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Polymer Products and Chemical Processes presents leading-edge re-
search in the rapidly changing and evolving field of polymer science as 
well as on chemical processing. The topics in the book reflect the diversity 
of research advances in the production and application of modern poly-
meric materials and related areas, focusing on the preparation, character-
ization, and applications of polymers. The book also covers various manu-
facturing techniques. The book will help to fill the gap between theory and 
practice in industry.

Polymer Products and Chemical Processes is a collection of 11 chap-
ters that highlights many important areas of current interest in polymer 
products and chemical processes. It is also gives an up-to-date and thor-
ough exposition of the present state of the art of polymer analysis. There 
are many chapters that will familiarizes the reader with new aspects of 
the techniques used in the examination of polymers, including chemical, 
physico-chemical and purely physical methods of examination.

In chapter 1, some new aspects of ozone and its reactions on diene rub-
bers are presented. The importance of nanocomposites in today’s modern 
science is highlighted in chapter 2, in which different types of polymer 
nanocomposites structures are studied in detail. The simulation of nanoel-
ements’ formation and interaction is explained in chapter 3. Chapter 4 is 
divided into three sections to introduce new points of views on advanced 
polymers. The stabilization process of PAN nanofibers is studied in detail 
in chapter 5. In chapter 6, carbon nanotubes’ structure in polymer nano-
composites is updated for our readers. Exploring the potential of oilseeds 
as a sustainable source of oil and protein for aquaculture feed is presented 
in chapter 7. Microbial biosensors are introduced in chapter 8. New devel-
opment of solar cloth by electrospinning technique is well defined in chapter 
9. Applications of metal-organic frameworks in textiles are described in 
chapter 10 and chapter 11 and are divided into 3 sections in present impor-
tant topics related to the book’s objectives.

prefAce



xviii preface

This book describes the types of techniques now available to the poly-
mer chemist and technician, and discusses their capabilities, limitations, 
and applications and provides a balance between materials science and 
mechanics aspects, basic and applied research, and high technology and 
high volume (low cost) composite development

— Richard A. Pethrick, PhD, DSc, Eli M. Pearce, PhD,  
and Gennady E. Zaikov, DSc
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2 polymer products and chemical processes

1.1 introduction

The interest in the reaction of ozone with polydienes is due mainly to the 
problems of ozone degradation of rubber materials [1–4] and the applica-
tion of this reaction to the elucidation of the structures of elastomers [5–8]. 
It is also associated with the possibilities of preparing bifunctional oligo-
mers by partial ozonolysis of some unsaturated polymers [9–12]. Usually 
the interpretation of experimental results are based on a simplified scheme 
of Criegee’s mechanism of C=C-double bond ozonolysis, explaining only 
the formation of the basic product – ozonides [13, 14].

The reactions of ozone with 1,4-cis-polybutadiene (SKD); Diene 35 
NFA (having the following linking of the butadiene units in the rubber 
macromolecules: 1,4-cis (47%), 1,4-trans (42%), 1,2-(11%); 1,4-cis-
polyisoprene (Carom IR 2200), 1,4-trans-polychloroprene (Denka M 40), 
and 1,4-trans-polyisoprene have been investigated in CCl4 solutions. The 
changes of the viscosity of the polymer solutions during the ozonolysis 
have been characterized by the number of chain scissions per molecule of 
reacted ozone (j). The influence of the conditions of mass-transfer of the 
reagents in a bubble reactor on the respective j values has been discussed. 
The basic functional groups-products from the rubbers ozonolysis have 
been identified and quantitatively characterized by means of IR-spectros-
copy and 1H-NMR spectroscopy. A reaction mechanism, that explains the 
formation of all identified functional groups, has been proposed. It has 
been shown that the basic route of the reaction of ozone with elastomer 
double bonds – the formation of normal ozonides does not lead directly 
to a decrease in the molecular mass of the elastomer macromolecules, 
because the respective 1,2,4-trioxolanes are relatively stable at ambient 
temperature. The most favorable conditions for ozone degradation emerge 
when the cage interaction between Criеgee intermediates and respective 
carbonyl groups does not proceed. The amounts of measured different car-
bonyl groups have been used as an alternative way for evaluation of the 
intensity and efficiency of the ozone degradation. The thermal decompo-
sition of partially ozonized diene rubbers has been investigated by DSC. 
The respective values of the enthalpy, the activation energy and the reac-
tion order of the 1, 2, 4-trioxolanes have been determined.
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In most cases, quantitative data on the functional groups formed 
during the reaction are missing [15–18]. At the same time alternative 
conversion routes of Criegee’s intermediates, which lead to the for-
mation of carbonyl compounds and some other so called “anomalous 
products” of the ozonolysis, are of great importance for clarifying the 
overall reaction mechanism [19–21]. The mechanism of ozone degra-
dation of rubbers is also connected with the nonozonide routes of the 
reaction, because the formation of the basic product of ozonolysis, nor-
mal ozonide, does not cause any chain scission and/or macromolecule 
cross-linking [22].

