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7.2.1 Itô Stochastic Differential Equations . . . . . . . . . . 245

7.2.1.1 Evolution of the Probability Density Function
of X(t) . . . . . . . . . . . . . . . . . . . . . 249

7.2.1.2 Applications of the Fokker–Plank Equation in
Population Dynamics . . . . . . . . . . . . . 252

7.2.2 Stratonovich Stochastic Differential Equations . . . . 255
7.3 Random Differential Equations . . . . . . . . . . . . . . . . . 257

7.3.1 Differential Equations with Random Initial Conditions 258
7.3.1.1 Evolution of the Probability Density Function

of x(t;X0) . . . . . . . . . . . . . . . . . . . 259
7.3.1.2 Applications of Liouville’s Equation in Popu-

lation Dynamics . . . . . . . . . . . . . . . . 261
7.3.2 Differential Equations with Random Model Parameters

and Random Initial Conditions . . . . . . . . . . . . . 262
7.3.2.1 Evolution of the Joint Probability Density Func-

tion for (x(t;X0,Z),Z)
T . . . . . . . . . . . 263

7.3.2.2 Evolution of Conditional Probability Density
Function of x(t;X0,Z) Given the Realization
z of Z . . . . . . . . . . . . . . . . . . . . . . 264

7.3.2.3 Applications in Population Dynamics . . . . 265
7.3.3 Differential Equations Driven by Correlated Stochastic

Processes . . . . . . . . . . . . . . . . . . . . . . . . . 268
7.3.3.1 Joint Probability Density Function of the Cou-

pled Stochastic Process . . . . . . . . . . . . 269
7.3.3.2 The Probability Density Function of X(t) . . 273

7.4 Relationships between Random and Stochastic Differential Equa-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
7.4.1 Markov Operators and Markov Semigroups . . . . . . 277

7.4.1.1 Random Differential Equations . . . . . . . . 279
7.4.1.2 Stochastic Differential Equations . . . . . . . 281

7.4.2 Pointwise Equivalence Results between Stochastic Dif-
ferential Equations and Random Differential Equations 282
7.4.2.1 Scalar Affine Differential Equations (Class 1) 283
7.4.2.2 Scalar Affine Differential Equations (Class 2) 285
7.4.2.3 Vector Affine Systems . . . . . . . . . . . . . 286
7.4.2.4 Non-Linear Differential Equations . . . . . . 288
7.4.2.5 Remarks on the Equivalence between the SDE

and the RDE . . . . . . . . . . . . . . . . . . 293
7.4.2.6 Relationship between the FPPS and GRDPS

Population Models . . . . . . . . . . . . . . . 295
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298



x Contents

8 A Stochastic System and Its Corresponding Deterministic
System 309
8.1 Overview of Multivariate Continuous Time Markov Chains . 310

8.1.1 Exponentially Distributed Holding Times . . . . . . . 310
8.1.2 Random Time Change Representation . . . . . . . . . 311

8.1.2.1 Relationship between the Stochastic Equation
and the Martingale Problem . . . . . . . . . 312

8.1.2.2 Relationship between the Martingale Problem
and Kolmogorov’s Forward Equation . . . . 313

8.2 Simulation Algorithms for Continuous TimeMarkov Chain Mod-
els . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
8.2.1 Stochastic Simulation Algorithm . . . . . . . . . . . . 314

8.2.1.1 The Direct Method . . . . . . . . . . . . . . 315
8.2.1.2 The First Reaction Method . . . . . . . . . . 315

8.2.2 The Next Reaction Method . . . . . . . . . . . . . . . 316
8.2.2.1 The Original Next Reaction Method . . . . . 317
8.2.2.2 The Modified Next Reaction Method . . . . 319

8.2.3 Tau-Leaping Methods . . . . . . . . . . . . . . . . . . 321
8.2.3.1 An Explicit Tau-Leaping Method . . . . . . 321
8.2.3.2 An Implicit Tau-Leaping Method . . . . . . 325

8.3 Density Dependent Continuous Time Markov Chains and Kurtz’s
Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 327
8.3.1 Kurtz’s Limit Theorem . . . . . . . . . . . . . . . . . 328
8.3.2 Implications of Kurtz’s Limit Theorem . . . . . . . . . 329

8.4 Biological Application: Vancomycin-Resistant Enterococcus In-
fection in a Hospital Unit . . . . . . . . . . . . . . . . . . . . 331
8.4.1 The Stochastic VRE Model . . . . . . . . . . . . . . . 331
8.4.2 The Deterministic VRE Model . . . . . . . . . . . . . 333
8.4.3 Numerical Results . . . . . . . . . . . . . . . . . . . . 334

8.5 Biological Application: HIV Infection within a Host . . . . . 336
8.5.1 Deterministic HIV Model . . . . . . . . . . . . . . . . 336
8.5.2 Stochastic HIV Models . . . . . . . . . . . . . . . . . . 341

8.5.2.1 The Stochastic HIV Model Based on the Burst
Production Mode . . . . . . . . . . . . . . . 341

8.5.2.2 The Stochastic HIV Model Based on the Con-
tinuous Production Mode . . . . . . . . . . . 343

8.5.3 Numerical Results for the Stochastic HIV Model Based
on the Burst Production Mode . . . . . . . . . . . . . 343
8.5.3.1 Implementation of the Tau-Leaping

Algorithms . . . . . . . . . . . . . . . . . . . 343
8.5.3.2 Comparison of Computational Efficiency of the

SSA and the Tau-Leaping Algorithms . . . . 346
8.5.3.3 Accuracy of the Results Obtained by Tau-Leaping

Algorithms . . . . . . . . . . . . . . . . . . . 348
8.5.3.4 Stochastic Solution vs. Deterministic Solution 350



Contents xi

8.5.3.5 Final Remark . . . . . . . . . . . . . . . . . 351
8.6 Application in Agricultural Production Networks . . . . . . . 352

8.6.1 The Stochastic Pork Production Network Model . . . 352
8.6.2 The Deterministic Pork Production Network Model . 353
8.6.3 Numerical Results . . . . . . . . . . . . . . . . . . . . 354

8.7 Overview of Stochastic Systems with Delays . . . . . . . . . 356
8.8 Simulation Algorithms for Stochastic Systems with Fixed De-

lays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
8.9 Application in the Pork Production Network with a Fixed De-

lay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
8.9.1 The Stochastic Pork Production Network Model with a

Fixed Delay . . . . . . . . . . . . . . . . . . . . . . . . 360
8.9.2 The Deterministic Pork Production NetworkModel with

a Fixed Delay . . . . . . . . . . . . . . . . . . . . . . . 360
8.9.3 Comparison of the Stochastic Model with a Fixed Delay

and Its Corresponding Deterministic System . . . . . 362
8.10 Simulation Algorithms for Stochastic Systems with Random

Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
8.11 Application in the Pork Production Network with a Random

Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
8.11.1 The Corresponding Deterministic System . . . . . . . 365
8.11.2 Comparison of the Stochastic Model with a Random

Delay and Its Corresponding Deterministic System . . 367
8.11.3 The Corresponding Constructed Stochastic System . . 368
8.11.4 Comparison of the Constructed Stochastic System and

Its Corresponding Deterministic System . . . . . . . . 370
8.11.5 Comparison of the Stochastic System with a Random

Delay and the Constructed Stochastic System . . . . . 370
8.11.5.1 The Effect of Sample Size on the Comparison

of These Two Stochastic Systems . . . . . . 371
8.11.5.2 The Effect of the Variance of a Random Delay

on the Comparison of These Two Stochastic
Systems . . . . . . . . . . . . . . . . . . . . . 375

