are relatively prime. If, for example, they were both even, then
no odd numbers would ever be expressible as a linear combination
of them, and the problem becomes less interesting.

We’ll call numbers that can be written as ax + by with both x
and y non-negative feasible. For example, a, b, and ab are always
feasible since

a = 1 ·a+ 0 · b, b = 0 ·a+ 1 · b, and ab = b ·a+ 0 · b = 0 ·a+a · b.

The requirement that x and y both be non-negative is what makes
this an interesting problem. For example, our initial question had
three-cent and five-cent stamps, so a = 3 and b = 5. Since 3 and
5 are relatively prime, if negative coefficients were allowed, then
every integer could be expressed as a linear combination of them
from Theorem 1.11. Let’s try to understand which numbers are
feasible and which are not by making a chart to see if any patterns
occur:

Postage Stamp Problem with a = 3 and b = 5

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Feasible X X X X X X X X X X

An empty space means that the number above it cannot be written
as a permissible linear combination of 3 and 5, while a Xmeans


