Opportunistic Mobile Social Networks

Edited by Jie Wu and Yunsheng Wang

Opportunistic Mobile Social Networks

This page intentionally left blank

Opportunistic Mobile Social Networks

Edited by Jie Wu and Yunsheng Wang

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works Version Date: 20140603

International Standard Book Number-13: 978-1-4665-9495-1 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Dedication

To our parents, Zengchang Wu, Yeyi Shao, Keming Wang, and Yingyan Wang

This page intentionally left blank

Contents

De	dicat	ion	• • • • • • • • • • • • • • • • • • •
Li	st of I	igures	xix
Lis	st of T	fables .	
Pr	eface	• • • •	xxix
Ab	out t	he Edit	ors
Co	ontrib	utors .	
1	Soci	al-Com	munication Composite Networks 1
	Prith	iwish Be	asu, Ben Baumer, Amotz Bar-Noy, and Chi-Kin Chau
	1.1		Delated Work
	12	1.1.1 Comp	Kelaleu Wolk
	1.2	121	Metrics on Composite Graphs 5
	13	Comp	Social Stretch Analysis
	1.5	1 3 1	Theoretical Results 8
		1.3.1	Composite Stretch of Some Special Graphs 10
		133	Average vs. Worst-Case Analysis
	14	Comp	Average vs. worst-case Analysis
	1.7	Comp	osite Betweenness Centrality 17
	1.5	151	Constrained Composite Load on Path Graphs 17
		1.5.1	Composite Composite Load on Fall Oraphis
	1.6	Multic	ast in Composite Networks
	110	1.6.1	Preliminaries 19
		1.6.2	Hierarchy-Compliant Multicast
		1 ()	Algorithms for U Compliant Multisset

	1.7	Simula	ation-Base	d Evaluation	24
		1.7.1	Chain of	Command	24
			1.7.1.1	Evaluation of Basic Composite Network Metrics .	28
			1.7.1.2	Evaluation of Composite Network Multicast	30
		1.7.2	Friend-o	f-a-Friend (FOAF)	31
	1.8	Conclu	usion and l	Discussion	33
	Refe	erences			34
2	Rec	ent Adv	ances in I	nformation Diffusion and Influence Maximization	
	of C	omplex	Social Ne	etworks	37
	Huiy	vuan Zhe	ang, Subha	ankar Mishra, and My T. Thai	
	2.1	Abstra	ct		38
	2.2	Introdu	uction		39
	2.3	Social	Influence	and Influence Maximization	40
	2.4	Inform	nation Diff	usion Models	42
		2.4.1	Threshol	d Models	43
			2.4.1.1	Linear Threshold Model	44
			2.4.1.2	The Majority Threshold Model	45
			2.4.1.3	The Small Threshold Model	45
			2.4.1.4	The Unanimous Threshold Model	45
			2.4.1.5	Other Extensions	46
		2.4.2	Cascadir	ng Model	46
			2.4.2.1	Independent Cascading Model	46
			2.4.2.2	Decreasing Cascading Model	47
			2.4.2.3	Independent Cascading Model with Negative	
				Opinion	47
		2.4.3	Generali	zed Threshold and Cascade Models	47
		2.4.4	Epidemi	c Model	48
			2.4.4.1	SIR Model	49
			2.4.4.2	SIS Model	50
			2.4.4.3	SIRS Model	50
		2.4.5	Competi	tive Influence Diffusion Models	50
			2.4.5.1	Distance-Based Model	51
			2.4.5.2	Wave Propagation Model	51
			2.4.5.3	Weight-Proportional Threshold Model	52
		. .	2.4.5.4	Separated Threshold Model	53
	2.5	Influer	ice Maxim	nization and Approximation Algorithms	53
		2.5.1	Influence		53
		2.5.2	Approxi		22
			2.5.2.1	Greedy Algorithm	33
			2.5.2.2	CELF Selection Algorithm	56
			2.5.2.3	CELF++ Algorithm	57
			2.5.2.4	SPM and SP1M	59
			2.5.2.5	Maximum Influence Paths	39
			2.5.2.6	SIMPATH	61

		2.5.2.7 VirAds	63
	2.6	Conclusion	64
	Refe	prences	65
3	Cha	racterizing Link Connectivity in Opportunistic Networks	71
	Chul	l-Ho Lee and Do Young Eun	
	3.1	Introduction	72
	3.2	Mobility-Induced Link-Level Metrics and Network Performance	73
		3.2.1 Mathematical Definitions	74
	3.3	3.2.2 The Status Quo for Mobility-Induced Link-Level Dynamics Impact of User Availability on Link-Level Dynamics: Model and	74
		Analysis	79
		3.3.1 Motivation	79
		3.3.2 User Availability Comes into Picture	80
		3.3.3 Analysis of Link-Level Dynamics	81
		3.3.3.1 Transfer-Time Distribution and Mean Inter-transfer	
		Time	81
		3.3.3.2 Inter-transfer Time Distribution	83
	3.4	Impact of User Availability on Link-Level Dynamics: Simulation	
		Results	87
	3.5	Discussion and Conclusion	91
	Refe	erences	93
4	Dias	ananing and Dualisting Tanananal Dattaness of WiF: Interacting Ca	
4	Disc cial]	overing and Predicting Temporal Patterns of WiFi-Interactive So- Populations	99
4	Disc cial 1 Xian	covering and Predicting Temporal Patterns of WiFi-Interactive So- Populations	99
4	Disc cial Xian 4.1	covering and Predicting Temporal Patterns of WiFi-Interactive So- Populations	99 100
4	Disc cial 1 <i>Xian</i> 4.1 4.2	covering and Predicting Temporal Patterns of WiFi-Interactive So- Populations ag Li, Yi-Qing Zhang, and Athanasios V. Vasilakos Introduction Background	99 100 102
4	Disc cial 1 <i>Xian</i> 4.1 4.2 4.3 4.4	covering and Predicting Temporal Patterns of WiFi-Interactive So- Populations	99 100 102 104
4	Disc cial 1 Xian 4.1 4.2 4.3 4.4	covering and Predicting Temporal Patterns of WiFi-Interactive So-Populations ag Li, Yi-Qing Zhang, and Athanasios V. Vasilakos Introduction Background Pairwise Interactive Patterns of Temporal Contacts and Reachability Concurrent Interactive Patterns of Event Interactions and Temporal Transmission Graphs	99 100 102 104 108
4	Disc cial 1 <i>Xian</i> 4.1 4.2 4.3 4.4 4.5	covering and Predicting Temporal Patterns of WiFi-Interactive So-Populations ag Li, Yi-Qing Zhang, and Athanasios V. Vasilakos Introduction	99 100 102 104 108 112
4	Disc cial 1 Xian 4.1 4.2 4.3 4.4 4.5 4.6	covering and Predicting Temporal Patterns of WiFi-Interactive So-Populations ng Li, Yi-Qing Zhang, and Athanasios V. Vasilakos Introduction	99 100 102 104 108 112 118
4	Disc cial 1 Xian 4.1 4.2 4.3 4.4 4.5 4.6 Refe	covering and Predicting Temporal Patterns of WiFi-Interactive So-Populations ag Li, Yi-Qing Zhang, and Athanasios V. Vasilakos Introduction Background Pairwise Interactive Patterns of Temporal Contacts and Reachability Concurrent Interactive Patterns of Event Interactions and Temporal Transmission Graphs Temporal Degrees and Hubs: Ranking and Predictio Conclusion	99 100 102 104 108 112 118 119
4	Disc cial 1 Xian 4.1 4.2 4.3 4.4 4.5 4.6 Refe Beha	covering and Predicting Temporal Patterns of WiFi-Interactive So- Populations ang Li, Yi-Qing Zhang, and Athanasios V. Vasilakos Introduction Background Pairwise Interactive Patterns of Temporal Contacts and Reachability Concurrent Interactive Patterns of Event Interactions and Temporal Transmission Graphs Temporal Degrees and Hubs: Ranking and Predictio Conclusion erences avioral and Structural Analysis of Mobile Cloud Opportunistic Net-	99 100 102 104 108 112 118 119
4	Disc cial 1 Xian 4.1 4.2 4.3 4.4 4.5 4.6 Refe Beha worl	covering and Predicting Temporal Patterns of WiFi-Interactive So- Populations ag Li, Yi-Qing Zhang, and Athanasios V. Vasilakos Introduction Background Pairwise Interactive Patterns of Temporal Contacts and Reachability Concurrent Interactive Patterns of Event Interactions and Temporal Transmission Graphs Temporal Degrees and Hubs: Ranking and Predictio Conclusion erences avioral and Structural Analysis of Mobile Cloud Opportunistic Net-	99 100 102 104 108 112 118 119
4	Disc cial 1 Xian 4.1 4.2 4.3 4.4 4.5 4.6 Refe Beha worl Anh-	covering and Predicting Temporal Patterns of WiFi-Interactive So-Populations ag Li, Yi-Qing Zhang, and Athanasios V. Vasilakos Introduction Background Pairwise Interactive Patterns of Temporal Contacts and Reachability Concurrent Interactive Patterns of Event Interactions and Temporal Transmission Graphs Temporal Degrees and Hubs: Ranking and Predictio Conclusion erences avioral and Structural Analysis of Mobile Cloud Opportunistic Net- ks -Dung Nguyen, Patrick Senac, and Michel Diaz	99 100 102 104 108 112 118 119 123
4	Disc cial 1 Xian 4.1 4.2 4.3 4.4 4.5 4.6 Refe Beha worl Anh- 5.1	covering and Predicting Temporal Patterns of WiFi-Interactive So-Populations ag Li, Yi-Qing Zhang, and Athanasios V. Vasilakos Introduction Background Pairwise Interactive Patterns of Temporal Contacts and Reachability Concurrent Interactive Patterns of Event Interactions and Temporal Transmission Graphs Temporal Degrees and Hubs: Ranking and Predictio Conclusion erences Avioral and Structural Analysis of Mobile Cloud Opportunistic Net- ks -Dung Nguyen, Patrick Senac, and Michel Diaz	99 100 102 104 108 112 118 119 123
4	Disc cial 1 Xian 4.1 4.2 4.3 4.4 4.5 4.6 Refe Beha worl Anh- 5.1 5.2	covering and Predicting Temporal Patterns of WiFi-Interactive So-Populations ag Li, Yi-Qing Zhang, and Athanasios V. Vasilakos Introduction Background Pairwise Interactive Patterns of Temporal Contacts and Reachability Concurrent Interactive Patterns of Event Interactions and Temporal Transmission Graphs Temporal Degrees and Hubs: Ranking and Predictio Conclusion erences avioral and Structural Analysis of Mobile Cloud Opportunistic Net- base -Dung Nguyen, Patrick Senac, and Michel Diaz Introduction Understanding and Modeling Opportunistic Networks	99 100 102 104 108 112 118 119
4	Disc cial 1 Xian 4.1 4.2 4.3 4.4 4.5 4.6 Refe Beha worl Anh- 5.1 5.2	covering and Predicting Temporal Patterns of WiFi-Interactive So- Populations ang Li, Yi-Qing Zhang, and Athanasios V. Vasilakos Introduction Background Pairwise Interactive Patterns of Temporal Contacts and Reachability Concurrent Interactive Patterns of Event Interactions and Temporal Transmission Graphs Temporal Degrees and Hubs: Ranking and Predictio Conclusion erences avioral and Structural Analysis of Mobile Cloud Opportunistic Net- ks -Dung Nguyen, Patrick Senac, and Michel Diaz Introduction Understanding and Modeling Opportunistic Networks 5.2.1	99 100 102 104 108 112 118 119 123 124 126 126
4	Disc cial 1 Xian 4.1 4.2 4.3 4.4 4.5 4.6 Refe Beha worl Anh- 5.1 5.2	covering and Predicting Temporal Patterns of WiFi-Interactive So- Populations ag Li, Yi-Qing Zhang, and Athanasios V. Vasilakos Introduction Background Pairwise Interactive Patterns of Temporal Contacts and Reachability Concurrent Interactive Patterns of Event Interactions and Temporal Transmission Graphs Temporal Degrees and Hubs: Ranking and Predictio Conclusion erences avioral and Structural Analysis of Mobile Cloud Opportunistic Net- ks -Dung Nguyen, Patrick Senac, and Michel Diaz Introduction Understanding and Modeling Opportunistic Networks 5.2.1 Introduction	99 100 102 104 108 112 118 119 123 124 126 126 126 127
4	Disc cial 1 Xian 4.1 4.2 4.3 4.4 4.5 4.6 Refe Beha worl Anh- 5.1 5.2	covering and Predicting Temporal Patterns of WiFi-Interactive So-Populations ag Li, Yi-Qing Zhang, and Athanasios V. Vasilakos Introduction Background Pairwise Interactive Patterns of Temporal Contacts and Reachability Concurrent Interactive Patterns of Event Interactions and Temporal Transmission Graphs Temporal Degrees and Hubs: Ranking and Predictio Conclusion erences avioral and Structural Analysis of Mobile Cloud Opportunistic Net- ks -Dung Nguyen, Patrick Senac, and Michel Diaz Introduction Understanding and Modeling Opportunistic Networks 5.2.1 Introduction 5.2.2 Related Works 5.2.3 Characterizing and Modeling Human Mobility	99 100 102 104 108 112 118 119
5	Disc cial 1 Xian 4.1 4.2 4.3 4.4 4.5 4.6 Refe Beha worl Anh- 5.1 5.2	covering and Predicting Temporal Patterns of WiFi-Interactive So-Populations ag Li, Yi-Qing Zhang, and Athanasios V. Vasilakos Introduction Background Pairwise Interactive Patterns of Temporal Contacts and Reachability Concurrent Interactive Patterns of Event Interactions and Temporal Transmission Graphs Temporal Degrees and Hubs: Ranking and Predictio Conclusion erences avioral and Structural Analysis of Mobile Cloud Opportunistic Net- ks -Dung Nguyen, Patrick Senac, and Michel Diaz Introduction Understanding and Modeling Opportunistic Networks 5.2.1 Introduction 5.2.3 Characterizing and Modeling Human Mobility 5.2.3.1 STEPS	99 1000 102 104 108 112 118 119 123 124 126 126 127 128 129