8.11.5.3 Summary Remarks . . . . . . . . . . . . . . 376
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

Frequently Used Notations and Abbreviations 383

Index 387



This page intentionally left blankThis page intentionally left blank



Preface

Writing a research monograph on a “hot topic” such as “uncertainty prop-
agation” is a somewhat daunting undertaking. Nonetheless, we decided to
collect our own views, supported by our own research efforts over the past
12–15 years on a number of aspects of this topic, and summarize these for
the possible enlightenment they might provide (for us, our students and oth-
ers). The research results discussed below are thus necessarily filled with
a preponderance of references to our own research reports and papers. In
numerous references below (given at the conclusion of each chapter), we re-
fer to CRSC-TRXX-YY. This refers to early Technical Report versions of
manuscripts which can be found on the Center for Research in Scientific Com-
putation website at North Carolina State University where XX refers to the
year, e.g., XX = 03 is 2003, XX = 99 is 1999, while the YY refers to the
number of the report in that year. These can be found at and downloaded
from http://www.ncsu.edu/crsc/reports.html where they are listed by year.
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Chapter 1

Introduction

The terms uncertainty quantification and uncertainty propagation have
become so widely used as to almost have little meaning unless they are further
explained. Here we focus primarily on two basic types of problems:

1. Modeling and inverse problems where one assumes that a precise math-
ematical model without modeling error is available. This is a standard
assumption underlying a large segment of what is taught in many mod-
ern statistics courses with a frequentist philosophy. More precisely, a
mathematical model is given by a dynamical system

dx

dt
(t) = g(t,x(t), q) (1.1)

x(t0) = x0 (1.2)

with observation process

f (t; θ) = Cx(t; θ), (1.3)

where θ = (q,x0). The mathematical model is an n-dimensional deter-
ministic system and there is a corresponding “truth” parameter θ0 =
(q0,x00) so that in the presence of no measurement error the data can be
described exactly by the deterministic system at θ0. Thus, uncertainty
is present entirely due to some statistical model of the form

Y j = f(tj ; θ0) + Ej , j = 1, . . . , N, (1.4)

where f (tj ; θ) = Cx(tj ; θ), j = 1, . . . , N , corresponds to the observed
part of the solution of the mathematical model (1.1)–(1.2) at the jth
covariate or observation time and Ej is some type of (possibly state
dependent) measurement error. For example, we consider errors that

include those of the form Ej = f(tj ; θ0)
γ ◦ Ẽj where the operation γ◦

denotes component-wise exponentiation by γ followed by component-
wise multiplication and γ ≥ 0.

2. An alternate problem wherein the mathematical modeling itself is a
major source of uncertainty and this uncertainty usually propagates in
time. That is, the mathematical model has major uncertainties in its
form and/or its parametrization and/or its initial/boundary data, and
this uncertainty is propagated dynamically via some framework as yet
to be determined.

1



2 Modeling and Inverse Problems in the Presence of Uncertainty

Before we begin the inverse problem discussions, we give a brief but useful
review of certain basic probability and statistical concepts. After the probabil-
ity and statistics review we present a chapter summarizing both mathematical
and statistical aspects of inverse problem methodology which includes ordi-
nary, weighted and generalized least-squares formulations. We discuss asymp-
totic theories, bootstrapping and issues related to evaluation of the correctness
of the assumed form of statistical models. We follow this with a discussion
of methods for evaluating and comparing the validity of appropriateness of
a collection of models for describing a given data set, including statistically
based model selection and model comparison techniques.

In Chapter 5 we present a summary of recent results on the estimation of
probability distributions when they are embedded in complex mathematical
models and only aggregate (not individual) data are available. This is followed
by a brief chapter on optimal design (what to measure? when and where to
measure?) of experiments to be carried out in support of inverse problems for
given models.

The last two chapters focus on the uncertainty in model formulation itself
(the second item listed above as the focus of this monograph). In Chapter 7
we consider the general problem of evolution of probability density functions
in time. This is done in the context of associated processes resulting from
stochastic differential equations (SDE), which are driven by white noise, and
those resulting from random differential equations (RDE), which are driven by
colored noise. We also discuss their respective wide applications in a number
of different fields including physics and biology. We also consider the general
relationship between SDE and RDE and establish that there are classes of
problems for which there is an equivalence between the solutions of the two
formulations. This equivalence, which we term pointwise equivalence, is in
the sense that the respective probability density functions are the same at
each time t. We show, however, that the stochastic processes resulting from
the SDE and its corresponding pointwise equivalent RDE are generally not
the same in that they may have different covariance functions.

In a final chapter we consider questions related to the appropriateness of
discrete versus continuum models in transitions from small numbers of in-
dividuals (particles, populations, molecules, etc.) to large numbers. These
investigations are carried out in the context of continuous time Markov chain
(CTMC) models and the Kurtz limit theorems for approximations for large
number stochastic populations by ordinary differential equations for corre-
sponding mean populations. Algorithms for simulating CTMC models and
CTMC models with delays (discrete and random) are explained and simula-
tions are presented for problems arising in specific applications.

The monograph contains illustrative examples throughout, many of them
directly related to research projects carried out by our group at North Carolina
State University over the past decade.



Chapter 2

Probability and Statistics Overview

The theory of probability and statistics is an essential mathematical tool in
the formulation of inverse problems, in the development of subsequent analysis
and approaches to statistical hypothesis testing and model selection criteria,
and in the study of uncertainty propagation in dynamic systems. Our cover-
age of these fundamental and important topics is brief and limited in scope.
Indeed, we provide in this section a few definitions and basic concepts in the
theory of probability and statistics that are essential for the understanding of
estimators, confidence intervals, model selection criteria and stochastic pro-
cesses. For more information on the topics in this chapter, selected references
are provided at the end of these as well as subsequent chapters.

2.1 Probability and Probability Space

The set of all possible outcomes in a statistical experiment is called the
sample space and is denoted by Ω. Each element ω ∈ Ω is called a sample
point . A collection of outcomes in which we are interested is called an event ;
that is, an event is a subset of Ω. For example, consider the experiment of
rolling a six-sided die. In this case, there are six possible outcomes, and the
sample space can be represented as

Ω = {1, 2, 3, 4, 5, 6}. (2.1)

An event A might be defined as

A = {1, 5}, (2.2)

which consists of the outcomes 1 and 5. Note that we say the event A occurs
if the outcome of the experiment is in the set A. Consider another experiment
of tossing a coin three times. A sample point in this experiment indicates the
result of each toss; for example, HHT indicates that two heads and then a tail
were observed. The sample space for this experiment has eight sample points;
that is,

Ω = {HHH,HHT,HTH,THH,TTH,THT,HTT,TTT}. (2.3)

3



4 Modeling and Inverse Problems in the Presence of Uncertainty

An event A might be defined as the set of outcomes for which the first toss is
a head; that is,

A = {HHH,HHT,HTH,HTT}.
Thus, we see that the sample point could be either a numerical value or a
character value. Based on the number of sample points contained in the
sample space, the sample space can be either finite (as we illustrate above)
or infinitely countable (e.g., the number of customers to arrive in a bank) or
uncountable (e.g., the sample space for the lifetime of a bulb or the sample
space for the reaction time to a certain stimulus).

Definition 2.1.1 Let Ω be the given sample space. Then the σ-algebra F is
a collection of subsets of Ω with the following properties:

(i) The empty set ∅ is an element of F ; that is, ∅ ∈ F .

