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Preface

Over the past decades ultra wideband antennas have attracted the attention
of the scientific community due to their wide variety of applications such as
body area networks, radar, imaging, spectrum monitoring, electronic warfare,
and wireless sensor networks, among others. As a result, a vast quantity of
work presenting diverse designs has been reported around the world. In spite
of this, some other possibilities have to be explored in the UWB antenna’s
design in such a way that current challenges may be solved.

Thus, this book was conceived as reference material for the development
of UWB antennas. Different aspects are considered in this text, from recent
proposals on ultra wideband antennas reported in diverse forums, theory spe-
cific for these radiators, up to guidelines for the design of omnidirectional and
directional UWB antennas.

According to current tendencies, two types of antennas are identified based
on their structures, planarized and planar, to distinguish between those flat
radiators embedded and non-embedded on the ground plane. An important
concept used here is the solid-planar equivalence, which allows that flat struc-
tures can be implemented instead of volumetric antennas. This principle is
vital for the developments of UWB antennas on portable equipment and for
the recent body area networks, where small low profile radiators are intended
to integrate to wearable devices.

Time domain signal analysis for UWB antennas, from which the distortion
phenomenon can be modeled through group delay and phase linearity, is ad-
dressed as well. It is one of the main differences with traditional narrowband or
wideband antennas where transient response has not been considered. Thus,
in particular, some important quantities associated with the impulse response
of UWB antennas are reviewed.

Design methodologies for omnidirectional and directional antennas are de-
scribed, and the dependence on their operation as a function of distinct factors
(ground plane, beveling on radiator, height/wide proportion, reflector, etc.)
is examined in depth. In all cases, three objectives are considered: Impedance
matching, phase linearity, and variations of the shape of the radiation pat-
tern. Performance comparisons among different reported UWB designs are
discussed.

Some current tendencies and unresolved problems in the field of UWB
antennas are also noted. The book ends with a brief exposition of numerical
techniques for electromagnetics, including the generalities of the classical Fi-
nite Differences Method, Finite Element Method, and Method of Moments.

xx1



xxii Preface

Certain antenna models are taken to illustrate particular conceptual aspects
of these methods.

Outline

In summary, the main points addressed in this book are

e An outline of recent developments on UWB antennas

Developed theory for UWB antennas in frequency and time domains

Design methodologies for omnidirectional and directional UWB antennas

e Performance comparisons of different UWB antennas

A vision of tendencies and unresolved problems to date

e An exposition of numerical methods for electromagnetics oriented to an-
tennas

Regarding simulations, it is worth mentioning that CST Microwave Studio
was the platform used through this book.

For product information, please contact:
CST-Computer Simulation Technology AG
Bad Nauheimer Strasse 19

64289 Darmstadt, Germany

Tel: +49 6151 7303 0

Fax: +49 6151 7303 100

Email: info@cst.com

Web: www.cst.com

Plots presented in distinct sections of chapters were generated using
MATLAB®.

For product information, please contact:
The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA 01760-2098 USA

Tel: 508-647-7000

Fax: 508-647-7001

E-mail: info@mathworks.com

Web: www.mathworks.com
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