		5.2.4	Fundamental Properties of Opportunistic Networks in	
			STEPS	133
			5.2.4.1 Inter-Contact Time Distribution	133
			5.2.4.2 Contact Time Distribution	133
	5.3	Small-	World Structure of Opportunistic Networks	136
		5.3.1	Introduction	136
		5.3.2	Related Works	137
		5.3.3	Small-World Phenomenon in Opportunistic Networks	137
			5.3.3.1 Dynamic Small-World Metrics	138
			5.3.3.2 Opportunistic Network Traces Analysis	141
		5.3.4	Modeling Dynamic Small-World Structure with STEPS	144
		5.3.5	Information Diffusion in Dynamic Small-World Networks .	145
	5.4	Mobile	e Cloud Opportunistic Networks	148
		5.4.1	Related Works	148
		5.4.2	Impact of Mobility on Mobile Cloud Computing	149
			5.4.2.1 Mobility Model	150
			5.4.2.2 Particle Swarm Optimization	150
			5.4.2.3 Simulation Results and Discussion	151
		5.4.3	Impact of Network Structure on Mobile Cloud Computin .	153
		5.4.4	Resilience of Mobile Cloud Computing Service	154
	5.5	Conclu	usion	155
	Refe	rences		157
6	An (Overvie	w of Routing Protocols in Mobile Social Contact Networks	161
6	An (Cons	Overvie g Liu. C	w of Routing Protocols in Mobile Social Contact Networks	161
6	An (<i>Cong</i> 6.1	Dvervie g <i>Liu, C</i> Prelim	w of Routing Protocols in Mobile Social Contact Networks <i>hengyin Liu, and Wei Wang</i> inaries and Network Models	161
6	An (<i>Cong</i> 6.1	Overvie g <i>Liu, C</i> Prelim 6.1.1	w of Routing Protocols in Mobile Social Contact Networks <i>Thengyin Liu, and Wei Wang</i> inaries and Network Models	161 163 163
6	An (<i>Cong</i> 6.1	Dvervie g <i>Liu, C</i> Prelim 6.1.1 6.1.2	w of Routing Protocols in Mobile Social Contact Networks <i>Thengyin Liu, and Wei Wang</i> inaries and Network Models	161 163 163
6	An (<i>Cong</i> 6.1	Dvervie g Liu, C Prelim 6.1.1 6.1.2 Oblivit	w of Routing Protocols in Mobile Social Contact Networks <i>thengyin Liu, and Wei Wang</i> inaries and Network Models	161 163 163 163 164
6	An (<i>Cong</i> 6.1	Dvervie g <i>Liu, C</i> Prelim 6.1.1 6.1.2 Oblivi 6.2.1	w of Routing Protocols in Mobile Social Contact Networks <i>thengyin Liu, and Wei Wang</i> inaries and Network Models	161 163 163 163 164 164
6	An (<i>Cons</i> 6.1	Dvervie <i>g Liu, C</i> Prelim 6.1.1 6.1.2 Oblivit 6.2.1	w of Routing Protocols in Mobile Social Contact Networks <i>thengyin Liu, and Wei Wang</i> inaries and Network Models Ad Hoc Wireless Networks Opportunistic Networks ous Routing Algorithms Epidemic Routing 6.2.1.1	161 163 163 163 164 164 164
6	An (<i>Cong</i> 6.1	Dvervie g <i>Liu</i> , <i>C</i> Prelim 6.1.1 6.1.2 Oblivit 6.2.1	w of Routing Protocols in Mobile Social Contact Networks thengyin Liu, and Wei Wang inaries and Network Models Ad Hoc Wireless Networks Opportunistic Networks ous Routing Algorithms Epidemic Routing 6.2.1.1 Basic Idea 6.2.1.2	161 163 163 164 164 164 164
6	An (<i>Cons</i> 6.1 6.2	Dvervie <i>g Liu, C</i> Prelim 6.1.1 6.1.2 Oblivi 6.2.1	w of Routing Protocols in Mobile Social Contact Networks <i>bengyin Liu, and Wei Wang</i> inaries and Network Models Ad Hoc Wireless Networks Opportunistic Networks Outing Algorithms Epidemic Routing 6.2.1.1 Basic Idea 6.2.1.3 Implementation Details	161 163 163 164 164 164 165 165
6	An (<i>Cong</i> 6.1	Dvervie g <i>Liu</i> , <i>C</i> Prelim 6.1.1 6.1.2 Oblivi 6.2.1	w of Routing Protocols in Mobile Social Contact Networks <i>hengyin Liu, and Wei Wang</i> inaries and Network Models Ad Hoc Wireless Networks Opportunistic Networks ous Routing Algorithms Epidemic Routing 6.2.1.1 Basic Idea 6.2.1.2 Design Issues 6.2.1.3 Implementation Details	161 163 163 164 164 164 165 165
6	An (<i>Cong</i> 6.1	Dvervie <i>g Liu, C</i> Prelim 6.1.1 6.1.2 Oblivi 6.2.1	w of Routing Protocols in Mobile Social Contact Networks hengyin Liu, and Wei Wang inaries and Network Models Ad Hoc Wireless Networks Opportunistic Networks ous Routing Algorithms Epidemic Routing 6.2.1.1 Basic Idea 6.2.1.3 Implementation Details Spray and Wait 6.2.1 Basic Idea	161 163 163 163 164 164 164 165 165 165 165
6	An (<i>Cong</i> 6.1	Dvervie <i>g Liu, C</i> Prelim 6.1.1 6.1.2 Oblivit 6.2.1 6.2.2	w of Routing Protocols in Mobile Social Contact Networks thengyin Liu, and Wei Wang inaries and Network Models Ad Hoc Wireless Networks Opportunistic Networks ous Routing Algorithms Epidemic Routing 6.2.1.1 Basic Idea 6.2.1.3 Implementation Details Spray and Wait 6.2.2.1 Basic Idea	161 163 163 164 164 164 165 165 165 165
6	An (<i>Cons</i> 6.1	Dvervie <i>g Liu, C</i> Prelim 6.1.1 6.1.2 Oblivi 6.2.1	w of Routing Protocols in Mobile Social Contact Networks hengyin Liu, and Wei Wang inaries and Network Models Ad Hoc Wireless Networks Opportunistic Networks ous Routing Algorithms Epidemic Routing 6.2.1.1 Basic Idea 6.2.1.3 Implementation Details Spray and Wait 6.2.2.1 Basic Idea 6.2.2.3 Implementation Details	161 163 163 163 164 164 165 165 165 165 166 166
6	An (<i>Cons</i> 6.1 6.2	Dvervie <i>g Liu, C</i> Prelim 6.1.1 6.1.2 Oblivi 6.2.1 6.2.2	w of Routing Protocols in Mobile Social Contact Networks hengyin Liu, and Wei Wang inaries and Network Models Ad Hoc Wireless Networks Opportunistic Networks ous Routing Algorithms Epidemic Routing 6.2.1.1 Basic Idea 6.2.1.2 Design Issues 6.2.1.3 Implementation Details Spray and Wait 6.2.2.1 Basic Idea 6.2.2.3 Implementation Details mathematical deta 6.2.2.3 Implementation Details	161 163 163 163 164 164 165 165 165 166 166 166
6	An (<i>Cong</i> 6.1 6.2	Dvervie g <i>Liu</i> , <i>C</i> Prelim 6.1.1 6.1.2 Oblivi- 6.2.1 6.2.2 Encou	w of Routing Protocols in Mobile Social Contact Networks hengyin Liu, and Wei Wang inaries and Network Models Ad Hoc Wireless Networks Opportunistic Networks ous Routing Algorithms Epidemic Routing 6.2.1.1 Basic Idea 6.2.1.2 Design Issues 6.2.1.3 Implementation Details Spray and Wait 6.2.2.1 Basic Idea 6.2.2.3 Implementation Details nter-Based Uni-cast Algorithms	161 163 163 163 164 164 164 165 165 165 166 166 166 166
6	An (<i>Cong</i> 6.1 6.2	Overvie g Liu, C Prelim 6.1.1 6.1.2 Oblivition 6.2.1 6.2.2 Encour 6.3.1	w of Routing Protocols in Mobile Social Contact Networks hengyin Liu, and Wei Wang inaries and Network Models Ad Hoc Wireless Networks Opportunistic Networks ous Routing Algorithms Epidemic Routing 6.2.1.1 Basic Idea 6.2.1.2 Design Issues 6.2.1.3 Implementation Details Spray and Wait 6.2.2.1 Basic Idea 6.2.2.3 Implementation Details nter-Based Uni-cast Algorithms Encounter-Based Routing 6.3.1.1	161 163 163 163 164 164 165 165 165 166 166 166 166 166
6	An (<i>Cong</i> 6.1 6.2	Dvervie <i>g Liu, C</i> Prelim 6.1.1 6.1.2 Oblivit 6.2.1 6.2.2 Encou 6.3.1	w of Routing Protocols in Mobile Social Contact Networks hengyin Liu, and Wei Wang inaries and Network Models Ad Hoc Wireless Networks Opportunistic Networks ous Routing Algorithms Epidemic Routing 6.2.1.1 Basic Idea 6.2.1.2 Design Issues 6.2.1.3 Implementation Details Spray and Wait 6.2.2.2 Design Goals 6.2.2.3 Implementation Details nter-Based Uni-cast Algorithms Encounter-Based Routing 6.3.1.1 Basic Idea 6.3.1.2	161 163 163 163 164 164 165 165 165 166 166 166 166 166 166 166 166
6	An (<i>Cong</i> 6.1 6.2	Overvie g Liu, C Prelim 6.1.1 6.1.2 Oblivit 6.2.1 6.2.2 Encou 6.3.1	w of Routing Protocols in Mobile Social Contact Networks hengyin Liu, and Wei Wang inaries and Network Models Ad Hoc Wireless Networks Opportunistic Networks ous Routing Algorithms Epidemic Routing 6.2.1.1 Basic Idea 6.2.1.2 Design Issues 6.2.1.3 Implementation Details Spray and Wait 6.2.2.2 Design Goals 6.2.2.3 Implementation Details nter-Based Uni-cast Algorithms Encounter-Based Routing 6.3.1.1 Basic Idea 6.3.1.3	161 163 163 163 164 164 165 165 165 166 166 166 166 166 167 167
6	An (<i>Cons</i> 6.1 6.2	Dvervie <i>g Liu, C</i> Prelim 6.1.1 6.1.2 Oblivi 6.2.1 6.2.2 Encou 6.3.1	w of Routing Protocols in Mobile Social Contact Networks hengyin Liu, and Wei Wang inaries and Network Models Ad Hoc Wireless Networks Opportunistic Networks ous Routing Algorithms Epidemic Routing 6.2.1.1 Basic Idea 6.2.1.2 Design Issues 6.2.1.3 Implementation Details Spray and Wait 6.2.2.2 Design Goals 6.2.2.3 Implementation Details nter-Based Uni-cast Algorithms Encounter-Based Routing 6.3.1.1 Basic Idea 6.3.1.3 Securing EBR Optimal Opportunistic Forwarding	161 163 163 163 164 164 165 165 165 166 166 166 166 166 167 167 168
6	An (<i>Conş</i> 6.1 6.2	Dvervie <i>g Liu, C</i> Prelim 6.1.1 6.1.2 Oblivi 6.2.1 6.2.2 Encou 6.3.1	w of Routing Protocols in Mobile Social Contact Networks hengyin Liu, and Wei Wang inaries and Network Models Ad Hoc Wireless Networks Opportunistic Networks ous Routing Algorithms Epidemic Routing 6.2.1.1 Basic Idea 6.2.1.2 Design Issues 6.2.1.3 Implementation Details Spray and Wait 6.2.2.2 Design Goals 6.2.2.3 Implementation Details nter-Based Uni-cast Algorithms Encounter-Based Routing 6.3.1.1 Basic Idea 6.3.1.2 Encounter-Based Routing 6.3.1.3 Securing EBR Optimal Opportunistic Forwarding 0.3.1 Preliminary and Motivation	161 163 163 163 164 164 165 165 165 166 166 166 166 166 167 167 168 168
6	An (<i>Cons</i> 6.1 6.2	Dvervie g Liu, C Prelim 6.1.1 6.1.2 Oblivi 6.2.1 6.2.2 Encou 6.3.1 6.3.2	w of Routing Protocols in Mobile Social Contact Networks hengyin Liu, and Wei Wang inaries and Network Models Ad Hoc Wireless Networks Opportunistic Networks ous Routing Algorithms Epidemic Routing 6.2.1.1 Basic Idea 6.2.1.2 Design Issues 6.2.1.3 Implementation Details Spray and Wait 6.2.2.2 Design Goals 6.2.2.3 Implementation Details nter-Based Uni-cast Algorithms Encounter-Based Routing 6.3.1.1 Basic Idea 6.3.1.2 Encounter-Based Routing 6.3.1.3 Securing EBR Optimal Opportunistic Forwarding 6.3.2.1 Preliminary and Motivation	 163 163 163 163 164 164 165 165 165 166 166 166 166 166 166 167 168 168 169