(ii) (closed under complementation): If A ∈ F , then Ac ∈ F , where Ac

denotes the complement of the event A, which consists of all sample
points in Ω that are not in A.

(iii) (closed under countable unions): If A1,A2,A3, . . . ,∈ F , then
⋃

j

Aj ∈ F .

The pair (Ω,F) is called a measurable space. A subset A of Ω is said to be a
measurable set (or event) if A ∈ F .

It is worth noting that a σ-algebra is also called a σ-field in the literature. In
addition, one can define many different σ-algebras associated with the sample
space Ω. The σ-algebra we will mainly consider is the smallest one that
contains all of the open sets in the given sample space. In other words, it
is the algebra generated by a topological space, whose definition is given as
follows.

Definition 2.1.2 A topology T on a set Ω is a collection of subsets of Ω
having the following properties:

• ∅ ∈ T and Ω ∈ T .

• (closed under finite intersection): If Ui ∈ T , i = 1, 2, . . . , l, with l being

a positive integer, then
l⋂

i=1

Ui ∈ T .

• (closed under arbitrary union): If {Uα} is an arbitrary collection of

members of T (finite, countable, uncountable), then
⋃

α

Uα ∈ T .

The pair (Ω, T ) is called a topological space. A subset U of Ω is said to be an
open set if U ∈ T . A subset A of Ω is said to be closed if Ac is an open set.
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A σ-algebra generated by all the open sets in a given sample space Ω is often
called a Borel algebra or Borel σ-algebra (denoted by B(Ω)), and the sets in
a Borel algebra are called Borel sets.

Associated with an event A ∈ F is its probability Prob{A}, which indicates
the likelihood that event A occurs. For example, in a fair experiment of rolling

a die, where one assumes that each possible sample point has probability
1

6
,

then the event A as defined by (2.2) has probability Prob{A} =
2

6
=

1

3
. The

strict definition for the probability is given as follows.

Definition 2.1.3 A probability Prob on the measurable space (Ω,F) is a set
function Prob : F → [0, 1] such that

(i) Prob{∅} = 0, Prob{Ω} = 1.

(ii) (completely additive): If A1,A2,A3, . . . , is a finite or an infinite se-

quence of disjoint subsets in F , then Prob{∪jAj} =
∑

j

Prob{Aj}.

The triplet (Ω,F ,Prob) is called a probability space.

It is worth noting that a probability is also called a probability measure or a
probability function (these names will be used interchangeably in this mono-
graph), and a probability measure defined on a Borel algebra is called a Borel
probability measure.

Using Definition 2.1.3 for probability, a number of immediate consequences
can also be derived which have important applications. For example, the
probability that an event will occur and that it will not occur always sum to
1. That is,

Prob{A}+ Prob{Ac} = 1.

In addition, if A,B ∈ F , then we have

Prob{A} ≤ Prob{B} if A ⊂ B.

It can also be found that if Aj ∈ F , j = 1, 2, . . ., then

Prob
{
∪∞
j=1Aj

}
≤

∞∑

j=1

Prob{Aj}.

If Prob{A} = 1, then we say that the event A occurs “with probability 1”
or “almost surely (a.s.).” A set A ∈ F is called a null set if Prob{A} = 0.
In addition, a probability space (Ω,F ,Prob) is said to be complete if for
any two sets A and B the following condition holds: If A ⊂ B, B ∈ F and
Prob{B} = 0, then A ∈ F . It is worth noting that any probability space can be
extended into a complete probability space (e.g., see [15, p. 10] and the ref-
erences therein). Hence, we will assume that all the probability spaces are
complete in the remainder of this monograph.
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Remark 2.1.1 We remark that we can generalize a probability space to more
general measure spaces. Specifically, a measure ν on the measurable space
(Ω,F) is a set function ν : F → [0,∞] such that ν(∅) = 0 and ν is completely
additive (that is, the second property of probability in Definition 2.1.3 holds).
The triplet (Ω,F , ν) is called a measure space. If ν(Ω) is finite, then ν is said
to be a finite measure. In particular, Prob is a normalized finite measure with
Prob(Ω) = 1. Hence, a probability possesses all the general properties of a
finite measure.

Remark 2.1.2 Let (Ω,F , ν) be a measure space. If Ω =

∞⋃

j=1

Aj and ν(Aj) is

finite for all j, then we say that ν is a σ-finite measure and (Ω,F , ν) is a σ-
finite measure space. Another measure that we will consider in this monograph
is the Lebesgue measure, which is defined on the measurable space (Rl,B(Rl))
and is given by

ν((a1, b1)× · · · × (al, bl)) =

l∏

j=1

(bj − aj),

that is, the volume of the interval (a1, b1) × · · · × (al, bl). We thus see that
the Lebesgue measure of a countable set of points is zero (that is, a countable
set of points is a null set with respect to the Lebesgue measure), and that the
Lebesgue measure of a k-dimensional plane in Rl (l > k) is also zero. We
refer the interested reader to some real analysis textbooks such as [11, 23] for
more information on a measure as well as its properties.

2.1.1 Joint Probability

Instead of considering a single experiment, let us perform two experiments
and consider their outcomes. For example, the two experiments may be two
separate tosses of a single die or a single toss of two dice. The sample space in
this case consists of 36 pairs (k, j), where k, j = 1, 2, . . . , 6. Note that in a fair

dice game, each sample point in the sample space has probability
1

36
. We now

consider the probability of joint events, such as {k = 2, j = odd}. We begin
by denoting the event of one experiment by Ak, k = 1, 2, . . . , l, and the event
of the second experiment by Bj , j = 1, 2, . . . ,m. The combined experiment
has the joint events (Ak,Bj), where k = 1, 2, . . . , l and j = 1, 2, . . . ,m.

The joint probability Prob{Ak,Bj}, also denoted by Prob{Ak ∩Bj} (which
will be occasionally used in this monograph for notational convenience) or
Prob{AkBj} in the literature, indicates the likelihood that the events Ak
and Bj occur simultaneously. By Definition 2.1.3, a number of immediate
consequences can also be derived for the joint probability. For example,
Prob{Ak,Bj} satisfies the condition 0 ≤ Prob{Ak,Bj} ≤ 1. In addition,
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if Bj for j = 1, 2, . . . ,m are mutually exclusive (i.e., Bi ∩ Bj = ∅, i 6= j) such

that
m⋃

j=1

Bj = Ω, then

m∑

j=1

Prob{Ak,Bj} = Prob{Ak}. (2.4)

Furthermore, if all the outcomes of the two experiments are mutually exclusive

such that

l⋃

k=1

Ak = Ω and

m⋃

j=1

Bj = Ω, then

l∑

k=1

m∑

j=1

Prob{Ak,Bj} = 1. The

generalization of the above concept to more than two experiments follows in
a straightforward manner.

2.1.2 Conditional Probability

Next, we consider a joint event with probability Prob{A,B}. Assuming that
event A has occurred and Prob{A} > 0, we wish to determine the probability
of the event B. This is called the conditional probability of event B given the
occurrence of event A and is given by

Prob{B|A} =
Prob{A,B}
Prob{A} . (2.5)

Definition 2.1.4 Two events, A and B, are said to be statistically indepen-
dent if and only if

Prob{A,B} = Prob{A}Prob{B}. (2.6)

Statistical independence is often simply called independence. By (2.5) and
(2.6), we see that if A and B are independent, then

Prob{B|A} = Prob{B}. (2.7)

In addition, we observe that if (2.7) holds, then by (2.5) and Definition 2.1.4
we know that A and B are independent. Thus, (2.7) can also be used as a
definition for the independence of two events.

