

Ultra Wideband Antennas

DESIGN, METHODOLOGIES, AND PERFORMANCE

GISEIIE M. GAIVAN-IEJAda Marco A. Peyrot-Solis Hildeberto Jardón-Aguilar

Ultra Wideband Antennas

DESIGN, METHODOLOGIES, AND PERFORMANCE

Ultra Wideband Antennas

DESIGN, METHODOLOGIES, AND PERFORMANCE

Giselle M. Galvan-Tejada

COMMUNICATIONS SECTION DEPARTMENT OF ELECTRICAL ENGINEERING CINVESTAV-IPN MEXICO CITY, MEXICO

Marco A. Peyrot-Solis

INIDETAM MEXICAN NAVY VERACRUZ, MEXICO

Hildeberto Jardón-Aguilar

COMMUNICATIONS SECTION DEPARTMENT OF ELECTRICAL ENGINEERING CINVESTAV-IPN MEXICO CITY, MEXICO

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business MATLAB[°] is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book's use or discussion of MAT-LAB[°] software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB[°] software.

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2016 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works Version Date: 20150506

International Standard Book Number-13: 978-1-4822-0651-7 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

To my beloved husband, Aldo Gustavo and young children Gustavo Stuart and Minerva Montserrat, for their love, support and encouragement all the time. You are always in my mind and heart.

To my mom for giving me the warm space of her being and my dad for giving me the blood of an engineer.

To all my brothers and sisters who were always supportive during the progress of this book.

Giselle

This book is dedicated to my wife Cynthia, and my son and daughter Marco Antonio Cesar and Cynthia Carolina for their patience and support through the long nights when this work was completed.

Marco Antonio

Contents

\mathbf{List}	Figures	ci			
\mathbf{List}	ist of Tables xi				
Pref	Preface xxi				
Abo	the Authors xx	v			
1 In 1 1 1 1	roduction Importance of Antennas in Modern Life Ultra Wideband Systems UWB Antennas Scope of the Book	1 1 3 4			
В	liography	5			
2 C 2	neral Concepts of Antennas Introduction	$\frac{7}{7}$			
2	Classical Narrowband Antennas	8 8 8 8 9			
	2.2.2 Aperture antennas 1 2.2.3 Reflectors 1 2.2.4 Microstrip antennas 1 2.2.5 Antenna arrays 1 2.2.5.1 Yagi–Uda 1	9 .0 .1 .1 .3			
2 2 2 2 2 2 2 2	Feed-Point 1 Gain and Directivity 1 Radiation Pattern Concept 1 Polarization 1 Impedance 1 Reflection Coefficient 1	4 6 7 8			
2 2 B	Quality Factor 2) Bandwidth 2 liography 2	20 20 22			

3	Rec	ent De	evelopments in Ultra Wideband Antennas	23
	3.1	Introd	uction	24
	3.2	Backgi	round to Ultra Wideband Antennas	26
	3.3	Planar	rized UWB Antennas	30
		3.3.1	Vivaldi antenna	31
		3.3.2	Planarized antenna with rectangular radiator	33
		3.3.3	CPW-fed planar ultra wideband antenna having a fre-	
			quency band notch function	34
		3.3.4	Slot antenna based on precooked ceramic	35
		3.3.5	Volcano-smoke slot antenna	36
		3.3.6	Printed circular disc monopole antenna	37
		3.3.7	Microstrip slot antenna with fractal tuning stub	38
		3.3.8	Planar miniature tapered-slot-fed annular slot antenna	39
		3.3.9	Tulip-shaped monopole antenna	40
		3.3.10	Balloon-shaped monopole antenna	42
		3.3.11	Half cut disc UWB antenna	43
		3.3.12	Planar UWB antenna array	43
		3.3.13	Octagonal shaped fractal UWB antenna	44
	3.4	UWB	Planar Monopoles Antennas	44
		3.4.1	Planar inverted cone antenna (PICA)	45
		3.4.2	Bi-arm rolled monopole antenna	46
		3.4.3	Square planar monopole antenna with notching	
			technique	47
		3.4.4	Planar directional monopole antenna with leaf form .	49
		3.4.5	Compact UWB antenna	50
	3.5	Double	e-Ridged Guide Horn Antenna	51
	3.6	Compa	arison of UWB Antennas	52
	3.7	Conclu	1sions	54
	Bibl	iograph	V	55
		0P	· · · · · · · · · · · · · · · · · · ·	
4	Dev	velopm	ents in Ultra Wideband Antenna Theory	59
	4.1	Introd	uction	59
	4.2	UWB	Bandwidth	60
	4.3	Prelim	inary Concepts	64
	4.4	Biconi	cal Antenna	66
	4.5	Planar	Monopole Structure as a Basic Element of UWB	
		Anteni	na Theory	67
	4.6	Theory	y of Planar Monopole Antenna from a Microstrip	
		Antem	na	68
		4.6.1	Microstrip antenna	68
		4.6.2	Planar monopole antenna	70
	4.7	Planar	Monopole Antenna from a Cylindrical Monopole	
		Antem	na	71
		4.7.1	Resonance frequency	71

		4.7.2 Lower cut-off frequency for different planar antenna	
		shapes $\ldots \ldots $	2
		4.7.2.1 Example 1	3
		$4.7.2.2 \text{Example } 2 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	3
		4.7.2.3 Example 3	4
		4.7.2.4 Example 4	5
	4.8	Some Factors That Influence UWB Antenna Performance 7	6
		4.8.1 Influence of the radiator	6
		4.8.2 Ground plane	8
	Bibl	iography	9
5	Pha	se Linearity 8	1
	5.1	Time Domain and Frequency Domain	1
		5.1.1 The Fourier transform $\ldots \ldots \ldots \ldots \ldots \ldots \ldots $ 8	2
		5.1.2 Short time duration, wide spectrum	2
		5.1.3 Impulse response and transfer function	3
	5.2	Characteristics of the Impulse Response of a UWB Antenna 8	5
	5.3	Pulse Distortion	6
	5.4	Phase Linearity	9
		5.4.1 Frequency response	9
		5.4.2 Measures of the change of phase: Phase center and group	
		$delay \dots \dots$	0
		5.4.3 Phase response and pulse distortion	2
	5.5	Non-Linear and Quasi-Linear Phase Antennas	3
		5.5.1 Frequency independent antennas 9	3
		5.5.2 Other antennas $\dots \dots 9$	5
	Bibl	iography	6
6	Des	ign of Omnidirectional UWB Antennas for	
	Cor	nmunications 99	9
	6.1	Introduction to Omnidirectional UWB Antennas 9	9
	6.2	Starting Point: Monopole Square Planar Antenna 10	1
	6.3	Design Methodology for Planar Structures 10	2
	6.4	Simulation Results Based on the Design Methodology for	
		Planar Structures 10	6
		6.4.1 Variation of beveling angle 10	7
		6.4.2 Variation of the radiator width	8
		6.4.3 Variation of the feeder width 11	0
		6.4.4 Variation of the height between the ground plane and	1
	65	Production of Variations in the Production Pattern 11	4 5
	0.0 6 6	Design of Planarized HWR Antonnes 11	ე ი
	0.0	6.6.1 Concepts 11	9 0
		6.6.2 Preliminary square radiator 19	9 9
	67	Tuning of a Planarized Rectangular Antonna for HWR 19	4 2
	0.1	Tunning of a Franalizou noorangular Antonna IOF O WD 12	υ