In this work the changes in the molecular mass of different types of 
diene rubbers during their partial ozonolysis in solution have been investi-
gated. By means of IR and 1H-NMR spectroscopy ozonolysis products of 
the elastomers have been studied. The effects of the nature of the double 
bond substituents and its configuration on the degradation mechanism 
have been considered. By using differential scanning calorimetry the ther-
mal decomposition of the functional groups of peroxide type has also been 
investigated.

1.2 exPerimental methods

1.2.1 Materials

Commercial samples of 1,4-cis-polybutadiene (SKD; E-BR); polybutadi-
ene (Diene 35 NFA; BR); 1,4-cis-polyisoprene (Carom IR 2200; E-IR) 
and polychloroprene (Denka M 40; PCh) were used in the experiments 
(Table 1). The 1, 4-trans-polyisoprene samples were supplied by Prof. A. 
A. Popov, Institute of Chemical Physics, Russian Academy of Sciences. 
All rubbers were purified by threefold precipitation from CCl4 solutions 
in excess of methanol. The above mentioned elastomer structures were 
confirmed by means of 1H-NMR spectroscopy. Ozone was prepared by 
passing oxygen flow through a 4–9 kV electric discharge.
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table 1 Some characteristics of polydiene samples.

Elastomer Monomeric
unit

Unsaturation
degree,%

1,4-cis, 
%

1,4-trans-, 
%

1,2-, 
%

3,4-, 
%

Mv.10–3 n

SKD -CH=CH- 95–98 87–93 3–8 3–5 – 454 2.1

Diene 35 NFA -CH=CH- 97 47 42 11 298 2.63

Carom IR 2200 -C(CH3)=CH- 94–98 94–97 2–4 – 1–2 380 2.0

1,4-trans PI -C(CH3)=CH- 95–97 95–97 310 2.3

Denka M40 -C(Cl)=C- 94–98 5 94 – – 180 1.8

1.2.2 OzOnatiOn Of the elastOMer sOlutiOns

The ozonolysis of elastomers was performed by passing an ozone-oxygen 
gaseous mixture at a flow rate of v=1.6×10–3±0.1 l.s–1 through a bubbling 
reactor, containing 10–15 ml of polymer solution (0.5–1 g in CCl4) at 
293 K. Ozone concentrations in the gas phase at the reactor inlet ([O3]i) 
and outlet ([O3]u) were measured spectrophotometrically at 254 nm [23]. 
The amount of consumed ozone (G, mole) was calculated by the Eq. (1):

 G=v([O3]i-[O3]u)t (1), 

Where t is the ozonation time (s). The degree of conversion of the double 
C=C bonds was determined on the basis of the amount of reacted ozone 
and the reaction stoichiometry [23].

Note: mv is the average molecular weight, determined viscosimetrically 
from equation [h]=k.Mv

a‘, where [h]=(h1/C)(1+0.333h1), h1=hrel-1, hrel – is 
the intrinsic viscosity; C-solution concentration; k=1.4.10–4 – Stauding-
er’s constant and a‘ = 0.5–1.5 – constant depending on the rubber type, 
being one for natural rubber; Mv≈M w; n=Mw/Mn, where Mw and Mn are the 
average weight and number average molecular mass, respectively [22].

1.3 results and discussion

Florry [24] has shown that the reactivity of the functional groups in the 
polymer molecule does not depend on its length. It is also known that 
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some reactions of the polymers proceed more slowly, compared with their 
low molecular analogs (catalytic hydrogenation). The folded or unfolded 
forms of the macromolecules provide various conditions for contact of the 
reagents with the reacting parts [4, 25]. By using the modified version of 
this principle [26] it was possible to explain the proceeding of reactions 
without any specific interactions between the adjacent C=C bonds and the 
absence of diffusion limitations. The study of the mass-molecular distribu-
tion (MMD) is in fact a very sensitive method for establishing the correla-
tion between molecular weight (M.w.) and the reactivity. The theory pre-
dicts that the properties of the system: polymer-solvent can be described 
by the parameter of so called globe swelling (g), which defines the free 
energy (F) of the system and thus the rate constant of the reaction. For a re-
versible reaction, i.e., polymerization – depolymerization, the dependence 
of the rate constant of the chain length growing on the molecular weight is 
expressed by the following equation:

 ln kpj/kp	= – const.(5g– 3/g).(dg/dM).M0 (2), 

Where mo is the molecular weight of the studied sample and kp is the rate 
constant for infinitely long macromolecules. A good correlation between 
the theoretical and experimental data for polystirene solutions in benzene 
has been found in Ref. [27].