Two very useful relationships for conditional probabilities can be given. If

Ak, k = 1, 2, . . . , l, are mutually exclusive events such that

l⋃

k=1

Ak = Ω and B

is an arbitrary event with Prob{B} > 0, then by (2.4) and (2.5) we have

Prob{B} =
l∑

j=1

Prob{Aj ,B} =
l∑

j=1

Prob{B|Aj}Prob{Aj}, (2.8)
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and

Prob{Ak|B} =
Prob{Ak,B}
Prob{B} =

Prob{B|Ak}Prob{Ak}∑l
j=1 Prob{B|Aj}Prob{Aj}

. (2.9)

Equation (2.8) is often called the law of total probability. Equation (2.9) is
known as Bayes’ formula or Bayes’ Theorem. Here Prob{Ak} is called a prior
probability of event Ak, Prob{B|Ak} is called the likelihood of B given Ak, and
Prob{Ak|B} is called a posterior probability of event Ak obtained by using
the information gained from B.

2.2 Random Variables and Their Associated Distribu-
tion Functions

In most applications of probability theory, we are not interested in the
details associated with each sample point but rather in some numerical de-
scription of the outcome of an experiment. For example, in the experiment of
tossing a coin three times, we might only be interested in the number of heads
obtained in these three tosses. In the language of probability and statistics,
the number of heads obtained in these three tosses is called a random variable.
The values of this particular random variable corresponding to each sample
point in (2.3) are given by

HHH HHT HTH THH TTH THT HTT TTT
3 2 2 2 1 1 1 0.

This implies that the range (i.e., the collection of all possible values) of this
random variable is {0, 1, 2, 3}. The strict definition of a random variable is as
follows.

Definition 2.2.1 A function X : Ω → R is said to be a random variable
defined on a measurable space (Ω,F) if for any x ∈ R we have {ω ∈ Ω :
X(ω) ≤ x} ∈ F . Such a function is said to be measurable with respect to F .
In addition, for any fixed ω ∈ Ω, X(ω) is called a realization of this random
variable.

As is usually done and also for notational convenience, we suppress the depen-
dence of the random variable on ω if no confusion occurs; that is, we denote
X(·) by X . Under this convention, the set {ω ∈ Ω : X(ω) ≤ x} is simply
written as {X ≤ x}. In addition, a realization of a random variable is simply
denoted by its corresponding lower case letter; for example, a realization of
random variable X is denoted by x. We point out that when we consider
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a sequence of random variables in this monograph, we assume that they are
defined on the same probability space.

The σ-algebra generated by the random variableX , often denoted by σ(X),
is given by

σ(X) = {A ⊂ Ω | A = X−1(B), B ∈ B(R)},
where B(R) is the Borel algebra on R. It is worth noting that this is the
smallest σ-algebra with respect to which X is measurable. This means that
if X is F -measurable, then σ(X) ⊂ F .

Remark 2.2.1 The concept of a random variable can be generalized so that
its range can be some complicated space rather than R. Let (Ω,F ,Prob) be a
probability space, and (S,S ) be a measurable space. A function X : Ω → S

is said to be a random element if for any B ∈ S we have {ω ∈ Ω : X(ω) ∈
B} ∈ F . Specifically, if S = Rm, then we say that random element X is an
m-dimensional random vector.

2.2.1 Cumulative Distribution Function

For any random variable, there is an associated function called a cumulative
distribution function, which is defined as follows.

Definition 2.2.2 The cumulative distribution function (CDF) of random
variable X is the function P : R → [0, 1] defined by

P (x) = Prob{X ≤ x}, x ∈ R. (2.10)

The cumulative distribution function is sometimes simply called the distribu-
tion function. It has the following properties (inherited from the probability
measure):

(i) P is a right continuous function of x; that is, lim
∆x→0+

P (x+∆x) = P (x).

(ii) P is a non-decreasing function of x; that is, if x1 ≤ x2, then P (x1) ≤
P (x2).

(iii) P (−∞) = 0, P (∞) = 1.

The last two properties imply that the cumulative distribution function P has
bounded variation, where the variation of a function is defined as follows.

Definition 2.2.3 The m-variation of a real-valued function h on the interval
[x, x̄] ⊂ R is defined as

[h](m)([x, x̄]) = sup

l−1∑

j=0

|h(xlj+1)− h(xlj)|m, (2.11)
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where the supremum is taken over all partitions {xlj}lj=0 of [x, x̄]. For the
case m = 1 it is simply called variation (it is also called total variation in
the literature), and for the case m = 2 it is called quadratic variation. If
[h](m)([x, x̄]) is finite, then we say that h has bounded (or finite) m-variation
on the given interval [x, x̄].

If h is a function of x ∈ R, then h is said to have finite m-variation if
[h](m)([x, x̄]) is finite for any given x and x̄. In addition, h is said to have
bounded m-variation if there exists a constant ch such that [h](m)([x, x̄]) < ch
for any x and x̄, where ch is independent of x and x̄.

The properties of the cumulative distribution function also imply that P
has derivatives almost everywhere with respect to the Lebesgue measure (that
is, the set of points at which P is not differentiable is a null set with respect
to the Lebesgue measure), but it should be noted that P does not have to
be equal to the integral of its derivative. These properties also imply that
the cumulative distribution function can only have jump discontinuities and
it has at most countably many jumps. Thus, we see that the cumulative
distribution function could be a step function (illustrated in the upper left
panel of Figure 2.1), a continuous function (illustrated in the upper right panel
of Figure 2.1) or a function with a mixture of continuous pieces and jumps
(illustrated in the bottom plots of Figure 2.1). The last type of cumulative
distribution function could result from a convex combination of the first two
types of cumulative distribution functions. In fact, this is how we obtained
the cumulative distribution functions demonstrated in the bottom plots of
Figure 2.1. Specifically, let Pj be the cumulative distribution function of
some random variable, j = 1, 2, . . . ,m, and ̟j , j = 1, 2, . . . ,m, be some non-

negative numbers such that

m∑

j=1

̟j = 1. Then we easily see that

m∑

j=1

̟jPj

is also a cumulative distribution function. This type of distribution is often
called a mixture distribution.

Remark 2.2.2 It is worth noting that there are many different ways found
in the literature to define the continuity of a random variable. One is based
on the range of the random variable. In this case, a discrete random variable
is one with its range consisting of a countable subset in R with either a finite
or infinite number of elements. For example, the random variable defined in
the experiment of tossing a coin three times is a discrete random variable. A
continuous random variable is one that takes values in a continuous interval.
For example, the random variable defined in the experiment for recording the
reaction time to a certain stimulus is a continuous random variable.

Another way to define the continuity of random variables is based on the
continuity of the cumulative distribution function for a random variable.
Specifically, if the cumulative distribution function is continuous (as illus-
trated in the upper right panel of Figure 2.1), then the associated random
variable is said to be continuous. If the cumulative distribution function is a
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FIGURE 2.1: Cumulative distribution function: (upper left) a step func-
tion P1, (upper right) a continuous function P2, (lower left) 0.7P1 + 0.3P2,
(lower right) 0.4P1 + 0.6P2.

step function (as illustrated in the upper left panel of Figure 2.1), then the
associated random variable is said to be discrete. We see that the discrete
random variable defined here is equivalent to that in the first case (as the
cumulative distribution function has at most countably many jumps). How-
ever, the continuous random variable defined here is more restrictive than
that in the first case where the cumulative distribution function of a continu-
ous random variable may be either a continuous function or a function with a
mixture of continuous pieces and jumps (as illustrated in the bottom plots of
Figure 2.1).