OOnicnics

		6.7.1	Simulation results	123
		6.7.2	Measurement results	125
	6.8	Scaling	g Method to Achieve Other Bandwidths	127
	Bibli	ograph	у	132
7	Desi	ign of l	Directional Planar and Volumetric UWB Antennas	135
	7.1	Introd	uction to Directional UWB Antennas	135
	7.2	Vivald	i Antenna	137
	7.3	Leaf-S	hape Antenna	143
	7.4	TEM I	Horn Antenna	145
	7.5	Quasi-	Yagi Antenna	149
	7.6	Design	of a Directive Rectangular Planar Monopole	152
		7.6.1	Design methodology for a UWB directive rectangular	
			РМА	153
		7.6.2	Example of design of the UWB directive rectangular	
			РМА	155
		7.6.3	Mechanical refinement of the antenna structure	158
		7.6.4	Use of a reflector to increase the antenna directivity .	160
		7.6.5	Modification of the ground plane to improve the antenna	
			directivity	165
	7.7	Design	of Planar Directional UWB Antenna for Any Desired	
		Operat	tional Bandwidth	166
		7.7.1	Basic structure	166
		7.7.2	Transformation process into directional radiation	
			pattern	167
		7.7.3	Application of the solid-planar correspondence principle	168
		7.7.4	Design equation	170
		7.7.5	Experimental results	173
	7.8	Compa	arison of Different Directive UWB Antennas	174
	Bibli	ograph	y	179
8	Cur	rent T	endencies and Some Unresolved Problems	183
	8.1	UWB	Antennas Today	183
	8.2	Imped	ance Matching, Phase Linearity and Radiation Pattern	184
	8.3	Directi	ional UWB Antennas	185
	8.4	UWB	Antenna Arrays	186
	8.5	Interfe	rence	187
	8.6	Body A	Area Networks	188
	8.7	Radar:	Medical Imaging and Others	190
	8.8	USB E	Dongle and Access Point	193
	8.9	Compu	itational Aspects	194
	8.10	Wider	and Wider Bandwidths	195
	Bibli	ograph	у	195

