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Filling the need for an introductory book on linear programming that discusses 
the important ways to mitigate parameter uncertainty, Introduction to Linear
Optimization and Extensions with MATLAB® provides a concrete and intuitive 
yet rigorous introduction to modern linear optimization. In addition to fundamen-
tal topics, the book discusses current linear optimization technologies such as 
predictor-path following interior point methods for both linear and quadratic optimi-
zation as well as the inclusion of linear optimization of uncertainty, i.e., stochastic 
programming with recourse and robust optimization. 

The author introduces both stochastic programming and robust optimization as 
frameworks to deal with parameter uncertainty. The author’s unusual approach—
developing these topics in an introductory book—highlights their importance. 
Since most applications require decisions to be made in the face of uncertainty, 
the early introduction of these topics facilitates decision making in real world en-
vironments. The author also includes applications and case studies from finance 
and supply chain management that involve the use of MATLAB.

Even though there are several LP texts in the marketplace, most do not cover data 
uncertainty using stochastic programming and robust optimization techniques. 
Most emphasize the use of MS Excel, while this book uses MATLAB which is 
the primary tool of many engineers, including financial engineers. The book 
focuses on state-of-the-art methods for dealing with parameter uncertainty in 
linear programming, rigorously developing theory and methods. But more impor-
tantly, the author’s meticulous attention to developing intuition before presenting 
theory makes the material come alive. 
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Preface

This book is an outgrowth of lecture notes used for teaching linear program-
ming to graduate students at the University of Toronto (U of T). There have
been hundreds of graduate students over the last decade from various parts of
the U of T that have taken my courses, most notably from industrial engineer-
ing/operations research, electrical, civil, mechanical, and chemical engineer-
ing. This group also includes students in the Masters of Mathematical Finance
(MMF) Program at the U of T, where I have been teaching a special course in
operations research for which the bulk of topics relate to linear and quadratic
programming with applications in finance, e.g., portfolio optimization.

Providing concrete examples and illustrations before more general theory
seems to work well for most students, and this book aims to take that path.
In fact, the book can be used without the need to go through all of the
proofs in the book. Students that plan on specializing in optimization would
be encouraged to understand all proofs in the book as well as tackle the more
theory-oriented exercises. Thus, the material in this book is designed to be of
interest and to be accessible to a wide range of people who may be interested in
the serious study of linear optimization. This book may be of special interest
to those that are interested in financial optimization and logistics and supply
chain management. Many of the students regard the computational aspects
as an essential learning experience. This has been reflected in this book in
that MATLAB R© is integrated along with the learning of the conceptual and
theoretical aspects of the material.

A unique feature of this book is the inclusion of material concerning linear
programming under uncertainty. Both stochastic programming and robust op-
timization are introduced as frameworks to deal with parameter uncertainty.
It is novel to develop these topics in an introductory book on linear optimiza-
tion, and important, as most applications require decisions to be made in the
face of uncertainty and therefore these topics should be introduced as early
as possible.

Furthermore, this book is not encyclopedic and is intended to be used in
a one-semester course. The main topics were chosen based on a set of core
topics that would be needed as well as additional topics that round out and
illustrate the modern development of linear optimization and extensions. For
example, this book discusses interior point methods but only develops primal-
dual path-following methods and not the myriad other interior point methods
for linear programming. To this end, we chose the primal-dual path-following
method based on its good theoretical and practical properties and yet at the

vii
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same time illustrates the key issues involved in designing any interior point
method.

This book avoids the use of tableaus in the development of the simplex
method. Tableaus have been a mainstay for most presentations of the simplex
method-based algorithms for linear programming. However, this books takes
the view that the underlying geometry of linear programming is such that the
algorithms (not just the simplex method) have a natural geometrical analog
in the matrix algebra representation version, which is lost in using tableaus.
In particular, simplex method-based algorithms are iterative and are viewed
naturally as finding a direction of improvement and step length from a current
iterate to get to an improved point and so on until optimality is reached or
the problem is discovered to be unbounded. A consequence is that it becomes
even more natural for MATLAB to facilitate algorithmic understanding by
leaving the elementary row operations in performing inversions to MATLAB
instead of requiring a student to do the equivalent by doing a pivot on the
tableau.

The prerequisites for this book are courses in linear algebra, multi-variate
calculus, and basic proficiency in MATLAB. Well-prepared advanced under-
graduates could find the book accessible as well. In fact, only several concepts
from linear algebra and multi-variate calculus are needed. The appendix con-
tains those concepts from linear algebra that are especially relevant in this
book. The multi-variate calculus is reviewed at those points in the book that
require it. What I mean by basic MATLAB proficiency is that one knows how
to perform standard matrix algebra operations in MATLAB, e.g., multiplying
two matrices together and solving a system of linear equations. In any case,
MATLAB is a very convenient and powerful platform for optimization and it
is relatively easy to get started. A starting point for review are the excellent
on-line tutorials and resources available from MathWorks at the website

http://www.mathworks.com/academia/student center/tutorials
/launchpad.html

Chapter 1 introduces the linear programming problem and gives many
examples starting from the well-known diet problem to more complex network
optimization models. Various transformation techniques are given so that one
can transform an arbitrary linear program in standard form. The MATLAB
function linprog is introduced showing how one can solve linear programs on
a computer. A computational (case study) project requires the construction
and solution of a larger-sized (compared to examples in the chapter) linear
program using real financial data in MATLAB.