	6.3.3	Energy-H	Efficient Opportunistic Forwarding 170
		6.3.3.1	Basic Idea
		6.3.3.2	Optimization Formulation
	6.3.4	Policy D	esign and Optimal Policy
	6.3.5	NUS Stu	dent Contact Trace Model
		6.3.5.1	Basic Idea
		6.3.5.2	Delay-Tolerant Networking
	6.3.6	Location	-Based Routing (PER)
		6.3.6.1	Basic Idea
		6.3.6.2	TH-SMP Model
		6.3.6.3	Contact Probabilities
		6.3.6.4	Delivery Probability Metrics
	6.3.7	Delegation	on Forwarding
	6.3.8	Encounte	er-Based Routing (RAPID)
		6.3.8.1	Selection Algorithm
		6.3.8.2	Inference Algorithm
		6.3.8.3	Control Channel
6.4	Social-	Based Un	i-cast Algorithms
	6.4.1	Bubble F	Rap
		6.4.1.1	Community Detection
		6.4.1.2	Bubble Forwarding
	6.4.2	Social Fe	eature-Based Routing
		6.4.2.1	Basic Idea
		6.4.2.2	Preliminaries
		6.4.2.3	Feature Extraction
		6.4.2.4	Routing Schemes
	6.4.3	SimBet I	Routing
		6.4.3.1	Basic Idea
		6.4.3.2	Betweenness Centrality and Similarity 182
		6.4.3.3	SimBet Routing
	6.4.4	Homing	Spread
		6.4.4.1	Basic Idea
		6.4.4.2	Homing Spread
		6.4.4.3	Performance Analysis
	6.4.5	SOSIM	
		6.4.5.1	Basic Idea
		6.4.5.2	Forwarding Algorithm
		6.4.5.3	Social Similarity Metrics
6.5	Multic	ast	
	6.5.1	Multicas	ting in Delay-Tolerant Networks
		6.5.1.1	Basic Idea
		6.5.1.2	Single-Data Multicast
		6.5.1.3	Multiple-Data Multicast
	6.5.2	SCOOP	
		6.5.2.1	Benefits of Two-Hop Relaying 190

			6.5.2.2	Positively Correlated Paths	190
			6.5.2.3	Relaying Strategy	190
	Refe	rences			191
7	Mul	ticast ir	n Opportu	inistic Networks	195
	Yuns	heng We	ang and Ji	e Wu	
	7.1	Introdu	uction		195
	7.2	Multic	ast		196
	7.3	Single	-Node Mo	del	198
	7.4	Multip	le-Copy N	Aodel	199
	7.5	Single	-Copy Mo	del	205
	7.6	Discus	sion and F	Future Work	209
	7.7	Conclu	usion		210
	Refe	rences			210
8	Inte	rest-Ba	sed Data	Dissemination in Opportunistic Mobile Networks	:
	Desi	gn, Imp	olementat	ion, and Evaluation	215
	Wei	Gao, We	enjie Hu, a	und Guohong Cao	
	8.1	Introdu	uction		217
	8.2	Motiva	ation		218
	8.3	Systen	n Design		218
		8.3.1	Collectir	Ig Data from the Web \ldots	219
		8.3.2	User Inte	erest Profile	221
		8.3.3	Data Tra	nsmission	221
			8.3.3.1	Basic Approach	221
			8.3.3.2	Considering Data Freshness	222
		8.3.4	Multi-Pa	rty Data Transmission	223
		8.3.5	Power C	onstraint of Smartphones	225
			8.3.5.1	Balancing the Workload of Super Users	225
			8.3.5.2	Trade-off between Power Consumption and Data	226
	0.4	G .	T 1		226
	8.4	Systen	n Impleme		226
		8.4.1	Develop		227
		8.4.2	System I	Discoursely Made of Directorth	228
			8.4.2.1	Discoverable Mode of Bluetooth	228
			8.4.2.2	tooth Permission	228
			8.4.2.3	Boot and Daemon Services	229
	8.5	Experi	mental Re	sults	230
		8.5.1	Data Acc	cess Patterns of Mobile Users	230
		8.5.2	Characte	rization of Social Communities	232
	8.6	Relate	d Work .		233
	8.7	Conclu	usion and l	Future Directions	234
	Refe	rences			235

9	Exp	loiting S	Social Information in Opportunistic Mobile Communication	239
	Abde	errahme	en Mtibaa and Khaled A. Harras	
	9.1	Introdu	uction	240
	9.2	Metho	dology: A Data-Driven Approach	241
		9.2.1	Experimental Data Traces	242
			9.2.1.1 CoNext07 [22]	243
			9.2.1.2 Infocom06 [5]	243
			9.2.1.3 CoNext08 [29]	243
			9.2.1.4 Dartmouth01 [16]	244
			9.2.1.5 Hope08 [1]	244
			9.2.1.6 SanFrancisco11	244
		9.2.2	Evaluation Methodology	245
	9.3	People	Rank: A Social Opportunistic Forwarding Algorithm	246
		9.3.1	The PeopleRank Algorithm	247
		9.3.2	PeopleRank Evaluation	248
	9.4	Ensuri	ng Fairness in Mobile Opportunistic Networking	250
		9.4.1	The Efficiency Fairness Trade-off	250
			9.4.1.1 Absolute Efficiency	251
			9.4.1.2 Absolute Fairness	252
		9.4.2	Real-Time Distributed Approach for Fairness-Based For-	
			warding	252
			9.4.2.1 Desired Fairness and Satisfaction Index	252
			9.4.2.2 The FOG Framework	254
			9.4.2.3 FOG Evaluation	254
	9.5	Forwa	rding in Large-Scale Mobile Opportunistic Networks	257
		9.5.1	Forwarding Drawbacks in Large-Scale Opportunistic Net-	
			works	257
		9.5.2	Forwarding within Sub-Communities	259
			9.5.2.1 Classification and Forwarding in Sub-Communities 259	
			9.5.2.2 Impact of Different Community Classifications on Forwarding Performance	260
		9.5.3	Forwarding across Sub-Communities: The Community-	-00
		,	Aware Framework (CAF)	262
			9.5.3.1 The Impact of Community Classification on CAF-	
			Enabled Rank-Based Forwarding Algorithms	263
			9.5.3.2 CAF vs. BubbleRap	264
			9.5.3.3 The Impact of MultiHomed Nodes	266
			9.5.3.4 The Cost of CAF	268
	9.6	Social	-Based Trust in Mobile Opportunistic Networks	270
	2.0	9.6.1	Social-Based Trust Filters	272
		9.6.2	Relay-to-Relay Trust	272
		9.6.3	Source-to-Relay Trust	275
	9.7	Conch	usion	277
	Refe	rences	······································	278

10	Expl	oiting H	Private Profile Matching for Efficient Packet Forwarding in	1
	Mob	ile Soci	al Networks	283
	Kuan	ı Zhang,	Xiaohui Liang, Rongxing Lu, and Xuemin (Sherman) Shen	
	10.1	Introdu	uction	284
	10.2	Related	d Work	287
		10.2.1	Packet Forwarding	287
		10.2.2	Private Profile Matching	289
	10.3	Problem	m Definition	289
		10.3.1	Network Model	289
		10.3.2	Threat Model	290
		10.3.3	Design Goals	291
	10.4	Prelimi	inaries	291
	10.5	Propos	ed POMP Protocols	292
		10.5.1	Overview of POMP	292
		10.5.2	POMP Protocol	293
		10.5.3	Profile Matching	296
		10.5.4	Enhanced POMP (ePOMP) Protocol	299
	10.6	Privacy	Analysis	301
	10.7	Perform	nance Evaluation	302
		10.7.1	Simulation Setup	302
		10.7.2	Simulation Results	303
		10.7.3	Computational Cost	307
	10.8	Conclu	sions	308
	10.9	Acknow	wledgment	308
	Refe	rences		308
11	Priva	acy-Pre	serving Opportunistic Networking	313
	Gian	piero C	ostantino, Fabio Martinelli, and Paolo Santi	
	11.1	Introdu	iction	314
	11.2	Taxono	omy of Privacy-Preserving Opportunistic Protocols	315
	11.3	Attack	er Models	316
	11.4	Crypto	graphy-Based Protocols	316
		11.4.1	Private Contact Discovery	317
		11.4.2	The MightBeEvil Framework	320
		11.4.3	The MobileFairPlay Framework	322
			11.4.3.1 Application to Interest-Cast	322
			11.4.3.2 Interest-Cast Execution Time	327
		11.4.4	Other Cryptography-Based Protocols	329
	11.5	Crypto	graphy-Free Protocols	330
		11.5.1	Probabilistic Profile-Based Routing	330
			11.5.1.1 Forwarding Packet Condition	331
			11.5.1.2 Performance Evaluation	332
		11.5.2	Hide-and-Lie	333
			11.5.2.1 Simulations and Results	335
	11.6	Conclu	sions	336

	References	337								
12	Incentivizing Participatory Sensing via Auction Mechanisms	339								
	Buster O. Holzbauer, Boleslaw K. Szymanski, and Eyuphan Bulut									
	12.1 Introduction	340								
	12.2 Problem Definition	341								
	12.3 Issues in Participatory Sensing	341								
	12.3.1 Data	341								
	12.3.2 Coordination	342								
	12.3.3 Privacy and Security	342								
	12.3.4 Human Concerns	344								
	12.3.5 Participants	344								
	12.4 Applying Market Mechanisms	345								
	12.5 Privacy-Oriented Approaches	356								
	12.6 Participatory Sensing Systems	365								
	12.7 Conclusion	371								
	References	372								
13	A P2P Search Framework for Intelligent Mabile Crowdsourcing	377								
15	Andreas Konstantinidis and Dematrice Zeinglingur Vazti	511								
	13.1 Introduction	378								
	13.2 Background and Related Work	370								
	13.2 1 Mobile Crowdsourcing	379								
	13.2.1 Mobile P2P Search	381								
	13.2.2 Multi-Objective Optimization	382								
	13.3 System Model and Problem Formulation	383								
	13.3.1 System Model	384								
	13.3.2 Optimization Problem Formulation	385								
	13.4 The SmartOnt Framework	386								
	13.4.1 The Optimizer Module	386								
	13.4.2 The Decision-Maker Module	390								
	13.4.3 The P2P Search Module	391								
	13.5 The Smartphone Prototype System	391								
	13.5.1 The SmartLab Programming Cloud	393								
	13.6 SmartP2P Prototype Evaluation on SmartLab	394								
	13.6.1 Experimental Setup	394								
	13.6.2 Experimental Results	397								
	13.7 Conclusions and Potential Applications	400								
	References	401								
14	Encounter-Based Opportunistic Social Discovery in Mobile Networks	407								
	Uaayan Kumar and Ahmed Helmy	400								
	14.1 Introduction	408								
	14.2 UVErVIEW	410								
	14.2.1 Neighbor Discovery	410								

14.2.2 Neighbor Selection	411
14.2.3 Connection Establishment	412
14.2.4 Applications	412
14.3 Rationale and Architecture	413
14.3.1 Rationale and Approach	413
14.3.2 Design Goals	413
14.3.3 Overall Design	414
14.4 Encounter Filters	415
14.4.1 Simple Encounter Ranking	415
14.4.2 Spatial Correspondence	416
14.4.3 Hybrid Filter (HF)	418
14.4.4 Decay of Filter Scores	418
14.5 Trace-Based Analysis	419
14.5.1 Filter Correlation	420
14.5.2 Filter Stability	421
14.5.3 Graph Analysis	421
14.6 Implementation and Simulation	422
14.6.1 Survey	424
14.6.2 ConnectEnc Application	425
14.6.3 Simulation Evaluation	428
14.7 Other Modules	429
14.7.1 Anomaly Detection	430
14.7.2 External Inputs	431
14.7.3 Unified Score Generation	431
14.8 Conclusion and Future Work	432
References	432
15 VANETs as an Opportunistic Mobile Social Network	437
Anna Maria Vegni and Thomas D.C. Little	
15.1 Introduction	438
15.2 Opportunistic Social Networks	439
15.2.1 Social-Based Routing Protocols	444
15.3 Vehicular Ad Hoc Networks	447
15.3.1 Crowdsourcing-Based Applications	451
15.3.2 Eco-friendly Applications	455
15.3.3 Social-Based Routing Protocols in VSNs	456
15.4 Conclusions	459
References	460
16 Natural Emplotion Tasthad for Mahila Annartunistic Naturalys	167
Danyan Daunan Tashiyuki Miyashi Chinayka Miyasand Vaishi China da	407
Kazvan beuran, Iosniyuki Miyacni, Sninsuke Miwa, and Yoichi Shinoda	160
10.1 Introduction	408
10.2 Approach Overview	409
10.2.1 Experiment reconfigues	409
	4/1

