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Introduction

The death of Markowitz optimization?

For a long time, investment theory and practice has been summarized as
follows. The capital asset pricing model stated that the market portfolio is op-
timal. During the 1990s, the development of passive management confirmed
the work done by William Sharpe. At that same time, the number of insti-
tutional investors grew at an impressive pace. Many of these investors used
passive management for their equity and bond exposures. For asset allocation,
they used the optimization model developed by Harry Markowitz, even though
they knew that such an approach was very sensitive to input parameters, and
in particular, to expected returns (Merton, 1980). One reason is that there
was no other alternative model. Another reason is that the Markowitz model
is easy to use and simple to explain. For expected returns, these investors
generally considered long-term historical figures, stating that past history can
serve as a reliable guide for the future. Management boards of pension funds
were won over by this scientific approach to asset allocation.

The first serious warning shot came with the dot-com crisis. Some insti-
tutional investors, in particular defined benefit pension plans, lost substan-
tial amounts of money because of their high exposure to equities (Ryan and
Fabozzi, 2002). In November 2001, the pension plan of The Boots Company,
a UK pharmacy retailer, decided to invest 100% in bonds (Sutcliffe, 2005).
Nevertheless, the performance of the equity market between 2003 and 2007
restored confidence that standard financial models would continue to work
and that the dot-com crisis was a non-recurring exception. However, the 2008
financial crisis highlighted the risk inherent in many strategic asset allocations.
Moreover, for institutional investors, the crisis was unprecedentedly severe. In
2000, the internet crisis was limited to large capitalization stocks and certain
sectors. Small capitalizations and value stocks were not affected, while the
performance of hedge funds was flat. In 2008, the subprime crisis led to a
violent drop in credit strategies and asset-backed securities. Equities posted
negative returns of about −50%. The performance of hedge funds and alterna-
tive assets was poor. There was also a paradox. Many institutional investors
diversified their portfolios by considering several asset classes and different re-
gions. Unfortunately, this diversification was not enough to protect them. In
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the end, the 2008 financial crisis was more damaging than the dot-com crisis.
This was particularly true for institutional investors in continental Europe,
who were relatively well protected against the collapse of the internet bubble
because of their low exposure to equities. This is why the 2008 financial crisis
was a deep trauma for world-wide institutional investors.

Most institutional portfolios were calibrated through portfolio optimiza-
tion. In this context, Markowitz’s modern portfolio theory was strongly crit-
icized by professionals, and several journal articles announced the death of
the Markowitz model1. These extreme reactions can be explained by the fact
that diversification is traditionally associated with Markowitz optimization,
and it failed during the financial crisis. However, the problem was not entirely
due to the allocation method. Indeed, much of the failure was caused by the
input parameters. With expected returns calibrated to past figures, the model
induced an overweight in equities. It also promoted assets that were supposed
to have a low correlation to equities. Nonetheless, correlations between as-
set classes increased significantly during the crisis. In the end, the promised
diversification did not occur.

Today, it is hard to find investors who defend Markowitz optimization.
However, the criticisms concern not so much the model itself but the way it
is used. In the 1990s, researchers began to develop regularization techniques
to limit the impact of estimation errors in input parameters and many im-
provements have been made in recent years. In addition, we now have a better
understanding of how this model works. Moreover, we also have a theoreti-
cal framework to measure the impact of constraints (Jagannathan and Ma,
2003). More recently, robust optimization based on the lasso approach has im-
proved optimized portfolios (DeMiguel et al., 2009). So the Markowitz model
is certainly not dead. Investors must understand that it is a fabulous tool for
combining risks and expected returns. The goal of Markowitz optimization
is to find arbitrage factors and build a portfolio that will play on them. By
construction, this approach is an aggressive model of active management. In
this case, it is normal that the model should be sensitive to input param-
eters (Green and Hollifield, 1992). Changing the parameter values modifies
the implied bets. Accordingly, if input parameters are wrong, then arbitrage
factors and bets are also wrong, and the resulting portfolio is not satisfied.
If investors want a more defensive model, they have to define less aggressive
parameter values. This is the main message behind portfolio regularization. In
consequence, reports of the death of the Markowitz model have been greatly
exaggerated, because it will continue to be used intensively in active manage-
ment strategies. Moreover, there are no other serious and powerful models to
take into account return forecasts.

