

GPU Pro5

This page intentionally left blankThis page intentionally left blank

GPU Pro5

Advanced Rendering Techniques

Edited by Wolfgang Engel

Cover art: Screenshots from Killzone: Shadow Fall by Guerrilla Games. Courtesy of Michal Valient.

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300

Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Version Date: 20140227

International Standard Book Number-13: 978-1-4822-0864-1 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but

the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to

trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained.

If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical,

or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without

written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright

Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a

variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to

infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.taylorandfrancis.com
http://www.crcpress.com
www.copyright.com
http://www.copyright.com/

Contents

Acknowledgments xv

Web Materials xvii

I Rendering 1
Carsten Dachsbacher

1 Per-Pixel Lists for Single Pass A-Buffer 3
Sylvain Lefebvre, Samuel Hornus, and Anass Lasram

1.1 Introduction . 3

1.2 Linked Lists with Pointers (Lin-alloc) 6

1.3 Lists with Open Addressing (Open-alloc) 11

1.4 Post-sort and Pre-sort . 14

1.5 Memory Management . 16

1.6 Implementation . 17

1.7 Experimental Comparisons . 18

1.8 Conclusion . 21

1.9 Acknowledgments . 22

Bibliography . 22

2 Reducing Texture Memory Usage by 2-Channel Color Encoding 25
Krzysztof Kluczek

2.1 Introduction . 25

2.2 Texture Encoding Algorithm 25

2.3 Decoding Algorithm . 31

2.4 Encoded Image Quality . 31

2.5 Conclusion . 33

Bibliography . 34

v

vi Contents

3 Particle-Based Simulation of Material Aging 35
Tobias Günther, Kai Rohmer, and Thorsten Grosch

3.1 Introduction . 35
3.2 Overview . 36
3.3 Simulation . 37
3.4 Preview Rendering . 49
3.5 Results . 51
3.6 Conclusions . 52
Bibliography . 53

4 Simple Rasterization-Based Liquids 55
Martin Guay

4.1 Overview . 55
4.2 Introduction . 55
4.3 Simple Liquid Model . 56
4.4 Splatting . 57
4.5 Grid Pass . 59
4.6 Particle Update . 60
4.7 Rigid Obstacles . 60
4.8 Examples . 61
4.9 Conclusion . 63
Bibliography . 63

II Lighting and Shading 65
Michal Valient

1 Physically Based Area Lights 67
Michal Drobot

1.1 Overview . 67
1.2 Introduction . 68
1.3 Area Lighting Model . 70
1.4 Implementation . 91
1.5 Results Discussion . 93
1.6 Further Research . 96
1.7 Conclusion . 97
Bibliography . 99

2 High Performance Outdoor Light Scattering Using Epipolar Sampling 101
Egor Yusov

2.1 Introduction . 101
2.2 Previous Work . 102

Contents vii

2.3 Algorithm Overview . 103

2.4 Light Transport Theory . 103

2.5 Computing Scattering Integral 106

2.6 Epipolar Sampling . 108

2.7 1D Min/Max Binary Tree Optimization 110

2.8 Implementation . 113

2.9 Results and Discussion . 119

2.10 Conclusion and Future Work 124

Bibliography . 124

3 Volumetric Light Effects in Killzone: Shadow Fall 127
Nathan Vos

3.1 Introduction . 127

3.2 Basic Algorithm . 128

3.3 Low-Resolution Rendering . 132

3.4 Dithered Ray Marching . 133

3.5 Controlling the Amount of Scattering 136

3.6 Transparent Objects . 142

3.7 Limitations . 144

3.8 Future Improvements . 145

3.9 Conclusion . 146

Bibliography . 146

4 Hi-Z Screen-Space Cone-Traced Reflections 149
Yasin Uludag

4.1 Overview . 149

4.2 Introduction . 150

4.3 Previous Work . 152

4.4 Algorithm . 156

4.5 Implementation . 172

4.6 Extensions . 179

4.7 Optimizations . 186

4.8 Performance . 187

4.9 Results . 188

4.10 Conclusion . 188

4.11 Future Work . 189

4.12 Acknowledgments . 190

Bibliography . 190

viii Contents

5 TressFX: Advanced Real-Time Hair Rendering 193
Timothy Martin, Wolfgang Engel, Nicolas Thibieroz, Jason Yang,
and Jason Lacroix

5.1 Introduction . 193
5.2 Geometry Expansion . 194
5.3 Lighting . 196
5.4 Shadows and Approximated Hair Self-Shadowing 198
5.5 Antialiasing . 200
5.6 Transparency . 201
5.7 Integration Specifics . 204
5.8 Conclusion . 206
Bibliography . 208

6 Wire Antialiasing 211
Emil Persson

6.1 Introduction . 211
6.2 Algorithm . 212
6.3 Conclusion and Future Work 217
Bibliography . 217

III Image Space 219
Christopher Oat

1 Screen-Space Grass 221
David Pangerl

1.1 Introduction . 221
1.2 Motivation . 221
1.3 Technique . 222
1.4 Performance . 226
1.5 Conclusion . 227
1.6 Limitations and Future Work 228
1.7 Screen-Space Grass Source Code 230
Bibliography . 232

2 Screen-Space Deformable Meshes via CSG with Per-Pixel
Linked Lists 233
João Raza and Gustavo Nunes

2.1 Introduction . 233
2.2 Mesh Deformation Scenario . 233
2.3 Algorithm Overview . 234
2.4 Optimizations . 239

Contents ix

2.5 Conclusion . 239
2.6 Acknowledgements . 240
Bibliography . 240

3 Bokeh Effects on the SPU 241
Serge Bernier

3.1 Introduction . 241
3.2 Bokeh Behind the Scenes . 242
3.3 The Sprite-Based Approach . 244
3.4 Let’s SPUify This! . 246
3.5 Results . 249
3.6 Future Development . 250
Bibliography . 250

IV Mobile Devices 251
Marius Bjørge

1 Realistic Real-Time Skin Rendering on Mobile 253
Renaldas Zioma and Ole Ciliox

1.1 Introduction . 253
1.2 Overview . 253
1.3 Power of Mobile GPU . 255
1.4 Implementation . 256
1.5 Results . 260
1.6 Summary . 261
Bibliography . 262

2 Deferred Rendering Techniques on Mobile Devices 263
Ashley Vaughan Smith

2.1 Introduction . 263
2.2 Review . 263
2.3 Overview of Techniques . 264
2.4 OpenGL ES Extensions . 270
2.5 Conclusion and Future Work 272
Bibliography . 272

3 Bandwidth Efficient Graphics with ARM Mali GPUs 275
Marius Bjørge

3.1 Introduction . 275
3.2 Shader Framebuffer Fetch Extensions 275
3.3 Shader Pixel Local Storage . 279
3.4 Deferred Shading Example . 283

x Contents

3.5 Conclusion . 287
Bibliography . 288

4 Efficient Morph Target Animation Using OpenGL ES 3.0 289
James L. Jones

4.1 Introduction . 289
4.2 Previous Work . 289
4.3 Morph Targets . 290
4.4 Implementation . 291
4.5 Conclusion . 295
4.6 Acknowledgements . 295
Bibliography . 295

5 Tiled Deferred Blending 297
Ramses Ladlani

5.1 Introduction . 297
5.2 Algorithm . 299
5.3 Implementation . 300
5.4 Optimizations . 306
5.5 Results . 308
5.6 Conclusion . 309
Bibliography . 310

6 Adaptive Scalable Texture Compression 313
Stacy Smith

6.1 Introduction . 313
6.2 Background . 313
6.3 Algorithm . 314
6.4 Getting Started . 316
6.5 Using ASTC Textures . 317
6.6 Quality Settings . 318
6.7 Other color formats . 323
6.8 3D Textures . 325
6.9 Summary . 325
Bibliography . 326

7 Optimizing OpenCL Kernels for the ARM Mali-T600 GPUs 327
Johan Gronqvist and Anton Lokhmotov

7.1 Introduction . 327
7.2 Overview of the OpenCL Programming Model 328
7.3 ARM Mali-T600 GPU Series 328
7.4 Optimizing the Sobel Image Filter 331
7.5 Optimizing the General Matrix Multiplication 339
Bibliography . 357

Contents xi

V 3D Engine Design 359
Wessam Bahnassi

1 Quaternions Revisited 361
Peter Sikachev, Vladimir Egorov, and Sergey Makeev

1.1 Introduction . 361

1.2 Quaternion Properties Overview 361

1.3 Quaternion Use Cases . 362

1.4 Normal Mapping . 362

1.5 Generic Transforms and Instancing 366

1.6 Skinning . 368

1.7 Morph Targets . 371

1.8 Quaternion Format . 371

1.9 Comparison . 373

1.10 Conclusion . 374

1.11 Acknowledgements . 374

Bibliography . 374

2 glTF: Designing an Open-Standard Runtime Asset Format 375
Fabrice Robinet, Rémi Arnaud, Tony Parisi, and Patrick Cozzi