The last way to define the continuity of random variables is based on whether
or not a random variable has an associated probability density function (dis-
cussed blow); specifically, a random variable is said to be continuous if there
is a probability density function associated with it. As we shall see below, this
definition is even stronger than the second one. In this monograph, we define
a random variable to be discrete or continuous based on its range. However,
the continuous random variables we will mainly consider in this monograph
are those with associated probability density functions.
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2.2.2 Probability Mass Function

Any discrete random variable has an associated probability mass function.
Without loss of generality, we assume the range of discrete random variable
X is {xj}. Then the probability mass function of X is defined by

Φ(xj) = Prob{X = xj}, j = 1, 2, 3, . . . . (2.12)

Hence, we see that the value of the probability mass function at xj is the
probability associated with xj , j = 1, 2, 3, . . .. In addition, by the definition
of probability we know that

∑

j

Φ(xj) = 1.

For example, the probability mass function of the discrete random variable
defined in the experiment of tossing a coin three times is

Φ(0) =
1

8
, Φ(1) =

3

8
, Φ(2) =

3

8
, Φ(3) =

1

8
. (2.13)

The relationship between the probability mass function and the cumulative
distribution function is given by

P (x) =
∑

{j: xj≤x}
Φ(xj), Φ(xj) = P (xj)− lim

x→xj−
P (x).

In such a case, the cumulative distribution function is a step function, and
it is said to be discrete. Figure 2.2 illustrates the probability mass function
(2.13) of the discrete random variable defined in the experiment of tossing a
coin three times as well as the corresponding cumulative distribution function.
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FIGURE 2.2: (left) The probability mass function of the discrete random
variable defined in the experiment of tossing a coin three times; (right) the
corresponding cumulative distribution function.



Probability and Statistics Overview 13

2.2.3 Probability Density Function

If the derivative p of the cumulative distribution function P exists for almost
all x, and for all x

P (x) =

∫ x

−∞
p(ξ)dξ,

then p is called the probability density function. It should be noted that a
necessary and sufficient condition for a cumulative distribution function to
have an associated probability density function is that P is absolutely con-
tinuous in the sense that for any positive number ǫ, there exists a positive
number cl such that for any finite collection of disjoint intervals (xj , yj) ⊂ R

satisfying
∑

j

|yj − xj | < cl then
∑

j

|P (yj) − P (xj)| < ǫ. Thus, we see that

the requirement for absolute continuity is much stronger than that for conti-
nuity. This implies that there are cases in which the cumulative distribution
function is continuous but not absolutely continuous. An example is the Can-
tor distribution (also called the Cantor–Lebesgue distribution; e.g., see [10,
p. 169] or [17, p. 38]), where the cumulative distribution function P is a
constant between the points of the Cantor set (which is an uncountable set
in R that has Lebesgue measure zero). Such a distribution is often called
a singular continuous distribution (the derivative of its corresponding cumu-
lative distribution function is zero almost everywhere), and the associated
random variable is often termed a singular continuous random variable. This
type of distribution is rarely encountered in practice. Based on Lebesgue’s
decomposition theorem, any cumulative distribution function can be written
as a convex combination of a discrete, an absolutely continuous and a singular
continuous cumulative distribution function. We refer the interested reader
to [2, Section 31] for more information on this topic.

The name “density function” comes from the fact that the probability of
the event x1 ≤ X ≤ x2 is given by

Prob{x1 ≤ X ≤ x2} = Prob{X ≤ x2} − Prob{X ≤ x1}
= P (x2)− P (x1)

=

∫ x2

x1

p(x) dx.

(2.14)

In addition, the probability density function p satisfies the following proper-
ties:

p(x) ≥ 0,

∫ ∞

−∞
p(x) dx = P (∞)− P (−∞) = 1.

Figure 2.3 illustrates the probability density function p (shown in the left
panel) of a continuous random variable X and the corresponding cumulative
distribution function P (shown in the right panel). By (2.14) we know that
the shaded area under the probability density function between x = 0 and
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FIGURE 2.3: (left) Probability density function of a continuous random
variable; (right) the corresponding cumulative distribution function.

x = 3 is equal to the probability that the value of X is between 0 and 3,
and is also equal to P (3)−P (0) (where the points (0, P (0)) and (3, P (3)) are
indicated by the circles in the right panel of Figure 2.3).

For a discrete random variable, the corresponding probability density func-
tion does not exist in the ordinary sense. But it can be constructed in the
general sense (a generalized function sense, sometimes called a “distributional
sense”) with the help of Dirac delta “functions” [26]. Specifically, for a dis-
crete random variable X with range {xj}, its probability density function can
be written as

p(x) =
∑

j

Φ(xj)δ(x− xj), (2.15)

where δ is the Dirac delta “function,” that is, δ(x − xj) =

{
0 if x 6= xj
∞ if x = xj

with the property that

∫ ∞

−∞
h(x)δ(x − xj)dx = h(xj). This construction has

many advantages; for example, as we shall see later, it can put the definition
of moments in the same framework for a discrete random variable and for a
continuous random variable with a probability density function.

2.2.4 Equivalence of Two Random Variables

One can define the equivalence between two random variables in several
senses.

Definition 2.2.4 Two random variables are said to be equal in distribution
(or identically distributed) if their associated cumulative distribution functions
are equal.
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Definition 2.2.5 Two random variables X and Y are said to be equal almost
surely if Prob{X = Y } = 1.

It is worth noting that two random variables that are equal almost surely are
equal in distribution. However, the fact that two random variables are equal
in distribution does not necessarily imply that they are equal almost surely.
For example, in the experiment of tossing a fair coin three times, if we define
X as the number of heads obtained in three tosses and Y as the number of
tails observed in three tosses, then it can easily be seen that X and Y have the
same probability mass function and hence are equal in distribution. However,
X(ω) 6= Y (ω) for any ω ∈ Ω, where Ω is defined in (2.3).

2.2.5 Joint Distribution Function and Marginal Distribution
Function

The definition of cumulative distribution and probability density functions
can be extended from one random variable to two or more random variables.
In this case, the cumulative distribution function is often called the joint
cumulative distribution function or simply the joint distribution function, and
the probability density function is often called the joint probability density
function. For example, the joint distribution function of two random variables
X and Y is defined as

P (x, y) = Prob{X ≤ x, Y ≤ y}. (2.16)

Similar to the one-dimensional case, the joint distribution function P is non-
negative, non-decreasing and right continuous with respect to each variable.
In addition,

P (−∞,−∞) = 0, P (x,−∞) = 0, P (−∞, y) = 0,
P (∞,∞) = 1, P (x,∞) = PX(x), P (∞, y) = PY (y).

(2.17)

Here PX and PY are, respectively, the cumulative distribution functions of X
and Y , and the subscript in PX (PY ) is used to emphasize that it is the cumu-
lative distribution function of X (Y ). (It should be noted that the subscript
in the cumulative distribution function is always suppressed if no confusion
occurs. Otherwise, we index a distribution function by the random variable
it refers to.) In the context of two or more random variables, each random
variable is often called a marginal variable, and the cumulative distribution
function of each random variable is often called a marginal distribution func-
tion.

The corresponding joint probability density function ofX and Y , if it exists,
is defined as

p(x, y) =
∂2

∂x∂y
P (x, y). (2.18)
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Similar to the one-dimensional case, the joint probability density function of
X and Y is non-negative and

Prob{x1 ≤ X ≤ x2, y1 ≤ Y ≤ y2} =

∫ y2

y1

∫ x2

x1

p(x, y)dxdy,

∫

R2

p(x, y)dxdy = 1.