The study of the polymer degradation is complicated by their structural 
peculiarities on molecular and supramolecular level and diffusion effects. 
It is difficult to find simple model reactions for clarification of particular 
properties and for the express examination of the proposed assumptions. 
An exception in this respect is the ozone reaction with C=C bonds, whose 
mechanism has been intensively studied and could be successfully applied 
upon ozonolysis of polymeric materials [28].

Table 2 summarises the rate constants of the ozone reactions with some 
conventional elastomers and polymers and their low molecular analogs, 
synthesized by us. It is seen that the reactivities of elastomers and poly-
mers and their corresponding low molecular analogs, as it is demonstrated 
by their rate constants, are quite similar, thus suggesting similar mecha-
nisms of their reaction with ozone. This statement is also confirmed by: 
(1) the dependence of k on the inductive properties of substituents: for 



6 polymer products and chemical processes

example k of polychloroprene is higher than that of vinylchloride due to 
the presence of two donor substituents; and (2) the dependence of k on 
the configuration of the C=C bond in trans-isomer (gutta-percha) and cis-
isomer (natural rubber).

table 2 Rate constants of ozone reactions with polymers and low molecular analogs in 
CCl4, 20°C.

Compound M.w. k.10–4, M–1.s–1

Polychloroprene 8.105 0.42±0.1

Vinylchloride 62.45 0.18

2-bromopropene 121 0.28±0.05

Polybutadiene 3.3.105 6.0±1

Cyclododecatriene-1,5,9 162 35±10

Poly(butadiene-costirene) 8.104 6±1

Gutta-percha 3.104 27±5

Natural rubber 1.106 44±10

2-me-pentene-2 85 35±10

Squalene 410 74±15

Polystirene 5.105 0.3.10–4

Cumene 120 0.6.10–4

Polyisobutylene 1.7.105 0.02.10–4

Cyclohexane 84 0.01.10–4

It has been found out that the effects, related either to the change in the 
macromolecule length or to the folding degree, do not affect the ozonoly-
sis in solution. Probably this is due to the fact that the reaction is carried 
out in elastomeric solutions, in which the macromolecules are able to do 
free intramolecular movements and they do not react with adjacent macro-
molecules. Moreover, the rate of macromolecules reorganization is prob-
ably higher than the rate of their reaction with ozone as the experiment does 
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not provide any evidence for the effects of the change in the parameters 
pointed earlier [29].

However, it should be noted that k values of the elastomers are about 
2–6 times lower that those of the low molecular analogs. The accuracy of 
activation energy (Ea) determination does not allow to estimate the con-
tribution of the two parameters: preexponential factor (A) or Ea for the 
decrease in k. If we assume that the mechanism of ozone reaction with 
monomers and elasomers is similar, i.e., the reactions are isokinetic, then 
Amon=Apol. At kmon/kpol = 2÷6 the difference in Ea at 20°C will be 0.5–
1.0 kcal/mole. At the low experimental values of Ea, these differences will 
become commensurable and thus the determination of Ea is not sufficient-
ly accurate. In this case two assumptions could be made which can give a 
reasonable explanation for the lower values of kpol: (1) the reorientation of 
the macromolecules is a slower process that that of olefins, which would 
results in Apol lower than Amon; and (2) the addition of ozone to C=C bonds 
is accompanied by the rehybridization of the C-atoms from sp2−sp3 and the 
movements of the polymer susbstituents during the formation of activated 
complex (AC) will be more restricted than those in olefins, mainly because 
of their greater molecular mass and sizes. This will ultimately result in 
decrease of the rate constant.

Table 2 shows some examples of ozonolysis of saturated polymers – 
polystirene and polyisobutylene. These reactions take place not via the 
mechanism of ozone reaction with the double bonds but through a hidden 
radical mechanism with rate constants of 4–5 orders of magnitude lower.