Chapter 2 develops the geometry of linear programming. First, the geome-
try of the feasible set of an LP is considered. The geometry of LP gives insight
on the nature of optimal and unbounded solutions in terms of corner points,
extreme points, and directions of unboundedness. A key development in this
chapter is the corresponding algebraic notions of a basic feasible solution and
extreme directions. The chapter culminates with the Fundamental Theorem
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of Linear Programming, which states that the optimal solution for a finite LP
can be attained at a basic feasible solution.

Chapter 3 develops the simplex method. As mentioned, the development
eschews the tableau construct and the simplex method is developed within the
matrix algebraic representation given by the partition of the problem into basic
and non-basic variables. Detailed examples are given that illustrate the various
possibilities in executing the simplex method including cycling. The revised
simplex method is then developed, which brings to light the importance of
numerical linear algebra in solving linear programs. MATLAB code is given
that implements the simplex method. The MATLAB code is not claimed to
be the most efficient or robust, but serves as an example of how the simplex
method, as described in the chapter, may be implemented.

Chapter 4 considers duality theory of linear programming. Duality theory
enables the development of another variant of the simplex method called the
dual simplex method. Economic interpretations of dual variables are discussed
and then sensitivity analysis is developed.

Chapter 5 develops the Dantzig-Wolfe decomposition method and illus-
trates the very important strategy of exploiting structure in a linear program-
ming problem. MATLAB code is given to the illustrate the implementation
of the decomposition.

Chapter 6 considers an interior point strategy to solve linear programs.
In particular, the class of primal-dual path following methods are developed
and then a variant from this class called the predictor-corrector method is
considered and implemented in MATLAB.

Chapter 7 develops quadratic programming theory and develops optimality
conditions for both unconstrained and constrained versions of the problem.
The mean-variance portfolio optimization problem is used as an example of
a quadratic program and is featured in several of the numerical examples in
the chapter. The MATLAB function quadprog is illustrated, which enables
quadratic programs to be solved on computer. An application in generating
the efficient frontier of a mean-variance portfolio problem is given. Quadratic
programming is discussed in the context of convex optimization. A predictor-
corrector interior point method for convex quadratic programming is given.

Chapter 8 considers linear programming under uncertainty. The stochas-
tic programming with recourse framework is developed first. The L-Shaped
method is developed to solve two-stage stochastic programs with recourse.
Then, robust optimization is developed. Examples of developing robust coun-
terparts are considered and illustrated through a robust portfolio problem. A
key theme here is the emphasis on tractable robust formulations.

This book was designed to be used in a semester-long course. Chapters
1 through 4 would be considered as the core part of a course based on this
book. The remaining chapters do not have to be considered in a linear order.
A course emphasizing interior point methods can cover both Chapters 6 and 7.
Parts of Chapter 8 depend on Chapter 5, e.g., the proof of convergence of the
L-Shaped method needs the development of the Dantzig-Wolfe decomposition.
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This book has nearly 100 exercises and a complete solutions manual is
available to instructors. Several of the problems require the use of MATLAB.
PowerPoint slides are also available for each chapter. Additional material is
available from the CRC Web site: http://www.crcpress.com/product/isbn/
9781439862636.

MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
For product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com
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1

Linear Programming

1.1 Introduction

Linear programming (LP) is the problem of optimizing (maximizing or min-
imizing) a linear function subject to linear constraints. A wide variety of
practical problems, from nutrition, transportation, production planning, fi-
nance, and many more areas can be modeled as linear programs. We begin
by introducing one of the earliest examples, the diet problem, and then give
some additional applications in the areas of production management, trans-
portation, finance, and personnel scheduling. Some of these examples are not
initially linear programs, but are amenable to being transformed into LPs and
techniques for conversion are illustrated. The embedded assumptions behind
linear optimization problems are discussed. A definition of a standard form of
a linear optimization problem is given and techniques for converting an LP
into standard form are illustrated.