1See for example the article “Is Markowitz Dead? Goldman Thinks So” published in
December 2012 by AsianInvestor.
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The rise of risk parity portfolios

There are different ways to obtain less aggressive active portfolios. The
first one is to use less aggressive parameters. For instance, if we assume that
expected returns are the same for all of the assets, we obtain the minimum
variance (or MV) portfolio. The second way is to use heuristic methods of asset
allocation. The term ‘heuristic’ refers to experience-based techniques and trial-
and-error methods to find an acceptable solution, which does not correspond
to the optimal solution of an optimization problem. The equally weighted (or
EW) portfolio is an example of such non-optimized ‘rule of thumb’ portfolio.
By allocating the same weight to all the assets of the investment universe,
we considerably reduce the sensitivity to input parameters. In fact, there are
no active bets any longer. Although these two allocation methods have been
known for a long time, they only became popular after the collapse of the
internet bubble.

Risk parity is another example of heuristic methods. The underlying idea
is to build a balanced portfolio in such a way that the risk contribution is the
same for different assets. It is then an equally weighted portfolio in terms of
risk, not in terms of weights. Like the minimum variance and equally weighted
portfolios, it is impossible to date the risk parity portfolio. The term risk parity
was coined by Qian (2005). However, the risk parity approach was certainly
used before 2005 by some CTA and equity market neutral funds. For instance,
it was the core approach of the All Weather fund managed by Bridgewater for
many years (Dalio, 2004). At this point, we note that the risk parity portfolio
is used, because it makes sense from a practical point of view. However, it was
not until the theoretical work of Maillard et al. (2010), first published in 2008,
that the analytical properties were explored. In particular, they showed that
this portfolio exists, is unique and is located between the minimum variance
and equally weighted portfolios.

Since 2008, we have observed an increasing popularity of the risk parity
portfolio. For example, Journal of Investing and Investment and Pensions Eu-
rope (IPE) ran special issues on risk parity in 2012. In the same year, The
Financial Times and Wall Street Journal published several articles on this
topic2. In fact today, the term risk parity covers different allocation meth-
ods. For instance, some professionals use the term risk parity when the asset
weight is inversely proportional to the asset return volatility. Others consider
that the risk parity portfolio corresponds to the equally weighted risk con-
tribution (or ERC) portfolio. Sometimes, risk parity is equivalent to a risk
budgeting (or RB) portfolio. In this case, the risk budgets are not necessarily
the same for all of the assets that compose the portfolio. Initially, risk parity

2“New Allocation Funds Redefine Idea of Balance” (February 2012), “Same Returns,
Less Risk” (June 2012), “Risk Parity Strategy Has Its Critics as Well as Fans” (June 2012),
“Investors Rush for Risk Parity Shield” (September 2012), etc.
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only concerned a portfolio of bonds and equities. Today, risk parity is applied
to all investment universes. Nowadays, risk parity is a marketing term used by
the asset management industry to design a portfolio based on risk budgeting
techniques.

More interesting than this marketing operation is the way risk budgeting
portfolios are defined. Whereas the objective of Markowitz portfolios is to
reach an expected return or to target ex-ante volatility, the goal of risk parity
is to assign a risk budget to each asset. Like for the other heuristic approaches,
the performance dimension is then absent and the risk management dimen-
sion is highlighted. In addition, this last point is certainly truer for the risk
parity approach than for the other approaches. We also note that contrary to
minimum variance portfolios, which have only seduced equity investors, risk
parity portfolios concern not only different traditional asset classes (equities
and bonds), but also alternative asset classes (commodities and hedge funds)
and multi-asset classes (stock/bond asset mix policy and diversified funds).
By placing risk management at the heart of these different management pro-
cesses, risk parity represents a substantial break with respect to the previous
period of Markowitz optimization. Over the last decades, the main objective
of institutional investors was to generate performance well beyond the risk-
free rate (sometimes approaching double-digit returns). After the 2008 crisis,
investors largely revised their expected return targets. Their risk aversion level
increased and they do not want to experience another period of such losses. In
this context, risk management has become more important than performance
management.