9.1Maxwell's Equations2009.1.1Basic field laws2009.1.2Scalar and vector potentials2029.1.3Wave equations2039.1.4Essence of the physically-sized antennas problem2059.2Boundary Value Conditions2059.2.1Normal components2069.2.2Tangential components2079.2.3Boundary conditions and unique solution to the Maxwell's equations2079.2.4Radiation condition2079.2.5Rumerical Methods2129.4.1Continuous equations in a finite computational environment2129.4.2Computational domain and meshing2139.4.3Classification of the methods2139.4.4Finite eliments: The essence of the FEM2219.4.5.1Elements: The essence of the FEM2229.4.5.3Sequence of the finite element method2269.4.5.4Rayleigh-Ritz method versus FEM2279.4.5.5FEM in the context of the Galerkin's method2309.4.6Mathematical principle2349.4.6.2Mathematical principle2349.4.6.3Basis functions to discret 3D arbitrary surfaces2369.4.6.4MOM steps2389.5.5Software Available2409.5.1NEC2419.5.2HFSS2429.5.3CST STUDIO SUITE2439.5.4Sherical Coordinates253A.1Rectangular Coordi	9	Nur	nerica	l Methods for Electromagnetics	199
9.1.1Basic field laws2009.1.2Scalar and vector potentials2029.1.3Wave equations2039.1.4Essence of the physically-sized antennas problem2059.2Boundary Value Conditions2059.2.1Normal components2069.2.2Tangential components2079.2.3Boundary conditions and unique solution to the Maxwell's equations2079.2.4Radiation condition2079.3Current Distribution on Antennas2089.4Numerical Methods2129.4.1Continuous equations in a finite computational environment2129.4.2Computational domain and meshing2139.4.3Classification of the methods2139.4.4Finite differences method2159.4.5Finite element method (FEM)2209.4.5.1Elements: The essence of the FEM2219.4.5.2Interpolation functions2229.4.5.3Sequence of the finite element method2239.4.5.4Rayleigh-Ritz method versus FEM2279.4.5.5FEM in the context of the Galerkin's method2349.4.6.1Introduction2349.4.6.3Basis functions to discret 3D arbitrary surfaces2369.4.6.4MoM steps2389.5Software Available2409.5.1NEC2419.5.2HFSS2429.5.3CST STUDIO SUITE2439.5.4HSDs243		9.1	Maxw	ell's Equations	200
9.1.2Scalar and vector potentials2029.1.3Wave equations2039.1.4Essence of the physically-sized antennas problem2059.2Boundary Value Conditions2069.2.1Normal components2079.2.3Boundary conditions and unique solution to the Maxwell's equations2079.2.4Radiation condition2079.2.5Boundary conditions in a finite computational environment2089.4Numerical Methods2129.4.1Continuous equations in a finite computational environment2129.4.2Computational domain and meshing2139.4.3Classification of the methods2139.4.4Finite differences method2159.4.5Finite element method (FEM)2209.4.5.1Elements: The essence of the FEM2219.4.5.2Interpolation functions2229.4.5.3Sequence of the fnite element method2269.4.5.4Rayleigh-Ritz method versus FEM2279.4.5.5FEM in the context of the Galerkin's method2309.4.6Mathematical principle2349.4.6.2Mathematical principle2349.4.6.3Basis functions to discrete 3D arbitrary surfaces2369.4.6.4Mod steps2389.4.6.5Example2399.5Software Available2409.5.1NEC2419.5.2HFSS2429.5.3CST STUDIO SUITE2439.5.			9.1.1	Basic field laws	200
9.1.3Wave equations2039.1.4Essence of the physically-sized antennas problem2059.2Boundary Value Conditions2059.2.1Normal components2069.2.2Tangential components2079.2.3Boundary conditions and unique solution to the Maxwell's equations2079.2.4Radiation condition2079.3Current Distribution on Antennas2089.4Numerical Methods2129.4.1Continuous equations in a finite computational environment2129.4.2Computational domain and meshing2139.4.3Classification of the methods2139.4.4Finite differences method2159.4.5Finite element method (FEM)2209.4.5.1Elements: The essence of the FEM2219.4.5.2Interpolation functions2229.4.5.3Sequence of the fnite element method2269.4.5.4Rayleigh-Ritz method versus FEM2279.4.5.5FEM in the context of the Galerkin's method2309.4.6.1Introduction2349.4.6.2Mathematical principle2349.4.6.3Basis functions to discrete 3D arbitrary surfaces2369.4.6.4MoM steps2389.4.5.5FEX in NEC2419.5.1NEC2419.5.2HFSS2429.5.3CST STUDIO SUITE243Bibliography248Appendix ANabla: The Differential Operator2			9.1.2	Scalar and vector potentials	202
9.1.4Essence of the physically-sized antennas problem2059.2Boundary Value Conditions2059.2.1Normal components2069.2.2Tangential components2079.2.3Boundary conditions and unique solution to the Maxwell's equations2079.2.4Radiation condition2079.3Current Distribution on Antennas2089.4Numerical Methods2129.4.1Continuous equations in a finite computational environment2129.4.2Computational domain and meshing2139.4.3Classification of the methods2139.4.4Finite differences method2159.4.5Finite differences method2229.4.5.1Elements: The essence of the FEM2219.4.5.2Interpolation functions2229.4.5.3Sequence of the finite element method2269.4.5.4Rayleigh-Ritz method versus FEM2279.4.5.5FEM in the context of the Galerkin's method2349.4.6.1Introduction2349.4.6.2Mathematical principle2349.4.6.3Basis functions to discrete 3D arbitrary surfaces2369.4.6.4MoM steps2389.4.6.5Example2399.5Software Available2409.5.1NEC2419.5.2HFSS2429.5.3CST STUDIO SUITE243Bibliography248Appendix ANabla: The Differential Operator253			9.1.3	Wave equations	203
9.2Boundary Value Conditions2059.2.1Normal components2069.2.2Tangential components2079.2.3Boundary conditions and unique solution to the Maxwell's equations2079.2.4Radiation condition2079.2.4Radiation condition2079.3Current Distribution on Antennas2089.4Numerical Methods2129.4.1Continuous equations in a finite computational environment2129.4.2Computational domain and meshing2139.4.3Classification of the methods2139.4.4Finite differences method2159.4.5Finite element method (FEM)2209.4.5.1Elements: The essence of the FEM2219.4.5.2Interpolation functions2229.4.5.3Sequence of the finite element method2309.4.5.4Rayleigh-Ritz method versus FEM2279.4.5.5FEM in the context of the Galerkin's method2349.4.6.1Introduction2349.4.6.2Mathematical principle2349.4.6.3Basis functions to discrete 3D arbitrary surfaces2369.4.6.4MoM steps2399.5Software Available2409.5.1NEC2419.5.2HFSS2429.5.3CST STUDIO SUITE243Bibliography248Appendix ANabla: The Differential Operator253A.1Rectangular Coordinates254<			9.1.4	Essence of the physically-sized antennas problem	205
9.2.1Normal components2069.2.2Tangential components2079.2.3Boundary conditions and unique solution to the Maxwell's equations2079.2.4Radiation condition2079.2.4Radiation condition2079.3Current Distribution on Antennas2089.4Numerical Methods2129.4.1Continuous equations in a finite computational environment2129.4.2Computational domain and meshing2139.4.3Classification of the methods2159.4.4Finite differences method2159.4.5Finite element method (FEM)2209.4.5.1Elements: The essence of the FEM2219.4.5.2Interpolation functions2229.4.5.3Sequence of the fnite element method2269.4.5.4Rayleigh-Ritz method versus FEM2279.4.5.5FEM in the context of the Galerkin's method2309.4.6Mathematical principle2349.4.6.1Introduction2349.4.6.2Mathematical principle2349.4.6.3Basis functions to discrete 3D arbitrary surfaces2369.4.6.4MoM steps2389.5Software Available2409.5.1NEC2419.5.2HFSS2429.5.3CST STUDIO SUITE2439.5Bibliography248Appendix ANabla: The Differential Operator253A.1Rectangular Coordinates254		9.2	Bound	lary Value Conditions	205
9.2.2 Tangential components 207 9.2.3 Boundary conditions and unique solution to the Maxwell's equations 207 9.2.4 Radiation condition 207 9.2.4 Radiation condition 207 9.2.4 Radiation condition 207 9.3 Current Distribution on Antennas 208 9.4 Numerical Methods 212 9.4.1 Continuous equations in a finite computational environment 212 9.4.2 Computational domain and meshing 213 9.4.2 Computational domain and meshing 213 9.4.3 Classification of the methods 213 9.4.4 Finite differences method 210 9.4.5 Finite element method (FEM) 220 9.4.5.1 Elements: The essence of the FEM 221 9.4.5.2 Interpolation functions 222 9.4.5.3 Sequence of the finite element method 226 9.4.5.4 Rayleigh–Ritz method versus FEM 220 9.4.5.5 FEM in the context of the Galerkin's method 230 9.4.6 Mathematical principle 234			9.2.1	Normal components	206
9.2.3Boundary conditions and unique solution to the Maxwell's equations2079.2.4Radiation condition2079.3Current Distribution on Antennas2089.4Numerical Methods2129.4.1Continuous equations in a finite computational environment2129.4.2Computational domain and meshing2139.4.3Classification of the methods2139.4.4Finite differences method2159.4.5Finite element method (FEM)2209.4.5.1Elements: The essence of the FEM2219.4.5.2Interpolation functions2229.4.5.3Sequence of the finite element method2269.4.5.4Rayleigh-Ritz method versus FEM2279.4.5.5FEM in the context of the Galerkin's method2309.4.6.1Introduction2349.4.6.2Mathematical principle2349.4.6.3Basis functions to discrete 3D arbitrary surfaces2369.4.6.4MoM steps2389.4.6.5Example2399.5Software Available2409.5.1NEC2419.5.2HFSS2429.5.3CST STUDIO SUITE243Bibliography248Appendix ANabla: The Differential Operator253A.1Rectangular Coordinates253A.2Cylindrical Coordinates254A.3Suberical Coordinates254			9.2.2	Tangential components	207
Maxwell's equations2079.2.4Radiation condition2079.3Current Distribution on Antennas2089.4Numerical Methods2129.4.1Continuous equations in a finite computational environment2129.4.2Computational domain and meshing2139.4.3Classification of the methods2139.4.4Finite differences method2159.4.5Finite element method (FEM)2209.4.5.1Elements: The essence of the FEM2219.4.5.2Interpolation functions2229.4.5.3Sequence of the finite element method2269.4.5.4Rayleigh-Ritz method versus FEM2279.4.5.5FEM in the context of the Galerkin's method2309.4.6Method of Moments (MoM)2349.4.6.3Basis functions to discrete 3D arbitrary surfaces2369.4.6.4MoM steps2389.4.6.5Example2399.5Software Available2409.5.1NEC2419.5.2HFSS2429.5.3CST STUDIO SUITE243Bibliography248Appendix ANabla: The Differential Operator253A.1Rectangular Coordinates253A.2Cylindrical Coordinates254A.3Suberical Coordinates254			9.2.3	Boundary conditions and unique solution to the	
9.2.4Radiation condition2079.3Current Distribution on Antennas2089.4Numerical Methods2129.4.1Continuous equations in a finite computational environment2129.4.2Computational domain and meshing2139.4.3Classification of the methods2139.4.4Finite differences method2159.4.5Finite element method (FEM)2209.4.5.1Elements: The essence of the FEM2219.4.5.2Interpolation functions2229.4.5.3Sequence of the finite element method2269.4.5.4Rayleigh-Ritz method versus FEM2279.4.5.5FEM in the context of the Galerkin's method2309.4.6Mathematical principle2349.4.6.3Basis functions to discrete 3D arbitrary surfaces2369.4.6.4MoM steps2389.5Software Available2409.5.1NEC2419.5.2HFSS2429.5.3CST STUDIO SUITE243Bibliography248Appendix ANabla: The Differential Operator253A.1Rectangular Coordinates253A.2Cylindrical Coordinates254A.3Suberical Coordinates254				Maxwell's equations	207
9.3 Current Distribution on Antennas 208 9.4 Numerical Methods 212 9.4.1 Continuous equations in a finite computational environment 212 9.4.2 Computational domain and meshing 213 9.4.3 Classification of the methods 213 9.4.3 Classification of the methods 213 9.4.4 Finite differences method 215 9.4.5 Finite element method (FEM) 220 9.4.5.1 Elements: The essence of the FEM 221 9.4.5.2 Interpolation functions 222 9.4.5.3 Sequence of the finite element method 226 9.4.5.4 Rayleigh-Ritz method versus FEM 227 9.4.5.5 FEM in the context of the Galerkin's method 230 9.4.6 Method of Moments (MoM) 234 9.4.6.1 Introduction 234 9.4.6.2 Mathematical principle 236 9.4.6.3 Basis functions to discrete 3D arbitrary surfaces 236 9.4.6.4 MoM steps 238 9.4.6.5 Example 240 9.5 Software Available			9.2.4	Radiation condition	207