1.1.1 The Diet Problem

Due to a limited budget you would like to find the most economical mix of
food items subject to providing sufficient daily nutrition. The available food
items are peanut butter, bananas, and chocolate, and the cost per serving
is 20 cents, 10 cents, and 15 cents, respectively. The amount of nutrients of
fat, carbohydrates, and protein per serving of peanut butter is 130 grams,
51.6 grams, and 64.7 grams. For bananas, the amounts of these nutrients per
serving are 1 gram, 51 grams, and 2 grams, whereas for chocolate the amounts
per serving are 12 grams, 22 grams, and 2 grams. Suppose it is decided by
a dietician that you need at least 35 grams of fat, at least 130 grams of
carbohydrate, and at least 76 grams of protein daily. Then, a combination
of these three food items should provide you with sufficient amounts of each
nutrient for the day. The problem of determining the least cost combination of
the food items that provide a sufficient amount of nutrients can be represented
as a problem of the following form:

1
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minimize cost of food items used
subject to food items must provide enough fat

food items provide must enough carbohydrates
food items provide must enough protein

This form of the problem reveals two major components, i.e., (1) there
is a goal or objective (minimize cost of food items used) and (2) a set of
constraints that represent the requirements for the problem (food items must
provide enough nutrition). A linear programming problem will exhibit the
same form, but with mathematical representations of the components of the
problem. In general, a linear program will consist of decision variables, an
objective, and a set of constraints.

To illustrate the formulation of the diet problem as a linear program, let

xpb = servings of peanut butter

xb = servings of bananas

xc = servings of chocolate.

These variables represent the quantities of each food item to be used and
should be non-negative, i.e., xpb ≥ 0, xb ≥ 0, and xc ≥ 0, and are called
decision variables since they must be determined.

The total cost associated with any particular combination of food items
xpb, xb, and xc is

.20xpb + .10xb + .15xc, (1.1)

which says that the total cost of food items used is the sum of the costs
incurred from the use of each food item.

To ensure that the mix of the three foods will have enough fat one can
impose the following linear inequality constraint

130xpb + 1xb + 12xc ≥ 35, (1.2)

which expresses that the total amount of fat from the three food items should
be at least the required minimum of 35 grams. Similarly, one can impose the
inequality

51.6xpb + 51xb + 22xc ≥ 130 (1.3)

to ensure that a combination of food items will have enough carbohydrates
and finally impose the constraint

64.7xpb + 2xb + 2xc ≥ 76 (1.4)

to ensure enough protein.
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Then, the diet problem linear program can be expressed as

minimize .20xpb + .10xb + .15xc

subject to 130xpb + 1xb + 12xc ≥ 35

51.6xpb + 51xb + 22xc ≥ 130 (1.5)

64.7xpb + 2xb + 2xc ≥ 76

xpb, xb, xc ≥ 0.

The problem can be interpreted as the problem of determining non-negative
values of xpb, xb, and xc so as to minimize the (cost) function .20xpb+ .10xb+
.15xc subject to meeting the nutritional requirements as embodied in the
constraints (1.2)–(1.4). The function .20xpb + .10xb + .15xc is called the ob-
jective function, and the objective is the minimization of this function. It is
important to observe that the objective function and the left-hand sides of
the constraints are all linear, i.e., all variables are taken to the power of 1.
The diet problem highlights the major components of a linear programming
problem where an LP problem consists of decision variables, an objective (op-
timize a linear objective function), linear constraints, and possibly some sign
restrictions on variables. The diet problem can be generalized to where there
are n types of food items and m nutritional requirements, where xi repre-
sents the number of servings of food item i (i = 1, ..., n), ci is the cost of one
serving of food item i (i = 1, , , .n), aij is the amount of nutrient i in one serv-
ing of food item j (j = 1, ...,m), and bj is the minimum amount of nutrient
j required (j = 1, ...,m). Then, the general formulation of the diet problem
can be written as

minimize c1x1 + c2x2 + · · ·+ cnxn
subject to a11x1 + a12x2 + · · ·+ a1nxn ≥ b1

a21x1 + a22x2 + · · ·+ a2nxn ≥ b2
...

am1x1 + am2x2 + · · ·+ amnxn ≥ bm
x1, x2, ..., xn ≥ 0.

In matrix form, the general diet problem can be represented as

minimize cTx
subject to Ax ≥ b

x ≥ 0

where
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x =


x1
x2
...
xn

 is the vector of food items,

A = [aij ] =


a11 a12 · · · a1n
a21 a22 · · · a2n

. . .

am1 am2 amn



=

 aT1
...
aTm


is a matrix of dimension m × n and aTj is an n-dimensional row vector that
represents the jth row of A i.e. the total amount of nutrient j that would be
obtained from the amount of food items given by x,

c =


c1
c2
...
cn

 is the vector of costs of food items,

and

b =


b1
b2
...
bn

 is the vector of nutrition requirements.

For example, for the diet problem (1.5) we have n = 3 and m = 3 with

A =

 130 1 12
51.6 51 22
64.7 2 2

 , c =

 .20
.10
.15

 , x =

 xpb
xb
xc

 , and b =

 35
130
76

.

The objective function is cTx =
[
.20 .10 .15

]
·

 xpb
xb
xc

 = .20xpb +

.10xb + .15xc.

(Note: The · indicates the dot product.)
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The first constraint is

aT1 x =
[

130 1 12
]
·

 xpb
xb
xc

 = 130xpb + 1xb + 12xc ≥ b1 = 35.