1.3.1 POlybutadienes

Because of the high viscosity and high value of rate constants the reaction 
takes place either in the diffusion or in the mixed region. In order to obtain 
correct kinetic data we have used the theory of boundary surface [30]:

 [O3] = a[O3]0.exp[– d(k.c.D)1/2],  (3)

where [O3] is the ozone concentration at a distance d; a – Henry’s coef-
ficient; [O3]0 – equilibrium ozone concentration in the gas phase at the 
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reactor inlet; d – penetration depth of ozone from the interphase surface 
[22]; k – rate constant of the ozone reaction with double bonds; c – con-
centration of the monomeric units; D – diffusion coefficient of ozone in 
the liquid phase.

It was found out that the relative viscosity decreases exponentially 
upon ozonation of SKD solutions (Fig. 1). As the viscosity is proportional 
to the molecular weight it follows that the polydiene consumption should 
be described by first or pseudo first order kinetics.

FiGure 1 Dependence of the relative viscosity (hrel) of SKD solutions (0.6 g in 100 ml 
CCl4) on reaction time at ozone concentrations of: 1–1.10–5 M; 2–4.5.10–5 M; 3–8.25.10–5 
M.

The value of f, corresponding to the number of degraded polymeric 
molecules per one absorbed ozone molecule can be used to calculate the 
degradation efficiency. The value of this parameter (f) may be estimated 
using the following equation:

 f = 0.5 [(Mvt)
–1 – (Mv0)

–1].P/G,  (4)
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where mvt is the molecular weight at time moment T; Mvo – the initial mo-
lecular weight; P – the polymer amount; G – amount of consumed ozone.

The dependence of f on G is a straight line for a given reactor and it de-
pends on the hydrodynamic conditions in the reactor. It is seen from Fig. 2 
that the f values are increasing linearly with the reaction time and decreas-
ing with increase in ozone concentration. The corresponding dependences 
for Carom IR 2200 and Denka M40 ozonolysis are similar. The f values 
for G®0 were used to avoid the effect of hydrodynamic factors on them.

FiGure 2 Dependence of f on G for SKD (0.6/100) at various ozone concentrations: 
1–1.10–5 M; 2–4.5.10–5 M; 3–8.25.10–5 M.

The values of f found for SKD, Carom IR 2200 and Denka M40 at 
[O3] = 1.10–5 M amount to 0.7.10–2, 0.78.10–2 and 0.14, respectively, and 
the slopes are: −40, −70 and 200 M–1, respectively. Substituting with the 
known values for the parameters in Eq. (3) we have obtained d within the 
range of 1.10–3–2.10–4 cm, which indicates that the reaction is taking place 
in the volume around the bubbles, and hence in the diffusion region.

The ozonolysis of polydienes in solutions is described by the Crie-
gee’s mechanism. The C=C bonds in the macromolecules are isolated as 
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they are separated by three simple C-C bonds. According to the classical 
concepts, the C=C bonds configuration and the electronic properties of the 
groups bound to them, also affect the polymer reactivity; similarly they 
do this in case of the low molecular olefins. The only difference is that 
the polymer substituents at the C=C bonds are less mobile, which influ-
ences the sp2−sp3 transition and the ozonides formation. In the first stage, 
when primary ozonides (PO) (Scheme 1, reaction 1) are formed, the lower 
mobility of the polymer substituents requires higher transition energy, the 
rate being respectively lower, compared to that with low molecular olefins 
and the existing strain accelerates the PO decomposition to zwitterion and 
carbonyl compound. The lower mobility of the polymer parts impedes the 
further ozonide formation and causes the zwitterion to leave the cage and 
pass into the volume, which in its turn accelerates the degradation process. 
The latter is associated either with its monomolecular decomposition or 
with its interaction with low molecular components in the reaction mix-
ture. The efficiency of degradation is determined by the C=C bonds loca-
tion in the macromolecule, for example, at C=C bond location from the 
macromolecule center to its end, it is in the range from 2 to 1.

 M1 = (1/g).M0,  (5)

where m2 = M0 – M1; 1 ≤ g ≤ 2 – coefficient pointing the C=C-bond loca-
tion; M0, M1 and M2 – the molecular weights of the initial macromolecule 
and of the two degradated polymer parts, respectively.