2.1 Introduction . 375

2.2 Motivation . 375

2.3 Goals . 376

2.4 Birds-Eye View . 379

2.5 Integration of Buffer and Buffer View 380

2.6 Code Flow for Rendering Meshes 382

2.7 From Materials to Shaders . 382

2.8 Animation . 384

2.9 Content Pipeline . 385

2.10 Future Work . 390

2.11 Acknowledgements . 391

Bibliography . 391

3 Managing Transformations in Hierarchy 393
Bartosz Chodorowski and Wojciech Sterna

3.1 Introduction . 393

3.2 Theory . 394

3.3 Implementation . 399

3.4 Conclusions . 402

Bibliography . 403

xii Contents

VI Compute 405
Wolfgang Engel

1 Hair Simulation in TressFX 407
Dongsoo Han

1.1 Introduction . 407
1.2 Simulation Overview . 408
1.3 Definitions . 409
1.4 Integration . 410
1.5 Constraints . 410
1.6 Wind and Collision . 412
1.7 Authoring Hair Asset . 413
1.8 GPU Implementation . 414
1.9 Conclusion . 416
Bibliography . 417

2 Object-Order Ray Tracing for Fully Dynamic Scenes 419
Tobias Zirr, Hauke Rehfeld, and Carsten Dachsbacher

2.1 Introduction . 419
2.2 Object-Order Ray Tracing Using the Ray Grid 421
2.3 Algorithm . 422
2.4 Implementation . 424
2.5 Results . 434
2.6 Conclusion . 436
Bibliography . 436

3 Quadtrees on the GPU 439
Jonathan Dupuy, Jean-Claude Iehl, and Pierre Poulin

3.1 Introduction . 439
3.2 Linear Quadtrees . 440
3.3 Scalable Grids on the GPU . 443
3.4 Discussion . 447
3.5 Conclusion . 449
Bibliography . 449

4 Two-Level Constraint Solver and Pipelined Local Batching for Rigid
Body Simulation on GPUs 451
Takahiro Harada

4.1 Introduction . 451
4.2 Rigid Body Simulation . 452
4.3 Two-Level Constraint Solver . 454
4.4 GPU Implementation . 456

Contents xiii

4.5 Comparison of Batching Methods 459
4.6 Results and Discussion . 461
Bibliography . 467

5 Non-separable 2D, 3D, and 4D Filtering with CUDA 469
Anders Eklund and Paul Dufort

5.1 Introduction . 469
5.2 Non-separable Filters . 471
5.3 Convolution vs. FFT . 474
5.4 Previous Work . 475
5.5 Non-separable 2D Convolution 475
5.6 Non-separable 3D Convolution 480
5.7 Non-separable 4D Convolution 481
5.8 Non-separable 3D Convolution, Revisited 482
5.9 Performance . 483
5.10 Conclusions . 486
Bibliography . 490

About the Editors 493

About the Contributors 495

This page intentionally left blankThis page intentionally left blank

Acknowledgments

The GPU Pro: Advanced Rendering Techniques book series covers ready-to-
use ideas and procedures that can help to solve many of your daily graphics-
programming challenges.

The fifth book in the series wouldn’t have been possible without the help of
many people. First, I would like to thank the section editors for the fantastic job
they did. The work of Wessam Bahnassi, Marius Bjørge, Carsten Dachsbacher,
Michal Valient, and Christopher Oat ensured that the quality of the series meets
the expectations of our readers.

The great cover screenshots were contributed by Michal Valient from Guerrilla
Games. They show the game Killzone: Shadow Fall.

The team at CRC Press made the whole project happen. I want to thank
Rick Adams, Charlotte Byrnes, Kari Budyk, and the entire production team,
who took the articles and made them into a book.

Special thanks go out to our families and friends, who spent many evenings
and weekends without us during the long book production cycle.

I hope you have as much fun reading the book as we had creating it.

—Wolfgang Engel

P.S. Plans for an upcoming GPU Pro 6 are already in progress. Any comments,
proposals, and suggestions are highly welcome (wolfgang.engel@gmail.com).

xv

This page intentionally left blankThis page intentionally left blank

Web Materials

Example programs and source code to accompany some of the chapters are avail-
able on the CRC Press website: go to http://www.crcpress.com/product/isbn/
9781482208634 and click on the “Downloads” tab.

The directory structure closely follows the book structure by using the chapter
number as the name of the subdirectory.

General System Requirements

• The DirectX June 2010 SDK (the latest SDK is installed with Visual Studio
2012).

• DirectX9, DirectX 10 or even a DirectX 11 capable GPU are required to
run the examples. The chapter will mention the exact requirement.

• The OS should be Microsoft Windows 7, following the requirement of Di-
rectX 10 or 11 capable GPUs.

• Visual Studio C++ 2012 (some examples might require older versions).

• 2GB RAM or more.

• The latest GPU driver.

Updates

Updates of the example programs will be posted on the website.

xvii

http://www.crcpress.com/product/isbn/9781482208634

This page intentionally left blankThis page intentionally left blank

I

Rendering

Real-time rendering is not only an integral part of this book series, it is also
an exciting field where one can observe rapid evolution and advances to meet
the ever-rising demands of game developers and game players. In this section we
introduce new techniques that will be interesting and beneficial to both hobbyists
and experts alike—and this time these techniques do not only include classical
rendering topics, but also cover the use of rendering pipelines for fast physical
simulations.

The first chapter in the rendering section is “Per-Pixel Lists for Single Pass A-
Buffer,” by Sylvain Lefebvre, Samuel Hornus and Anass Lasram. Identifying all
the surfaces projecting into a pixel has many important applications in computer
graphics, such as computing transparency. They often also require ordering of the
fragments in each pixel. This chapter discusses a very fast and efficient approach
for recording and simultaneously sorting of all fragments that fall within a pixel
in a single geometry pass.

Our next chapter is “Reducing Texture Memory Usage by 2-Channel Color
Encoding,” by Krzysztof Kluczek. This chapter discusses a technique for com-
pactly encoding and efficiently decoding color images using only 2-channel tex-
tures. The chapter details the estimation of the respective 2D color space and
provides example shaders ready for use.

“Particle-Based Simulation of Material Aging,” by Tobias Günther, Kai Roh-
mer, and Thorsten Grosch describes a GPU-based, interactive simulation of ma-
terial aging processes. Their approach enables artists to interactively control the
aging process and outputs textures encoding surface properties such as precipi-
tate, normals and height directly usable during content creation.

Our fourth chapter, “Simple Rasterization-Based Liquids,” is by Martin Guay.
He describes a powerful yet simple way of simulating particle-based liquids on the
GPU. These simulations typically involve sorting the particles into spatial accel-
eration structures to resolve inter-particle interactions. In this chapter, Martin
details how this costly step can be sidestepped with splatting particles onto tex-
tures, i.e., making use of the rasterization pipeline, instead of sorting them.

—Carsten Dachsbacher

This page intentionally left blankThis page intentionally left blank

1

I

Per-Pixel Lists for
Single Pass A-Buffer

Sylvain Lefebvre, Samuel Hornus,
and Anass Lasram

1.1 Introduction

Real-time effects such as transparency strongly benefit interactive modeling and
visualization. Some examples can be seen Figure 1.1. The rightmost image is
a screenshot of our parametric Constructive Solid Geometry (CSG) modeler for
3D printing, IceSL [Lefebvre 13]. Modeled objects are rendered in real time with
per-pixel boolean operations between primitives.

Figure 1.1. Left: Joystick model rendered with the Pre-Open A-buffer technique de-
scribed in this chapter, on a GeForce Titan. 539236 fragments, max depth: 16, FPS:
490. Middle: Dinosaur in Egg, rendered with transparent surfaces and shadows using
two A-buffers. Right: A robot body modeled with 193 solid primitives in boolean oper-
ations (CSG), rendered interactively with the Pre-Open A-buffer technique (modeler:
IceSL). [Joystick by Srepmup (Thingiverse, 30198), Egg Dinosaur by XXRDESIGNS
(Thingiverse, 38463), Spidrack by Sylefeb (Thingiverse, 103765).]

3

4 I Rendering

These effects have always been challenging for real-time rasterization. When
the scene geometry is rasterized, each triangle generates a number of fragments.
Each fragment corresponds to a screen pixel. It is a small surface element po-
tentially visible through this pixel. In a classical rasterizer only the fragment
closest to the viewer is kept: the rasterizer blindly rejects all fragments that are
farther away than the current closest, using the Z-buffer algorithm. Instead, al-
gorithms dealing with transparency or CSG have to produce ordered lists of all
the fragments falling into each pixel. This is typically performed in two stages:
First, a list of fragments is gathered for each pixel. Second, the lists are sorted
by depth and rendering is performed by traversing the lists, either accumulat-
ing opacity and colors (for transparency effects), or applying boolean operations
to determine which fragment is visible (for rendering a CSG model). The data
structure is recreated at every frame, and therefore has to be extremely efficient
and integrate well with the rasterizer.

A large body of work has been dedicated to this problem. Most techniques
for fragment accumulation implement a form of A-buffer [Carpenter 84]. The
A-buffer stores in each pixel the list of fragments that cover that pixel. The frag-
ments are sorted by depth and the size of the list is called the depth-complexity,
as visualized in Figure 1.3 (top-right). For a review of A-buffer techniques for
transparency we refer the reader to the survey by Maule et al. [Maule et al. 11].