Nevertheless, like for many other hot topics, there is some exaggeration
about risk parity. Although there are people who think that it represents a
definitive solution to asset allocation problems, one should remain prudent.
Risk parity remains a financial model of investment and its performance also
depends on the investor’s choice regarding parameters. Choosing the right
investment universe or having the right risk budgets is as important as using
the right allocation method. As a consequence, risk parity may be useful when
defining a reliable allocation, but it cannot free investors of their duty of
making their own choices.

About this book

The subject of this book is risk parity approaches. As noted above, risk
parity is now a generic term used by the asset management industry to des-
ignate risk-based management processes. In this book, the term risk parity is
used as a synonym of risk budgeting. When risk budgets are identical, we pre-
fer to use the term ERC portfolio, which is more explicit and less overused by
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the investment industry. When we speak of a risk parity fund, it corresponds
to an equally weighted risk contribution portfolio of equities and bonds.

This book comprises two parts. The first part is more theoretical. Its first
chapter is dedicated to modern portfolio theory whereas the second chapter
is a comprehensive guide to risk budgeting. The second part contains four
chapters, each of which presents an application of risk parity to a specific as-
set class. The third chapter concerns risk-based equity indexation, also called
smart indexing. In the fourth chapter, we show how risk budgeting techniques
can be applied to the management of bond portfolios. The fifth chapter deals
with alternative investments, such as commodities and hedge funds. Finally,
the sixth chapter applies risk parity techniques to multi-asset classes. The
book also contains two appendices. The first appendix provides the reader
with technical materials on optimization problems, copula functions and dy-
namic asset allocation. The second appendix contains 30 tutorial exercises.
The relevant solutions are not included in this book, but can be accessed at
the following web page3:

http://www.thierry-roncalli.com/riskparitybook.html

This book began with an invitation by Professor Diethelm Würtz to
present a tutorial on risk parity at the 6th R/Rmetrics Meielisalp Workshop &
Summer School on Computational Finance and Financial Engineering. This
seminar is organized every year at the end of June in Meielisalp, Lake Thune,
Switzerland. The idea of tutorial sessions is to offer an overview on a special-
ized topic in statistics or finance. When preparing this tutorial, I realized that
I had sufficient material to write a book on risk parity. First of all, I would
like to thank Diethelm Würtz and the participants of the Meielisalp Summer
School for their warm welcome and the different discussions we had about
risk parity. I would also like to thank all of the people who have invited me
to academic and professional conferences in order to speak about risk parity
techniques and applications since 2008, in particular Yann Braouezec, Rama
Cont, Nathalie Columelli, Felix Goltz, Marie Kratz, Jean-Luc Prigent, Fahd
Rachidy and Peter Tankov. I would also like to thank Jérôme Glachant and
my other colleagues of the Master of Science in Asset and Risk Management
program at the Évry University where I teach the course on Risk Parity. I
am also grateful to the CRC editorial staff, in particular Sunil Nair, for their
support, encouragement and suggestions.

I would also like to thank my different co-authors on this subject, Ben-
jamin Bruder, Pierre Hereil, Sébastien Maillard, Jérôme Tëıletche and Guil-
laume Weisang, my colleagues at Lyxor Asset Management who work or have
worked with me on risk parity strategies, in particular Cyrille Albert-Roulhac,
Florence Barjou, Cédric Baron, Benjamin Bruder, Zélia Cazalet, Léo Culerier,
Raphael Dieterlen, Nicolas Gaussel, Pierre Hereil, Julien Laplante, Guillaume

3This web page also provides readers and instructors other materials related to the book
(errata, code, slides, etc.).
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Lasserre, Sébastien Maillard, François Millet and Jean-Charles Richard. I am
also grateful to Abdelkader Bousabaa, Jean-Charles Richard and Zhengwei
Wu for their careful reading of the preliminary versions of this book. Special
thanks to Zhengwei Wu who has been a helpful and efficient research assistant.