(2.19)

By (2.17) and (2.19), we see that the probability density function of X can
be derived from the joint probability density function of X and Y , and is
given as

pX(x) =

∫ ∞

−∞
p(x, y)dy, (2.20)

where the subscript X in pX is used to emphasize that this is the probability
density function ofX . (It should be noted that the subscript in the probability
density function is always suppressed if no confusion occurs. Otherwise, we
index a probability density function by the random variable it refers to.)
Again, in the context of two or more random variables, the probability density
function of each random variable is called the marginal probability density
function (or simply the marginal density function). Similarly, the probability
density function of Y can be derived from the joint probability density function
of X and Y ,

pY (y) =

∫ ∞

−∞
p(x, y)dx. (2.21)

Again the subscript Y in pY is used to emphasize that it is the probability
density function of Y . Thus, by (2.20) and (2.21) we see that the probabil-
ity density function of each random variable can be derived from the joint
probability density function of X and Y by integrating across the other vari-
able. However, the converse is usually not true; that is, the joint probability
density function usually cannot be derived based on the associated marginal
probability density functions.

In general, the joint cumulative distribution function ofm random variables
X1, X2, . . . , Xm is defined as

P (x1, x2, . . . , xm) = Prob{X1 ≤ x1, X2 ≤ x2, . . . , Xm ≤ xm}, (2.22)

and the corresponding joint probability density function of X1, X2, . . . , Xm,
if it exists, is defined by

p(x1, x2, . . . , xm) =
∂m

∂x1∂x2 . . . ∂xm
P (x1, x2, . . . , xm). (2.23)

We can view these m random variables X1, X2, . . . , Xm as the components
of an m-dimensional random vector (i.e., X = (X1, X2, . . . , Xm)T ). Hence,
(2.22) and (2.23) can be respectively viewed as the cumulative distribution
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function and probability density function of the random vector X. In this
case, we write these functions more compactly as P (x) and p(x) with x =
(x1, x2, . . . , xm)T .

Similar to the two-dimensional case, for any j ∈ {1, 2, . . . ,m}, the proba-
bility density function of Xj can be derived from the joint probability density
function of X1, X2, . . . , Xm by integrating with respect to all the other m− 1
variables. For example, the probability density function of X2 is given by

pX2(x2) =

∫

Rm−1

p(x1, x2, . . . , xm)dx1dx3dx4 · · · dxm. (2.24)

Similarly, the joint probability density function of any two or more random
variables in the set of {Xj}mj=1 can be derived from the joint probability
density function of X1, X2, . . . , Xm by integrating with respect to all the rest
of the variables. For example, the joint probability density function of X1 and
X2 is

pX1X2(x1, x2) =

∫

Rm−2

p(x1, x2, . . . , xm)dx3dx4 · · ·dxm.

Here the subscript X1X2 in pX1X2 is used to emphasize that it is the joint
probability density function of X1 and X2. Again, the (joint) probability
density function of any subset of random variables in the set of {Xj}mj=1 is
often called the marginal probability density function.

2.2.6 Conditional Distribution Function

The conditional distribution function of X given Y = y is defined by

PX|Y (x|y) = Prob{X ≤ x|Y = y}. (2.25)

Then in analogy to (2.5), we have that

PX|Y (x|y) =
∫ x
−∞ pXY (ξ, y)dξ

pY (y)
. (2.26)

Here pXY is the joint probability density function of X and Y , and pY is the
probability density function of Y . The corresponding conditional probability
density function (or simply conditional density function) of X given Y = y,
if it exists, is

ρX|Y (x|y) =
d

dx
PX|Y (x|y) =

pXY (x, y)

pY (y)
. (2.27)

By (2.27) we see that

pXY (x, y) = ρX|Y (x|y)pY (y). (2.28)

Definition 2.2.6 Two random variables X and Y are said to be indepen-
dent if the conditional distribution of X given Y is equal to the unconditional
distribution of X.
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Definition 2.2.6 implies that if X and Y are independent, then we have
ρX|Y (x|y) = pX(x). Hence, by (2.28), we obtain

pXY (x, y) = pX(x)pY (y), (2.29)

which is also used as a definition for the independence of two random variables.
Thus, we see that if two random variables are independent, then the joint
probability density function can be determined by the marginal probability
density functions. It should be noted that the definition for the independence
of two general (either discrete or continuous) random variables is based on
the independence of two events, and is given as follows.

Definition 2.2.7 Two random variables X and Y are said to be independent
if the σ-algebras they generate, σ(X) and σ(Y ), are independent (that is, for
any A ∈ σ(X) and for any B ∈ σ(Y ), events A and B are independent).

The above definition implies that if X and Y are independent, then their joint
distribution function is given by the product of their marginal distribution
functions; that is,

PXY (x, y) = PX(x)PY (y), (2.30)

which is also used as a general definition for the independence of two random
variables.

In general, for any positive integer k ≥ 2, the conditional distribution func-
tion of Xk given X1 = x1, . . . , Xk−1 = xk−1 is

PXk|Xk−1,··· ,X1
(xk|xk−1, · · · , x1)

= Prob{Xk ≤ xk|Xk−1 = xk−1, · · · , X1 = x1}

=

∫ xk

−∞ pX1,...,Xk
(x1, . . . , xk−1, ξ)dξ

pX1,...,Xk−1
(x1, . . . , xk−1)

.

(2.31)

Here pX1,...,Xk−1
is the joint probability density function of X1, . . . , Xk−1,

and pX1,...,Xk
is the joint probability density function of X1, . . . , Xk. The

corresponding conditional density function of Xk given X1 = x1, . . . , Xk−1 =
xk−1 is

ρXk|Xk−1,··· ,X1
(xk|xk−1, · · · , x1)

=
d

dxk
PXk|Xk−1,··· ,X1

(xk|xk−1, · · · , x1)

=
pX1,...,Xk

(x1, . . . , xk)

pX1,...,Xk−1
(x1, . . . , xk−1)

,

(2.32)

which implies that

pX1,...,Xk
(x1, . . . , xk)

= ρXk|Xk−1,··· ,X1
(xk|xk−1, · · · , x1)pX1,...,Xk−1

(x1, . . . , xk−1).
(2.33)
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Hence, by (2.27) and the above equation we see that the joint probability
density function pX1,...,Xm

of any m random variables X1, X2, . . . , Xm can be
written as

pX1,...,Xm
(x1, x2, . . . , xm)

= pX1(x1)ρX2|X1
(x2|x1)ρX3|X2,X1

(x3|x2, x1)

· · · ρXm|Xm−1,··· ,X1
(xm|xm−1, · · · , x1).

(2.34)

The concept of the independence of two random variables can be extended to
the case of a sequence of random variables, and it is given as follows.

Definition 2.2.8 Random variables X1, X2, . . . , Xm are said to be mutually
independent if

pX1,...,Xm
(x1, x2, . . . , xm) =

m∏

j=1

pXj
(xj), (2.35)

where pX1,...,Xm
is the joint probability density function of m random vari-

ables X1, X2, . . . , Xm, and pXj
is the probability density function of Xj, j =

1, 2, . . . ,m.