	16.2.3	Network Emulation Testbed	471
16.3	Design	Challenges	472
	16.3.1	Mobility	473
	16.3.2	Disruptions	474
	16.3.3	Wireless Communication	475
	16.3.4	Scalability	476
16.4	QOMB	B Testbed	479
	16.4.1	StarBED	479
	16.4.2	QOMET	480
	16.4.3	Overall Architecture	481
16.5	Opport	unistic Network Emulation	481
	16.5.1	Linux Support	482
	16.5.2	Multi-Interface Support	482
	16.5.3	Node Mobility	483
	16.5.4	Fault Injection	483
16.6	Experir	mental Results	484
	16.6.1	DTN Implementations	484
	16.6.2	Experiment Summary	484
	16.6.3	DTN2 Performance	485
		16.6.3.1 26-Node Experiments	485
		16.6.3.2 10-Node Experiments	488
16.7	Related	1 Work	490
16.8	Conclu	sion	491
Refer	ences		491
Index .			495

This page intentionally left blank

List of Figures

1.1	The balloon graph $B_{10,4}$.	11
1.2	An example of composite network multicast.	21
1.3	Realistic US army chain-of-command networks. (a) a chain-of-	
	command social network (tree); (b) historical deployment of the	
	chain of command shown in (a); (c) one random deployment of the	
	chain of command shown in (a) under scenario S2.	25
1.4	Realistic UK army chain-of-command networks. (a) a chain-of-	
	command social network (tree); (b) historical deployment of the	
	chain-of-command shown in (a); (c) one random deployment of the	
	chain of command shown in (a) under scenario S2	26
1.5	CBtime: Comparison of CBtime for various deployments of the	
	chains of command shown in Figure 1.3(a) and 1.4(a). Various up-	
	per and lower bounds derived in Section 1.4 are illustrated	29
1.6	CBetweenness: In (a), Figure 1.4(b) is reproduced with node size	
	proportional to the normalized vertex betweenness centrality; in (b)	
	the same plot is produced with node size proportional to the normal-	
	ized <i>composite</i> vertex betweenness centrality	29
1.7	H-compliant multicast: (a1) historical deployment, and (a2) hierar-	
	chy; (b) costs: Klein-Ravi (dotted), Opt (solid); (c) with and without	
	<i>H</i> -compliance	30
1.8	FOAF composite graph. (a) The FOAF social network in Europe; (b)	
	a geometric graph in Europe constructed using a radius of commu-	
	nication of 5.1 degrees of latitude/longitude; and (c) <i>CBtime</i> in the	
	composite graph specified in (a) and (b). Various upper and lower	
	bounds derived in Section 1.4 are illustrated.	32
2.1	An overview of information diffusion models.	41

3.1	For RW models on a $2000m \times 2000m$ domain with exponentially distributed step-length with means 20, 50, $100m$: (a) $\mathbb{P}{T_I > t}$ in a	
	log-log scale; (b) message delivery ratio of epidemic routing scheme when varying the number of nodes in the network.	78
3.2	0–1 valued process for user availability.	81
3.3	Link formation process for $A-B$ pair.	82
3.4	Examples of user-pair on/off dynamics over (a) faster time scale, and (b) slower time scale, than that of contact/inter-contact dynamics.	85
3.5	The ccdf of the inter-contact time of a given pair in (a) a semi-log scale, and (b) a log-log scale to clearly show the power-law "head" behavior	88
3.6	For random mobility models: (a) average message delay ratio for the case of exponential on/off-durations A_{on} and A_{off} , while vary- ing $\mathbb{E}\{A_{on}\}$ (and also $\mathbb{E}\{A_{off}\}$); $\mathbb{P}\{L_{off} > t\}$ measured when (b) $\mathbb{E}\{A_{on}\} = 45$ and (c) $\mathbb{E}\{A_{on}\} = 32805$ (corresponding to the fourth and last data points in the figure (a), respectively); (d) average de- lay ratio under the case of exponential on-duration A_{on} and hyper- exponential off-duration A_{off}	90
3.7	Three different regimes depending on the relative time scale of the user availability process	91
3.8	The role of user availability.	92
4.1	The spatial distribution of wireless access points of six teaching buildings.	103
4.2	The illustration of temporal contact network and its aggregated ver-	105
13	Network reachability	105
4.5	The correlation of the temporal out-degrees and in-degrees	107
т.т 15	The illustration of event interactions and transmission graph	110
т.5 4.6	Temporal dynamics of event interactions	111
4.0	Temporal dynamics of transmission durations	112
4.8	Outliers: temporal hubs in the aggregated transmission graph versus	112
т.0	leaf vertices in the static contact network	11/
4.0	The illustration of predicting temporal hubs	114
4.9	Predicting temporal hubs of a transmission graph	117
4.10		117
5.1	(a) Human mobility modeling under a Markovian view: States represent different localities, e.g., House, Office, Shop, and Other places, and transitions represent the mobility pattern. (b) 5×5 torus representing the distances from location A to the other locations	128
5.2	Theoretical inter-contact time distribution of STEPS.	132
5.3	CCDF of inter-contact time.	134
5.4	Contact time behavior of STEPS vs. real trace.	135

5.5	Time window size effect on the measure of temporal clustering co- efficient (as defined in [11])	140
56	Small world phenomenon observed in real mobility traces	142
57	Evolution of dynamic betweenness centrality of nodes in Infocom05	112
0.1	trace	143
5.8	(a) Impact of node 34 on the shortest dynamic paths from and to	110
2.0	(a) impact of node 51 on the subject dynamic paths from that to the other nodes at $t = 22h$ (Infocom05 trace): (b) shortest dynamic	
	naths from node 31 at $t = 22h$ in Infocom05 trace, before and after	
	removal of node 34	144
59	(a) Small-world network configuration: (b) small-world phe-	111
5.7	nomenon in dynamic networks	145
5 10	(a) Evolution of fraction of infected nodes over time (theory) (b)	115
5.10	Comparison of analytical and simulation results	147
5 1 1	Evolution of fraction of infected nodes over time with the complete	117
5.11	version of the model (simulation result)	148
5 12	Typical static neighborhood topologies vs. dynamic neighborhood	110
0.12	topology generated by the mobility model	151
5 13	Impact of mobility on the convergence delay of the PSO algorithm	152
5 14	Mobile cloud computing in small-world networks	154
5.15	Resilience of mobile cloud network distributed services under vari-	10.
0.110	ous mobility contexts.	155
6.1	Timestamp protocol.	168
6.2	An example of a location-based mobility model.	173
6.3	Illustration of the Bubble algorithm.	179
6.4	A 3-dimensional hypercube.	181
6.5	An example of the state transition graph ($h = 2, n = 5$)	185
7 1	III. deadless of a second data	107
7.1	Illustration of a multicast tree.	19/
1.2	Illustration of a single-node model in DTN multicasting	199
1.3	Illustration of a delegation forwarding multicast tree in DTNs	202
7.4	Delegation forwarding multicast in DTNs.	202
1.5	Illustration of the non-replication muticasting scheme in DTNs	207
7.0		207
8.1	Overview	219
8.2	Comparison between the original webpage and the re-formatted	/
0.2	news page from CNN.	220
8.3	Format of HTML and XML files.	220
8.4	CDF of file size after filtering.	221
8.5	User Interest Profile (UIP).	222
8.6	Data transmission priority considering user interests and data fresh-	_
	ness simultaneously.	224
8.7	System implementation.	226
8.8	News reader.	227

8.9	Extending Bluetooth discoverable time	228
8.10	Remove Bluetooth permission request dialog.	229
8.11	Behaviors of user data access over different news categories	230
8.12	Amounts of news received by users.	231
8.13	Temporal patterns of data access behaviors of mobile users	232
8.14	Social community structure among mobile users, 81730 sec is used	
	as the threshold.	233
8.15	User communities during different time periods	234
9.1	PeopleRank vs. centrality vs. degree.	249
9.2	Efficiency vs. fairness trade-off (Infocom06 data set)	251
9.3	Node categories with respect of their popularity rank	253
9.4	Comparison of FOG and the offline technique (Infocom06 data set).	255
9.5	Comparison of FOG and offline approach performance (using the	
	modified SF dataset).	256
9.6	Normalized cost of extended PeopleRank versions.	256
9.7	Example showing (a) the weaknesses of existing rank-based for-	
	warding algorithms in a large-scale community, and (b) identifying	
	sub-communities within the same large-scale one, and using Multi-	
	Homed nodes to disseminate messages to these sub-communities.	258
9.8	Scalability issues of rank-based algorithms relying on the SanFran-	
	cisco11 data set	259
9.9	Normalized success rate distribution of PeopleRank relying on dif-	
	ferent community classification (Dartmouth01)	261
9.10	Normalized success rate distribution of Greedy relying on different	
	community classification (Dartmouth01).	262
9.11	Impact of community classification on CAF-PeopleRank success	
	rate (Dartmouth01 data set)	264
9.12	Comparison of CAF-PeopleRank, CAF-Degree-based, and CAF-	
	Simbet with BubbleRap (SanFrancisco11 data set using only 5%	
	cabs)	265
9.13	Comparison of CAF-FRESH and CAF-Greedy with BubbleRap	
	(SanFrancisco11 data set using only 5% cabs)	266
9.14	Normalized success rate distribution of CAF-PeopleRank across	
	multiple communities (SanFrancisco11).	267
9.15	CAF-Simbet vs CAF-BubbleRap vs CAF-PeopleRank (SanFran-	
	cisco11)	268
9.16	Normalized cost of different social forwarding schemes vs. Bub-	
	bleRap (Hope08 dataset).	270
9.17	Normalized cost of contact-based forwarding schemes (Greedy, and	
	FRESH) vs. BubbleRap.	270
9.18	Trust establishment in opportunistic communication.	271
9.19	Performance evaluation of R2R: d-distance	273
9.20	Performance evaluation of R2R: common interests	274
9.21	Performance evaluation of R2R: common friends.	275

9.22	Comparison of social filters-based trust techniques	276
10.1 10.2	Mobile social networks	285 285
10.3 10.4	Private profile matching overview.	286 293
10.5	Relay selection of POMP.	295
10.6 10.7	Multi-hop relay selection of ePOMP.	299 304
10.8	Impact of <i>TH</i> on performance of ePOMP	305
10.9 10.10	Comparison of the number of matched users. \ldots \ldots \ldots Comparison of privacy loss among different protocols ($\alpha = 0.5, \beta =$	306
	1)	307
11.1	The Discover algorithm from [7].	319
11.2 11.3	User's profile window.	324 325
11.4	Protocol steps.	325
11.5	Four topics: Bob's running time of the secure function.	328 329
12.1 12.2	Average Contributor Battery Level	370 371
13.1	The SmartOpt framework: (*) The crowd continuously contributes social data (i.e., text, images, videos, etc.) to the optimizer. (a) A mobile social network user posts a query to the optimizer. (b) The optimizer obtains a set of non-dominated solutions (PF) and sends it back to the user. (c) The user (decision maker) chooses a Pareto- optimal solution based on instant requirements and preferences. (d) The optimizer forwards the selected Pareto-optimal QRT to the user. (e) The user searches the P2P social network for objects of interest.	387
13.2 13.3	Subset of the SmartLab programming cloud Evaluation of the CS, BFS, RW, and SmartOpt search algorithms using the energy, time, and recall performance. The bottom/right figure shows SmartOpt compared to the solutions of CS and BFS in the objective space at timestamp <i>ts</i> =70 of Mobile-Social Scenario-1 (MSS-1).	394 398
13.4	A screenshot of SmartP2P on SmartLab using real-time screen cap-	200
13.5	Evaluating our SmartP2P prototype system in Android using the SmartLab testbed for different network sizes in both Mobile Social Scenarios 1 (GeoLife+DBLP) and Mobile Social Scenarios 2 (Pics	399
	'n' Trails) with respect to time and energy.	400