In this chapter we introduce and compare four different techniques to build
and render from an A-buffer in real time. One of these techniques is well known
while the others are, to the best of our knowledge, novel. We focus on scenes
with moderate or sparse depth complexity; the techniques presented here will not
scale well on extreme transparency scenarios. In exchange, their implementation
is simple and they integrate directly in the graphics API; a compute API is not
necessary. All our techniques build the A-buffer in a single geometry pass: the
scene geometry is rasterized once per frame.

A drawback of storing the fragments first and sorting them later is that some
fragments may in fact be unnecessary: in a transparency application the opacity
of the fragments may accumulate up to a point where anything located behind
makes no contribution to the final image. Two of the techniques proposed here
afford for a conservative early-culling mechanism: inserted fragments are always
sorted in memory, enabling detection of opaque accumulation.

The companion code includes a full implementation and benchmarking frame-
work.

1.1.1 Overview

An A-buffer stores a list of fragments for each pixel. Sorting them by increasing
or decreasing depth are both possible. However, the sorting technique that we
describe in Section 1.3 is easier to explain and implement for decreasing values
as we walk along the list. Adding to that, early culling of negligible fragments

1. Per-Pixel Lists for Single Pass A-Buffer 5

is possible for transparency rendering only when the fragments are sorted front-
to-back. In order to meet both requirements for the described techniques, we
consistently sort in decreasing order and obtain a front-to-back ordering by in-
verting the usual depth value of a fragment: if the depth z of a fragment is a
float in the range [−1, 1], we transform it in the pixel shader into the integer
�S(1 − z)/2�, where S is a scaling factor (typically 232 − 1 or 224 − 1).

Our techniques rely on a buffer in which all the fragments are stored. We
call it the main buffer. Each fragment is associated with a cell in the main
buffer where its information is recorded. Our techniques comprise three passes:
a Clear pass is used to initialize memory, then a Build pass assembles a list of
fragments for each pixel and finally a Render pass accumulates the contribution
of the fragments and writes colors to the framebuffer.

The four techniques differ along two axes. The first axis is the scheduling
of the sort: when do we spend time on depth-sorting the fragments associated
with each pixel? The second axis is the memory allocation strategy used for
incrementally building the per-pixel lists of fragments. We now describe these
two axes in more detail.

1.1.2 Sort Strategies

We examine two strategies for sorting the fragments according to their depth.
The first one, Post-sort, stores all the fragments during the Build pass and
sorts them only just prior to accumulation in the Render pass: the GLSL shader
copies the pixel fragments in local memory, sorts them in place, and performs in-
order accumulation to obtain the final color.

The second strategy, Pre-sort, implements an insertion-sort during the
Build pass, as the geometric primitives are rasterized. At any time during the
rasterization, it is possible to traverse the fragments associated with a given pixel
in depth order.

Both strategies are summarized in Table 1.1.
Each has pros and cons: In the Pre-sort method, insertion-sort is done in

the slower global memory, but the method affords for early culling of almost
invisible fragments. It is also faster when several Render passes are required on
the same A-buffer, since the sort is done only once. This is for instance the case
when CSG models are sliced for 3D printing [Lefebvre 13].

Pass Rasterized geometry Post-sort Pre-sort

Clear fullscreen quad clear clear

Build scene triangles insert insertion-sort

Render fullscreen quad sort, accumulate accumulate

Table 1.1. Summary of the Post-sort and Pre-sort sorting strategies.

6 I Rendering

In the Post-sort method, sorting happens in local memory, which is faster
but limits the maximum number of fragments associated with a pixel to a few
hundred. Allocating more local memory for sorting more fragments increases
register pressure and reduces parallelism and performance.

1.1.3 Allocation Strategies

In addition to the scheduling of the sort, we examine two strategies for allocating
cells containing fragment information in the main buffer. The first one, Lin-
alloc, stores fragments in per-pixel linked-lists and allocates fresh cells linearly
from the start of the buffer to its end. Since many allocations are done concur-
rently, the address of a fresh cell is obtained by atomically incrementing a global
counter. Additional memory is necessary to store the address of the first cell
(head) of the list of fragments of each pixel. Section 1.2 details the Lin-alloc
strategy.

The second strategy that we examine, Open-alloc, is randomized and some-
what more involved. To each pixel p we associate a pseudo-random sequence of
cell positions in the main buffer: (h(p, i))i≥1, for i ranging over the integers. In
the spirit of the “open addressing” techniques for hash tables, the cells at posi-
tions h(p, i) are examined by increasing value of i until an empty one is found.
A non-empty cell in this sequence may store another fragment associated with
pixel p or with a different pixel q. Such a collision between fragments must be
detected and handled correctly. Section 1.3 details the Open-alloc strategy.

The combination of two allocation strategies (Lin-alloc and Open-alloc)
with two schedules for sorting (Post-sort and Pre-sort) gives us four vari-
ations for building an A-buffer: Post-Lin (Sections 1.2.1 and 1.2.2), Pre-Lin
(Section 1.2.3), Post-Open (Section 1.3.2) and Pre-Open (Section 1.3.3).

Section 1.4.1 details how fragments are sorted in local memory in the Ren-
der pass of the Post-sort method. Some memory management issues, including
buffer resizing, are addressed in Section 1.5, and information about our implemen-
tation is given in Section 1.6. In Section 1.7, we compare these four variations,
as implemented on a GeForce 480 and a GeForce Titan.

1.2 Linked Lists with Pointers (Lin-alloc)

The first two approaches we describe construct linked lists in each pixel, allocating
data for new fragments linearly in the main buffer. A single cell contains the depth
of the fragment and the index of the next cell in the list. Since no cell is ever
removed from a list, there is no need for managing a free list: allocating a new
cell simply amounts to incrementing a global counter firstFreeCell that stores the
index of the first free cell in the buffer. The counter firstFreeCell is initialized to
zero. The increment is done atomically to guarantee that every thread allocating
new cells concurrently does obtain a unique memory address. A second array,

1. Per-Pixel Lists for Single Pass A-Buffer 7

called heads, is necessary to store the address of the head cell of the linked list of
each pixel.

Having a lot of threads increment a single global counter would be a bot-
tleneck in a generic programing setting (compute API). Fortunately, GLSL frag-
ment shaders feature dedicated counters for this task, via the ARB_shader_atomic_

counters extension. If these are not available, it is possible to relieve some of the
contention on the counter by allocating K cells at once for a list (typically K = 4).
To obtain such a paged allocation scheme, the thread atomically increases the
global counter by K and uses a single bit in each head pointer as a local mutex
when inserting fragments in this page of K cells. The technique is described
in full detail by Crassin [Crassin 10], and is implemented in the accompanying
code (see implementations.fp, function allocate_paged). In our tests, the dedi-
cated counters always outperformed the paging mechanism. However, if a generic
atomic increment is used instead then the paging mechanism is faster. We use a
single dedicated atomic counter in all our performance tests (Section 1.7).

We now describe the two techniques based on the Lin-alloc cell allocation
strategy: Post-Lin and Pre-Lin.

1.2.1 Building Unsorted Lists (Post-Lin)

The simplest approach to building an unsorted list of fragments is to insert new
fragments at the head of the pixel list. A sample implementation is provided in
Listing 1.1.

In line 7, a cell position fresh is reserved and the counter is incremented.
The operation must be done atomically so that no two threads reserve the same
position in the buffer. It is then safe to fill the cell with relevant fragment data
in lines 8 and 9. Finally, indices are exchanged so that the cell buffer[fresh]

becomes the new head of the list.

Later, in Section 1.4.1, we describe how the fragments associated with each
pixel are gathered in a thread’s local memory and sorted before rendering.

1 const i n t gScreenSize = gScreenW � gScreenH ;
2 atomic_uint firstFreeCell = 0;
3 i n t heads [gScreenSize] ;
4 LinkedListCell_t buffer [gBufferSize] ;
5

6 void insertFront (x , y , f l o a t depth , Data data) {
7 const i n t fresh = atomicCounterIncrement (firstFreeCell) ;
8 buffer [fresh] . depth = depth ;
9 buffer [fresh] . data = data ;

10 buffer [fresh] . next = atomicExchange (&heads [x+y� gScreenW] , fresh) ;
11 }

Listing 1.1. Insertion at the head of a linked list.

8 I Rendering

1 atomic_uint firstFreeCell = gScreenSize ;
2 Data databuf [gBufferSize] ;
3 uint64_t buffer [gBufferSize + gScreenSize] ;
4

5 uint64_t pack (uint32_t depth , uint32_t next) {
6 re turn ((uint64_t) depth << 32) | next ;
7 }
8

9 void insertFrontPack (x , y , uint32_t depth , data) {
10 const i n t fresh = atomicCounterIncrement (firstFreeCell) ;
11 databuf [fresh−gScreenSize] = data ;
12 buffer [fresh] = atomicExchange (buffer+x+y� gScreenW ,
13 pack (depth , fresh)) ;
14 }

Listing 1.2. Insertion at the head of a linked list with packing.