At g=2, i.e., when the broken C=C bond is located in the macromol-
ecule center, the values of M1 and M2 will be exactly equal to Mo/2, at g®1, 
i.e., at terminal C=C bond in the polymer chain, the value of M1 will be ap-
proximated to Mo and thus the value of M2 will be practically insignificant. 
For example, M2 may be 50–1000, which is 3–4 orders of magnitude less 
than that of the macromolecule and in fact degradation process will not 
occur. The viscosimetric determination of the molecular weight, which we 
have applied in our experiments, has accuracy of ±5% and does not allow 
the differentiation of molecular weights of 22,700, 19,000 and 9,000 for 
the corresponding types of rubbers. This suggests that the cleavage of C=C 
bonds, located at distances of 420, 280 and 100 units from the macromol-
ecule end, would not affect the measured molecular weight.
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Since the reaction of elastomers ozonolysis proceeds either in the dif-
fusion or in diffusion-kinetic region, at low conversions each new gas 
bubble in the reactor would react with a new volume of the solution. On 
the other hand, the reaction volume is a sum of the liquid layers surround-
ing each bubble. It is known that the depth of the penetration from the gas 
phase into the liquid phase is not proportional to the gas concentration and 
thus the rise of ozone concentration would increase the reaction volume to 
a considerably smaller extent than the ozone concentration. This leads to 
the occurrence of the following process: intensive degradation processes 
take place in the microvolume around the bubble and one macromolecule 
can be degraded to many fragments, while the macromolecules out of this 
volume, which is much greater, may not be changed at all. Consequently 
with increase in ozone concentration, one may expect a reduction of coef-
ficient MMD and increase in the oligomeric phase content. This will result 
in apparent decrease of f in case of the viscosimetric measurements. The 
discussion above enables the correct interpretation of the data in Fig. 3.

FiGure 3 Dependence of f on ozone concentration for elastomer solutions: 1 – SKD 
(0.6/100); 2 – Carom IR 2200 (0.6/100); 3 – Denka M40 (1/100).
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In the spectra of the ozonized polybutadienes the appearance of bands 
at 1111×1735 cm–1, that are characteristic for ozonide and aldehyde 
groups, respectively, is observed [22, 31]. It was found out that the integral 
intensity of ozonide peak in the 1,4-cis-polybutadiene (E-BR) spectrum, 
is greater and that of the aldehyde is considerably smaller in comparison 
with the respective peaks in the Diene 35 NFA (BR) spectrum, at one and 
the same ozone conversion degree of the double bonds. The mentioned 
differences in the aldehyde yields indicate that, according to IR-analysis, 
the degradation efficiency of the BR solutions is greater.

The 1H-NMR spectroscopy provides much more opportunities for 
identification and quantitative determination of functional groups, 
formed during ozonolysis of polybutadienes [32]. Figure 4 shows spectra 

FiGure 4 (a–c) 1H-250 MHz NMR spectra of E-BR solutions (0.89 g / 100 ml CCl4) 
ozonized to 18% conversion of the double bonds (external standard TMS; digital resolution 
0.4 Hz, 20°C).
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of ozonized E-BR. The signals of the ozonolysis products are decoded in 
Table 3 on the basis of Fig. 5. The ozonide: aldehyde ratio, determined 
from NMR spectra, was 89:11 and 73:27 for E-BR and BR, correspond-
ingly. The peak at 2.81 ppm is present only in the spectra of ozonized 
Diene 35 NFA. It is usually associated with the occurrence of epoxide 
groups [33]. The integrated intensity of that signal compared to the signal 
of aldehyde protons at 9.70–9.79 ppm, was about 10%. Similar signal at 
2.75 ppm has been registered in the spectra of ozonized butadiene-nitrile 
rubbers, where the 1,4-trans double bonds are dominant [31].

table 3 Assignment of the signals in the 1H-NMR spectra of partially ozonized E-BR 
and BR rubbers.

Assignment of the signals 
(according Fig. 4)

Chemical shifts (ppm) Literature

E-BR BRA

a 5.10–5.20

max 5.12, 5.16

5.05–5.18

max 5.10, 5.15

[19, 34]

b 1.67–1.79

max 1.72, 1.76

1.66–1.80

max 1.73

[7, 19]

c 9.75 9.74 [33]

d 2.42–2.54

max 2.47

2.42–2.54

max 2.50

[33]

e 2.27–2.42

max 2.35

2.27–2.42

max 2.35

[33]

f max 2.81 [33]

According to [2, 10] two isomeric forms of 1, 2, 4-trioxolanes exist. 
The ratio between them is a function of the double bond stereochemistry, 
steric effect of the substituents and the conditions of ozonolysis. It was 
fond out only on the low molecular weight alkenes [19, 21]. The 1H-NMR 
spectroscopy is the most powerful method for determination of the cis/
trans ratio of ozonides (in the case of polymers it is practically the only 
one method that can be applied). The measuring is based on the differ-
ences in the chemical shifts of the methine protons of the two isomers: 