In general, the conditional probability density function of a subset of the co-
ordinates of (X1, X2, . . . , Xm) given the values of the remaining coordinates is
obtained by dividing the joint probability density function of (X1, X2, . . . , Xm)
by the marginal probability density function of the remaining coordinates. For
example, the conditional probability density function of (Xk+1, . . . , Xm) given
X1 = x1, . . . , Xk = xk (where k is a positive integer such that 1 < k < m) is
defined as

ρXk+1,...,Xm|X1,...,Xk
(xk+1, . . . , xm | x1, . . . , xk) =

pX1,...,Xm
(x1, . . . , xm)

pX1,...,Xk
(x1, . . . , xk)

,

(2.36)
where pX1,...,Xk

is the joint probability density function of X1, . . . , Xk, and
pX1,...,Xm

is the joint probability density function of X1, . . . , Xm. The concept
of mutually independent random variables can also be extended to that of
mutually independent random vectors. The definition is given as follows.

Definition 2.2.9 Random vectors X1,X2, . . . ,Xm are said to be mutually
independent if

pX1,...,Xm
(x1,x2, . . . ,xm) =

m∏

j=1

pXj
(xj), (2.37)

where pX1,...,Xm
is the joint probability density function of m random vec-

tors X1,X2, . . . ,Xm, and pXj
is the probability density function of Xj, j =

1, 2, . . . ,m.
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2.2.7 Function of a Random Variable

Let X be a random variable with cumulative distribution function PX and
probability density function pX . Then by Definition 2.2.1 we know that for any
measurable function η : R → R, the composite function η(X) is measurable
and indeed is a random variable. Let Y = η(X). Then the cumulative
distribution function of Y is

PY (y) = Prob{η(X) ≤ y}. (2.38)

If we assume that η is a monotone function, then by (2.38) we have

PY (y) =

{
Prob{X ≤ η−1(y)} = PX(η−1(y)), η is increasing

Prob{X ≥ η−1(y)} = 1− PX(η−1(y)), η is decreasing.
(2.39)

If we further assume that η−1 is differentiable, then differentiating both sides
of (2.39) yields the probability density function of Y

pY (y) = pX(η−1(y))

∣∣∣∣
dη−1(y)

dy

∣∣∣∣ . (2.40)

In general, we consider anm-dimensional random vectorX with probability
density function pX. LetY = η(X) with η = (η1, η2, . . . , ηm)T and ηj : R

m →
R be a measurable function for all j. Assume that η has a unique inverse η−1.
Then the probability density function of the m-dimensional random vector Y
is given by

pY(y) = pX(η−1(y))|J |, (2.41)

where J is the determinant of the Jacobian matrix
∂x

∂y
with its (j, k)th element

being
∂xj
∂yk

.

In the following, whenever we talk about transformation of a random vari-
able or random vector, we always assume that the transformation is measur-
able so that the resulting function is also a random variable. The following
theorem is about the transformation of two independent random variables.

Theorem 2.2.3 Let X and Z be independent random variables, ηX be a func-
tion only of x and ηZ be a function only of z. Then the random variables
U = ηX(X) and V = ηZ(Z) are independent.

The above theorem is very important in theory, and it can be generalized as
follows.

Theorem 2.2.4 Let X1,X2, . . . ,Xm be mutually independent random vec-
tors, and ηj be a function only of xj , j = 1, 2, . . . ,m. Then random variables
Uj = ηj(Xj), j = 1, 2, . . . ,m, are mutually independent.



Probability and Statistics Overview 21

2.3 Statistical Averages of Random Variables

The concepts of moments of a single random variable and the joint moments
between any pair of random variables in a multi-dimensional set of random
variables are of particular importance in practice. We begin the discussion
of these statistical averages by considering first a single random variable X
and its cumulative distribution function P . The expectation (also called an
expected value or mean) of the random variable X is defined by

E(X) =

∫ ∞

−∞
xdP (x). (2.42)

Here E(·) is called the expectation operator (or statistical averaging operator),
and the integral on the right side is interpreted as a Riemann–Stieltjes inte-
gral. We remark that the Riemann–Stieltjes integral is a generalization of the
Riemann integral and its definition is given as follows.

Definition 2.3.1 Let ϕ and h be real-valued functions defined on [x, x̄] ⊂ R,
{xlj}lj=0 be a partition of [x, x̄], ∆l = max

0≤j≤l−1
{xlj+1 − xlj}, and slj ∈ [xlj , x

l
j+1]

denote intermediate points of the partition. Then ϕ is said to be Riemann–
Stieltjes integrable with respect to h on [x, x̄] if

lim
l→∞
∆l→0

l−1∑

j=0

ϕ(slj)[h(x
l
j+1)− h(xlj)] (2.43)

exists and the limit is independent of the choice of the partition and their in-
termediate points. The limit of (2.43) is called the Riemann–Stieltjes integral

of ϕ with respect to h on [x, x̄], and is denoted by

∫ x̄

x

ϕ(x)dh(x); that is,

∫ x̄

x

ϕ(x)dh(x) = lim
l→∞
∆l→0

l−1∑

j=0

ϕ(slj)[h(x
l
j+1)− h(xlj)],

where ϕ and h are called the integrand and the integrator, respectively.

It is worth noting that the Riemann–Stieltjes integral

∫ x̄

x

ϕ(x)dh(x) does not

exist for all continuous functions ϕ on [x, x̄] unless h has bounded variation.
This is why (2.42) can be interpreted as a Riemann–Stieltjes integral (as P has

bounded variation). In general, the Riemann–Stieltjes integral

∫ x̄

x

ϕ(x)dh(x)

exists if the following conditions are satisfied:
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• The functions ϕ and h have no discontinuities at the same point x ∈
[x, x̄].

• The function ϕ has bounded κϕ-variation on [x, x̄] and the function h
has bounded κh-variation on [x, x̄], where κϕ and κh are some positive

constants such that
1

κϕ
+

1

κh
> 1.

We refer the interested reader to [18, Section 2.1], [21], and the references
therein for more information on Riemann–Stieltjes integrals.

If we assume that P is absolutely continuous (that is, the corresponding
probability density function p exists), then we can rewrite (2.42) as

E(X) =

∫ ∞

−∞
xp(x) dx. (2.44)

We note from (2.12) and (2.15) that if X is a discrete random variable with
range {xj}, then the expectation of X is given by

E(X) =
∑

j

xjProb{X = xj}.

Thus, we see that with the help of the Dirac delta function one can put the
definition of expectation in the same framework for a discrete random variable
and for a continuous random variable with a probability density function (as
we stated earlier). Since we are mainly interested in discrete random variables
and those continuous random variables associated with probability density
functions, we will define the statistical average of a random variable in terms
of its probability density function in the following presentation.

The expectation of a random variable is also called the first moment. In
general, the kth moment of a random variable X is defined as

E(Xk) =

∫ ∞

−∞
xkp(x) dx.

We can also define the central moments, which are the moments of the dif-
ference between X and E(X). For example, the kth central moment of X is
defined by

E
(
(X − E(X))k

)
.

Of particular importance is the second central moment, called the variance
of X , which is defined as

σ2 = Var(X) = E
(
(X − E(X))2

)
=

∫ ∞

−∞
(x− E(X))2p(x) dx. (2.45)

The square root σ of the variance of X is called the standard deviation of X .
Variance is a measure of the “randomness” of the random variable X . It is
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related to the first and second moments through the relationship

Var(X) = E
(
(X − E(X))2

)

= E
(
X2 − 2XE(X) + (E(X))2

)

= E(X2)− (E(X))2.