Last but not least, I express my deep gratitude to Théo, Eva, Sarah, Lucie
and Nathalie for their support and encouragement during the writing of this
book.

Paris, January 2013 Thierry Roncalli
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Part I

From Portfolio
Optimization to Risk

Parity

This part comprises two chapters. In the first chapter, we present the
theoretical foundations of modern portfolio theory. We also show how this
framework is implemented in practice and describe its limitations. The second
chapter presents the risk budgeting approach. The main difference with the
previous approach comes from the investor objective. Indeed, his objective is
not to maximize a utility function or a risk-adjusted performance, but only
to allocate the risk between assets. Consequently, the risk parity method does
not need assumptions about expected returns and therefore constitutes a pure
method of risk management.





Chapter 1

Modern Portfolio Theory

The concept of the market portfolio has a long history and dates back to the
seminal work of Markowitz (1952). In his paper, Markowitz defined precisely
what portfolio selection means: “the investor does (or should) consider ex-
pected return a desirable thing and variance of return an undesirable thing”.
Indeed, Markowitz showed that an efficient portfolio is the portfolio that max-
imizes the expected return for a given level of risk (corresponding to the vari-
ance of portfolio return). Markowitz concluded that there is not only one
optimal portfolio, but a set of optimal portfolios which is called the efficient
frontier.

By studying the liquidity preference, Tobin (1958) showed that the efficient
frontier becomes a straight line in the presence of a risk-free asset. In this
case, optimal portfolios correspond to a combination of the risk-free asset and
one particular efficient portfolio named the tangency portfolio. Sharpe (1964)
summarized the results of Markowitz and Tobin as follows: “the process of
investment choice can be broken down into two phases: first, the choice of a
unique optimum combination of risky assets1; and second, a separate choice
concerning the allocation of funds between such a combination and a single
riskless asset”. This two-step procedure is today known as the Separation
Theorem (Lintner, 1965).

One difficulty when computing the tangency portfolio is to precisely define
the vector of expected returns of the risky assets and the corresponding co-
variance matrix of asset returns. In 1964, Sharpe developed the CAPM theory
and highlighted the relationship between the risk premium of the asset (the
difference between the expected return and the risk-free rate) and its beta (the
systematic risk with respect to the tangency portfolio). By assuming that the
market is at equilibrium, he showed that the prices of assets are such that the
tangency portfolio is the market portfolio, which is composed of all risky assets
in proportion to their market capitalization. This implies that we do not need
assumptions about the expected returns, volatilities and correlations of assets
to characterize the tangency portfolio. This major contribution of Sharpe led
to the emergence of index funds and to the increasing development of passive
management.

In the active management domain, fund managers use the Markowitz
framework to optimize portfolios in order to take into account their views

1It is precisely the tangency portfolio.

3
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and to play their bets. However, the implementation of portfolio theory is not
simple. It requires the estimation of the covariance matrix and the forecasting
of asset returns. One problem is that optimized portfolios are very sensitive to
these inputs. Some stability issues make the practice of portfolio optimization
less attractive than the theory (Michaud, 1989). In this case, regularization
techniques may be employed to attenuate these problems. This approach is
largely supported by Ledoit and Wolf (2003), who propose to combine dif-
ferent covariance matrix estimators to stabilize the solution. Today, the most
promising approach consists in interpreting optimized portfolios as the so-
lution of a linear regression problem and to use lasso or ridge penalization.