9.4 Numerical Methods 212 9.4.1 Continuous equations in a finite computational environment 212 9.4.2 Computational domain and meshing 213 9.4.3 Classification of the methods 213 9.4.4 Finite differences method 213 9.4.4 Finite differences method 215 9.4.5 Finite element method (FEM) 220 9.4.5.1 Elements: The essence of the FEM 221 9.4.5.2 Interpolation functions 222 9.4.5.3 Sequence of the finite element method 226 9.4.5.4 Rayleigh-Ritz method versus FEM 227 9.4.5.5 FEM in the context of the Galerkin's method 230 9.4.6 Method of Moments (MoM) 234 9.4.6.1 Introduction 234 9.4.6.2 Mathematical principle 236 9.4.6.3 Basis functions to discrete 3D arbitrary surfaces 236 9.4.6.4 MoM steps 239 9.5 Software Available 240 9.5.1 NEC 241 9.5.2 HFSS 242		9.3	Curren	nt Distribution on Antennas	208
9.4.1 Continuous equations in a finite computational environment 212 9.4.2 Computational domain and meshing 213 9.4.3 Classification of the methods 213 9.4.4 Finite differences method 215 9.4.5 Finite element method (FEM) 220 9.4.5.1 Elements: The essence of the FEM 221 9.4.5.2 Interpolation functions 222 9.4.5.3 Sequence of the finite element method 226 9.4.5.4 Rayleigh-Ritz method versus FEM 227 9.4.5.5 FEM in the context of the Galerkin's method 230 9.4.6 Method of Moments (MoM) 234 9.4.6.1 Introduction 234 9.4.6.2 Mathematical principle 234 9.4.6.3 Basis functions to discrete 3D arbitrary surfaces 236 9.4.6.4 MoM steps 238 9.4.6.5 Example 239 9.5 Software Available 240 9.5.1 NEC 241 9.5.2 HFSS 242 9.5.3 CST STUDIO SUITE 243 <		9.4	Nume	rical Methods	212
ment 212 9.4.2 Computational domain and meshing 213 9.4.3 Classification of the methods 213 9.4.4 Finite differences method 215 9.4.5 Finite element method (FEM) 220 9.4.5.1 Elements: The essence of the FEM 221 9.4.5.2 Interpolation functions 222 9.4.5.3 Sequence of the finite element method 226 9.4.5.4 Rayleigh–Ritz method versus FEM 227 9.4.5.5 FEM in the context of the Galerkin's method 230 9.4.6 Method of Moments (MoM) 234 9.4.6.1 Introduction 234 9.4.6.2 Mathematical principle 234 9.4.6.3 Basis functions to discrete 3D arbitrary surfaces 236 9.4.6.4 MoM steps 238 9.4.6.5 Example 239 9.5 Software Available 240 9.5.1 NEC 241 9.5.2 HFSS 242 9.5.3 CST STUDIO SUITE 243 Bibliography 248 Append			9.4.1	Continuous equations in a finite computational environ-	
9.4.2Computational domain and meshing2139.4.3Classification of the methods2139.4.4Finite differences method2159.4.5Finite element method (FEM)2209.4.5.1Elements: The essence of the FEM2219.4.5.2Interpolation functions2229.4.5.3Sequence of the finite element method2269.4.5.4Rayleigh-Ritz method versus FEM2279.4.5.5FEM in the context of the Galerkin's method2309.4.6Method of Moments (MoM)2349.4.6.1Introduction2349.4.6.2Mathematical principle2349.4.6.3Basis functions to discrete 3D arbitrary surfaces2369.4.6.4MoM steps2389.4.6.5Example2399.5Software Available2409.5.1NEC2419.5.2HFSS2429.5.3CST STUDIO SUITE243Bibliography248Appendix ANabla: The Differential Operator253A.1Rectangular Coordinates254A.3Snberical Coordinates254				ment	212
9.4.3Classification of the methods2139.4.4Finite differences method2159.4.5Finite element method (FEM)2209.4.5.1Elements: The essence of the FEM2219.4.5.2Interpolation functions2229.4.5.3Sequence of the finite element method2269.4.5.4Rayleigh-Ritz method versus FEM2279.4.5.5FEM in the context of the Galerkin's method2309.4.6Method of Moments (MoM)2349.4.6.1Introduction2349.4.6.2Mathematical principle2349.4.6.3Basis functions to discrete 3D arbitrary surfaces2369.4.6.4MoM steps2389.4.6.5Example2399.5Software Available2409.5.1NEC2419.5.2HFSS2429.5.3CST STUDIO SUITE243Bibliography248Appendix ANabla: The Differential Operator253A.1Rectangular Coordinates253A.2Cylindrical Coordinates254A.3Snberical Coordinates254			9.4.2	Computational domain and meshing	213
9.4.4 Finite differences method 215 9.4.5 Finite element method (FEM) 220 9.4.5.1 Elements: The essence of the FEM 221 9.4.5.2 Interpolation functions 222 9.4.5.3 Sequence of the finite element method 226 9.4.5.4 Rayleigh–Ritz method versus FEM 227 9.4.5.5 FEM in the context of the Galerkin's method 230 9.4.6 Method of Moments (MoM) 234 9.4.6.1 Introduction 234 9.4.6.2 Mathematical principle 234 9.4.6.3 Basis functions to discrete 3D arbitrary surfaces 236 9.4.6.5 Example 239 9.5 Software Available 240 9.5.1 NEC 241 9.5.2 HFSS 242 9.5.3 CST STUDIO SUITE 243 Bibliography 248 Appendix A Nabla: The Differential Operator 253 A.1 Rectangular Coordinates 253 A.2 Cylindrical Coordinates 254			9.4.3	Classification of the methods	213
9.4.5 Finite element method (FEM) 220 9.4.5.1 Elements: The essence of the FEM 221 9.4.5.2 Interpolation functions 222 9.4.5.3 Sequence of the finite element method 226 9.4.5.4 Rayleigh-Ritz method versus FEM 227 9.4.5.5 FEM in the context of the Galerkin's method 230 9.4.6 Method of Moments (MoM) 234 9.4.6.1 Introduction 234 9.4.6.2 Mathematical principle 234 9.4.6.3 Basis functions to discrete 3D arbitrary surfaces 236 9.4.6.4 MoM steps 238 9.4.6.5 Example 239 9.5 Software Available 240 9.5.1 NEC 241 9.5.2 HFSS 242 9.5.3 CST STUDIO SUITE 243 Bibliography 248 Appendix A Nabla: The Differential Operator 253 A.1 Rectangular Coordinates 254 A.2 Cylindrical Coordinates 254			9.4.4	Finite differences method	215
9.4.5.1 Elements: The essence of the FEM 221 9.4.5.2 Interpolation functions 222 9.4.5.3 Sequence of the finite element method 226 9.4.5.4 Rayleigh–Ritz method versus FEM 227 9.4.5.5 FEM in the context of the Galerkin's method 230 9.4.6 Method of Moments (MoM) 234 9.4.6.1 Introduction 234 9.4.6.2 Mathematical principle 234 9.4.6.3 Basis functions to discrete 3D arbitrary surfaces 236 9.4.6.4 MoM steps 239 9.5 Software Available 240 9.5.1 NEC 241 9.5.2 HFSS 242 9.5.3 CST STUDIO SUITE 243 Bibliography 248 Appendix A Nabla: The Differential Operator 253 A.1 Rectangular Coordinates 254 A.3 Suberical Coordinates 254			9.4.5	Finite element method (FEM)	220
9.4.5.2 Interpolation functions 222 9.4.5.3 Sequence of the finite element method 226 9.4.5.4 Rayleigh–Ritz method versus FEM 227 9.4.5.5 FEM in the context of the Galerkin's method 230 9.4.6 Method of Moments (MoM) 234 9.4.6.1 Introduction 234 9.4.6.2 Mathematical principle 234 9.4.6.3 Basis functions to discrete 3D arbitrary surfaces 236 9.4.6.4 MoM steps 238 9.4.6.5 Example 239 9.5 Software Available 240 9.5.1 NEC 241 9.5.2 HFSS 242 9.5.3 CST STUDIO SUITE 243 Bibliography 248 Appendix A Nabla: The Differential Operator 253 A.1 Rectangular Coordinates 253 A.2 Cylindrical Coordinates 254 A.3 Spherical Coordinates 254				9.4.5.1 Elements: The essence of the FEM	221
9.4.5.3Sequence of the finite element method2269.4.5.4Rayleigh-Ritz method versus FEM2279.4.5.5FEM in the context of the Galerkin's method2309.4.6Method of Moments (MoM)2349.4.6.1Introduction2349.4.6.2Mathematical principle2349.4.6.3Basis functions to discrete 3D arbitrary surfaces2369.4.6.4MoM steps2389.4.6.5Example2399.5Software Available2409.5.1NEC2419.5.2HFSS2429.5.3CST STUDIO SUITE243Bibliography248Appendix ANabla: The Differential Operator253A.1Rectangular Coordinates253A.2Cylindrical Coordinates254A.3Spherical Coordinates254				9.4.5.2 Interpolation functions	222
9.4.5.4Rayleigh-Ritz method versus FEM2279.4.5.5FEM in the context of the Galerkin's method2309.4.6Method of Moments (MoM)2349.4.6.1Introduction2349.4.6.2Mathematical principle2349.4.6.3Basis functions to discrete 3D arbitrary surfaces2369.4.6.4MoM steps2389.4.6.5Example2399.5Software Available2409.5.1NEC2419.5.2HFSS2429.5.3CST STUDIO SUITE243Bibliography248Appendix ANabla: The Differential Operator253A.1Rectangular Coordinates253A.2Cylindrical Coordinates254A.3Spherical Coordinates254				9.4.5.3 Sequence of the finite element method	226
9.4.5.5 FEM in the context of the Galerkin's method 230 9.4.6 Method of Moments (MoM) 234 9.4.6.1 Introduction 234 9.4.6.2 Mathematical principle 234 9.4.6.2 Mathematical principle 234 9.4.6.3 Basis functions to discrete 3D arbitrary surfaces 236 9.4.6.4 MoM steps 238 9.4.6.5 Example 239 9.5 Software Available 240 9.5.1 NEC 241 9.5.2 HFSS 242 9.5.3 CST STUDIO SUITE 243 Bibliography 248 Appendix A Nabla: The Differential Operator 253 A.1 Rectangular Coordinates 253 A.2 Cylindrical Coordinates 254				9.4.5.4 Rayleigh–Ritz method versus FEM	227
9.4.6Method of Moments (MoM)2349.4.6.1Introduction2349.4.6.2Mathematical principle2349.4.6.3Basis functions to discrete 3D arbitrary surfaces2369.4.6.4MoM steps2389.4.6.5Example2399.5Software Available2409.5.1NEC2419.5.2HFSS2429.5.3CST STUDIO SUITE243Bibliography248Appendix ANabla: The Differential Operator253A.1Rectangular Coordinates253A.2Cylindrical Coordinates254A.3Spherical Coordinates254				9.4.5.5 FEM in the context of the Galerkin's method	230
9.4.6.1Introduction2349.4.6.2Mathematical principle2349.4.6.3Basis functions to discrete 3D arbitrary surfaces2369.4.6.4MoM steps2389.4.6.5Example2399.5Software Available2409.5.1NEC2419.5.2HFSS2429.5.3CST STUDIO SUITE243Bibliography248Appendix ANabla: The Differential Operator253A.1Rectangular Coordinates253A.2Cylindrical Coordinates254A.3Spherical Coordinates254			9.4.6	Method of Moments (MoM)	234
9.4.6.2Mathematical principle2349.4.6.3Basis functions to discrete 3D arbitrary surfaces2369.4.6.4MoM steps2389.4.6.5Example2399.5Software Available2409.5.1NEC2419.5.2HFSS2429.5.3CST STUDIO SUITE243Bibliography248Appendix ANabla: The Differential Operator253A.1Rectangular Coordinates253A.2Cylindrical Coordinates254A.3Spherical Coordinates254				9.4.6.1 Introduction \ldots	234
9.4.6.3 Basis functions to discrete 3D arbitrary surfaces				9.4.6.2 Mathematical principle	234
faces 236 9.4.6.4 MoM steps 238 9.4.6.5 Example 239 9.5 Software Available 240 9.5.1 NEC 241 9.5.2 HFSS 242 9.5.3 CST STUDIO SUITE 243 Bibliography 248 Appendix A Nabla: The Differential Operator 253 A.1 Rectangular Coordinates 253 A.2 Cylindrical Coordinates 254				9.4.6.3 Basis functions to discrete 3D arbitrary sur-	
9.4.6.4 MoM steps 238 9.4.6.5 Example 239 9.5 Software Available 240 9.5.1 NEC 241 9.5.2 HFSS 242 9.5.3 CST STUDIO SUITE 243 Bibliography 248 Appendix A Nabla: The Differential Operator 253 A.1 Rectangular Coordinates 253 A.2 Cylindrical Coordinates 254				faces	236
9.4.6.5 Example 239 9.5 Software Available 240 9.5.1 NEC 241 9.5.2 HFSS 242 9.5.3 CST STUDIO SUITE 243 Bibliography 248 Appendix A Nabla: The Differential Operator 253 A.1 Rectangular Coordinates 253 A.2 Cylindrical Coordinates 254				9.4.6.4 MoM steps	238
9.5 Software Available 240 9.5.1 NEC 241 9.5.2 HFSS 242 9.5.3 CST STUDIO SUITE 243 Bibliography 243 Appendix A Nabla: The Differential Operator 253 A.1 Rectangular Coordinates 253 A.2 Cylindrical Coordinates 254				9.4.6.5 Example	239
9.5.1NEC2419.5.2HFSS2429.5.3CST STUDIO SUITE243Bibliography243Bibliography248Appendix ANabla: The Differential Operator253A.1Rectangular Coordinates253A.2Cylindrical Coordinates254A.3Spherical Coordinates254		9.5	Softwa	are Available	240
9.5.2 HFSS 242 9.5.3 CST STUDIO SUITE 243 Bibliography 243 Appendix A Nabla: The Differential Operator 253 A.1 Rectangular Coordinates 253 A.2 Cylindrical Coordinates 254			9.5.1	NEC	241
9.5.3 CST STUDIO SUITE 243 Bibliography 248 Appendix A Nabla: The Differential Operator 253 A.1 Rectangular Coordinates 253 A.2 Cylindrical Coordinates 254 A 3 Spherical Coordinates 254			9.5.2	HFSS	242
Bibliography 248 Appendix A Nabla: The Differential Operator 253 A.1 Rectangular Coordinates 253 A.2 Cylindrical Coordinates 254 A 3 Spherical Coordinates 254			9.5.3	CST STUDIO SUITE	243
Appendix ANabla: The Differential Operator253A.1Rectangular Coordinates253A.2Cylindrical Coordinates254A.3Spherical Coordinates254		Bibl	iograph	1y	248
A.1 Rectangular Coordinates 253 A.2 Cylindrical Coordinates 254 A.3 Spherical Coordinates 254	A	ppen	dix A	Nabla: The Differential Operator	253
A.2 Cylindrical Coordinates		A.1	Recta	ngular Coordinates	$\frac{-0.0}{253}$
A 3 Spherical Coordinates 254		A.2	Cyline	drical Coordinates	254
11.0 Opholioal Coolamatob		A.3	Spheri	ical Coordinates	254