(2.46)

One of the useful concepts in understanding the variation of a random
variable X is the coefficient of variation (CV), which is defined as the ratio of

the standard deviation to the mean (that is, CV =
√
Var(X)/E(X)). It is the

inverse of the so-called signal-to-noise ratio. A random variable with CV < 1
is considered to have low variation, while one with CV > 1 is considered to
have high variation.

Note that the moments of a function of a random variable, Y = η(X), can
be defined in the same way as above. For example, the kth moment of Y is

E(Y k) =

∫

Ωy

ykpY (y)dy, (2.47)

where Ωy denotes the range of Y , and pY is the probability density function
of Y . However, due to the relation (2.40) between pY and the probability
density function pX of X , we can also calculate the kth moment of Y by

E(Y k) = E{ηk(X)} =

∫ ∞

−∞
ηk(x)pX(x)dx. (2.48)

For any real numbers a and b, by (2.48) we observe that

E(aX + b) = aE(X) + b, Var(aX + b) = a2Var(X). (2.49)

Remark 2.3.1 We remark that the infinite sequence of moments is in general
not enough to uniquely determine a distribution function. Interested readers
can refer to [7, Section 2.3] for a counterexample of two random variables
having the same moments but different probability density functions. However,
if two random variables have bounded support, then an infinite sequence of
moments does uniquely determine the distribution function.

2.3.1 Joint Moments

The definition of moments and central moments can be extended from one
random variable to two or more random variables. In this context, the mo-
ments are often called joint moments, and central moments are often called
joint central moments. For example, the joint moment of two random vari-
ables X and Y is defined as

E(XkxY ky ) =

∫

R2

xkxykyp(x, y)dxdy, (2.50)
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where kx and ky are positive integers, and p is the joint probability density
function of X and Y . The joint central moment of X and Y is given by

E
(
(X − E(X))kx(Y − E(Y ))ky

)
. (2.51)

However, the joint moment that is most useful in practical applications is the
correlation of two random variables X and Y , defined as

Cor{X,Y } = E(XY ) =

∫

R2

xyp(x, y)dxdy, (2.52)

which implies that the second moment of X is the correlation of X with itself.
Also of particular importance is the covariance of two random variables X
and Y , defined as

Cov{X,Y } = E ((X − E(X))(Y − E(Y ))) = E(XY )− E(X)E(Y ), (2.53)

which indicates that the variance of X is the covariance of X with itself. It is
worth noting that the correlation of two random variables should not be con-
fused with the correlation coefficient, r, which is defined as the covariance of
the two random variables divided by the product of their standard deviations.

r =
Cov{X,Y }√
Var(X)Var(Y )

.

By (2.52) and (2.53) we see that both correlation and covariance are sym-
metric. That is,

Cor{X,Y } = Cor{Y,X}, Cov{X,Y } = Cov{Y,X}.
Moreover, they are both linear in each variable. That is, for any real numbers
a and b we have

Cor{aX + bY, Z} = aCor{X,Z}+ bCor{Y, Z},
Cor{Z, aX + bY } = aCor{Z,X}+ bCor{Z, Y },
Cov{aX + bY, Z} = aCov{X,Z}+ bCov{Y, Z},
Cov{Z, aX + bY } = aCov{Z,X}+ bCov{Z, Y }.

By the above equations, we find that the variance of aX + bY is given by

Var(aX + bY ) = a2Var(X) + 2abCov{X,Y }+ b2Var(Y ).

Definition 2.3.2 Two random variables X and Y are called uncorrelated if
Cov{X,Y } = 0.

By the above definition and (2.53) we see that if

E(XY ) = E(X)E(Y ), (2.54)

then X and Y are uncorrelated. We observe from (2.29) that if X and Y
are independent, then (2.54) also holds. Therefore, the independence of two
random variables implies that these two random variables are uncorrelated.
However, in general the converse is not true.
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2.3.2 Conditional Moments

The kth conditional moment of X given Y = y is

E(Xk|Y = y) =

∫ ∞

−∞
xkρX|Y (x|y)dx. (2.55)

This implies that if random variables X and Y are independent (that is,
ρX|Y (x|y) = pX(x)), then

E(Xk|Y = y) = E(Xk).

The first conditional moment of X given Y = y is called the conditional
expectation of X given Y = y.

Observe that E(X |Y = y) is a function of y. Hence, E(X |Y ) is a random
variable, which is called the conditional expectation of X given Y . By (2.20),
(2.27) and (2.55) we find

E (E(X |Y )) =

∫ ∞

−∞
pY (y)

(∫ ∞

−∞
xρX|Y (x|y)dx

)
dy

=

∫ ∞

−∞
pY (y)

(∫ ∞

−∞
x
pXY (x, y)

pY (y)
dx

)
dy

=

∫ ∞

−∞
x

(∫ ∞

−∞
pXY (x, y)dy

)
dx

=

∫ ∞

−∞
xpX(x)dx

= E(X),

which indicates that the expected value of the conditional expectation of X
given Y is the same as the expected value of X . This formula is often called
the law of total expectation. Similarly, we can show that for any positive
integer k we have

E
(
E(Xk|Y )

)
= E(Xk). (2.56)

The conditional variance of X given Y is defined as

Var(X |Y ) = E
(
(X − E(X |Y ))2|Y

)
= E(X2|Y )− (E(X |Y ))

2
. (2.57)

By (2.46), (2.56) and (2.57), we find that the unconditional variance is related
to the conditional variance by

Var(X) = E (Var(X |Y )) + Var (E(X |Y )) , (2.58)

which indicates that the unconditional variance is equal to the sum of the mean
of the conditional variance and the variance of the conditional mean. Equation
(2.58) is often called the law of total variance, variance decomposition formula
or conditional variance formula.
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2.3.3 Statistical Averages of Random Vectors

For an m-dimensional random vector X = (X1, . . . , Xm)T , its mean vector
and covariance matrix are of particular importance. Specifically, the mean
vector of X is given by

µ = E(X) = (E(X1), . . . ,E(Xm))
T
,

and its covariance matrix is defined by

Σ = Var(X) = E{(X− µ)(X− µ)T }. (2.59)

Hence, we see that Σ ∈ Rm×m is a non-negative definite matrix with its
(k, j)th element being the covariance of random variables Xk and Xj:

Cov{Xk, Xj} = E ((Xk − E(Xk))(Xj − E(Xj)))

=

∫

R2

(xk − E(Xk))(xj − E(Xj))pXkXj
(xk, xj) dxkdxj ,

where pXkXj
is the joint probability density function of Xk and Xj . For any

A ∈ Rl×m and a ∈ Rl, it can be easily shown that

E(AX+ a) = AE(X) + a, Var(AX + a) = AVar(X)AT . (2.60)

Similarly, we can extend the covariance of two random variables to the cross-
covariance matrix between two random vectors. Let X = (X1, X2, . . . , Xmx

)T

and Y = (Y1, Y2, . . . , Ymy
)T , where mx and my are positive integers. Then

the cross-covariance matrix between X and Y is

Cov{X,Y} = E
(
(X− E(X))(Y − E(Y))T

)

= E(XYT )− E(X)(E(Y))T ,
(2.61)

which implies that Var(X) = Cov{X,X}. By (2.60) it can be easily shown
that for any matrix A ∈ Rκx×mx and B ∈ Rκy×my (κx and κy are positive
integers) we have

Cov{AX,BY} = ACov{X,Y}BT . (2.62)

The concept of uncorrelatedness of two random variables can also be extended
to two random vectors. Specifically, two random vectors X and Y are called
uncorrelated if Cov{X,Y} = 0.

2.3.4 Important Inequalities

In this section, we list a few important inequalities that will be used in this
monograph.