The second constraint is

aT2 x =
[

51.6 51 22
]
·

 xpb
xb
xc

 = 51.6xpb + 51xb + 22xc ≥ b2 = 130.

The third constraint is

aT3 x =
[

64.7 2 2
]
·

 xpb
xb
xc

 = 64.7xpb + 2xb + 2xc ≥ b3 = 76.

1.1.2 Embedded Assumptions

It is important to realize the assumptions behind a linear programming prob-
lem. In particular, an LP model is characterized by proportionality, divisibility,
additivity, and certainty.

1. Proportionality means that the contribution toward the objective func-
tion and constraints of decisions are directly proportional to its values, i.e.,
there are no economies of scale such as quantity-based discounts. For example,
in the diet problem, every unit (serving) of peanut butter xpb will contribute
.20 towards the overall cost and 130 grams of fat toward the fat nutrient
requirement. In particular, this means that decision variables in an LP are

raised to the first power only. So terms of the form cix
1/2
i or cix

2
i (where ci is

a coefficient and xi a decision variable) are not permitted in an LP.

2. Divisibility means that the decision variables can take on any real num-
ber. For example, the amount of peanut butter in the diet problem can be
less than one serving, like 35% of a serving, xpb = .35, or in general, some
fractional amount like xpb = 1.7 servings.

3. Additivity means that the contribution of a decision variable toward the
objective or constraints does not depend on other decision variables. In other
words, the total contribution is the sum of individual contributions of each
decision variable. For example, the contribution of every serving of peanut
butter in the diet problem toward the overall fat requirement of 35 grams is
130 grams, independent of the amount of servings of the other food items.
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4. Certainty means that the data used as coefficients for a linear program-
ming model, such as the objective coefficients c and constraint coefficients A
and b, are known with certainty. For example, it is assumed in the diet model
that the cost of one serving of bananas is 10 cents and that one serving of
peanut butter provides 130 grams of fat, and these values are assumed as
correct or valid for the model.

The embedded assumptions may seem to be overly restrictive, but in fact
a wide range of problems can be modeled as linear programs. Recent advances
in optimization technology have considered the relaxation of the certainty as-
sumption. In particular, developments in stochastic programming and robust
optimization have enabled the incorporation of uncertainty of coefficients in
linear programming models. These exciting topics will be covered in Chapter
8.

1.2 General Linear Programming Problems

The diet problem is only one possible form of a linear optimization problem.
It is possible to have an LP problem that maximizes an objective function
instead of minimizing and a constraint may be of the form aTx ≥ b (greater
than or equal inequality), aTx ≤ b (less than or equal inequality), or aTx = b
(equality). Furthermore, variables may be non-negative, non-positive, or un-
restricted (i.e., the value can be negative, positive, or zero). For example,
the following is a linear programming problem with equality and inequality
constraints as well as variables that are non-negative, non-positive, and unre-
stricted.

maximize 5x1 + x2 − 3x3

subject to x1 + x2 ≤ 6

x2 + x3 ≥ 7

x1 − x3 = 2 (1.6)

x1 ≥ 0

x2 ≤ 0

x3 unrestricted.

In general, a linear programming problem can be represented in the form

minimize or maximize cTx
subject to aTi x ≤ bi i ∈ L

aTi x ≥ bi i ∈ G
aTi x = bi i ∈ E
xj ≥ 0 j ∈ NN
xj ≤ 0 j ∈ NP .

© 2014 by Taylor & Francis Group, LLC



Linear Programming 7

where L,G, and E are index sets of constraints that are of the less than or
equal to type, greater than or equal to type, and of equality type, respectively.
NN (NP ) is an index set of variables that are non-negative (non-positive).
All other variables are assumed to be unrestricted.

Furthermore, an equality constraint aTx = b can be represented as the two
inequalities aTx ≤ b and aTx ≥ b, and an inequality constraint of the form
aTx ≥ b can be written as a less than or equal type by multiplying both sides
by −1 to get −aTx ≤ −b. Thus, the LP (1.6) is equivalent to the following

maximize 5x1 + x2 − 2x3
subject to x1 + x2 ≤ 6

−x2 − x3 ≤ −7
x1 − x3 ≤ 2
−x1 + x3 ≤ −2
x1 ≥ 0
x2 ≤ 0
x3 unrestricted.

1.2.1 Standard Form of a Linear Program

In this section, we define the standard form of a linear program. A linear
programming problem is said to be in standard form if (1) the objective is to
minimize, (2) all constraints are of the equality type, and (3) all variables are
non-negative. The following LP is in standard form:

minimize cTx
subject to Ax = b

x ≥ 0.

The standard form of a linear programming problem is important because
some important algorithms that solve linear programs e.g. the simplex method
require linear programs to be in standard form. This requirement is not too
restrictive since any linear program can be converted into an equivalent linear
program in standard form. The following conversion rules can be used to
convert an LP in standard form.