Appen	dix B Some Concepts Related to Differential E	Equations 2	257			
B.1	Generalities		257			
B.2	Order		258			
B.3	Differential Equation Systems		258			
B.4	Initial and Boundary Value Conditions		258			
B.5	Existence and Uniqueness		260			
Appendix C Poisson and Laplace Equations						
C.1	Poisson's Equation		263			
C.2	Laplace's Equation		264			

List of Figures

2.1	Dipole antenna	8
2.2	Monopole antenna	9
2.3	Two loop antenna configurations: (a) Circular loop, (b) rectan-	
	gular loop	10
2.4	Antenna horn types: (a) Pyramidal, (b) conical	10
2.5	Parabolic reflector.	11
2.6	Microstrip antenna	12
2.7	Antenna array representation	13
2.8	Yagi–Uda antenna.	14
2.9	Feed-point.	15
2.10	Radiation sphere of an isotropic antenna.	16
2.11	Simulated three-dimensional radiation pattern for a monopole.	17
2.12	Simulated magnitude of Γ for a wire monopole and a rectangu-	
	lar patch antenna.	21
3.1	Transmission line transitions for (a) Lodge's design and (b)	
	Cartes's design.	27
3.2	Representation of the design of a diamond-shaped dipole an-	
	tenna proposed by R. W. Masters in 1947	28
3.3	Broadband slot antenna	28
3.4	Design of the current radiator proposed by H. Harmuth in 1985	29
3.5	(a) Planarized antenna (b) planar antenna	30
3.6	Example of the exponential expansion used to design a Vivaldi	
	antenna	32
3.7	UWB Vivaldi antenna printed on a circuit board	33
3.8	Geometry of the planarized antenna with rectangular radiator.	34
3.9	Slot antenna based on a precooked ceramic technique	36
3.10	Geometry of a volcano-smoke slot antenna	37
3.11	Geometry of a planar miniature tapered-slot-fed annular slot	
	antenna	39
3.12	Configuration of the tulip-shaped monopole antenna	41
3.13	General geometry of the PICA	45
3.14	Geometry of the bi-arm rolled monopole	47
3.15	Geometry of the square planar monopole antenna of UWB	48
3.16	Design geometry of the planar directional monopole antenna	
	with leaf form.	50