1.2.2 Packing depth and next Together

In order to facilitate the understanding of later sections and render the exposition
more uniform with Section 1.3, this section introduces specific changes to the
buffer layout. We illustrate this new layout by describing an alternative way to
build unsorted linked-lists.

The following changes are done: First, all fragment data except depth are
segregated in a specific data buffer, that we call databuf. Second, the depth and
the next fields are packed in a single 64-bits word. Third, the main buffer is
enlarged with as many cells as pixels on screen. These additional cells at the
beginning of the buffer are used just like the heads array in Listing 1.1.

Listing 1.2 shows the new insertion procedure. Two observations should be
kept in mind:

• We must follow the next index n − 1 times to access the depth of the nth
fragment, and n times to access its other data.

• Notice the new initial value of firstFreeCell and the offset needed when
accessing the fragment data.

We keep this buffer layout throughout the remainder of the chapter.
The following diagram illustrates the position of four fragments fi, i = 1, 2, 3, 4,

inserted in this order, with depth zi and data di, associated with a pixel with
coordinates (x, y). Observe how each cell of the main buffer packs the depth zi
of a fragment and the index ni of the next item in the list. Note that with this
layout the index ni of the fragment following fi never changes.

z4n4
z1n1

n1 n2 n3 n4

d1 d2 d3 d4

z2n2
z3n3

0
0

x + y × gScreen Width
databuf (offset by gScreen Size):

· · ·· · ·

· · · · · ·

· · ·

· · ·

· · ·

· · ·

used as heads

buffer

1. Per-Pixel Lists for Single Pass A-Buffer 9

1 uint_32_t getNext (uint64_t cell) {
2 re turn cell ; // ex t r ac t l e a s t s i g n i f i c a n t 32 b i t s
3 }
4

5 void insertSorted (x , y , uint32_t depth , Data data) {
6 const i n t fresh = atomicCounterIncrement (firstFreeCell) ;
7 buffer [fresh] = 0 ; // 64− b i t s ze ro
8 memoryBarrier () ; // make sure i n i t i s v i s i b l e
9 databuf [fresh] = data ;

10 uint64_t record = pack (depth , fresh) , old , pos ;
11 pos = gScreenW � y + x ; // s t a r t o f the search
12 whi l e ((old=atomicMax64 (buffer+pos , record)) > 0) {
13 i f (old > record) { // go to next
14 pos = getNext (old) ;
15 } e l s e { // in s e r t ed ! update record i t s e l f
16 pos = getNext (record) ;
17 record = old ;
18 } } }

Listing 1.3. Insertion-sort in a linked list.

1.2.3 Building Sorted Lists with Insertion-Sort (Pre-Lin)

It is also possible to perform parallel insertions at any position inside a linked
list, and therefore, to implement a parallel version of “insertion-sort.” General
solutions to this problem have been proposed. In particular, our approach is
inspired by that of Harris [Harris 01], albeit in a simplified setting since there is
no deletion of single items. A sample implementation is provided in Listing 1.3.

The idea is to walk along the linked list until we find the proper place to
insert the fragment. Contrary to the implementation of Harris, which relies on
an atomic compare-and-swap, we use an atomic max operation on the cells of the
main buffer at each step of the walk (line 12). Since the depth is packed in the
most significant bits of a cell (line 10), the atomicMax operation will overwrite the
fragment stored in the buffer if and only if the new fragment depth is larger. In
all cases the value in the buffer prior to the max is returned in the variable old.

If the new fragment has smaller depth (line 13) then the buffer has not changed
and the new fragment has to be inserted further down the list: we advance to the
next cell (line 14).

If the new fragment has a larger depth (line 15) then it has been inserted
by the atomicMax. At this point the new fragment has been inserted, but the
remainder of the list has been cut out: the new fragment has no follower (line 7).
We therefore restart the walk (line 16), this time trying to insert old as the
next element of record (line 17). That walk will often succeed immediately: the
atomicMax operation will be applied at the end of the first part of the list and
will return zero (line 12). This single operation will merge back both parts of the
list. However there is an exception: another thread may have concurrently in-
serted more elements, in which case the walk will continue until all elements have

10 I Rendering

0
0

p

0
0

0
0

0
0

n2

n1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

Line

12

18

1212

12

12

12

12

18

18

p

p

n2

p

n2

n3

Pos

pp

n2

n3

Record
z1n1

z1n1

z1n1

z1n1

z1n1

z1n1

z1n1

z1n1

z1n1

z2n2

z2n2

z2n2

z2n2
z3n3

z3n3

z3n3

z3n3

n3

z2n2

z2n2

z2n2

Figure 1.2. Insertion of three fragments into the list of pixel p. Their respective depths
are z1, z2 and z3 with z2 > z3 > z1. The triangles on the left indicate the start of the
insertion of a new fragment. Each line is a snapshot of the variables and main buffer
state at each iteration of the while loop at lines 12 or 18 of Listing 1.3.

been properly re-inserted. Figure 1.2 illustrates the insertion of three fragments
associated with a single pixel p.

Compared to the approach of [Harris 01] based on a 32-bit atomic compare
and swap, our technique has the advantage of compactness and does not require
synchronization in the main loop. In particular the loop in Listing 1.3 can be
rewritten as follows:

1 whi l e ((old=atomicMax64 (buffer+pos , record)) > 0) {
2 pos = getNext (max (old , record)) ;
3 record = min (old , record) ;
4 }

Please refer to the accompanying source code for an implementation of both
approaches (file implementations.fp, functions insert_prelin_max64 and
insert_prelin_cas32).

1. Per-Pixel Lists for Single Pass A-Buffer 11

1.3 Lists with Open Addressing (Open-alloc)

In the previous section, a cell was allocated by incrementing a global counter,
and each cell in a list had to store the index of the next cell in that list. This is
the traditional linked-list data structure.

In this section, we describe a different way to allocate cells in the main buffer
and traverse the list of fragments associated with a given pixel. This technique
frees us from storing the index of the next cell, allowing more fragments to fit in
the same amount of memory. It does come with some disadvantages as well, in
particular the inability to store more that 32 bits of data per fragment.

We start with a general introduction of this allocation strategy and then
introduce the two techniques based on it, Post-Open and Pre-Open.

1.3.1 Insertion

For each pixel p, we fix a sequence of cell positions in the main buffer, (h(p, i))i≥1
and call it a probe sequence. The function h is defined as

h(p, i) = p + oi mod H,

or, in C speak, (p + offsets[i]) % gBufferSize.

where H = gBufferSize is the size of the main buffer. The sequence (oi)i≥1
should ideally be a random permutation of the set of integers [0..H − 1], so that
the probe sequence (h(p, i))i≥1 covers all the cells of the main buffer. We call
(oi)i≥1 the sequence of offsets. In practice this sequence is represented with a
fixed-length array of random integers, which we regenerate before each frame.
The fragments associated with pixel p are stored in the main buffer at locations
indicated by the probe sequence. When a fragment covering pixel p is stored
at position h(p, i), we say that it has age i, or that i is the age of this stored
fragment.

There are two interesting consequences to using the probe sequence defined
by function h. First, note that the sequence of offsets is independent of the pixel
position p. This means that the probe sequence for pixel q is a translation of the
probe sequence for pixel p by the vector q − p. During the rasterization, neigh-
boring threads handle neighboring pixels and in turn access neighboring memory
locations as each is traversing the probe sequence of its corresponding pixel. This
coherence in the memory access pattern eases the stress of the GPU memory
bus and increases memory bandwidth utilization. It was already exploited by
Garćıa et al. for fast spatial hashing [Garćıa et al. 11].

Second, assuming that H is greater than the total number of screen pixels,
then the function h becomes invertible in the sense that knowing h(p, i) and i is

12 I Rendering

enough to recover p as

p = h(p, i) − oi mod H,

or, in C speak, (hVal + gBufferSize - offsets[i]) % gBufferSize.

Let us define h−1(v, i) = v − oi mod H . The function h−1 lets us recover the
pixel p, which is covered by a fragment of age i stored in cell v of the main
buffer: p = h−1(v, i). In order to compute this inverse given v, the age of a
fragment stored in the main buffer must be available. Hence, we reserve a few
bits (typically 8) to store that age in the buffer, together with the depth and data
of the fragment.

When inserting the fragments, we should strive to minimize the age of the
oldest fragment, i.e., the fragment with the largest age. This is particularly
important to ensure that when walking along lists of fragments for several pixels in
parallel, the slowest thread—accessing old fragments—does not penalize the other
threads too much. This maximal-age minimization is achieved during insertion:
old fragments are inserted with a higher priority, while young fragments must
continue the search of a cell in which to be written.

We define the load-factor of the main buffer as the ratio of the number of
fragments inserted to the total size of the main buffer.

Collisions. A collision happens when a thread tries to insert a fragment in a cell
that already contains a fragment. Collisions can happen since the probe sequence
that we follow is essentially random. When the main buffer is almost empty (the
load-factor is low), collisions rarely happen. But as the load-factor increases, the
chance of collisions increases as well. The open addressing scheme that we have
just described works remarkably well even when the load-factor is as high as 0.95.