14.1	Block diagram overview of the <i>ConnectEnc</i> architecture. Dotted lines enclose the modules of <i>ConnectEnc</i> (orange-colored blocks). Green-colored (1, 2, and 12) illustrate the blocks that interact with other applications and user of the device. White-colored blocks (5,	
	8, and 9) illustrate the integration of external systems with <i>Con</i> -	414
14.0	nectEnc.	414
14.2	Dehevior vector LV for a user.	417
14.5	Completion between the anomaton lists and deced by control filters	41/
14.4	Correlation between the encounter lists produced by various filters	420
145	at threshold, $1=40\%$.	420
14.5	Comparison of encounter score lists belonging to different history	
	for various filters at $1=40\%$ (note that the y-axis scale for <i>DE</i> starts	400
110	at 85% and for $LV - D$ and BM the scale starts at 35%).	422
14.0	Average unreachability with varying encounter score threshold, I ,	400
147	and selfisiness, S, using the DE filter.	423
14./	Normalized clustering coefficient and path length.	423
14.8	Survey results snowing the user's propensity to communicate with	40.4
14.0	other users in various communication scenarios.	424
14.9	Selected screenshots of the <i>ConnectEnc</i> application (earlier it was	
	named 11rust). Figure A snows the main screen where encounter	
	intentionally). Concern and make	
	Marked known ware an shown in lines have alon Eigun D shows	
	Marked known users are snown in lines blue color. Figure B snows	
	details for an encountered user. Figure C shows user encounters on	
	and the map. Red colored annotations is added to show the application	106
14 10	IIOW.	420
14.10	the memory tage of trusted users in 1 to 10 top users 11 to 20 top users	
	the percentage of trusted users in 1 to 10 top users, 11 to 20 top users	
	(from top) to continue will of trusted users for each filter	407
1 / 1 1	(from top) to capture $x\%$ of trusted users for each filter	427
14.11	Flow chart for DTN fouring using Connectence's peer selection	420
14.12	Hybrid lifer results when $1=40\%$. Number on the legend lifer set of the ratio of score from each filter. For example, 1211 implies	
	called the fatto of score from each filter. For example, 1211 implies $\alpha = 0.2$ and	
	$\alpha_{DE} = 0.2, \ \alpha_{FE} = 0.4, \ \alpha_{LV-D} = 0.2, \text{ and } \alpha_{BM} = 0.2 \text{ and } 0100 \text{ Im-}$	420
	pries $\alpha_{DE} = 0$, $\alpha_{FE} = 1$, $\alpha_{LV-D} = 0$, and $\alpha_{BM} = 0$ (Section 14.7.5).	450
15.1	Home-aware community model	445
15.2	Vehicular grid with an overlapping heterogeneous wireless network	
10.2	structure	448
15.3	Concept of a Vehicular Social Network (VSN) [38].	449
15.4	Crowd-based smart parking [17].	453
15.5	MobiliNet approach [23].	454
15.6	Eco-Driving Coach system architecture [36].	456
15.7	Schematic of social behavior establishment in VANETs [29]	459
		-

Network emulation versus other experiment techniques	472
Screenshot of an emulation experiment that uses a vehicular network	
and the DTN protocol for post-disaster network recovery	473
QOMET's two-stage scenario-driven network emulation approach.	476
Various approaches for allocating emulated nodes per host	477
Logical hierarchy of QOMB components.	479
Architecture of the opportunistic network emulation framework	481
Urban mobility scenario for experiments with 26 nodes	486
Results for flood and dtlsr routing in 26-node experiments: (a) Suc-	
cessful dtnping replies; (b) average dtnperf goodput per node	487
Urban mobility scenario for experiments with 10 nodes	489
Results for flood and dtlsr routing in 10-node experiments: (a) suc-	
cessful dtnping replies; (b) average dtnperf goodput per node	489
	Network emulation versus other experiment techniques Screenshot of an emulation experiment that uses a vehicular network and the DTN protocol for post-disaster network recovery QOMET's two-stage scenario-driven network emulation approach. Various approaches for allocating emulated nodes per host Logical hierarchy of QOMB components

This page intentionally left blank

List of Tables

1.1	Summary of Path Stretch Metrics for Uniform Random Embeddings	14			
1.2	Summary of Chain-Of-Command Data Sets				
2.1	Models Listing and Comparisons	54			
4.1	The Estimated Average Euclidean Distances and Standard Devia- tions between any Two WiFi Users	104			
5.1 5.2 5.3 5.4	Infocom 2006 Trace 1 Node Categories for the Contact-Time Measure 1 Dataset of Real Opportunistic Network Traces 1 Simulation Settings 1				
6.1	List of Commonly Used Variables [2]	176			
7.1	Multicast Routing Schemes in Opportunistic Networks	196			
8.1	Amount of News in Different Categories	231			
9.1 9.2	Dataset Properties	243 272			
11.1 11.2	Main Features of Privacy-Preserving Opportunistic Protocols Total Running Time Time for Discovering Common Friends with	315			
11.3 11.4	MightBeEvil [10]Compilation Time Required for a One-Topic FunctionCompilation Time Required for Four-Topics Function	321 327 328			
13.1 13.2	Table of Symbols Experimental Execution Scenarios and Test Instances	383 396			

14.1	Overhead of Filters in Terms of Processing and Storage	419
14.2	Facts about Studied Traces	419
14.3	Trade-off between Saving in Terms of Scans and Loss of Informa-	
	tion, W and B, indicates WiFi and Bluetooth Trace, Respectively $\ .$	428
15.1	Main Features of OSN Topology, with a Short Description	442
16.1	Areas in Which Faults Can Occur in Network Environments (based	
	on [21])	474
16.2	Characteristics of Various Experiment Scale-Up Methods	478

Preface

Over the past few decades, social networks have attracted massive interest from scholars in fields as diverse as sociology, biology, physics, business, politics, and computer science. From these diverse fields, researchers have found that many systems can be represented as networks, and that there is much to be learned by studying those networks. With the rapid growth of the Internet and the web, large-scale social network analysis has become possible for researchers. The most important difference between the traditional and new social networks is that the traditional theories of social networks have not been very concerned with the structure of naturally occurring networks. Traditional social network analysis is deep and elegant, but it is not especially relevant to networks arising in the real world. The emergence of recent mobile devices and their applications have brought about a new landscape in studying social networks.

The recent availability of mobile devices coupled with recent advancements in networking capabilities make opportunistic networks one of the most promising technologies for next-generation mobile applications. Opportunistic networks are commonly defined as a type of network where communication is challenged by sporadic and intermittent contacts, as well as frequent disconnections and reconnections, and where the assumption of the existence of an end-to-end path between the source and the destination is relinquished. Connectivity disruptions, limited network capacity, energy and storage constraints of those participating, mobile devices, and the arbitrary movement of nodes are only a few of the challenges that must be dealt with by the protocol stack. Clearly, current Internet protocols (i.e., the TCP/IP protocol stack) suffer and can fail under such conditions. Opportunities can be useful for building both ad hoc and delay-tolerant networks for data, but they can also be mined for information about mobility and social structures. However, to do either of these, users need to be persuaded to share resources, either at the information level, which impacts privacy, or at the communications level, which impacts their own network performance.

With new challenges brought up by the aforementioned emerging mobile technology in social networks and opportunistic networks, we have recently witnessed the rise of an emerging cross-disciplinary field called *opportunistic mobile social networks*, which has started to receive much attention from practitioners, scholars, and the general public. An opportunistic mobile social network can be described as a platform that provides services via hand held and wireless devices, mainly for the purpose of fostering and maintaining social interactions and connections. Therefore, an opportunistic mobile social network can be considered a form of social network where services are provided with mobility as an added value. Thanks to mobility, many emergent applications related to social networking are now available for individuals, business enterprises, and governments.

The convergence of social networks and opportunistic networks has its own implications for theory and practice. From a theoretical perspective, new research domains have emerged to tackle opportunistic mobile social networks from technological, social, behavioral, legal, and ethical standpoints. From a practical perspective, it is a topic that can notice new forms of collaboration, such as the one between mobile network operators and social networking sites, to offer new innovative services. Moreover, new opportunities are now available to individuals, business organizations, and governments, such as location-based services, content distribution systems, early warning systems in crisis management, and business cooperation monitoring. Indeed, these implications call for urgent attention to further investigate all related and significant issues of opportunistic mobile social networks, so as to advance our understanding and knowledge in this context.

The main goal of this book is to collect the recent development on theoretical, algorithmic, and application-based aspects of opportunistic mobile social networks. This book will be of particular value to academics, researchers, practitioners, government officials, business organizations (e.g., executives, marketing professionals, and resource managers), and even customers—those working in, participating in, or even those interested in fields related to social networks. The content of the book will be especially useful for students in areas like social networks, informatics, wireless networks, data mining, and administrative sciences and management, but also applies to students of education, economy, or law, who would benefit from the information, cases, and examples therein.

This book is expected to serve as a reference book for developers in the telecommunications industry, and for a graduate course in computer science and engineering. Our focus is to expose readers the technical challenges of opportunistic mobile social networking, and to offer some ideas on how we might overcome them. This book is organized in four areas with a total of 16 chapters. Each area corresponds to an important snapshot, according to what we believe, in this fast-growing field. Although several books have emerged recently in this area, none of them address all four areas in terms of critical issues and possible solutions.

- Fundamental concepts and models in opportunistic mobile social networks (Chapters 1–5)
- Routing and forwarding schemes in opportunistic mobile social networks (Chapters 6–9)

- Privacy, security, and economics in opportunistic mobile social networks (Chapters 10–12)
- Applications and testbeds in opportunistic mobile social networks (Chapters 13–16)

Introducing fundamental concepts and models in opportunistic mobile social networks, Chapter 1 presents a systematic analytical study of the constrained information flow problem, which models a pair of networks (social and communication) as a composite graph. Chapter 2 reviews the recent literature of social influence in complex social networks. Chapter 3 provides a comprehensive overview of the fundamental characteristics of link-level connectivity in opportunistic networks, which is crucial in understanding and evaluating network performance. Chapter 4 uses WiFi interactive to discover and predict temporal networks and human population dynamics. Chapter 5 shows how mobility and dynamic network structure impact the processing capacity of opportunistic mobile networks for cloud applications.

In a discussion of routing and forwarding schemes, which spans Chapters 6 to 9, Chapter 6 provides a comprehensive overview of the routing schemes proposed in opportunistic mobile social networks, with a focus on encounter-based unicasting and social-based unicasting. A brief overview of several multicast approaches is also given. Chapter 7 takes an in-depth look into multicast protocols, which are classified based on the number of copies of the multicast message for opportunistic mobile social networks. Chapter 8 focuses on providing pervasive data access to mobile users without the support of cellular or Internet infrastructures. Chapter 9 adopts a data-driven approach, which is based on multiple mobility traces collected from conferences, university campuses, and metropolitan cities, to address four challenges: efficiency, utilization, scalability, and trust.

Issues of privacy, security, and economics in opportunistic mobile social networks are examined in chapters 10 through 12. Chapter 10 applies privacy-preserving techniques with packet forwarding to enhance communication performance and protect users' sensitive information from disclosure. Chapter 11 surveys a collection of approaches that have been recently proposed in the literature to address the need for minimizing privacy leakage during opportunistic user profile exchange. Chapter 12 introduces economics concepts to help formalize the idea of incentives for rewarding long-term participation.

In the final area of applications and testbeds, Chapter 13 deals with a P2P search framework for intelligent crowdsourcing in opportunistic mobile social networks. Chapter 14 introduces a framework for mobile peer rating using a multi-dimensional metric scheme, based on encounter and location sensing. Chapter 15 investigates Vehicular Ad hoc NETworks (VANETs), as a particular class of opportunistic mobile social networks, under the assumption of social networking for vehicular applications (i.e., safety and entertainment applications). Chapter 16 develops a network emulation testbed called QOMB, that can be used to validate the efficient operation of opportunistic network applications and protocols in scenarios that involve both node mobility and wireless communication.

We would like to express our gratitude to all authors. This book would not be possible without their generous contributions. Our special thanks are given to CRC senior editor, Richard O'Hanley, for his encouragement and guidance. Finally, we want to thank our families for their support and patience during this project. Readers are welcome to send their comments and suggestions to jiewu@temple.edu and ywang@kettering.edu.

Jie Wu Temple University

Yunsheng Wang Kettering University

About the Editors

Jie Wu is chair and Laura H. Carnell Professor in the Department of Computer and Information Sciences at Temple University. He is also an Intellectual Ventures endowed visiting chair professor at the National Laboratory for Information Science and Technology, Tsinghua University. His current research interests include mobile computing and wireless networks, routing protocols, cloud and green computing, network trust and security, and social network applications. Dr. Wu regularly publishes in scholarly journals, conference proceedings, and books. He serves on several editorial boards and on organization committees of ACM and IEEE conferences. Dr. Wu is the recipient of the 2011 China Computer Federation (CCF) Overseas Outstanding Achievement Award.