1. Converting unrestricted variables
If a decision variable x is initially defined to be unrestricted, i.e., the vari-

able can take on any real number regardless of sign, then x can be expressed
as the difference between two non-negative numbers x+ ≥ 0 and x− ≥ 0 so
that x = x+ − x−. For example, if x = −5, then x+ = 0 and x− = 5.

2. Converting inequality constraints
If a constraint i is initially of the form ai1x1 + ai2x2 + · · · + ainxn ≤ bi,

then a non-negative slack variable si can be added to the left-hand side of the
constraint to get ai1x1 + ai2x2 + · · ·+ ainxn + si = bi where si ≥ 0.
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If a constraint i is initially of the form ai1x1 + ai2x2 + · · · + ainxn ≥ bi,
then a non-negative surplus variable si can be subtracted from the left-hand
side of the constraint to get gi(x) = ai1x1 +ai2x2 + · · ·+ainxn−si = bi where
si ≥ 0.

3. Converting maximization to minimization
It follows that since maximize cTx = −minimize −cTx, any maximization

problem can be converted to an equivalent minimization problem by minimiz-
ing the negated terms in the original objective function. It is common to omit
the outer negation in formulations since it will not affect the optimization.

Example 1.1
Convert the LP

maximize 5x1 − 4x2 + 6x3
subject to −x1 + x2 ≤ −7

2x2 − x3 ≥ 2
x1 + 2x3 = 7
x1 ≥ 0, x2 ≥ 0, x3 unrestricted

into standard form.

Solution: The variable x3 is unrestricted, so let x3 = x+3 − x−3 where
x+3 ≥ 0 and x−3 ≥ 0. Then, for every occurrence of x3 in the objective function
and constraints, replace with x+3 −x

−
3 . Next, negate the terms of the objective

function to get −5x1 + 4x2 − 6x+3 +6x−3 and then the new objective is to
minimize −5x1 + 4x2 − 6x+3 + 6x−3 . Add a slack variable s1 to the left-hand
side of the first constraint to get −x1 +x2 +s1 = −7 and a surplus variable s2
to the second to get 2x2 − x+3 + x−3 − s2 = 2. The third constraint is already
in equality form. Then, the standard form of the LP is

minimize −5x1 + 4x2 − 6x+3 + 6x−3
subject to −x1+ x2+ s1 = −7

2x2 − x+3 + x−3 − s2 = 2
x1+ 2x+3 − 2x−3 = 7
x1 ≥ 0, x2 ≥ 0, x+3 ≥ 0, x−3 ≥ 0, s1 ≥ 0, s2 ≥ 0.

1.2.2 Linear Programming Terminology

We discuss some terminology for linear programming problems, and without
loss of generality, assume that a LP is in standard form, i.e.,

minimize cTx
subject to Ax = b

x ≥ 0.
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FIGURE 1.1
Bounded feasible set.

The matrix A is called the constraint matrix and has dimension m × n.
The vector c is called the cost vector with dimension n × 1, and b is called
the right-hand side vector which is a column vector of dimension m× 1. The
vector x is called the decision vector and has dimension n× 1.

The set F = {x ∈ Rn|Ax = b, x ≥ 0} is called the feasible set of the linear
programming problem. A vector x ∈ Rn is said to be feasible for a linear
program if x ∈ F , otherwise x is said to be infeasible. A linear program is said
to be consistent if F 6= ∅, otherwise the linear program is inconsistent. The
feasible set is bounded if ‖x‖ ≤ M for all x ∈ F for some positive constant
M (‖·‖ is a norm on x). Intuitively, the feasible set is bounded if there is a
sphere or rectangle that can completely contain the feasible set.

A vector x∗ is an optimal solution for a linear programming problem if
x∗ ∈ F and cTx∗ ≤ cTx for all x ∈ F , else x∗ is said to be sub-optimal. Also,
a linear programming problem is bounded if L ≤ cTx for all x ∈ F for some
constant L, else the LP is said to be unbounded. Clearly, if F is bounded,
then the linear program is bounded.

Example 1.2
Consider the following linear program (P):

minimize −x1 − x2
subject to x1 ≤ 1 (1.7)

x2 ≤ 1

x1 ≥ 0, x2 ≥ 0.

The feasible set is F = {x = (x1, x2)T ∈ R2| x1 ≤ 1, x2 ≤ 1, x1 ≥ 0, x2 ≥ 0}.
Converting to standard form by adding slack variables, the linear program
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becomes

minimize −x1 − x2
subject to x1 + x3 = 1 (1.8)

x2 + x4 = 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

The feasible set for (1.8) is

F = {x = (x1, x2, x3, x4)T ∈ R4| x1+ x3 = 1, x2+
x4 = 1, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0} .