A collision happens when a thread tries to insert a fragment fp covering pixel
p at position h(p, i) for some i, but the cell at that position already contains a
fragment fq for some other pixel q. We then have h(p, i) = h(q, j) and solve the
collision depending on the value of i and j:

• If j = i, then q = p. The fragment fq covers the same pixel p; we keep it
there and try to insert fragment fp at the next position h(p, i+1). Alterna-
tively, as in Section 1.3.3, we might compare the depths of both fragments
to decide which one to keep at that position and which one to move.

• If j �= i, then pixels p and q are different pixels. In that case, we store
the fragment with the largest age in that cell and continue along the probe
sequence of the other fragment. More precisely, if i > j then the older
fragment fp replaces fq in the main buffer and the insertion of the younger
fragment fq is restarted at age j + 1, i.e., at position h(q, j + 1) in the
main buffer. Note that the value q is not known in advance and must be
computed as q = h−1(h(p, i), j). If i < j, then fragment fq does not move

1. Per-Pixel Lists for Single Pass A-Buffer 13

and the search for a free cell for fp proceeds at age i + 1 in the probe
sequence of pixel p.

This eviction mechanism, whereby an “old” fragment evicts a younger fragment,
has been demonstrated to effectively reduce the maximum age of the fragments
stored in the main buffer, over all pixels. This property was discovered by Celis
and Munro in their technique called Robin Hood Hashing [Celis et al. 85].

1.3.2 Building Unsorted Lists (Post-Open)

In this section, we give the full details of the construction of unsorted lists of
fragments using the allocation scheme described above.

In the rest of this chapter, we assume that a cell of the main buffer occupies
64 bits, which lets us use atomic operations on a cell, and that the age of a
fragment is stored in the most significant bits of the cell:

M
S
B

age: 8 bits empty: 24 bits data: 32 bits

L
S
B.

In this way, the eviction mechanism described above can be safely accomplished
using a single call to atomicMax.

We use an auxiliary 2D table A that stores, for each pixel p, the age of the
oldest fragment associated with p in the main buffer. Thus, A[p] indicates the
end of the list of p’s fragments; from which we can start the search for an empty
cell for the new fragment fp to be inserted.

The insertion procedure is shown in Listing 1.4. It increments a counter age

starting from A[p] + 1 (line 2) until it finds an empty cell at position h(p, age)

1 void insertBackOA (p , depth , data) {
2 uint age = A [p] + 1 ;
3 uint64_t record = OA_PACK (age , depth , data) ;
4 i n t iter = 0;
5 whi l e (iter++ < MAX_ITER) {
6 uvec2 h = (p + offsets [age]) % gBufSz ;
7 uint64_t old = atomicMax(&buffer [h] , record) ;
8 i f (old < record) {
9 atomicMax(&A [p] , age) ;

10 i f (old == 0) break ;
11 uint32_t oage = OA_GET_AGE (old) ;
12 p = (h + gBufSz − offsets [oage]) % gBufSz ;
13 age = A [p] ;
14 record = OA_WRITE_AGE (old , age) ;
15 }
16 ++age ;
17 record = record + OA_INC_AGE ;
18 } }

Listing 1.4. Insertion in a list with open addressing.

14 I Rendering

in which the record is successfully inserted (line 10). The record is tentatively
inserted in the buffer at line 7. If the insertion fails, the insertion proceeds in the
next cell along the probe sequence (lines 16 and 17). If it succeeds, the table A
is updated and if another fragment f ′ was evicted (old != 0), the pixel q covered
by f ′ is computed from the age of f ′ (line 11) and function h−1 (line 12). The
insertion of f ′ continues from the end of the list of fragments for pixel q, given
by A[q] + 1.

The macro OA_PACK packs the age, depth and data of a fragment in a 64-
bits word. The age occupies the 8 most significant bits. The macro OA_WRITE_AGE

updates the 8 most significant bits without touching the rest of the word. Finally,
the constant OA_INC_AGE = ((uint64_t)1<<56) is used to increment the age in the
packed record.

1.3.3 Building Sorted Lists with Insertion-Sort (Pre-Open)

In this section, we modify the construction algorithm above so as to keep the list
of fragments sorted by depth, by transforming it into an insertion-sort algorithm.

Let fp be the fragment, associated with pixel p, that we are inserting in the
main buffer. When a collision occurs at age i with a stored fragment f ′p associated
with the same pixel p, we know that both fragments currently have the same age.
Therefore, the atomicMax operation will compare the cell bits that are lower than
the bits used for storing the age. If the higher bits, among these lower bits,
encode the depth of the fragment then we ensure that the fragment with largest
depth is stored in the main buffer after the atomic operation:

M
S
B

age: 8 bits depth: 24 bits data: 32 bits
L
S
B.

Further, it is possible to show that during the insertion of fragment fp at age i, if
a collision occurs with a fragment fq with h(q, j) = h(p, i), then i ≤ j. Thus, the
insertion procedure will skip over all stored fragments that are not associated with
pixel p (since i �= j ⇒ q �= p) and will correctly keep the fragments associated
with p sorted by decreasing depth along the probe sequence of p. The interested
reader will find more detail and a proof of correctness of the insertion-sort with
open addressing in our technical report [Lefebvre and Hornus 13].

Thus, we obtain an insertion-sort with open addressing simply by packing the
depth of the fragment right after its age and always starting the insertion of a
fragment at the beginning of the probe sequence. A sample implementation is
given in Listing 1.5.

1.4 Post-sort and Pre-sort

In this section we discuss details depending on the choice of scheduling for the
sort. We discuss the sort in local memory required for Post-Lin and Post-
Open, as well as how to perform early culling with Pre-Lin and Pre-Open.

1. Per-Pixel Lists for Single Pass A-Buffer 15

1 void insertSortedOA (p , depth , data) {
2 uint age = 1;
3 uint64_t record = OA_PACK (age , depth , data) ;
4 i n t iter = 0;
5 whi l e (iter++ < MAX_ITER) {
6 uvec2 h = (p + offsets [age]) % gBufSz ;
7 uint64_t old = atomicMax(&buffer [h] , record) ;
8 i f (old < record) {
9 atomicMax(&A [p] , age) ;

10 i f (old == 0) break ;
11 age = OA_GET_AGE (old) ;
12 p = (h + gBufSz − offsets [age]) % gBufSz ;
13 record = old ;
14 }
15 ++age ;
16 record = record + OA_INC_AGE ;
17 } }

Listing 1.5. Insertion-sort with open addressing.

1.4.1 Post-sort: Sorting in Local Memory

In the Post-sort method, the Build pass accumulates the fragments of each
pixel in a list, without sorting them. The Render pass should then sort the
fragments prior to accumulating their contributions. This is done in a pixel
shader invoked by rasterizing a fullscreen quad. The shader for a given pixel
p first gathers all the fragments associated with p in a small array allocated in
local memory. The array is then sorted using bubble-sort, in a manner similar
to [Crassin 10]. Insertion-sort could also be used and benefit cases where the
transparent fragments are rasterized roughly in back-to-front order.

In contrast to the Post-sort techniques, the Pre-sort approaches perform
sorting during the Build pass. This allows for early culling of unnecessary frag-
ments, as described in the next section.

1.4.2 Pre-sort: Early Culling

The Pre-sort method has the unique advantage of keeping the fragments sorted
at all times. In a transparency application, when a fragment is inserted in a sorted
list it is possible to accumulate the opacity of the fragments in front of it in the
list. If this opacity reaches a given threshold, we know that the color of fragment
f will contribute little to the final image and we can decide to simply discard
it. This early culling mechanism is possible only when the lists of fragments
are always sorted, and it provides an important performance improvement as
illustrated in Section 1.7.

16 I Rendering

1.5 Memory Management

All four techniques use the main buffer for storing fragments. We discuss in
Section 1.5.1 how to initialize the buffer at each new frame. All implementations
assumed so far that the buffer is large enough to hold all incoming fragments.
This may not be true depending on the selected viewpoint, and we therefore
discuss how to manage memory and deal with an overflow of the main buffer in
Section 1.5.2.

1.5.1 The Clear Pass

With the Lin-alloc strategy, the beginning of the main buffer that stores the
heads of the lists has to be zeroed. This is implemented by rasterizing a fullscreen
quad. The global counter for cell allocation has to be initially set to gScreenSize.
In addition, when using the paged allocation scheme with the Pre-Lin method,
an additional array containing for each pixel the free cell index in its last page
has to be cleared as well.

With the Open-alloc strategy the entire main buffer has to be cleared: the
correctness of the insertion algorithm relies on reading a zero value to recognize
a free cell. The array A used to store the per-pixel maximal age has to be cleared
as well.

Figure 1.3 shows a breakout of the timings of each pass. As can be seen, the
Clear pass is only visible for the Open-alloc techniques, but remains a small
percentage of the overall frame time.

1.5.2 Buffer Overflow

None of the techniques we have discussed require us to count the number of
fragments before the Build pass. Therefore, it is possible for the main buffer
to overflow when too many fragments are inserted within a frame. Our current
strategy is to detect overflow during frame rendering, so that rendering can be
interrupted. When the interruption is detected by the host application, the main
buffer size is increased, following a typical size-doubling strategy, and the frame
rendering is restarted from scratch.