However, regularization is not sufficient to obtain satisfactory solutions,
which is why practitioners introduce some constraints in the optimization
problem. These constraints may be interpreted as a shrinkage method (Jagan-
nathan and Ma, 2003). By imposing weight constraints, the portfolio manager
implicitly changes the covariance matrix. This approach is then equivalent to
having some views and is therefore related to the model of Black and Litter-
man (1992).

1.1 From optimized portfolios to the market portfolio

In this section, we review the seminal framework of Markowitz and the
CAPM theory of Sharpe.

1.1.1 The efficient frontier

Sixty years ago, Markowitz introduced the concept of the efficient frontier.
It was the first mathematical formulation of optimized portfolios. For him,
“the investor does (or should) consider expected return a desirable thing and
variance of return an undesirable thing”. By translating these principles into a
problem of mean-variance optimization, Markowitz (1952) showed that there
is no one optimal portfolio, but a set of optimized portfolios.

We consider a universe of n assets. Let x = (x1, . . . , xn) be the vector of
weights in the portfolio. We assume that the portfolio is fully invested meaning
that

∑n
i=1 xi = 1>x = 1. We denote R = (R1, . . . , Rn) the vector of asset

returns where Ri is the return of asset i. The return of the portfolio is then
equal to R (x) =

∑n
i=1 xiRi. In a matrix form, we also obtain R (x) = x>R.

Let µ = E [R] and Σ = E
[
(R− µ) (R− µ)

>
]

be the vector of expected returns

and the covariance matrix of asset returns. The expected return of the portfolio
is:

µ (x) = E [R (x)] = E
[
x>R

]
= x>E [R] = x>µ
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whereas its variance is equal to:

σ2 (x) = E
[
(R (x)− µ (x)) (R (x)− µ (x))

>
]

= E
[(
x>R− x>µ

) (
x>R− x>µ

)>]
= E

[
x> (R− µ) (R− µ)

>
x
]

= x>E
[
(R− µ) (R− µ)

>
]
x

= x>Σx

We can then formulate the investor’s financial problem as follows:

1. Maximizing the expected return of the portfolio under a volatility con-
straint (σ-problem):

maxµ (x) u.c. σ (x) ≤ σ? (1.1)

2. Or minimizing the volatility of the portfolio under a return constraint
(µ-problem):

minσ (x) u.c. µ (x) ≥ µ? (1.2)

Example 1 We consider four assets. Their expected returns are equal to 5%,
6%, 8% and 6% while their volatilities are equal to 15%, 20%, 25% and 30%.
The correlation matrix of asset returns is given by the following matrix:

C =


1.00
0.10 1.00
0.40 0.70 1.00
0.50 0.40 0.80 1.00


In Figure 1.1, we have simulated 1 000 portfolios and reported their ex-

pected return and their volatility (cross symbol). Let us consider the σ-
problem with σ? = 30%. Portfolio C could not be the solution even if it
reached the volatility constraint, because it is dominated by portfolio B. How-
ever, this portfolio is not optimal, as we can find other portfolios with a higher
expected return. Finally, the solution is portfolio A. In the same way, the op-
timal portfolio is D in the case of the µ-problem with µ? = 7%. The efficient
frontier is then defined as the convex hull of the points (σ (x) , µ (x)) of all the
possible portfolios. This convex hull may be computed numerically. In Figure
1.1, we have indicated the portfolios belonging to the convex hull by a solid
circle symbol. In particular, the two optimal portfolios A and D are on the
efficient frontier.