Observe that the linear program (1.7) is consistent since there is at least

one x in F , e.g., x =

[
0.5
0.5

]
and the feasible set is bounded since for any

vector x ∈ F we have ‖x‖ ≤ 1 and so (1.7) is bounded. Therefore, the linear

program (1.8) is also consistent and bounded with F bounded. A graph of the
feasible set F is given in Figure 1.1.

The optimal solution in this example is x∗ =

[
1
1

]
∈ F , and the cor-

responding optimal objective function value is −2. Chapter 3 will discuss
methods for generation and verification of optimal solutions.

Example 1.3
Consider the linear program

minimize −x1 − x2
subject to

−x1 +x3 = 1
x2 +x4 = 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

The feasible region in two dimensions is equivalent to F = {x = (x1, x2)T ∈
R2| −x1 ≤ 1, x2 ≤ 1, x1 ≥ 0, x2 ≥ 0} see Figure 1.2. In this case, the feasible
region is not bounded as the graph extends infinitely to the right on the x-axis.

In fact, for the sequence of vectors x(k) =

[
k
1

]
, k = 1, 2, 3, ... , the objective

function value −k − 1→ −∞ as k →∞ and so the LP is unbounded.

1.3 More Linear Programming Examples

This section covers some additional examples to highlight the broad range of
problems that can be formulated as linear programs. Modeling a problem as a
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FIGURE 1.2
Unbounded feasible set.

linear program is an art and there is no unique way to formulate problems, but
the basic requirements are the need to define decision variables, the objective,
and constraints.

Example 1.4 ( Production Planning )

Consider a company that produces n different products. Each product uses
m different resources. Suppose that resources are limited and the company has
only bi units of resource i available for each i = 1, ...,m. Further, each product
j requires aij units of resource i for production. Each unit of product j made
generates a revenue of pj dollars. The company wishes to find a production
plan, i.e., the quantity of each product to produce, that maximizes revenue.

The problem can be formulated as a linear program. The first step is to
define the decision variables. Let xj be a decision variable that represents
the amount of product j produced by the company. Suppose that fractional
amounts of a product are allowed and this amount should be non-negative
since a negative value for xj is meaningless. Then, a production plan is repre-

sented by the vector x =
[
x1 · · · xn

]T
. The contribution toward revenue

from the production of xj units of product j is pjxj and so the total revenue
from a production plan x is then p1x1 + p2x2 + · · ·+ pnx =

∑n
j=1 pjxj . The

contribution toward using resource i from the production of xj units of prod-
uct j is aijxj , and so the total consumption of resource i by production plan
x is ai1x1 +ai2x2 + · · ·+ainxj =

∑n
j=1 aijxj and this quantity can not exceed

bi. Since total revenue is to be maximized and resources limitations must be
observed over all resources, then the LP is

© 2014 by Taylor & Francis Group, LLC



12 Introduction to Linear Optimization and Extensions with MATLAB R©

maximize
∑n
j=1 pjxj

subject to
∑n
j=1 aijxj ≤ bi i = 1, ...,m

xj ≥ 0 j = 1, ..., n.

Example 1.5 (Multi-period Production Planning)
In the previous example, the planning horizon was assumed to be one

period and it was implicitly assumed that the optimal production plan gen-
erated from the model would be able to be entirely sold for the single period
in order to achieve the maximum revenue. That is, the model assumed that
production would occur just once and did not incorporate any consideration
of demand levels and future production. We now consider a multi-period pro-
duction model where production decisions are made for more than one period.
Consider a single product that has demand in number of units over the next
year as follows:

Fall Winter Spring Summer
30 40 10 20

We wish to meet all demand for each period and allow excess production
for a period so that it may be carried over to meet demand at future time
periods. However, there will be a unit holding cost of $10 for inventory at the
end of each period. Assume that there is 5 units of inventory at the start of
Fall, and there is to be no inventory at the end of the Summer period.

To formulate the multi-period production model, there are some additional
constructs that must be developed to capture the dynamics of production in
a multiple period setting. First, in addition to decision variables that give the
amount of production for each time period, there needs to be another quantity
that links production from one time period to the next. These are inventory
variables that indicate the amount of product in excess of the demand at the
end of a time period. Then, the dynamics from one time period to the next
can be captured through the following inventory balance constraint

current inventory + production for current period = amount of product used
to meet current demand + inventory for next period.

Now, let xt = number of units of product produced in period t, it = units
of inventory at the end of period t where Fall, Winter, Spring, and Summer
correspond to periods t = 1, 2, 3, and, 4, respectively. Also t = 0 will refer to
the start of Fall and dt = demand for period t.

Thus, the inventory balance constraints take the form it−1 + xt = dt + it
for t = 1, 2, 3, 4. The objective function is to minimize total inventory costs
10i1 + 10i2 + 10i3 + 10i4. Then, the multi-period production model is
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FIGURE 1.3
Transportation problem.

minimize 10i1 + 10i2 + 10i3 + 10i4
subject to i0 + x1 = 30 + i1

i1 + x2 = 40 + i2
i2 + x3 = 10 + i3
i3 + x4 = 20 + i4
i0 = 5
i4 = 0
i0, i1, i2, i3, i4, x1, x2, x3, x4 ≥ 0.