When using linked lists we conveniently detect an overflow by testing if the
global allocation counter exceeds the size of the main buffer. In such a case, the
fragment shader discards all subsequent fragments.

The use of open addressing requires a slightly different strategy. We similarly
keep track of the number of inserted fragments by incrementing a global counter.
We increment this counter at the end of the insertion loop, which largely hides
the cost of the atomic increment. With open addressing, the cost of the insertion
grows very fast as the load-factor of the main buffer nears one (Figure 1.4). For
this reason, we interrupt the Build pass when the load-factor gets higher than
10/16.

1. Per-Pixel Lists for Single Pass A-Buffer 17

Postlin-naive Prelin-naive Postopen Preopen Preopen-ec
0

5

10

15

20

25

30

35

40

Ti
m

e

Time clear
Time build
Time render

Postlin-naive Prelin-naive Postopen Preopen Preopen-ec
0.0

0.5

1.0

1.5

2.0
M

em
or

y
1e8

Byte size

Figure 1.3. The lost empire scene, modeled with Minecraft by Morgan McGuire. The
top row (left) shows the textured rendering, with 0.5 opacity (alpha from textures is
ignored). The trees appear solid due to a large number of quads. The top row (right)
shows a color coded image of the depth complexity. Full red corresponds to 64 fragments
(average: 10.3, maximum: 46). The left chart gives the timing breakout for each pass
and each technique. The Clear pass (red) is negligible for Lin-alloc techniques.
Post-sort techniques are characterized by a faster Build (green) but a significantly
longer Render (blue) due to the sort. preopen-ec uses early culling, strongly reducing
the cost of Build (threshold set to 0.95 cumulated opacity). The right chart shows
the memory cost of each technique, assuming the most compact implementation. Load-
factor: 0.4.

1.6 Implementation

We implement all techniques in GLSL fragment programs, using the extension
NV_shader_buffer_store on NVIDIA hardware to access GPU memory via point-
ers. We tested our code on both a GeForce GTX 480 (Fermi) and a GeForce
Titan (Kepler), using NVIDIA drivers 320.49. We designed our implementation
to allow for easy swapping of techniques: each different approach is compiled as a
separate DLL. Applications using the A-buffer use a common interface abstract-
ing the A-buffer implementation (see abuffer.h).

18 I Rendering

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Load Factor

2

4

6

8

10

12

14

Ti
m

e

Postopen
Preopen

Figure 1.4. Frame time (ms) versus load-factor for open addressing techniques. Note
the significant performance drop as the load-factor increases. GeForce Titan, 320.49,
2.5M fragments, average depth complexity: 2.9.

An important benefit of the techniques presented here is that they directly
fit in the graphics pipeline, and do not require switching to a compute API.
Therefore, the Build pass is the same as when rendering without an A-buffer,
augmented with a call to the insertion code. This makes the techniques easy to
integrate in existing pipelines. In addition all approaches require fewer than 30
lines of GLSL code.

Unfortunately implementation on current hardware is not as straightforward
as it could be, for two reasons: First, the hardware available to us does not
natively support atomicMax on 64 bits in GLSL (Kepler supports it natively on
CUDA). Fortunately the atomicMax 64 bits can be emulated via an atomicCompSwap

instruction in a loop. We estimated the performance impact to approximately
30% by emulating a 32 bits atomicMax with a 32 bits atomicCompSwap (on a GeForce
GTX480). The second issue is related to the use of atomic operations in loops,
inside GLSL shaders. The current compiler seems to generate code leading to
race conditions that prevent the loops from operating properly. Our current
implementation circumvents this by inserting additional atomic operations having
no effect on the algorithm result. This, however, incurs in some algorithms a
penalty that is difficult to quantify.

1.7 Experimental Comparisons

We now compare each of the four versions and discuss their performance.

1. Per-Pixel Lists for Single Pass A-Buffer 19

1.7.1 3D Scene Rendering

We developed a first application for rendering transparent, textured scenes. It is
included in the companion source code (bin/seethrough.exe). Figure 1.3 shows a
3D rendering of a large scene with textures and transparency. It gives the timings
breakout for each pass and each technique, as well as their memory cost.

1.7.2 Benchmarking

For benchmarking we developed an application rendering transparent, front fac-
ing quads in orthographic projection. The position and depth of the quads are
randomized and change every frame. All measures are averaged over six sec-
onds of running time. We control the size and number of quads, as well as their
opacity. We use the ARB_timer_query extension to measure the time to render a
frame. This includes the Clear, Build, and Render passes as well as checking
for the main buffer overflow. All tests are performed on a GeForce GTX480 and
a GeForce Titan using drivers 320.49. We expect these performance numbers
to change with future driver revisions due to issues mentioned in Section 1.6.
Nevertheless, our current implementation exhibits performance levels consistent
across all techniques as well as between Fermi and Kepler.

The benchmarking framework is included in the companion source code (bin/
benchmark.exe). The python script runall.py launches all benchmarks.

Number of fragments. For a fixed depth complexity, the per-frame time is ex-
pected to be linear in the number of fragments. This is verified by all imple-
mentations as illustrated Figure 1.5. We measure this by rendering a number of
quads perfectly aligned on top of each other, in randomized depth order. The
number of quads controls the depth complexity. We adjust the size of the quads
to vary the number of fragments only.

Depth complexity. In this experiment we compare the overall performance for a
fixed number of fragments but a varying depth complexity. As the size of the per-
pixel lists increases, we expect a quadratic increase in frame rendering time. This
is verified Figure 1.6. The technique Pre-Open is the most severely impacted
by the increase in depth complexity. The main reason is that the sort occurs in
global memory, and each added fragment leads to a full traversal of the list via
the eviction mechanism.

Early culling. In scenes with a mix of transparent and opaque objects, early culling
fortunately limits the depth complexity per pixel. The techniques Pre-Open and
Pre-Lin both afford for early culling (see Section 1.4.2). Figure 1.7 demonstrates
the benefit of early culling. The threshold is set up to ignore all fragments after
an opacity of 0.95 is reached (1 being fully opaque).

20 I Rendering

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000
Num Frags

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Ti
m

e

Postlin-naive
Postopen
Prelin-naive
Preopen

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000
Num Frags

0

5

10

15

20

25

30

Ti
m

e

Postlin-naive
Postopen
Prelin-naive
Preopen

0.0 0.5 1.0 1.5 2.0 2.5
Num Frags 1e7

0

50

100

150

200

250

300

350

Ti
m

e

Postlin-naive
Postopen
Prelin-naive
Preopen

Figure 1.5. Frame time (ms) versus number of fragments. From top to bottom, the
depth complexity is 5, 20, and 63 in all pixels covered by the quads. Increase in frame
time is linear in number of fragments.

1. Per-Pixel Lists for Single Pass A-Buffer 21

3 4 5 6 7 8 9 10
AvgDepth

0

2

4

6

8

10

12
Ti

m
e

Postlin-naive
Postopen
Prelin-naive
Preopen

Figure 1.6. Frame time (ms) versus average depth complexity. GeForce Titan, driver
320.49, load-factor: 0.5, 2.5M fragments.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Opacity

10

20

30

40

50

60

70

Ti
m

e

Preopen
Preopen-ec

Figure 1.7. Frame time versus opacity for Pre-Open with and without early culling.
Early culling (green) quickly improves performance when opacity increases. GeForce
Titan, driver 320.49, load-factor: 0.5, 9.8M fragments

1.8 Conclusion

Our tests indicate that Pre-Lin has a significant advantage over other techniques,
while the Open-alloc cell allocation strategy falls behind. This is, however,
not a strong conclusion. Indeed, all of these methods, with the exception of
Post-Lin, are penalized by the emulation of the atomic max 64 bits. More
importantly, the implementation of the Open-alloc techniques currently suffers
from unnecessary atomic operations introduced to avoid race conditions.

The Lin-alloc cell allocation strategy strongly benefits from the dedicated
increment atomic counters. Our tests indicate that without these, the Build

22 I Rendering

performance is about three times slower (using paged allocation, which is then
faster), making Pre-Open competitive again. This implies that in a non-GLSL
setting the performance ratios are likely to differ.

Finally, the Post-sort techniques could benefit from a smarter sort, bubble-
sort having the advantage of fitting well in the Render pass due to its straight-
forward execution pattern. Using a more complex algorithm would be especially
beneficial for larger depth complexities. However, increasing the number of frag-
ments per-pixel implies increasing the reserved temporary memory. This impedes
performance: for the rendering of Figure 1.3, allocating a temporary array of size
64 gives a Render time of 20 ms, while using an array with 256 entries increases
the Render time to 57 ms. This is for the exact same rendering: reserving more
memory reduces parallelism. In contrast, the Pre-sort techniques suffer no such
limitations and support early fragment culling.

For updates on code and results please visit http://www.antexel.com/research/
gpupro5.

1.9 Acknowledgments

We thank NVIDIA for hardware donation as well as Cyril Crassin for discussions
and feedback on GPU programming. This work was funded by ERC ShapeForge
(StG-2012-307877).