3.17	Geometry of the design of the double-ridged horn antenna.	52
4.1	Variation of the radiation pattern of a 1 GHz patch antenna as a function of frequency.	61
4.2	Coefficient reflection magnitude for a rectangular patch (nar-	69
4.3	Representation of the transition of a transmission line to the	02
	biconical antenna.	65
4.4	Geometry of a rectangular planar monopole	67
$4.5 \\ 4.6$	Example of the solid-planar principle	68
1.0	lateral feeding and perpendicular ground planes, (c) planar	-1
4 77	monopole antenna.	71
4.7	drical monopole with very large effective radius and (b) square	
	planar monopole.	73
4.8	Representation of the equalization of areas for (a) Basic cylin-	
	drical monopole with very large effective radius, and elliptic	
	monopoles with semi-major axis a_1 and semi-minor axis b_1 ; (b) $r_1 = a_1 = b_1$; (c) a_2 on the horizontal axis; (d) a_3 on the vertical	
	$T_c = u_1 = v_1$, (c) u_1 on the horizontal axis, (d) u_1 on the vertical axis	74
4.9	Representation of the equalization of areas for (a) Basic cylin-	11
	drical monopole with a very large effective radius and (b) trape-	
	zoidal planar monopole.	75
4.10	Representation of the equalization of areas for (a) Basic cylin- drical monopole with a very large effective radius and (b) rect-	
4 1 1	angular planar monopole.	76
4.11	Square planar monopole with a tilt angle β on its radiator: (a) Example 1 signs (b) lateral signs	77
4.12	Beveling technique in a square planar monopole: (a) Asymmet-	"
	ric bevel, (b) symmetric bevel.	77
5.1	Spectrum of a rectangular pulse with a duration of $\tau=1$ time	
50		83
5.2	Spectrum of a rectangular pulse with a duration of $\tau = 0.3$ time units.	84
5.3	Impulse response and transfer function of an antenna	84
5.4	Ringing on an impulse response.	85
5.5	Time domain waveforms of Gaussian and Rayleigh pulses	87
5.6	Impulse response of a cable for different lengths.	88
5.7	Flat transfer function of the antenna	89
5.8	Simulated phase response for a wire monopole and a rectangu-	
	lar patch antenna.	90
5.9	Simulated phase of the reflection coefficient for a UWB planar	~ 1
	monopole	91

5.10	Representation of the phase center concept	92
5.11	Magnitude of the reflection coefficient of a 7-elements 680 MHz	
	log-periodic antenna.	94
5.12	Phase response of the reflection coefficient of a 7-elements 680	
	MHz log-periodic antenna	94
6.1	Geometry and dimensions of a square monopole planar an-	
	tenna.	102
6.2	Simulated radiation pattern of the square monopole planar an-	
	tenna at different frequencies: (a) 3 GHz, (b) 11 GHz, (c) 12	
	GHz, (d) 14 GHz	103
6.3	Simulated reflection coefficient magnitude of the square	
	monopole planar antenna	104
6.4	Simulated reflection coefficient phase of the square monopole	
	planar antenna.	104
6.5	Variables involved in the design methodology of a UWB an-	105
0.0		105
6.6	Flow diagram of the design methodology for an omnidirectional	100
67	planar antenna	100
6.8	Simulated reflection coefficient magnitude of the SPMA for	107
0.0	three hevel angles: (a) $\psi = 0^{\circ}$ (b) $\psi = 32.74^{\circ}$ and (c)	
	where beven angles. (a) $\psi = 0$, (b) $\psi = 52.14$ and (c) $\psi = 35.54^{\circ}$	108
6.9	Simulated radiation pattern for the SPMA with $\psi = 32.74^{\circ}$ at	100
0.0	(a) 3 GHz, (b) 6 GHz, (c) 9 GHz, (d) 12 GHz, (e) 15 GHz and	
	(f) 18 GHz	109
6.10	Simulated reflection coefficient magnitude for the $W = 30 \text{ mm}$	
	square planar antenna with (a) $\psi = 0^{\circ}$ and (b) $\psi = 32.74^{\circ}$, and	
	for the rectangular planar antenna with a height/width ratio	
	of 0.6 ($W = 50 \text{ mm}$) for $\psi = 20.6^{\circ}$ (c)	110
6.11	Simulated radiation pattern for the rectangular planar antenna	
	with a height/width ratio of 0.6 ($W = 50 \text{ mm}$) at (a) 3 GHz,	
0.10	(b) 6 GHz, (c) 9 GHz, (d) 12 GHz, (e) 15 GHz and (f) 18 GHz.	111
6.12	Simulated reflection coefficient magnitude of the RPMA of $W_{\rm eff} = 50$ mm and for four basel angles (a) $w_{\rm eff} = 2.48$ (b)	
	$W = 50 \text{ mm}$ and for four bevel angles: (a) $\psi = 2.4^{\circ}$, (b)	119
6 13	$\psi = 20.0$, (c) $\psi = 22.0$ and (d) $\psi = 24.0$	112
0.10	$W = 50 \text{ mm}$ and $\psi = 20.6^{\circ}$ for six widths of the feeder: (a)	
	a = 2.0 mm, (b) $a = 2.4 mm$, (c) $a = 2.8 mm$, (d) $a = 3.2 mm$.	
	(e) $a = 3.6 \text{ mm}$ and (f) $a = 4.0 \text{ mm}$	112
6.14	Simulated reflection coefficient phase of the RPMA of $W =$	_
	50 mm and $\psi = 20.6^{\circ}$ for six widths of the feeder	113
6.15	Geometry of the rectangular planar monopole antenna with a	
	height/width ratio of 0.58, $\psi = 18.29^\circ$ and $a = 3.6\mathrm{mm.}$ $~$	114

6	.16	Simulated magnitude of the reflection coefficient for the RPMA	
		with $\psi = 18.29^{\circ}$, $W = 52 \text{ mm}$ and $a = 3.6 \text{ mm}$.	114
6	.17	Simulated reflection coefficient phase for the RPMA with $\psi =$	
		$18.29^{\circ}, W = 52 \text{ mm} \text{ and } a = 3.6 \text{ mm}.$	115
6	.18	Radiation pattern for the RPMA with $\psi = 18.29^{\circ}, W = 52 \text{ mm}$	
		and $a = 3.6 \text{ mm}$ at (a) 3 GHz, (b) 6 GHz, (c) 9 GHz, (d) 12	
		GHz, (e) 15 GHz and (f) 18 GHz.	116
6	.19	Simulated magnitude of the reflection coefficient for the RPMA	
		with $\psi = 18.29^{\circ}$, $W = 52 \text{ mm}$, $a = 3.6 \text{ mm}$ and for different	
		values of h	117
6	.20	Simulated phase of the reflection coefficient for the RPMA with	
		$\psi = 18.29^{\circ}, W = 52 \text{ mm}, a = 3.6 \text{ mm}$ and for different values	
		of <i>h</i>	118
6	.21	Geometry and dimensions of a bi-orthogonal UWB antenna	118
6	.22	Reflection coefficient magnitude for the antenna of Figure 6.21.	119
6	.23	Radiation pattern for the antenna of Figure 6.21 at (a) 3 GHz,	
		(b) 5 GHz, (c) 7 GHz, (d) 9 GHz, (e) 10 GHz and (f) 11 GHz.	120
6	.24	Comparison of the reflection coefficient magnitude of an orthog-	
		onal radiator and a revolution-solid (volumetric) radiator	121
6	.25	Flow diagram of the design methodology for planarized UWB	
		omnidirectional antennas	122
6	.26	Geometry of the rectangular planarized UWB monopole with	
		the bevel technique on the ground plane	123
6	.27	Preliminary geometry for a square planarized antenna: (a)	
_		Frontal view, (b) rear view.	123
6	.28	Simulated reflection coefficient magnitude of the planarized	
		UWB antenna for (a) $\psi = 0^{\circ}$, (b) $\psi = 20^{\circ}$, (c) $\psi = 22^{\circ}$ and	101
~	~~	(d) $\psi = 24^{\circ}$	124
6	.29	Simulated reflection coefficient magnitude of the planarized	105
c	20	UWB antenna for three radiator widths.	125
0	.30	Simulated radiation pattern of the rectangular planarized an-	
		tenna with $\psi = 22^{\circ}$ and $W = 32.3 \text{ mm}$ at (a) 3 GHz, (b) 5	196
c	91	GHZ, (C) / GHZ, (d) 9 GHZ, (e) 10 GHZ and (f) 11 GHZ	120
0	.31 20	Measured reflection coefficient magnitude of the restangular	127
0	.32	measured reflection coefficient magnitude of the rectangular planarized antenna with $\psi = 22^{\circ}$ and $W = 22.2 \text{ mm}$	197
С	<u> </u>	pranafized antenna with $\psi = 22$ and $W = 52.5$ mm Padiation pattern at 2 CHz for the restangular planafized an	121
0	.55	tanna: (a) Massurement (b) simulation	198
6	34	Badiation pattern at 7 CHz for the rectangular planarized an-	120
0	.04	tenna: (a) Measurement (b) simulation	128
6	35	Badiation pattern at 10 GHz for the rectangular planarized	120
0	.00	antenna: (a) Measurement. (b) simulation	129
6	.36	Geometry of an RPMA.	130
6	.37	Geometry of a scaled RPMA.	130
6	.38	Simulated reflection coefficient magnitude of the scaled RPMA.	131
0			