Example 1.6 (Transportation Problem)
Reactiveeno Inc. is a company that produces a special type of facial cream

that aids in reducing acne. This product is manufactured in n plants across
North America. Every month the facial cream product is shipped from the
n plants to m warehouses. Plant i has a supply of ui units of the product.
Warehouse j has a demand of dj units. The cost of shipping one unit from
plant i to warehouse j is cij . The problem of finding the least-cost shipping
pattern from plants to warehouses can be formulated as an LP.

Let xij be the number of units of product shipped from plant i to warehouse
j. So the objective is to minimize the cost of shipping over all possible plant
warehouse pairs (see Figure 1.3). There are two classes of constraints. One class
of constraints must ensure that the total amount shipped from a plant i to
warehouses, i.e.,

∑m
j=1 xij does not exceed the supply ui of plant i, whereas the

other class of constraints ensures that the demand dj of a warehouse j is met
from the total amount

∑n
i=1 xij shipped by plants. Then, the transportation

problem can be formulated as the following LP.
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minimize
∑n
i=1

∑m
j=1 cijxij

subject to
∑m
j=1 xij ≤ ui i = 1, ..., n∑n
i=1 xij ≥ dj j = 1, ...,m

xij ≥ 0 i = 1, ..., n, j = 1, ...,m

Example 1.7 (The Assignment Problem)
A special case of the transportation problem above is when there are as

many plants as warehouses, i.e., m = n, and each warehouse demands exactly
one unit of the product, and each plant produces only one unit of the product,
i.e., di = ui = 1. Then, the model takes the following form

minimize
∑n
i=1

∑n
j=1 cijxij

subject to
∑n
j=1 xij = 1 i = 1, ..., n∑n
i=1 xij = 1 j = 1, ..., n

xij ≥ 0 i = 1, ..., n, j = 1, ..., n.

This special case is known as the assignment problem and has the inter-
pretation of matching persons with jobs so that each person gets one job and
each job gets one person. cij in this context represents the cost of assigning
person i to job j. This quantity can reflect the different skill levels of workers.

Example 1.8 (Workforce Scheduling)
You are the human resources manager of a company and one of your major

duties is to schedule workers for each day of the week. Each day of the week
must have a required number of workers as given in the following table.

Day of Week Required Number of Workers
Monday 25
Tuesday 25
Wednesday 22
Thursday 21
Friday 23
Saturday 20
Sunday 18

Each worker must work 5 consecutive days and then will have the next
two days off. You wish to minimize the total number of workers scheduled for
the week subject to providing each day with the required number of workers.
The challenging aspect of this formulation resides in defining the decision
variables. The variables should be defined so that it facilitates the expression
of the constraints that impose a 5 consecutive day work schedule for workers.
One such possibility is to let xj = number of workers that start on day j where
j = 1 corresponds to Monday, j = 2 corresponds to Tuesday, etc., then, the
model is
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minimize x1 + x2 + x3 + x4 + x5 + x6 + x7
subject to x1+ x4 + x5 + x6 + x7 ≥ 25

x1 + x2+ x5 + x6 + x7 ≥ 25
x1 + x2 + x3 +x6 + x7 ≥ 22
x1 + x2 + x3 + x4 +x7 ≥ 21
x1 + x2 + x3 + x4 + x5 ≥ 23

x2 + x3 + x4 + x5 + x6 ≥ 20
x3 + x4 + x5 + x6 + x7 ≥ 18

xi ≥ 0 and integer i = 1, ..., 7.

The jth constraint ensures that there will be enough workers for day j by
ensuring that there are enough workers that start from those days of the week
for which a worker will be working on day j. For example, the first constraint
ensures that there are enough workers for Monday by ensuring that there are
enough workers that start work on Monday, Thursday, Friday, Saturday, and
Sunday, so that there will be at least 25 workers on Monday. Observe that the
coefficients of the variables x2 and x3 are zero in the first constraint and hence
these variables do not appear in the first constraint since any worker starting
on Tuesday or Wednesday and working 5 consecutive days will not be working
on Monday. Note that there is an integer value requirement on the variables
in addition to the non-negativity restriction since it is unreasonable to have
a fractional value of a worker! So the model above violates the divisibility
assumption of linear programming. The model is in fact what is called an
integer program due to the integrality restriction of the decision variables.
Otherwise, the model is very close to a linear program since the objective and
constraints are linear.

Example 1.9 (Bond Portfolio Optimization)
Suppose that a bank has the following liability schedule

Year 1 Year 2 Year 3

$12,000 $18,000 $20,000

That is, the bank needs to pay $12,000 at the end of the first year, $18,000 at
the end of the second year, and $20,000 at the end of the third year. Bonds are
securities that are sold by agencies, such as corporations or governments, that
entitle the buyer to periodic interest (coupon) payments and the payment of
the principle (face value) at some time in the future (maturity).