Yungsheng Wang is an assistant professor in the Department of Computer Science in Kettering University, Flint, Michigan. He received a B.Eng. in electronic and information engineering from Dalian University of Technology, Dalian, China, in 2007; a M.Res. in telecommunication from University College London, London, in 2008; and a Ph.D. from the Department of Computer and Information Sciences, Temple University, Philadelphia, Pennsylvania, in 2013. His research interests include various topics in the application and protocols of wireless networks. Currently, his research focuses on the efficient communication in delay tolerant networks and opportunistic mobile social networks. Dr. Wang serves as track co-chair of the International Workshop on Mobile Sensing, Computing and Communication (MSCC) conducted in conjunction with ACM Mobihoc, 2014. He also serves on technical program committees of several IEEE conferences. This page intentionally left blank

Contributors

Amotz Bar-Noy

Department of Computer Science The Graduate Center of the City University of New York New York, New York

Prithwish Basu

Advanced Networking Technologies Raytheon BBN Technologies Cambridge, Massachusetts

Ben Baumer

Department of Mathematics and Statistics Smith College Northampton, Massachusetts

Razvan Beuran Hokuriku StarBED Technology Center

National Institute of Information and Communications Technology Ishikawa, Japan

Eyuphan Bulut

Cisco Systems Richardson, Texas

Guohong Cao

Department of Computer Science and Engineering The Pennsylvania State University University Park, Pennsylvania

Chi-Kin Chau

Department of Computing and Information Science Masdar Institute Masdar City, United Arab Emirates

Gianpiero Costantino

Istituto di Informatica e Telematica del CNR Pisa, Italy

Michel Diaz LAAS-CNRS Toulouse, France

Do Young Eun North Carolina State University Raleigh, North Carolina

Wei Gao

Department of Electrical Engineering and Computer Science The University of Tennessee Knoxville, Tennessee Khaled A. Harras Computer Science Department Carnegie Mellon University Doha, Qatar

Ahmed Helmy

Department of Computer and Information Science and Engineering University of Florida Gainesville, Florida

Buster O. Holzbauer Rensselaer Polytechnic Institute Troy, New York

Wenjie Hu

Department of Computer Science and Engineering The Pennsylvania State University University Park, Pennsylvania

Andreas Konstantinidis

Department of Computer Science University of Cyprus Nicosia, Cyprus

Udayan Kumar

Department of Computer and Information Science and Engineering University of Florida Gainesville, Florida

Chul-Ho Lee North Carolina State University Raleigh, North Carolina

Xiang Li Adaptive Networks and Control Laboratory Department of Electronic Engineering Fudan University Shanghai, China

Xiaohui Liang

Department of Electrical & Computer Engineering University of Waterloo Waterloo, Ontario, Canada

Thomas D.C. Little

Department of Electrical and Computer Engineering Boston University Boston, Massachusetts

Chengyin Liu

Sun Yat-Sen University Guangzhou, Guangdong, P.R. China

Cong Liu Sun Yat-Sen University Guangzhou, Guangdong, P.R. China

Rongxing Lu

Department of Electrical & Computer Engineering University of Waterloo Waterloo, Ontario, Canada

Fabio Martinelli

Istituto di Informatica e Telematica del CNR Pisa, Italy

Subhankar Mishra

Department of Computer and Information Science and Engineering University of Florida Gainesville, Florida

Shinsuke Miwa

Hokuriku StarBED Technology Center National Institute of Information and Communications Technology Ishikawa, Japan

Toshiyuki Miyachi

Hokuriku StarBED Technology Center National Institute of Information and Communications Technology Ishikawa, Japan

Abderrahmen Mtibaa

Electrical & Computer Engineering Texas A & M University Doha, Qatar

Anh-Dung Nguyen

Department of Mathematics Computer Science and Automatic Control ISAE, University of Toulouse Toulouse, France LAAS-CNRS, Toulouse, France

Paolo Santi

Istituto di Informatica e Telematica del CNR Pisa, Italy

Patrick Senac

Department of Mathematics Computer Science and Automatic Control ISAE, University of Toulouse Toulouse, France LAAS-CNRS, Toulouse, France

Xuemin (Sherman) Shen

Department of Electrical & Computer Engineering University of Waterloo Waterloo, Ontario, Canada

Yoichi Shinoda

Research Center for Advanced Computing Infrastructure Japan Advanced Institute of Science and Technology Ishikawa, Japan

Boleslaw K. Szymanski

Rensselaer Polytechnic Institute Troy, New York

My T. Thai

Department of Computer and Information Science and Engineering University of Florida Gainesville, Florida and Ton Duc Thang University Ho Chi Minh City, Vietnam

Athanasios V. Vasilakos

Department of Electrical and Computer Engineering National Technical University of Athens Athens, Greece

Anna Maria Vegni

Department of Engineering University of Roma Tre Rome, Italy

Wei Wang

Sun Yat-Sen University Guangzhou, Guangdong, P.R. China

Yunsheng Wang

Department of Computer Science Kettering University Flint, Michigan

Jie Wu

Department of Computer and Information Sciences Temple University Philadelphia, Pennsylvania

Demetrios Zeinalipour-Yazti

Department of Computer Science University of Cyprus Nicosia, Cyprus

Huiyuan Zhang

Department of Computer and Information Science and Engineering University of Florida Gainesville, Florida

Kuan Zhang

Department of Electrical & Computer Engineering University of Waterloo Waterloo, Ontario, Canada

Yi-Qing Zhang

Adaptive Networks and Control Laboratory Department of Electronic Engineering Fudan University Shanghai, China

Chapter 1

Social-Communication Composite Networks

Prithwish Basu

Advanced Networking Technologies Raytheon BBN Technologies Cambridge, Massachusetts

Ben Baumer

Department of Mathematics and Statistics Smith College Northampton, Massachusetts

Amotz Bar-Noy

Department of Computer Science The Graduate Center of the City University of New York New York, New York

Chi-Kin Chau

Department of Computing and Information Science Masdar Institute Masdar City, United Arab Emirates

CONTENTS

1.1	Introduc	tion	2
	1.1.1	Related Work	3
1.2	Compos	ite Graph Models	5

	1.2.1	Metrics on Composite Graphs			
1.3	Compo	Composite Stretch Analysis			
	1.3.1	Theoretical Results	8		
	1.3.2	Composite Stretch of Some Special Graphs	10		
	1.3.3	Average vs. Worst-Case Analysis	13		
1.4	Compo	osite Broadcast Time	14		
1.5	Compo	osite Betweenness Centrality	17		
	1.5.1	Constrained Composite Load on Path Graphs	17		
	1.5.2	Composite Centrality in Manhattan Grid Networks	17		
1.6	Multic	ast in Composite Networks	18		
	1.6.1	Preliminaries	19		
	1.6.2	Hierarchy-Compliant Multicast	20		
	1.6.3	Algorithms for H-Compliant Multicast	21		
1.7	Simula	ation-Based Evaluation	24		
	1.7.1	Chain of Command	24		
		1.7.1.1 Evaluation of Basic Composite Network Metrics	28		
		1.7.1.2 Evaluation of Composite Network Multicast	30		
	1.7.2	Friend-of-a-Friend (FOAF)	31		
1.8	Conclu	sion and Discussion	33		
	Acknowl	edgments	34		
	Reference	es	34		

1.1 Introduction

The recent explosive growth in online social networks has been fueled by the proliferation of high-speed and highly available communication networks such as the Internet and broadband cellular wireless networks, as well as the increasing popularity of mobile network-ready devices such as "smartphones" and tablets. People tend to share information with other people they know, who subsequently forward that information along various links in the social network—this occurs either verbatim (for example, the directives from a commander flow through the *chain of command*) or after modifications (for example, propagation of rumors, gossip, or news on Twitter). A social network's topology thus *constrains* or *guides* the flow and spread of information through it. These constraints can force the information to traverse much longer paths in the underlying communication network between its originator and its ultimate consumers. This phenomenon, known as *stretch*, is justified because the intermediaries may play a critical role in interpreting or modifying the information or they may serve as important links in the acquaintance chain, without whom the originator and the ultimate consumers would not have known each other.

When information gets *stretched*, the total time for it to spread through the entire social network is often different from the time taken to simply *multicast* the information on the underlying communication network to the set of ultimate consumers. An additional undesirable side-effect of the "stretch" phenomenon is that an information object may traverse a communication link or a node several times during the process,

thus increasing resource consumption. While this is not a major issue for lightweight content such as text (e.g., 140 character Twitter messages), it can be a significant problem for multimedia content, especially in mobile ad hoc network (MANET) or disruption-tolerant network (DTN) settings where accessing multimedia content directly from a server over a flaky network may not be feasible.

In this chapter, we present a systematic analytical study of the constrained information flow problem-in particular, we model a pair of networks (social and communication) as a *composite graph*—a structure that results from embedding or mapping the social network into the communication network using embedding / mapping functions. A mapping function maps a node in the social network to one or more in the communication network when the former *uses* the latter as his/her communication portal(s). We consider unicast, broadcast, and multicast versions of this scenario. We introduce several "composite graph" metrics that capture the effect of constraining the flow of information in the communication network due to the social network, for example, composite path stretch, composite broadcast time, composite betweenness centrality, etc. We analytically study how these metrics scale with the sizes of both networks under consideration under various random graph models and mapping functions. The above modeling / analysis can be useful in an application scenario such as the following: workers or soldiers equipped with wireless communication devices have been deployed at a disaster relief site and their group leader disseminates messages to them following a specific chain of command, which is essentially a social network. These messages trace a logical path in the social network that translates to a potentially longer physical path in the underlying communication network (which is a MANET or a DTN).

Information multicast through a chain-of-command hierarchy can also be modeled in the composite graph framework. For many operations and missions in practice, mere topological proximity to certain recipients of a message does not warrant its direct delivery to the latter. Instead, certain hierarchical policies that define different roles and ranks of network nodes may constrain the message flow through the network. For example, in military networks, communications between various nodes may need to be observed and then cleared by individuals located higher in the chainof-command hierarchy, which is nothing but a social network. It is often the case that a subset of nodes in the hierarchy are interested in participating together in a multicast session. Therefore, we are motivated to construct multicast "routes" that *connect* these nodes while being constrained by the relationships in the hierarchy.

1.1.1 Related Work

There are three classes of related work in this area: graph embedding, network science approaches to studying composite networks, and overlay networks in the Internet.

Graph embedding has received attention in the parallel computing domain where the problem is to map a *task graph* onto a multiprocessor interconnection network (also known as *host graph*) [6, 23, 15], and in the ubiquitous computing domain where the problem is to map heterogeneous task graphs on non-regular networks such as mobile ad hoc networks [4], while attempting to determine the optimal mapping (or task to processor assignment) function such that metrics such as delay-to-taskcompletion, edge dilation (or stretch), node/edge congestion, etc., are minimized. Instead of the aforementioned "optimization" approaches, in this chapter, we follow the "scaling law analysis" approach where both the graphs and the mapping function are given (deterministic or stochastic), and we characterize how a different set of appropriate "constrained" metrics such as composite path stretch, composite diameter, broadcast time, and composite betweenness centrality scale as a function of composite graph attributes.

There is a large body of work pertaining to the embedding of one metric space into another—in particular, normed spaces such as *d*-dimensional Euclidean space \mathbb{R}^d)—with "low-distortion." This has been summarized well in [16]. This entails establishing the necessary and sufficient conditions on the properties of the two spaces for finding such embedding functions that yield a particular distortion, and in many cases finding the best embedding function [2]. A related idea of finding embeddings is popular in geographic routing—virtual coordinates are assigned to nodes in a hyperbolic space, and such an embedding guarantees that a greedy algorithm on the virtual coordinate space yields a route between every source and destination, if one exists [19].

Various flavors of layered or composite networks have received some attention in the network science literature. Kurant and Thiran propose the Layered Complex Network model [20] for studying load in transportation networks. They considered 2-layer graphs where the physical graph corresponds to the transportation network and the logical graph corresponds to the traffic flow between various cities—they use computational methods to determine different levels of *load* on various transportation sectors in Europe. In comparison, our approach is analytical and we study metrics that have not been studied in [20]. A recent analytical line of research considers interdependent networks such as power grid and communication networks [8]—they use percolation theory to determine the fraction of nodes whose removal is likely to generate cascading failures in such networks. Leicht and D'Souza show that percolation thresholds of composite networks is lower than the individual networks, when considered separately [21]. While these approaches are all analytical, they study a different graph metric, i.e., degree of failure tolerance.

Overlay networks have received a lot of attention in the computer networking literature in the past decade [22]. Works such as CAN [25] and CHORD [28] attempt to design good distributed hash tables for P2P applications—for storing (key, value) pairs *overlaid* on top of the Internet, so that efficient insertion and retrieval of hashed content is feasible from any part of the network. While this is a good example of a composite network, its similarities with our approach are slim. While overlay networks attempt to design good overlay graphs for the purpose of optimization of insertion/lookup overhead, in our problem space, the social network graph is given, and we are interested in a different set of information flow metrics. Moreover, unlike the Internet, which is a complete graph (or clique) for the purpose of connectivity in P2P applications, our underlying network is a multi-hop network, in general.

The focus of this chapter is not *to find* the best embedding function that yields a low distortion—rather, it is *to analyze* the distortion (or stretch) of an information flow that results from a *random* embedding of the nodes of the first graph onto the second graph, in distribution or in expectation. The material in this chapter has been derived in part from two recent publications co-authored by us [5, 3].

Our contributions in this chapter can be summarized as follows:

- Novel models and metrics for constrained information flow in composite networks.
- Mathematical analysis of scaling laws for constrained composite path stretch when a social network path is randomly mapped onto a general graph under both one-to-one and many-to-one mappings.
- Scaling laws for constrained composite broadcast time of a tree social network (chain of command) randomly mapped onto different communication networks.
- 4. A hierarchy-compliant multicast algorithms for composite network multicast.
- Validation of a subset of these results using two historical deployments of military chain-of-command networks as well as the FOAF (friend of a friend) data set embedded on a geometric communication graph.

We show that the composite betweenness centrality metric yields significantly better insights about the structure of a communication network compared to classic betweenness centrality computed on a single network. We also demonstrate that one has to be willing to pay a 25% overhead for adhering to the social network structure in certain realistic composite network multicast deployment scenarios.