By considering all the portfolios belonging to the simplex set defined by{
x ∈ [0, 1]

n
: 1>x = 1

}
, we can compute the expected return and volatility

bounds of the portfolios: µ− ≤ µ (x) ≤ µ+ and σ− ≤ σ (x) ≤ σ+. There
is also a solution to the first problem if σ? ≥ σ−. The second problem has
a solution if µ? ≤ µ+. If these two conditions are verified, the inequality
constraints becomes σ (x) = min (σ?, σ+) and µ (x) = max (µ−, µ?).
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FIGURE 1.1: Optimized Markowitz portfolios

1.1.1.1 Introducing the quadratic utility function

The key idea of Markowitz (1956) was to transform the original non-linear
optimization problem (1.1) into a quadratic optimization problem which is
easier to solve numerically:

x? (φ) = arg maxx>µ− φ

2
x>Σx

u.c. 1>x = 1 (1.3)

We can interpret φ as a risk-aversion parameter. If φ = 0, the optimized portfo-
lio is the one that maximizes the expected return and we have µ (x? (0)) = µ+.
If φ =∞, the optimization problem becomes:

x? (∞) = arg min
1

2
x>Σx

u.c. 1>x = 1

The optimized portfolio is the one that minimizes the volatility and we have
σ (x? (∞)) = σ−. It is called the minimum variance (or MV) portfolio.



Modern Portfolio Theory 7

Remark 1 We note that the previous problem can also be written as follows:

x? (γ) = arg min
1

2
x>Σx− γx>µ

u.c. 1>x = 1 (1.4)

with γ = φ−1. From a numerical point of view, this formulation has the ad-
vantage to be a standard quadratic programming (QP) problem (see Appendix
A.1.1 on page 301). In this case, the minimum variance portfolio corresponds
to γ = 0. Depending on the objective, we will use either the φ-problem or the
γ-problem to calculate optimized portfolios.

We consider Example 1. We have reported2 in Table 1.1 the optimal port-
folio for different values of φ. We verify that µ (x? (φ)) and σ (x? (φ)) are
two decreasing functions with respect to the parameter φ. It implies that the
expected return µ (x?) is an increasing function of the volatility σ (x?).

TABLE 1.1: Solving the φ-problem

φ +∞ 5.00 2.00 1.00 0.50 0.20
x?1 72.74 68.48 62.09 51.44 30.15 −33.75
x?2 49.46 35.35 14.17 −21.13 −91.72 −303.49
x?3 −20.45 12.61 62.21 144.88 310.22 806.22
x?4 −1.75 −16.44 −38.48 −75.20 −148.65 −368.99

µ (x?) 4.86 5.57 6.62 8.38 11.90 22.46
σ (x?) 12.00 12.57 15.23 22.27 39.39 94.57

The formulation (1.3) allows to give a new characterization of the efficient
frontier. It is the parametric function (σ (x? (φ)) , µ (x? (φ))) with φ ∈ R+. If
we consider the previous example, we obtain the efficient frontier in Figure
1.2. We note that optimized portfolios substantially improve the risk/return
profile with respect to the four assets, which are represented by a cross symbol.

Solving the µ-problem or the σ-problem is equivalent to finding the opti-
mal value of φ such that µ (x? (φ)) = µ? or σ (x? (φ)) = σ?. We know that
the functions µ (x? (φ)) and σ (x? (φ)) are decreasing with respect to φ and
are bounded. The optimal value of φ can then be easily computed using the
Newton-Raphson algorithm. We have reported some numerical solutions in
Tables 1.2 and 1.3. For example, if µ? is set to 7%, we obtain a portfolio with
a volatility σ (x?) equal to 16.54%. It corresponds to portfolio D in Figure 1.1.
If we target a volatility equal to 30%, the expected return of the optimized
portfolio is 10.02% and the solution is portfolio A in Figure 1.1.

2In this book, the values of weights, expected returns and volatilities are expressed in %
except if another unit is specified.
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FIGURE 1.2: The efficient frontier of Markowitz

TABLE 1.2: Solving the unconstrained µ-problem

µ? 5.00 6.00 7.00 8.00 9.00

x?1 71.92 65.87 59.81 53.76 47.71
x?2 46.73 26.67 6.62 −13.44 −33.50
x?3 −14.04 32.93 79.91 126.88 173.86
x?4 −4.60 −25.47 −46.34 −67.20 −88.07