6.39	Radiation pattern at 5 GHz for the scaled rectangular pla-	
a 10	narized antenna: (a) Measurement, (b) simulation.	131
6.40	Radiation pattern at 10 GHz for the scaled rectangular pla-	100
	narized antenna: (a) Measurement, (b) simulation	132
7.1	Geometry of the Vivaldi antenna	137
7.2	Simulated reflection coefficient magnitude for the Vivaldi an-	
	tenna	138
7.3	Simulated reflection coefficient phase for the Vivaldi antenna.	139
7.4	Simulated radiation pattern for the Vivaldi antenna at (a) 3	
	and (b) 4 GHz	139
7.5	Simulated radiation pattern for the Vivaldi antenna at (a) 5	
- 0	GHz, (b) 6 GHz, (c) 7 GHz and (d) 8 GHz. \ldots	140
7.6	Simulated radiation pattern for the Vivaldi antenna at (a) $9-12$	140
77	GHZ, (D) 13-10 GHZ Simulated radiation pattern for the Vivaldi enterna et (a) 17	140
1.1	CH_{z} (b) 18 CH_{z} (c) 10 CH_{z} and (d) 20 CH_{z}	1/1
78	Simulated radiation pattern for the Vivaldi antenna at (a) 21–	1.11
•••	23 GHz, (b) 24–26 GHz and (c) 27–30 GHz.	142
7.9	Geometry of the leaf-shaped directional planar antenna	143
7.10	Simulated reflection coefficient magnitude for the leaf-shaped	
	antenna	144
7.11	Simulated reflection coefficient phase for the leaf-shaped an-	
	tenna	144
7.12	Radiation pattern for the leaf-shaped antenna at (a) 3–6 GHz	
7 1 9	and (b) $7-10$ GHz.	145
(.13	Radiation pattern for the lear-snaped antenna at (a) $11-14$ CHz (b) 15-18 CHz (c) 10-22 CHz (d) 23-26 CHz and (o)	
	27–30 GHz	146
7.14	Geometry of a TEM horn antenna.	147
7.15	Simulated reflection coefficient magnitude for the TEM horn	
	antenna	148
7.16	Simulated reflection coefficient phase for the TEM horn an-	
	tenna	148
7.17	Radiation pattern for the TEM horn antenna: (a) 8–10 GHz,	1.10
7 10	(b) $11-13$ GHz, (c) $14-16$ GHz and (d) $17-20$ GHz	149
7.10	Geometry of the quasi-Yagi antenna	191
1.19	tenna	151
7.20	Simulated reflection coefficient phase of the quasi-Yagi antenna.	152
7.21	Simulated radiation pattern of the quasi-Yagi antenna: (a) 10–	10-
	12 GHz and (b) 13–14 GHz.	153
7.22	Flow diagram of the design methodology of a directive planar	
	UWB antenna.	154
7.23	Initial geometry of the SPMA.	156

7.24	Geometry of the tuned directive RPMA	156
7.25	Simulated reflection coefficient magnitude of the RPMA for dif-	
	ferent tilt angles	157
7.26	Simulated reflection coefficient phase of the RPMA for different	
	tilt angles	158
7.27	Simulated radiation pattern of the RPMA for $\beta = 30^{\circ}$ at dif-	
	ferent frequencies.	159
7.28	Geometry of the directive RPMA with a mechanical support.	160
7.29	Simulated reflection coefficient magnitude of the directive	
	RPMA with a mechanical support.	161
7.30	Simulated reflection coefficient phase of the directive RPMA	
	with a mechanical support.	161
7.31	Simulated radiation pattern of the directive RPMA with a me-	
	chanical support.	162
7.32	Phase response of the directive RPMA with reflector	163
7.33	Radiation pattern of the directive RPMA with reflector	164
7.34	Conical antenna model with circular aperture	167
7.35	Conical antenna with elliptical aperture displaced 40 mm	168
7.36	Conical antenna with elliptical aperture and reflector	168
7.37	Reflection coefficient magnitude of the conical antenna with	
	elliptical aperture and reflector	169
7.38	Radiation pattern of a conical antenna with elliptical aperture	
	and reflector in the XY plane	169
7.39	Semiplanar conical antenna with elliptical aperture and reflec-	
	tor	170
7.40	Geometrical distribution of the planar directional UWB an-	
	tenna: (a) Lateral view (b) front view of the isosceles triangle	171
7.41	Reflection coefficient magnitude from volumetric to planar an-	
	tenna evolution	172
7.42	Planar directional UWB antenna for a lower cutoff frequency	
	of 2 GHz.	174
7.43	Dimensions of the planar directional UWB antenna for a lower	
	cutoff frequency of 3 GHz	175
7.44	Simulated and measured reflection coefficient magnitude of the	
	first prototype	176
7.45	Simulated and measured reflection coefficient magnitude of the	
	second prototype	176
7.46	Simulated and measured radiation pattern at (a) 5 GHz and	
	(b) 10 GHz of the first prototype	177
7.47	Simulated and measured radiation pattern at (a) 5 GHz and	
	(b) 10 GHz of the second prototype	177
	···	
8.1	Representation of a BAN	188
8.2	Layered representation of main tissues considered for simula-	
	tions	190