1.2 Composite Graph Models

We define the *composite graph* \mathcal{G} of two graphs G_1 and G_2 to be the 3-tuple (G_1, G_2, R) , where $R \subseteq V(G_1) \times V(G_2)$ is an *embedding / mapping relation* between the vertex sets $V(G_1)$ and $V(G_2)$ of the two graphs, respectively. In general, every element of R may have multiple attributes associated with it but in this preliminary study we only consider a binary relation. This relation may be time-varying when information is replicated or moves from one communication node to another over time. Time-varying relations are outside the scope of this chapter.

1.2.1 Metrics on Composite Graphs

We first define *constrained composite path stretch*, a metric that is useful for measuring how many physical communication hops are spanned by a logical information flow under a given embedding of the logical flow on a physical network.

Throughout this chapter, let $\mathcal{G} = (G_1, G_2, R)$ be a composite graph, with $V_i = V(G_i)$ the vertex set of graph *i* and *R* an embedding relation as mentioned above. Unless otherwise noted, $P_k = P_{uv} = \{u = v_0, v_1, ..., v_k = v\}$ is a path of length *k* in G_1 , and $d_{G_2}: V_2 \times V_2 \to \mathbb{R}$ is a shortest path distance metric in G_2 . For clarity, we introduce the notion of an *itinerary* in a graph.

Definition 1.1 (Itinerary) Given a list of vertices v_0, v_1, \ldots, v_k in a graph, an *itinerary* is a not necessarily simple path passing through v_0, v_1, \ldots, v_k in order, for which the path connecting consecutive vertices (v_i, v_{i+1}) is a shortest path, for all $0 \le i \le k-1$.

Intuitively, an itinerary is the shortest possible path through a sequence of not necessarily neighboring vertices.

Definition 1.2 (cstretch) Given composite graph $\mathcal{G} = (G_1, G_2, R)$, the constrained composite path stretch of $P_{uv} = \{u = v_0, v_1, ..., v_k = v\}$ in \mathcal{G} is defined as:

$$cstretch_{G_2}(P_{uv}) = \sum_{i=0}^{k-1} \max_{\substack{s,t \in V_2:\\(v_i,s) \in R \land (v_{i+1},t) \in R}} \{d_{G_2}(s,t)\}.$$
 (1.1)

Equivalently, $cstretch_{G_2}(P_{uv})$ is the longest itinerary through the vertices in G_2 that are images of the vertices of P_{uv} in G_1 under the mapping R. Note that in general, R is not necessarily a bijection, and so there may be multiple vertices in G_2 that correspond to a single vertex in G_1 .

CStretch characterizes the scenario with a stringent requirement that the information needs to traverse the nodes in the path P_{uv} in order, and in the process need to traverse the appropriately mapped nodes in G_2 . This is not a far-fetched scenario in military systems, the chain-of-command (modeled by graph G_1) often mandates a piece of information to flow through the logical chain even though the ultimate recipient of the information may be in close proximity to the origin and the intermediate nodes are farther away from them. The reason behind this is that information often needs to get refined or obfuscated at each level of the logical chain before it is passed on further. Similarly, even in non-military applications (such as online social networks such as Twitter) information such as news or gossip is often routed along logical paths of friends who may be physically located all over the globe at large "Internet distances" from each other.

In the composite graph setting, the notion of diameter¹ can be extended to that of the *constrained composite diameter*, which can be defined in terms of constrained composite path stretch.

Definition 1.3 (ccd) The constrained composite diameter of \mathcal{G} is defined as

$$ccd(\mathcal{G}) = \max_{u,v \in V_1} cstretch_{G_2}(P_{uv}).$$
(1.2)

¹Diameter is the maximum length of the shortest path between any pair of nodes in a graph. It is an important measure for communication networks because it gives us a sense of the amount of time required (in the worst case) to traverse a network.

The *CStretch* metric captures the extra distance in G_2 that a message has to travel in order to move through a path in G_1 . We need a different metric to capture the combined stretch for a message traveling through a chain-of-command *tree* in a composite graph. In this context, it is more natural to consider the *constrained composite broadcast time* metric.

Definition 1.4 (cbtime) Let *T* be a tree in G_1 , with root *u*. Then the constrained composite broadcast time of *T* in the composite graph G is defined as

$$cbtime_{G_2}(T) = \max_{v \in T} cstretch_{G_2}(P_{uv}).$$
(1.3)

The constrained composite broadcast time represents the stretch necessary to send a message through a chain-of-command tree that is deployed in a network topology. This may be of interest, for example, in a disaster relief situation when information needs to travel from a central director to end caregivers while relief workers are deployed in the field. In other words, it measures the time at which the last worker received the message that was broadcast through the chain of command.

We are also interested in measuring the traffic load on a particular edge in G_2 as a result of the flows along the edges in G_1 .

Definition 1.5 (Load Indicator) For a specific edge $e = (x, y) \in G_2$, we say the edge bears a load from $v_i, v_{i+1} \in V(G_1)$ in the composite graph (G_1, G_2, R) if and only if *e* lies along a shortest path from a vertex $w_i \in G_2$ to $w_j \in G_2$, where $(v_i, w_i) \in R$ and $(v_{i+1}, w_j) \in R$. Let P_{ij} be any shortest path from $w_i \in G_2$ to $w_j \in G_2$. Then,

$$\chi_e(v_i, v_{i+1}) = \begin{cases} 1 & \text{if } e \in P_{ij} \text{ and } ((v_i, w_i), (v_{i+1}, w_j)) \in R \\ 0 & \text{otherwise.} \end{cases}$$

Definition 1.6 (cload) Let $P_{uv} = \{u = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k = v\}$ be a path in graph G_1 . Then the composite load on $e \in E(G_2)$ of P_{uv} in G_2 is defined as:

$$cload_{G_2}(P_{uv}, e) = \sum_{i=0}^{k-1} \chi_e(v_i, v_{i+1}).$$

Note that $0 \leq cload_{G_2}(P_{uv}, e) \leq k$. Naturally, we want to determine the maximum and expected measures of load upon any edge in G_2 .

Finally, we extend the notion of *betweenness centrality* to composite graphs in order to measure the load on certain vertices and edges in G_2 .

Definition 1.7 (cvbc) If (G_1, G_2, R) is a composite graph, let σ_{st} be the number of shortest paths in G_2 between *s* and $t \in V(G_2)$, and $\sigma_{st}(u)$ be the number of shortest paths in G_2 between *s* and *t* which pass through vertex *u*. Then the *composite vertex*

betweenness centrality of a vertex $u \in V(G_2)$ is given by

$$cvbc(u) = \sum_{\substack{s \neq u \neq t \in V(G_2)\\(v,w) \in E(G_1) \land \{(v,s),(w,t)\} \subseteq R}} \frac{\sigma_{st}(u)}{\sigma_{st}}.$$
(1.4)

Definition 1.8 (cebc) If (G_1, G_2, R) is a composite graph, let σ_{st} be the number of shortest paths in G_2 between s and $t \in V(G_2)$, and $\sigma_{st}(e)$ be the number of shortest paths in G_2 between s and t which pass through edge e. The composite edge betweenness centrality of an edge $e \in V(G_2)$ is given by

$$cebc(e) = \sum_{\substack{s \neq t \in V(G_2)\\(v,w) \in E(G_1) \land \{(v,s),(w,t)\} \subseteq R}} \frac{\sigma_{st}(e)}{\sigma_{st}}.$$
(1.5)

1.3 Composite Stretch Analysis

In this section, we focus on analyzing *random embedding relations*, where vertices in G_1 are mapped to vertices in G_2 via some random process π . In particular, we study two cases:

- 1. Each vertex in G_1 is mapped to a vertex in G_2 that has been sampled uniformly at random *with replacement*. This is the many-to-one scenario, where many "social network" nodes can get mapped to the same communication network node.
- 2. Each vertex in G_1 is mapped to a vertex in G_2 that has been sampled uniformly at random *without replacement*. This is the one-to-one scenario, where a communication network node can host at most one social network node.

Specifically, we characterize the distribution of the constrained composite path stretch of P_k over uniform random embeddings into G_2 . We first prove some general results that apply to any graph G_2 , and then illustrate scaling laws for a few well-known graph families.

1.3.1 Theoretical Results

For any graph G = (V, E), let D_G be the geodesic graph distance matrix between all pairs of vertices $v_i, v_j \in V$. That is, each entry d_{ij} in D_G represents the shortest path distance from v_i to v_j in G. Then we note that the sum of the geodesic distances $\Delta_G = \sum_{v_i, v_i \in V} d_{ij}$, is a constant depending only on the structure of G.

Lemma 1.1

Let G be a graph with |V| = n, and let X be a random variable denoting the geodesic

distance between two vertices of G chosen uniformly at random. Then:

$$\mathbb{E}[X] = \begin{cases} \frac{\Delta_G}{n(n-1)}, & \text{when sampling without replacement} \\ \frac{\Delta_G}{n^2}, & \text{when sampling with replacement.} \end{cases}$$

Proof 1.1 The case where sampling is done with replacement is clear: since there are n^2 pairs of vertices from which to choose, the expression given is the average distance. If sampling is done without replacement, then Δ_G double-counts the distance for each of the $\binom{n}{2}$ unique pairs of vertices. Note that the *n* diagonal entries in D_G contribute nothing to Δ_G .

Corollary 1.3.1 *There is no asymptotic difference in* $\mathbb{E}[X]$ *between sampling vertices with or without replacement.*

Proof 1.2 From the preceding lemma, it follows that the ratio of $\mathbb{E}[X]$, when sampling without replacement, to $\mathbb{E}[X]$, when sampling with replacement, is $1 + \frac{1}{n} \to 1$ as $n \to \infty$.

Next, we show that the expected stretch of a link is independent of the choices of vertices already mapped, regardless of whether sampling is done with or without replacement.

Lemma 1.2

Let $v_1, v_2, ..., v_i$ be a sequence of vertices chosen uniformly at random from V (with or without replacement), and let X_i be the random variable giving the distance between v_i and v_{i-1} . Then $\mathbb{E}[\mathbb{E}[X_{i+1}|v_1, v_2, ..., v_i]] = \mathbb{E}[X_2]$.

Proof 1.3 While the statement may be obvious for the case of sampling with replacement, we exercise more care for the case where sampling is done without replacement, and prove the statement combinatorially. For the RHS, select one vertex uniformly at random and color it red (call it v_1). Then select another from the remaining and color it blue (v_2). The RHS counts the expected distance between these two vertices. We now argue that the LHS counts the same. To see this, first color one vertex blue (call it v_{i+1}), and another vertex red (v_i). Now color i - 1 other vertices green ($v_{i-1}, ..., v_1$). The LHS counts the expected distance between the blue vertex and the red vertex.

This leads us to a general theorem about the expected composite stretch of a path.

Theorem 1.3.1 For a path P_k embedded uniformly at random into any graph G_2 (with the sampling performed with or without replacement),

$$\mathbb{E}[cstretch_{G_2}^{\pi}(P_k)] = k \cdot \mathbb{E}[X], \qquad (1.6)$$

where X is the random variable giving the distance between two randomly chosen vertices in G_2 .

We emphasize that the expectation is being taken over the uniform random embedding R_{π} . But as we saw in Lemma 1.1, for a specific G_2 , if the sampling method of R_{π} is known, then the expected distance $\mathbb{E}[X]$ is a constant.

Composite Diameter: In addition to the average case, we also want to describe the worst-case *cstretch* for a random embedding. It is easy to see that if R_{π} samples vertices with replacement, then each successive link in any path can simply bounce back and forth between the furthest two vertices in G_2 . Thus, $ccd(\mathcal{G}) = diam(G_1) \cdot diam(G_2)$. However, when R_{π} samples vertices without replacement, the problem is an instance of MAX-TSP, which is MAX SNP-hard [14]. However, a greedy approximation heuristic works well in practice.

1.3.2 Composite Stretch of Some Special Graphs

Theorem 1.3.1 shows that the expected stretch of a path is equal to the length of the path times a constant depending only on the structure of G_2 and the distribution of the random embedding. In what follows, we present examples of some well-known graph families, and illustrate how their structure affects the distribution of *cstretch*.

d-dimensional Discrete Lattice: Let $D_n^d = \{0, 1, ..., n-1\}^d$ be the *d*-dimensional discrete lattice on n^d points, and consider a composite graph with $G_2 = D_n^d$. On this graph topology, geodesic distance is equivalent to the ℓ_1 -norm (Manhattan distance) between two points in D_n^d . Thus, $d_{G_2}(v, w) = \sum_{i=1}^d |v_i - w_i|$, and summing all n^{2d} of these pairs gives

$$\Delta_{G_2} = \sum_{v,w \in V} \sum_{i=1}^d |v_i - w_i| = \frac{dn^{2d+1}}{3} \left(1 - \frac{1}{n^2}\right).$$
(1.7)

It follows from Lemma 1.1 and Theorem 1.3.1 that under a random uniform embedding with replacement into the *d*-dimensional discrete lattice,

$$\mathbb{E}[cstretch_{G_2}^{\pi}(P_k)] = \frac{kdn}{3} \left(1 - \frac{1}{n^2}\right).$$
(1.8)

Note that in this case it is also straightforward to fully explicate the distribution of *X*. For any $1 \le i \le d$, let $X_i = |v_i - w_i|$. Then the probability mass function for X_i is

$$p_{X_i}(\delta) = \begin{cases} \frac{1}{n} & \text{if } \delta = 0\\ \frac{2(n-\delta)}{n^2} & \text{otherwise} \end{cases},$$
(1.9)

since each coordinate can take on any of *n* values, and there are $n - \delta$ ways to achieve each value of δ between 0 and n - 1. Since the X_i 's are independent and identically distributed, we can extract (among other things), the second moment of *X*:

$$\operatorname{Var}[X] = d \cdot \frac{(n^2 - 1)(n^2 + 2)}{18n^2}.$$
(1.10)

We can infer from this that the expected stretch is not likely to deviate significantly from its mean.