Bibliography

[Carpenter 84] Loren Carpenter. “The A-buffer, an Antialiased Hidden Surface
Method.” SIGGRAPH 18:3 (1984), 103–108.

[Celis et al. 85] Pedro Celis, Per-Åke Larson, and J. Ian Munro. “Robin Hood
Hashing (Preliminary Report).” In Proceedings of the 25th Annual Sympo-
sium on Foundations of Computer Science, pp. 281–288. Washington, DC:
IEEE, 1985.

[Crassin 10] Cyril Crassin. “OpenGL 4.0+ A-buffer V2.0: Linked
lists of fragment pages.” http://blog.icare3d.org/2010/07/
opengl-40-abuffer-v20-linked-lists-of.html, 2010.

[Garćıa et al. 11] Ismael Garćıa, Sylvain Lefebvre, Samuel Hornus, and Anass
Lasram. “Coherent Parallel Hashing.” ACM Transactions on Graphics 30:6
(2011), Article no. 161.

[Harris 01] Timothy L. Harris. “A Pragmatic Implementation of Non-blocking
Linked-Lists.” In Proceedings of the 15th International Conference on Dis-
tributed Computing, DISC ’01, pp. 300–314. London: Springer-Verlag, 2001.

http://www.antexel.com/research/gpupro5
http://blog.icare3d.org/2010/07/opengl-40-abuffer-v20-linked-lists-of.html

1. Per-Pixel Lists for Single Pass A-Buffer 23

[Lefebvre and Hornus 13] Sylvain Lefebvre and Samuel Hornus. “HA-Buffer: Co-
herent Hashing for Single-Pass A-buffer.” Technical Report 8282, Inria, 2013.

[Lefebvre 13] Sylvain Lefebvre. “IceSL: A GPU Accelerated Modeler and Slicer.”
In Distributed Computing: 15th International Conference, DISC 2001, Lis-
bon, Portugal, October 3–5, 2001, Proceedings, Lecture Notes in Computer
Science 2180, pp. 300–314. Berlin: Springer-Verlag, 2013.

[Maule et al. 11] Marilena Maule, João Luiz Dihl Comba, Rafael P. Torchelsen,
and Rui Bastos. “A Survey of Raster-Based Transparency Techniques.”
Computers & Graphics 35:6 (2011), 1023–1034.

This page intentionally left blankThis page intentionally left blank

2

I

Reducing Texture Memory Usage
by 2-Channel Color Encoding

Krzysztof Kluczek

2.1 Introduction

In modern games, textures are the primary means of storing information about
the appearance of materials. While often a single texture is applied to an entire
3D mesh containing all materials, they equally often represent individual materi-
als, e.g., textures of walls, terrain, vegetation, debris, and simple objects. These
single-material textures often do not exhibit large color variety and contain a lim-
ited range of hues, while using a full range of brightness resulting from highlights
and dark (e.g., shadowed), regions within the material surface. These observa-
tions, along with web articles noticing very limited color variety in Hollywood
movies [Miro 10] and next-gen games, coming as far as the proposal of using only
two color channels for the whole framebuffer [Mitton 09], were the motivation for
the technique presented in this chapter.

The method presented here follows these observations and aims to encode any
given texture into two channels: one channel preserving full luminance informa-
tion and the other one dedicated to hue/saturation encoding.

2.2 Texture Encoding Algorithm

Figure 2.1 presents the well-known RGB color space depicted as a unit cube.
Each source texel color corresponds to one point in this cube. Approximating
this space with two channels effectively means that we have to find a surface
(two-dimensional manifold) embedded within this unit cube that lies as close as
possible to the set of texels from the source texture. To simplify the decoding
algorithm, we can use a simple planar surface or, strictly speaking, the intersec-
tion of a plane with the RGB unit cube (right image of Figure 2.1). Because we
have already decided that luminance information should be encoded losslessly in
a separate channel, the color plane should pass through the RGB space’s origin

25

26 I Rendering

B B

G G

R R

Figure 2.1. RGB color space as unit cube (left) and its intersection with a plane (right).

of zero luminance (black). Therefore, the simplified color space for the 2-channel
compression is defined by a single three-dimensional vector—the plane normal.

2.2.1 Color Plane Estimation

Fitting a plane to approximate a set of 3D points is a common task and various
algorithms exist. In order to find the best plane for color simplification we have
to take the following preparatory steps.

First, we have to remember that RGB pixel color values in most image file
formats do not represent linear base color contribution. For the purpose of this
algorithm, we want to operate in the linear RGB color space. Most common file
formats provide values in sRGB space [Stokes 96]. While being internally more
complex, this representation can be approximated with gamma 2.2, i.e., after
raising RGB values to power of 2.2 we obtain approximately linear light stimuli
for red, green, and blue. We can approximate this with a gamma value of 2, which
allows a simple use of multiplication and square root for conversion between sRGB
and approximate linear RGB spaces. Strictly speaking, we will then be operating
in a RGB space with a gamma of 1.1. While this slight nonlinearity will have
only a minor impact on the estimation and the encoding, it is important to use
the same simplified gamma value of 2 during the conversion back to the sRGB
space after decoding for the final presentation to avoid change in the luminance
levels.

After (approximately) converting color values to the linear RGB space, the
other thing we have to remember is the fact that the hue perception is a result
of the relation between the RGB components and is not linear. To correctly
match hues as closely as possible, we could ideally use a perceptually linear color
space (e.g., L*a*b*, explained in [Hoffmann 03]). However, this results in a much
more costly decoding stage and thus we will limit ourselves to the linear RGB
color space, accepting potential minor hue errors. Still, to minimize the impact
of not operating in a perceptually correct linear RGB space, we can apply non-

2. Reducing Texture Memory Usage by 2-Channel Color Encoding 27

uniform scaling to the space before estimating the plane. This affects the error
distribution across the RGB channels, allowing some hues to be represented more
closely at the cost of others. The result of this non-uniform scaling is that as RGB
components shrink, their influence on the color plane shrinks, because distances
along the shrunk axis are shortened. Due to the hue perception’s nonlinearity,
it is not easy to define the scaling factors once for all potential textures, and in
our tests they were set experimentally based on the sample texture set. First we
tried the RGB component weights used in the luminance computation (putting
most importance on G and barely any on B), but experiments showed that some
material textures are better represented when the estimation is done with more
balanced weighting. To achieve acceptable results for various textures, we used
an experimentally chosen weight set of 1/2 for red, 1 for green and 1/4 for blue,
which lies between the classic luminance component weights and the equally
weighted component average. Fortunately, the perceived difference in pixel hues
after the encoding changes is barely noticeable with these scaling factors. Still,
the scaling factors may be used to improve texture representation by fine tuning
them separately for each texture.

With the two above operations, the whole initial pixel color processing can be
expressed as

r′i = rγi wr,

g′i = gγi wg,

b′i = bγi wb,

where γ is the gamma value used to transition from the input color space to
the linear color space, and wr, wg and wb are the color component importance
weights.

Having taken into account the above considerations, the color of every texel
represents a single point in 3D space. The optimal approximating color plane
will be the plane that minimizes the sum of squared distances between the plane
and each point. Because the plane is assumed to be passing by the point (0,0,0),
we can express it by its normal. In effect, the point-plane distance computation
reduces to a dot product. Note that since we are using the RGB space, the vector
components are labeled r, g, and b instead of the usual x, y, and z:

di = N · Pi = nrr
′
i + ngg

′
i + nbb

′
i.

The optimal plane normal vector is the vector, which minimizes the point-
plane distances. Such problems can be solved using least squared fit method that
aims to minimize sum of squared distances. The approximation error we want to
minimize is expressed as

err =
∑
i

d2i =
∑
i

(N · Pi)
2 =

∑
i

(nrr
′
i + ngg

′
i + nbb

′
i)

2
,

28 I Rendering

which after simple transformations becomes

err = n2
r

(∑
i

r′2i

)
+ n2

g

(∑
i

g′2i

)
+ n2

b

(∑
i

b′2i

)

+ 2nrng

(∑
i

r′ig
′
i

)
+ 2nrnb

(∑
i

r′ib
′
i

)
+ 2ngnb

(∑
i

g′ib
′
i

)
.

For minimalistic implementation, we can use the above equation to compute
all six partial sums depending only on the texel colors. Then we can use a brute
force approach to test a predefined set of potential normal vectors to find the
one minimizing the total approximation error. Because each test is carried out
in linear time, costing only several multiplications and additions, this approach
is still tolerably fast.

The final step after finding the optimal color plane is to revert the color
space distortion caused by the color component weighting by scaling using the
reciprocal weights. Because the plane normal is a surface normal vector, the usual
rule of non-uniform space scaling for normals applies and we have to multiply the
normal by the inverse transpose of the matrix we would use otherwise. While the
transposition does not affect the scaling matrix, the matrix inversion does and
the final scaling operation is using non-reciprocal weights again:

N ′ = N

⎛
⎜⎝
⎡
⎣ 1/wr 0 0

0 1/wg 0
0 0 1/wb

⎤
⎦
−1⎞⎟⎠

T

= N

⎡
⎣ wr 0 0

0 wg 0
0 0 wb

⎤
⎦ .