8.3	Microwave radar-based imaging scheme	192
9.1	Arbitrary volumetric structure.	206
9.2	Thin surface layer.	206
9.3	Current distribution for a 1 GHz wire antenna.	209
9.4	Current distribution for a 1 GHz rectangular patch.	209
9.5	Current distribution for a 7-elements log-periodic antenna	210
9.6	Current distribution for a 5 GHz horn antenna	210
9.7	Current distribution for a planar monopole UWB antenna: (a)	
	3 GHz, (b) 7 GHz, (c) 11 GHz, (d) 15 GHz	211
9.8	Example of discrete points from a one-dimensional continuous	
	function	216
9.9	Array of nodes for a two-dimensional difference equation	217
9.10	Boundary conditions for the finite difference method	218
9.11	Fictitious nodes for the Neumann boundary condition	219
9.12	Examples of elements used to divide two-dimensional regions.	221
9.13	Graphical comparison of the division of the domain of the tulip-	
	shaped monopole antenna using (a) Pointwise (FD method)	
	and (b) piecewise (FEM) approximations	222
9.14	Nodes and edges in elements	223
9.15	Edges on a rectangular element.	225
9.16	Division of the interval $(0, 1)$ into four equally spaced subinter-	
	vals	229
9.17	Modeling of surface by a wire-grid of current	237
9.18	A surface mesh of 74 triangles	237
9.19	Edge element on a strip line	238
9.20	Successive approximations by the method of moments	241
9.21	Current distribution for the bi-orthogonal UWB antenna: (a) 5 CH_{1} (b) 10 CH_{2} (c) 15 CH_{2} (c) 20 CH_{3}	044
0.00	GHz, (b) 10 GHz , (c) 15 GHz , (d) 20 GHz .	244
9.22	Current distribution for the planarized monopole UWB an-	0.45
0.00	tenna: (a) 5 GHz, (b) 7.5 GHz, (c) 10 GHz, (d) 15 GHz. \ldots	245
9.23	Current distribution for the leaf-snaped UWB antenna: (a) 5 CH_{1} (b) 10 CH_{2} (c) 15 CH_{2} (c) 20 CH_{2}	0.40
0.94	GHZ, (b) 10 GHZ , (c) 15 GHZ , (d) 20 GHZ	240
9.24	Current distribution for the quasi-Yagi UWB antenna: (a) 5 CHz (b) 10 CHz (c) 15 CHz (d) 20 CHz	947
0.95	GHZ, (b) 10 GHZ , (c) 15 GHZ , (d) 20 GHZ	247
9.20	(a) 15 CHz (d) 20 CHz	2/8
	(0) 10 0112, (0) 20 0112	240
B.1	Family of curves for Equation (B.8) when $a = 1. \ldots \ldots$	259

List of Tables

3.1	Comparative table of UWB antennas (Part 1)	53
3.2	Comparative table of UWB antennas (Part 2)	54
4.1	Comparison of central frequencies determined from Equations	
19	(4.3) and (4.4)	63
4.2	monopole \ldots	77
4.3	Measured bandwidth for different angles ψ for a square planar	
	monopole	78
5.1	Envelope width for different antennas	95
7.1	Main features of the UWB directive RPMA at different fre-	
	quencies	165
7.2	Comparison of some parameters of directional antennas	173
7.3	Comparison of directive UWB antennas	178
8.1	Frequency bands considered for wireless body area networks .	189
9.1	Dimensions of a 7-elements log-periodic antenna	212
9.2	Solution of α_j	240
	-	

Preface

Over the past decades ultra wideband antennas have attracted the attention of the scientific community due to their wide variety of applications such as body area networks, radar, imaging, spectrum monitoring, electronic warfare, and wireless sensor networks, among others. As a result, a vast quantity of work presenting diverse designs has been reported around the world. In spite of this, some other possibilities have to be explored in the UWB antenna's design in such a way that current challenges may be solved.

Thus, this book was conceived as reference material for the development of UWB antennas. Different aspects are considered in this text, from recent proposals on ultra wideband antennas reported in diverse forums, theory specific for these radiators, up to guidelines for the design of omnidirectional and directional UWB antennas.

According to current tendencies, two types of antennas are identified based on their structures, planarized and planar, to distinguish between those flat radiators embedded and non-embedded on the ground plane. An important concept used here is the solid-planar equivalence, which allows that flat structures can be implemented instead of volumetric antennas. This principle is vital for the developments of UWB antennas on portable equipment and for the recent body area networks, where small low profile radiators are intended to integrate to wearable devices.

Time domain signal analysis for UWB antennas, from which the distortion phenomenon can be modeled through group delay and phase linearity, is addressed as well. It is one of the main differences with traditional narrowband or wideband antennas where transient response has not been considered. Thus, in particular, some important quantities associated with the impulse response of UWB antennas are reviewed.

Design methodologies for omnidirectional and directional antennas are described, and the dependence on their operation as a function of distinct factors (ground plane, beveling on radiator, height/wide proportion, reflector, etc.) is examined in depth. In all cases, three objectives are considered: Impedance matching, phase linearity, and variations of the shape of the radiation pattern. Performance comparisons among different reported UWB designs are discussed.

Some current tendencies and unresolved problems in the field of UWB antennas are also noted. The book ends with a brief exposition of numerical techniques for electromagnetics, including the generalities of the classical Finite Differences Method, Finite Element Method, and Method of Moments. Certain antenna models are taken to illustrate particular conceptual aspects of these methods.

Outline

In summary, the main points addressed in this book are

- An outline of recent developments on UWB antennas
- Developed theory for UWB antennas in frequency and time domains
- Design methodologies for omnidirectional and directional UWB antennas
- Performance comparisons of different UWB antennas
- A vision of tendencies and unresolved problems to date
- An exposition of numerical methods for electromagnetics oriented to antennas

Regarding simulations, it is worth mentioning that CST Microwave Studio was the platform used through this book.

For product information, please contact: CST-Computer Simulation Technology AG Bad Nauheimer Strasse 19 64289 Darmstadt, Germany Tel: +49 6151 7303 0 Fax: +49 6151 7303 100 Email: info@cst.com Web: www.cst.com

Plots presented in distinct sections of chapters were generated using MATLAB[®].

For product information, please contact: The MathWorks, Inc. 3 Apple Hill Drive Natick, MA 01760-2098 USA Tel: 508-647-7000 Fax: 508-647-7001 E-mail: info@mathworks.com Web: www.mathworks.com

Acknowledgments

The authors are deeply grateful to MSc Ruben Flores-Leal for his support in simulating many antenna structures, and Mrs. Eva Ojeda-Sanchez for her help in drawing a vast quantity of figures through the whole manuscript. Seeing our ideas transformed into electronic images was possible thanks to the amazing tasks of both appreciated persons, who were always in total support of this book. This work was also enabled by the SEMAR-CONACYT project 2003-C02-11873, MEXICO.

Finally, we would like to express the honor we feel on writing this book in the year of the 150^{th} anniversary of the publication of the dissertation of James Clerk Maxwell, *A Dynamical Theory of the Electromagnetic Field*, who has been an academic guide and inspiration for our work with antennas.

> Giselle M. Galvan-Tejada Marco A. Peyrot-Solis Hildeberto Jardón-Aguilar Mexico

About the Authors

Giselle M. Galvan-Tejada was born in Mexico City, Mexico. She earned a B.Sc. degree in communications and electronics engineering from the National Polytechnic Institute, Mexico, in 1994, an M.Sc. degree in electrical engineering from the Center for Research and Advanced Studies of IPN, Mexico, in 1996, and a PhD degree in electronics and telecommunications engineering from the University of Bradford, U.K., in 2000. Currently, she is working in the Communications Section of the Department of Electrical Engineering of the Center for Research and Advanced Studies of IPN, Mexico, as a lecturer and full-time researcher. She is member of the IEEE and National Researcher of the National Council of Researchers of Mexico. Her research interests include radio communication systems, wireless sensor networks, radio propagation, antenna array technology, ultra wideband antennas, WiMAX, space division multiple access, and techniques to make efficient use of the spectrum.

Marco Antonio Peyrot-Solis was born in Veracruz, Mexico. He earned a BS degree in naval sciences engineering from the Mexican Naval Academy, an MSc degree in electrical engineering from the United States Naval Postgraduate School and a PhD in communications from the Centre for Research and Advanced Studies of the National Polytechnic Institute in Mexico City in 1989, 2003 and 2009, respectively. Currently, he is working for the Mexican Navy, and his research interests are UWB antennas and electromagnetic compatibility.

Hildeberto Jardón-Aguilar was born in Tenancingo, Mexico. He earned a BS degree in electrical engineering from ESIME-IPN, and a PhD degree in radio systems from the Moscow Technical University of Telecommunications and Informatics. He has been working as a full professor at the Center for Research and Advanced Studies of IPN since 1985. His research interests include analysis of nonlinearities in RF and microwave circuits, electromagnetic compatibility, antennas and photonic systems. He is the author of five books and more than 100 technical papers published in journals and symposiums.