The bank wishes to use the three bonds below to form a portfolio (a
collection of bonds) today to hold until all bonds have matured and that will
generate the required cash to meet the liabilities. All bonds have a face value of
a $100 and the coupons are annual (with one coupon per year). For example,
one unit of Bond 2 costs $99 now and the holder will receive $3.50 after 1 year
and then $3.50 plus the face value of $100 at the end of the second year which
is the maturity of Bond 2.
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Bond 1 2 3

Price $102 $99 $98
Coupon $5 $3.5 $3.5
Maturity year 1 2 3

The bank wishes to purchase Bonds 1, 2, and 3 in amounts whose total
cash flow will offset the liabilities. Assume that fractional amounts of each
bond are permitted. A linear programming model can be formulated to find
the lowest-cost set of bonds (i.e., portfolio) consisting of Bonds 1, 2, and 3
above that will meet the liabilities. Let the xi = amount of bond i purchased.
Then, the problem can be modeled as follows

minimize 102x1 + 99x2 + 98x3
subject to 105x1 + 3.5x2 + 3.5x3 ≥ 12000

103.5x2 + 3.5x3 ≥ 18000
103.5x3 ≥ 20000

x1, x2, x3 ≥ 0.

The objective is to minimize the cost of a portfolio and each constraint
ensures that that cash flow generated by the bonds for a given time period
is sufficient to match the liability for that period. For example, in the first
constraint each unit of Bond 1 purchased will generate $5 from the coupon
plus the $100 face value (since bonds of type 1 mature at the end of year 1)
so the total cash contribution from Bond 1 is $105x1, the total cash flow from
Bond 2 is only $3.5x2 since these bonds do not mature until the end of year 2
but only payout $3.5 per unit for the coupon at the end of year 1. The total
cash flow from bonds of type 3 is also $3.5x3 at the end of the first year. Note
that in constraint 2 there is no term involving bonds of type 1 since they have
already matured after one year and can no longer generate cash flow.

1.3.1 Converting Minimization Problems with Absolute
Value

Consider an optimization problem of the following form

minimize c1|x1|+ c2|x2|+ · · ·+ cn|xn|
subject to xi unrestricted i = 1, ...n

where ci > 0 for all i = 1, ...n. The problem in the form above is not a
linear program since the absolute value terms in the objective function are
not linear. However, the problem can be converted into an equivalent linear
program through the following transformation. Let

|xi| = x+i + x−i and xi = x+i − x
−
i where x+i , x

−
i ≥ 0.
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Since the objective is to minimize and ci > 0, then x+i × x
−
i = 0 will hold

at optimality, this will ensure that the transformation is equivalent to the
absolute value of xi where if xi ≥ 0, then |xi| = x+i = xi and x−i = 0 else,
|xi| = x−i = −xi and x+i = 0.

Example 1.10
The optimization problem above can be transformed to an LP by replacing

each occurrence of |xi| with x+i +x−i and by adding xi = x+i −x
−
i as a constraint

along with the restrictions x+i ≥ 0 and x−i ≥ 0. The model then becomes

minimize c1(x+1 + x−1 ) + c2(x+2 + x−2 ) + · · ·+ cn(x+n + x−n )
subject to x1 = x+1 − x

−
1

x2 = x+2 − x
−
2

...
xn = x+n − x−n
x+1 ≥ 0, x−1 ≥ 0, x+2 ≥ 0, x−2 ≥ 0, ..., x+n ≥ 0, x−n ≥ 0.

Example 1.11 (Application: Portfolio Optimization)
Consider the problem of investing money in n stocks where each stock i

has a random rate of return ri with an expected return of µi. ri models the
price uncertainty for stock i and is often assumed to be a normal distribution.
In addition, the covariance between the returns of stock i and stock j is σij .
Let xi= the proportion of wealth invested in stock i. A portfolio is then
represented by the vector x = (x1, ..., xn)T . A reasonable model to use to
construct a portfolio is the following model developed by Markowitz (1952),
which is a one-period model where an investment is made now and held until
a future point in time T .

minimize
∑n
i=1

∑n
j=1 σijxixj

subject to
∑n
i=1 µixi = R∑n
i=1 xi = 1
xi ≥ 0 i = 1, ..., n

The objective function of the model is the variance of the return of the
portfolio x where the variance represents the risk of the portfolio. Then, the
objective is to minimize the risk (portfolio variance) subject to meeting an
expected return goal of R for the portfolio (first constraint) and ensuring that
the budget is exhausted (second constraint). In other words, the goal is to find
the portfolio among all of the portfolios that can achieve an expected return
of R while exhausting the budget, and that has the smallest variance among
them.

However, there are several challenges in using the Markowitz model. First,
observe that the model is non-linear since the terms in the objective function
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