As all subsequent computation is typically done in the linear RGB space, we
do not have to convert into sRGB (which would be nonlinear transform anyway).

2.2.2 Computing Base Colors

The important parameters for the encoding and the decoding process are the two
base colors. The color plane cutting through the RGB unit cube forms a triangle
or a quadrilateral, with one of the corners placed at the point (0,0,0). The two
corners neighboring the point (0,0,0) in this shape are defined as the base colors
for the planar color space, as shown on Figure 2.2. Every other color available
on the plane lies within the angle formed by the point (0,0,0) and the two base
color points. Because the color plane starts at (0,0,0) and enters the unit cube,
the base color points will always lie on the silhouette of the unit cube, as seen
from the point (0,0,0). To find the base colors, we can simply compute the plane
intersection with the silhouette edges, resulting in the desired pair of points. We
have to bear in mind that the plane can slice through the silhouette vertices, or
even embed a pair of silhouette edges. Therefore, to compute the points we can

2. Reducing Texture Memory Usage by 2-Channel Color Encoding 29

B

G

R
bc2

bc1

(0,0,0)

Figure 2.2. Base colors on the color plane.

use an algorithm, which walks around the silhouette computing the two points
in which the silhouette crosses the plane.

The key observation now is that we can represent a hue value as the angle
to the vectors spanning the plane or, alternatively, using a linear interpolation
between the two base colors. In order to compute the final color, we only have
to adjust the luminance and perform any required final color space conversions.

2.2.3 Luminance Encoding

The luminance of the color being encoded is stored directly. After colors have
been transformed into the linear RGB space, we can use a classic equation for
obtaining perceived luminance value derived from the sRGB to XYZ color space
transformation in [Stokes 96]:

L = 0.2126 ·R + 0.7152 ·G + 0.0722 ·B.

Because the weighting coefficients sum up to 1, the luminance value ranges from
zero to one. Since the luminance has its own dedicated channel in the 2-channel
format, it can now be stored directly. However, as luminance perception is not
linear, we are using a gamma value of 2 for the luminance storage. This is close
enough to the standard gamma 2.2 and gives the same benefits—dark colors have
improved luminance resolution at the cost of unnoticeably reduced quality of
highlights. Also the gamma value of 2 means that luminance can simply have its
square root computed while encoding and will simply be squared while decoding.

2.2.4 Hue Estimation and Encoding

To encode the hue of the color, we have to find the closest suitable color on the
approximating plane and then find the proportion with which we should mix the
base colors to obtain the proper hue. The hue encoding process is demonstrated

30 I Rendering

B

RRR

G G G

B B

bc2
bc1 bc1

bc2 bc2(0,0,0) (0,0,0) (0,0,0)

Figure 2.3. Hue encoding process

in Figure 2.3 and can be outlined as follows:

1. Project the color point in the linear RGB space onto the color plane.

2. Compute the 2D coordinates of the point on the plane.

3. Find a 2D line on plane passing through (0,0,0) and the point.

4. Find the proportion in which the line crosses the 2D line between the base
color points, i.e., determine the blend factor for the base colors.

The first step is a simple geometric operation. From the second step on,
we have to perform geometric operations on 2D coordinates embedded within
the plane. Having the two base color points A and B, we can compute the 2D
coordinate frame of the plane as

Fx =
A

‖A‖ Fy =
B − (Fx · B)Fx

‖B − (Fx · B)Fx‖
and then compute 2D coordinates of any point within the plane using the dot
product:

(xi, yi) = (Pi · Fx, Pi · Fy) .

Please note that we do not actually need the explicit RGB coordinates of the
point on the plane nearest to the color being encoded, but only its 2D coordinates
within the plane, xi and yi. As both the original point and the point projected
onto the plane will have the same 2D coordinates, we can skip step 1 in the
outlined algorithm completely. The projection onto the plane is a side effect of
the reduction to only two dimensions.

The problem of computing the base color blend factor for hue, when consid-
ering the points embedded within the color plane, is now reduced to the problem
of intersection of two lines: a line connecting both base color points and a line

2. Reducing Texture Memory Usage by 2-Channel Color Encoding 31

f l o a t 3 texture_decode (f l o a t 2 data , f l o a t 3 bc1 , f l o a t 3 bc2)
{

f l o a t 3 color = lerp (bc1 , bc2 , data . y) ;
f l o a t color_lum = dot (color , f l o a t 3 (0 . 2126 , 0 . 7152 , 0 . 0722)) ;
f l o a t target_lum = data . x � data . x ;

color �= target_lum / color_lum ;
r e turn color ;

}

Listing 2.1. Two-channel texture decoding algorithm.

passing through the origin and the point on the plane being encoded. This gives
us the following line-line intersection equation:

A + t(B −A) = sP.

Solving this linear equation for t gives us the result—the base color blend
factor resulting in a hue most closely matching the hue of the encoded point. This
blend factor is then simply stored directly in the second channel, completing the
2-channel encoding process.

2.3 Decoding Algorithm

The decoding algorithm is simple and best described by the actual decoding
shader code in Listing 2.1.

First, the base colors bc1 and bc2, which are passed as constant data, are
blended with a blend factor coming from the second channel of data, resulting in
a color having the desired hue, but wrong luminance. This luminance is computed
as color_lum. Next, we compute the desired luminance target_lum as a value of
first channel of data squared (because we stored the luminance with gamma 2).
As the resulting color is in a linear color space, we can adjust the luminance by
simply dividing the color by the current luminance and then multiplying it by
the desired one. If needed, we can of course convert the computed color to a
nonlinear color space for presentation purposes.

2.4 Encoded Image Quality

Figures 2.4, 2.5, and 2.6 show examples of the encoding and decoding process.
The example textures are taken from the CGTextures texture library and were
selected because of their relatively rich content and variety.

Figure 2.4 presents a 2-channel approximation result of a dirt texture with
grass patches. Both dirt and grass are reproduced with slight, but mostly unno-
ticeable differences in color. As the method is designed with limited-color material

32 I Rendering

Figure 2.4. Grass and dirt texture example. Original image (left) and result after the
encoding/decoding process (right).

textures in mind, the color probe added on the image is of course severely de-
graded, but clearly shows that the estimation algorithm picked the green-purple
color plane as fitting the image best. These extreme colors may not be used
directly on the texture, but we should remember that all colors resulting from
blending green and purple are available at this stage and this includes colors with
reduced saturation in the transition zone. Because of the separate treatment of
pixel luminance, the luminance values are unaffected except for processing and
storage rounding errors.

Figures 2.5 and 2.6 show two examples of textures with mixed materials.
This time, the estimation process has chosen a blue-yellow for the first and a

Figure 2.5. Rock and stone texture example. Original image (left) and result after the
encoding/decoding process (right).

2. Reducing Texture Memory Usage by 2-Channel Color Encoding 33

Figure 2.6. Sand, dead grass, and rocks texture example. Original image (left) and the
decoded result after 2-channel compression (right).

teal-orange plane for the second image. While the stone and grass texture mostly
remains unaffected, the sand, grass, and stones texture required finding a compro-
mise resulting in some grass discoloration and smaller off-color elements changing
color completely.

2.5 Conclusion

The encoding and decoding methods presented in this chapter allow storing tex-
tures with low color variety using only two texture channels. Apart from the
obvious savings, this opens additional possibilities. For example, considering
that most texture sampler implementations support 4-channel textures, the two
remaining channels can be used for other purposes, e.g., storing x and y compo-
nents of the material normal map, resulting in a compact material representation
with just a single texture image. Even if not using this feature, the fact that
the proposed 2-channel color encoding relies on a luminance-hue decomposition
allows custom texture compression algorithms. We can assign higher priority
to luminance information during texture compression, accumulating most of the
compression error in hue, to changes to which the human eye is less sensitive,
increasing the overall compressed image quality. We should also note that the
proposed encoding scheme can be used directly with existing mip-mapping solu-
tions, because averaging luminance-values and hue-blend factors is a good approx-
imation of averaging color values. We should only be aware that the luminance
values are stored with a gamma of 2 and may require a custom mip-map chain
generation if we require fully linear color processing in the whole lighting pipeline.

34 I Rendering

Bibliography

[Hoffmann 03] Gernot Hoffmann. CIELab Color Space. http://docs-hoffmann.de/
cielab03022003.pdf, 2003.

[Miro 10] Todd Miro. Teal and Orange—Hollywood, Please Stop the
Madness. http://theabyssgazes.blogspot.com/2010/03/teal-and-orange
-hollywood-please-stop.html, 2010.

[Mitton 09] Richard Mitton. Two-Channel Framebuffers for Next-Gen Color
Schemes. http://www.codersnotes.com/notes/two-channel, 2009.

[Stokes 96] Michael Stokes, Matthew Anderson, Srinivasan Chandrasekar, and
Ricardo Motta. A Standard Default Color Space for the Internet—sRGB. http:
//www.w3.org/Graphics/Color/sRGB, 1996.

http://www.w3.org/Graphics/Color/sRGB
http://docs-hoffmann.de/cielab03022003.pdf
http://theabyssgazes.blogspot.com/2010/03/teal-and-orange-hollywood-please-stop.html