For the discrete lattice, we have that $diam(G_2) = d(n-1)$, so as mentioned above, the *ccd* for P_k is k(n-1). For the non-trivial "without replacement" scenario, we implemented a greedy approximation heuristic, and verified that *ccd* for both without and with replacement scenarios are $O(n^2)$.

Cycle: Let C_n be the cycle of length n, and consider uniform discrete mappings from P_k onto C_n . Clearly, the maximum distance between two vertices in C_n is $\lfloor \frac{n}{2} \rfloor$. But, for each possible distance x between 0 and $\frac{n}{2}$, there are exactly n such pairs for $x = 0, \frac{n}{2}$, and exactly 2n such pairs otherwise (we assume that in the case of a tie, only one shortest path is kept). It is thus straightforward to show that

$$\Delta_{C_n} = \begin{cases} \frac{n(n^2 - 1)}{4} & \text{if } n \text{ is odd} \\ \frac{n^3}{4} & \text{if } n \text{ is even} \end{cases}.$$
 (1.11)

Application of Lemma 1.1 and Theorem 1.3.1 then reveal that for random uniform embeddings onto C_n ,

$$\mathbb{E}[cstretch_{C_n}^{\pi}(P_k)] = k \cdot \left(\frac{n}{4} + o(1)\right).$$
(1.12)

Greedy is optimal on C_n , since if *n* is odd, it finds n-1 pairs at distance $\lfloor \frac{n}{2} \rfloor = diam(G_2)$ from each other, which is optimal by definition. On the other hand, if *n* is even, it picks all $\frac{n}{2}$ pairs at distance $\frac{n}{2} = diam(G_2)$ from each other, and another $(\frac{n}{2}-1)$ pairs at the next greatest distance $(\frac{n}{2}-1)$.

Balloon graph: Next, we consider a graph family with some interesting properties. Let $B_{n,m}$ be a balloon graph consisting of a string (line graph) of length *m*, connected to a balloon (clique) of size n - m, for any $0 \le m < n$. For clarity, we specify that vertices $\{v_0, ..., v_m\}$ make up the string, while vertices $\{v_m, ..., v_{n-1}\}$ make up the balloon (see Figure 1.1). Note that for any two indices $0 \le i < j \le n - 1$ in this graph, we have that

$$d_{B_{n,m}}(v_i, v_j) = \begin{cases} j-i & \text{if } i < j \le m \\ m+1-i & \text{if } i < m \le j \\ 1 & \text{if } m \le i < j. \end{cases}$$

Figure 1.1: The balloon graph *B*_{10,4}.

In particular, note that $diam(B_{n,m}) = m + 1$. In computing the distance matrix, we distinguish three cases based on the indices of the two vertices chosen:

- 1. If $i \le j \le m$, then both vertices lie in the string, which is D_{m+1}^1 . This contributes $\Delta_{D_{m+1}^1}$ toward $\Delta_{B_{n,m}}$.
- 2. If $m \le i \le j$, then both vertices lie in the balloon, and it is clear that on the complete graph $K_n, \Delta_{K_n} = n^2 n$, since every pair of vertices are connected by an edge, but there are *n* ways to choose the same vertex twice.
- 3. If i < m < j, then one vertex lies in the string, and the other lies in the balloon. Consider any vertex w_j in the balloon. Its distance from the set of vertices in the string is simply m + 1, m, m - 1, ..., 2. Thus, the contribution to $\Delta_{B_{n,m}}$ is

$$2(n-m-1)\sum_{i=2}^{m+1} i = m(m+3)(n-m-1).$$

Adding these three quantities yields

$$\Delta_{B_{n,m}} = -\frac{2}{3}m^3 + (n-2)m^2 + \left(n - \frac{4}{3}\right)m + n^2 - n.$$
(1.13)

The reader may verify that setting m = 0 corresponds to the special case where the balloon graph is itself a clique, while setting m = n - 1 yields the special case where $B_{n,n-1} = D_n^1$.

By Theorem 1.3.1 and Lemma 1.1, the expected stretch for a path of length k onto $B_{n,m}$ is thus:

$$\mathbb{E}[cstretch_{B_{n,m}}^{\pi}(P_k)] = k \cdot \left(1 + O\left(\frac{m^2}{n}\right)\right)$$
(1.14)

Random Geometric Graph: Lastly, we consider the composite stretch when P_k is mapped onto a random geometric graph $G_2 = RGG(n, r(n))$, where r(n) is the radius of communication. That is, G_2 consists of n vertices placed uniformly at random in $[0,1]^2$, wherein any two vertices are connected with an edge if and only if the Euclidean distance between them is at most r(n). Gupta and Kumar [13] showed that a radius of connectivity of $r(n) = \sqrt{\frac{\ln n + c(n)}{\pi n}}$ ensures asymptotic connectivity in the RGG with high probability if and only if $c(n) \to +\infty$. In all of our discussions on RGG in this chapter, we assume that the radius of connectivity is at least this large, i.e., $r(n) = \Omega(\sqrt{\ln n/n})$.

As before, Theorem 1.3.1 still applies, so it remains only to characterize the distribution of the random variable X giving the geodesic distance between two vertices in RGG(n, r(n)) selected uniformly at random. Note that in contrast to the previous examples we have considered, we now have two sources of randomness: 1) the randomized construction of the RGG; and 2) the random uniform embedding. If the Euclidean distance between two vertices in an RGG is δ , then recent results confirm that with high probability, the geodesic distance *X* differs from its minimum of δ/r by at most a constant [7].

Theorem 1.3.2 With high probability, the expected geodesic distance in RGG(n, r(n)) satisfies

$$\frac{\Delta(2)}{r(n)} \le \mathbb{E}[X] \le \kappa(n) \cdot \frac{\Delta(2)}{r(n)}, \qquad (1.15)$$

where $\Delta(2) \approx 0.5214054331$ is a known constant, and $\kappa(n) \ge 1$ is O(1).

Proof 1.4 Let *v*, *w* be two vertices in RGG(n, r(n)) selected uniformly at random, and set $\delta = ||v - w||_2$. Clearly, $X \ge \delta/r$. Conversely, if $\delta = \Omega(\log^{3.5} n/r^2)$, then by a result from [7], $X = O(\delta/r)$.

Taking expectation yields the result, since $\mathbb{E}[\delta] = \Delta(2)$ is a known constant [29].

Synthetic analysis suggests that $\kappa(n) < 1.3$ for n > 1000. Therefore, as before, we can easily bound (from above) the expected composite stretch.

Corollary 1.3.2 For r(n) sufficiently large (i.e., greater than the critical connectivity threshold), the composite stretch of a path P_k on a random geometric graph RGG(n, r(n)) satisfies with high probability:

$$\mathbb{E}[cstretch_{RGG}^{\pi}(P_k)] = k \cdot \kappa(n) \cdot \frac{\Delta(2)}{r(n)} = O\left(k \cdot \sqrt{\frac{n}{\ln n}}\right).$$
(1.16)

1.3.3 Average vs. Worst-Case Analysis

We have so far characterized the average case (expected *cstretch*) and the worst case (*ccd*) for a random uniform embedding of a path onto several graph families. For both the lattice and the cycle, these quantities were of the same order of magnitude. A natural question is:

Are there graphs for which the ratio of the maximum *cstretch* to the average *cstretch* of P_k is *not* O(1)?

Indeed, the balloon graph is one such graph. As the diameter of $B_{n,m}$ is m+1, the maximum stretch is $diam(G_1) \cdot (m+1)$. If we let $\phi(B_{n,m})$ be the ratio of the maximum *cstretch* to the mean *cstretch*, we can see that:

$$\phi(B_{n,m}) = \frac{diam(G_1)(m+1)}{diam(G_1)\left(1+O\left(\frac{m^2}{n}\right)\right)} = O\left(\frac{n}{m}\right).$$

In particular then, for $m = \sqrt{n}$, the ratio of the maximum stretch to the mean stretch for the balloon graph $B_{n,m}$ is $O(\sqrt{n})$. Explicit calculations reveal that for $m = \sqrt{n}$, in fact $\mathbb{E}[X] \to 2$ as $n \to \infty$.

Table 1.1	Summary of	f Path Stretch	Metrics for	· Uniform	Random
Embedding	s of P_k				

G_1	G_2	$\mathbb{E}[cstretch]$	max[cstretch]
	D_n^d	$\frac{kdn}{3}\left(1-n^{-2}\right)$	kd(n-1)
P_{l}	C_n	$k \cdot \left(\frac{n}{4} + o(1)\right)$	$k \cdot \lfloor \frac{n}{2} \rfloor$
- K	$B_{n,m}$	$k \cdot \left(1 + O\left(\frac{m^2}{n}\right)\right)$	k(m+1)
	RGG(n,r(n))	$O\left(k\sqrt{\frac{n}{\ln n}}\right)$	

More interesting is the fact that this gap appears to be mainly an artifact of the difference between sampling with and without replacement. The results of our greedy algorithm for CCD without replacement suggest that with $m = \sqrt{n}$; the CCD and expected *cstretch* are of the same order of magnitude.

Table 1.1 summarizes our theoretical results.

1.4 Composite Broadcast Time

In this section, we analytically characterize the expected composite broadcast time for tree topologies. Social networks for information dissemination commonly have tree structures (more on this in Section 1.7), hence this analysis can be useful for specific communication network deployment scenarios. Let T_k be a *k*-node tree of height *h* and maximum (out)degree δ , for some $1 \le \delta < k$. We assume that T_k exists in some G_1 , and examine the constrained composite broadcast time for sending a message from the root to each of the other nodes.

Star Topology: We begin with the special case where T_k is a *k*-star. First, we introduce a notation. Let

$$p_k = \frac{1}{\binom{n-1}{k}} \left(\underbrace{0, \dots, 0}_{k}, 1, \binom{k}{k-1}, \dots, \binom{n-2}{k-1} \right) \in \mathbb{R}^n$$

be a column vector, and note that $||p_k||_1 = 1$. The *i*th entry in p_k represents the probability that the *i*th largest among *n* values is returned, when this value is the maximum among a subset of size *k* chosen uniformly at random. Furthermore, let $f : \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$ be the function that sorts the rows of a matrix in ascending order from left to right. That is,

$$D = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_m \end{bmatrix} \Rightarrow f(D) = \begin{bmatrix} sort(d_1) \\ sort(d_2) \\ \vdots \\ sort(d_m) \end{bmatrix},$$

where d_i is the *i*th row of *D*. Finally, $v_m = \frac{1}{m}(1,...,1) \in \mathbb{R}^m$.

Theorem 1.4.1 For any graph G_2 , the broadcast time of a star of size k satisfies

$$\mathbb{E}[cbtime_{G_2}(S_k)] = v_n^T \cdot f(D_{G_2}) \cdot p_k.$$
(1.17)

Proof 1.5 Let d_i be the *i*th row of D_{G_2} , and suppose that the root of the star S_k is mapped to node *i* in G_2 . The broadcast time of S_k is the maximum *cstretch* from among its *k* children. But since the *j*th entry of p_k is the probability that the *j*th largest value in d_i will be returned, the inner product $\langle sort(d_i), p_k \rangle$ gives the expected value of the maximum of the *k cstretch*es. Multiplication on the left by v_n^T simply averages these *n* values over all *n* rows.

Note that this is consistent with Theorem 1.3.1 for the special case where k = 2. Theorem 1.4.1 allows us to compute the broadcast time of a *k*-star for a variety of graph families, and we later use these as building blocks for bounds on general trees. Moreover, Theorem 1.4.1 improves on the trivial upper bound of $diam(G_2)$ for the broadcast time of a star. A better bound can be derived by considering the average eccentricity of G_2 . The eccentricity ε of a vertex in a graph is defined as the maximum geodesic distance between that vertex and any other.

Corollary 1.4.1 For any graph G_2 , the broadcast time of a star of size k satisfies

$$\mathbb{E}[cbtime_{G_2}(S_k)] \le \frac{1}{n} \sum_{v \in V_2} \varepsilon(v).$$
(1.18)

Proof 1.6 Substituting p_{n-1} in place of p_{k-1} returns the average eccentricity of the vertices in G_2 .

Corollary 1.4.1 provides a better bound than the diameter, but is not nearly as good as when using Theorem 1.4.1 directly. To illustrate how Theorem 1.4.1 can be used for a specific G_2 , we provide an upper bound on the broadcast time of a star, when G_2 is the line lattice above.

Corollary 1.4.2 For $G_2 = D_n^1$, the line lattice, the broadcast time of a star of size k satisfies

$$\mathbb{E}[cbtime_{G_2}(S_k)] \le \frac{k}{k+1} \cdot n.$$
(1.19)

Proof 1.7 The maximum product on the right certainly occurs at $d_1 =$