σ (x?) 12.02 13.44 16.54 20.58 25.10
φ 25.79 3.10 1.65 1.12 0.85

TABLE 1.3: Solving the unconstrained σ-problem

σ? 15.00 20.00 25.00 30.00 35.00

x?1 62.52 54.57 47.84 41.53 35.42
x?2 15.58 −10.75 −33.07 −54.00 −74.25
x?3 58.92 120.58 172.85 221.88 269.31
x?4 −37.01 −64.41 −87.62 −109.40 −130.48

µ (x?) 6.55 7.87 8.98 10.02 11.03
φ 2.08 1.17 0.86 0.68 0.57
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1.1.1.2 Adding some constraints

The introduction of constraints consists in modifying the specification of
the optimization problem (1.3):

x? (φ) = arg maxx>µ− φ

2
x>Σx

u.c.

{
1>x = 1
x ∈ Ω

(1.5)

where x ∈ Ω corresponds to the set of restrictions3. These restrictions may be
linear or non-linear. In the latter case, the optimization problem cannot be
solved by the standard quadratic programming algorithm, but by enhanced
non-linear optimization algorithms. The imposition of constraints will impact
the set of optimized portfolios by reducing opportunity arbitrages. It implies
that the constrained efficient frontier is located at the right of the uncon-
strained efficient frontier in the mean-variance map.

The most frequent constraint is certainly the no short-selling restriction.
In this case, xi ≥ 0 and Ω = [0, 1]

n
. Let us define the leverage measure of the

portfolio x as the sum of the absolute values of the weights:

L (x) =

n∑
i=1

|xi|

With the no short-selling restriction, the leverage measure is 100% because
L (x) =

∑n
i=1 xi = 1 whereas it is larger than 100% without this constraint4.

Let us introduce some constraints in Example 1. In Figure 1.3, we have
reported two constrained efficient frontiers, the first one by imposing no short-
selling and the second one by imposing that the weights are between 0%
and 40%. We verify that we may substantially reduce opportunity arbitrages.
Solutions of the σ-problem are given in Table 1.4. If we target a volatility
equal of 15%, the expected return of the optimized portfolio is 6.55% for
the unconstrained problem, 6.14% for the shortsale constrained problem and
6.11% if we impose an upper bound of 40%. So, by imposing no short positions,
we have reduced the expected return by 41 bps. The impact of the upper bound
is small. If the target volatility becomes 20%, the results become 7.87%, 7.15%
and 6.74% and the impact is larger than in the previous case.

3The restriction 1>x = 1 is already a constraint influencing the optimized portfolio
(DeMiguel et al., 2009).

4Let x−i = −min (0, xi) and x+i = max (0, xi) be respectively the negative and positive

parts of the weight xi. We have xi = x+i − x
−
i . It follows that L (x) =

∑n
i=1

∣∣∣x+i − x−i ∣∣∣ =∑n
i=1 x

+
i +

∑n
i=1 x

−
i with

∑n
i=1 xi =

∑n
i=1 x

+
i −

∑n
i=1 x

−
i = 1. It implies that L (x) =

1 + 2
∑n
i=1 x

−
i meaning that the leverage measure is larger than 1 because

∑n
i=1 x

−
i ≥ 0.
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FIGURE 1.3: The efficient frontier with some weight constraints

TABLE 1.4: Solving the σ-problem with weight constraints

xi ∈ R xi ≥ 0 0 ≤ xi ≤ 40%
σ? 15.00 20.00 15.00 20.00 15.00 20.00

x?1 62.52 54.57 45.59 24.88 40.00 6.13
x?2 15.58 −10.75 24.74 4.96 34.36 40.00
x?3 58.92 120.58 29.67 70.15 25.64 40.00
x?4 −37.01 −64.41 0.00 0.00 0.00 13.87

µ (x?) 6.55 7.87 6.14 7.15 6.11 6.74
φ 2.08 1.17 1.61 0.91 1.97 0.28
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1.1.1.3 Analytical solution

The Lagrange function of the optimization problem (1.3) is:

L (x;λ0) = x>µ− φ

2
x>Σx+ λ0

(
1>x− 1

)
where λ0 is the Lagrange coefficients associated with the constraint 1>x = 1.
The solution x? verifies the following first-order conditions:{

∂x L (x;λ0) = µ− φΣx+ λ01 = 0
∂λ0
L (x;λ0) = 1>x− 1 = 0

We obtain x = φ−1Σ−1 (µ+ λ01). Because 1>x − 1 = 0, we have
1>φ−1Σ−1µ+ λ0

(
1>φ−1Σ−11

)
= 1. It follows that:

λ0 =
1− 1>φ−1Σ−1µ

1>φ−1Σ−11

The solution is then5:

x? (φ) =
Σ−11

1>Σ−11
+

1

φ
·
(
1>Σ−11

)
Σ−1µ−

(
1>Σ−1µ

)
Σ−11

1>Σ−11
(1.6)

We deduce also that the global minimum variance portfolio has the following
expression:

xmv = x? (∞) =
Σ−11

1>Σ−11

If we introduce other constraints, it is not possible to obtain a compre-
hensive analytical solution. Let us consider for example the no short-selling
constraint. The Lagrange function becomes:

L (x;λ0, λ) = x>µ− φ

2
x>Σx+ λ0

(
1>x− 1

)
+ λ>x

where λ = (λ1, . . . , λn) is the vector of Lagrange coefficients associated with
the constraints xi ≥ 0. The first-order condition is then µ−φΣx+λ01+λ = 0.
It follows that x = φ−1Σ−1 (µ+ λ01 + λ). The Kuhn-Tucker conditions are
min (λi, xi) = 0 for all i = 1, . . . , n. It implies that if xi = 0 then λi > 0 and
if xi > 0 then λi = 0. We find also a formula close to the previous one, but
the universe is limited to assets which present positive weights. This formula
is therefore endogenous.

5If we do not impose the constraint 1>x = 1, the solution becomes:

x? (φ) =
1

φ
Σ−1µ
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1.1.2 The tangency portfolio

We recall that in the view of Markowitz, there is a set of optimized port-
folios. However, Tobin showed in 1958 that one optimized portfolio dominates
all the others if there is a risk-free asset.

Let us consider a combination of the risk-free asset and a portfolio x. We
denote r the return of the risk-free asset. We have6:

R (y) = (1− α) r + αR (x)

where y =

(
αx

1− α

)
is a vector of dimension (n+ 1) and α ≥ 0 is the

proportion of the wealth invested in the risky portfolio. It follows that:

µ (y) = (1− α) r + αµ (x) = r + α (µ (x)− r)

and:

σ2 (y) = α2σ2 (x)

We deduce that:

µ (y) = r +
(µ (x)− r)
σ (x)

σ (y)

It is the equation of a linear function between the volatility and the expected
return of the combined portfolio y. In Figure 1.4, we reported the previous (un-
constrained) efficient frontier. The dashed line corresponds to the combination
between the risk-free asset (r is equal to 1.5%) and the optimized portfolio A.
Nevertheless this combination is suboptimal, because it is dominated by other
combinations. We note that a straight line dominates all the other straight
lines and the efficient frontier. This line is tangent to the efficient frontier and
is called the capital market line. It implies that one optimized risky portfolio
dominates all the other risky portfolios, namely the tangency portfolio.

Let SR (x | r) be the Sharpe ratio of portfolio x:

SR (x | r) =
µ (x)− r
σ (x)

We note that we can write the previous equation as follows:

µ (y)− r
σ (y)

=
µ (x)− r
σ (x)

⇔ SR (y | r) = SR (x | r)

We deduce that the tangency portfolio is the one that maximizes the angle θ or
equivalently tan θ which is equal to the Sharpe ratio. The tangency portfolio
is also the risky portfolio corresponding to the maximum Sharpe ratio. We

6We have n+ 1 assets in the universe where the first n assets correspond to the previous
risky assets and the last asset is the risk-free asset.


