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Preface

Over the past few decades, social networks have attracted massive interest from
scholars in fields as diverse as sociology, biology, physics, business, politics, and
computer science. From these diverse fields, researchers have found that many sys-
tems can be represented as networks, and that there is much to be learned by studying
those networks. With the rapid growth of the Internet and the web, large-scale social
network analysis has become possible for researchers. The most important difference
between the traditional and new social networks is that the traditional theories of so-
cial networks have not been very concerned with the structure of naturally occurring
networks. Traditional social network analysis is deep and elegant, but it is not espe-
cially relevant to networks arising in the real world. The emergence of recent mobile
devices and their applications have brought about a new landscape in studying social
networks.

The recent availability of mobile devices coupled with recent advancements in
networking capabilities make opportunistic networks one of the most promising tech-
nologies for next-generation mobile applications. Opportunistic networks are com-
monly defined as a type of network where communication is challenged by sporadic
and intermittent contacts, as well as frequent disconnections and reconnections, and
where the assumption of the existence of an end-to-end path between the source
and the destination is relinquished. Connectivity disruptions, limited network capac-
ity, energy and storage constraints of those participating, mobile devices, and the
arbitrary movement of nodes are only a few of the challenges that must be dealt
with by the protocol stack. Clearly, current Internet protocols (i.e., the TCP/IP proto-
col stack) suffer and can fail under such conditions. Opportunities can be useful for
building both ad hoc and delay-tolerant networks for data, but they can also be mined
for information about mobility and social structures. However, to do either of these,
users need to be persuaded to share resources, either at the information level, which
impacts privacy, or at the communications level, which impacts their own network
performance.

With new challenges brought up by the aforementioned emerging mobile tech-
nology in social networks and opportunistic networks, we have recently witnessed

xxix
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the rise of an emerging cross-disciplinary field called opportunistic mobile social
networks, which has started to receive much attention from practitioners, scholars,
and the general public. An opportunistic mobile social network can be described as
a platform that provides services via hand held and wireless devices, mainly for the
purpose of fostering and maintaining social interactions and connections. Therefore,
an opportunistic mobile social network can be considered a form of social network
where services are provided with mobility as an added value. Thanks to mobility,
many emergent applications related to social networking are now available for indi-
viduals, business enterprises, and governments.

The convergence of social networks and opportunistic networks has its own im-
plications for theory and practice. From a theoretical perspective, new research do-
mains have emerged to tackle opportunistic mobile social networks from technolog-
ical, social, behavioral, legal, and ethical standpoints. From a practical perspective,
it is a topic that can notice new forms of collaboration, such as the one between
mobile network operators and social networking sites, to offer new innovative ser-
vices. Moreover, new opportunities are now available to individuals, business or-
ganizations, and governments, such as location-based services, content distribution
systems, early warning systems in crisis management, and business cooperation mon-
itoring. Indeed, these implications call for urgent attention to further investigate all
related and significant issues of opportunistic mobile social networks, so as to ad-
vance our understanding and knowledge in this context.

The main goal of this book is to collect the recent development on theoretical,
algorithmic, and application-based aspects of opportunistic mobile social networks.
This book will be of particular value to academics, researchers, practitioners, gov-
ernment officials, business organizations (e.g., executives, marketing professionals,
and resource managers), and even customers—those working in, participating in, or
even those interested in fields related to social networks. The content of the book will
be especially useful for students in areas like social networks, informatics, wireless
networks, data mining, and administrative sciences and management, but also applies
to students of education, economy, or law, who would benefit from the information,
cases, and examples therein.

This book is expected to serve as a reference book for developers in the telecom-
munications industry, and for a graduate course in computer science and engineering.
Our focus is to expose readers the technical challenges of opportunistic mobile social
networking, and to offer some ideas on how we might overcome them. This book is
organized in four areas with a total of 16 chapters. Each area corresponds to an im-
portant snapshot, according to what we believe, in this fast-growing field. Although
several books have emerged recently in this area, none of them address all four areas
in terms of critical issues and possible solutions.

� Fundamental concepts and models in opportunistic mobile social networks
(Chapters 1–5)

� Routing and forwarding schemes in opportunistic mobile social networks
(Chapters 6–9)



Preface � xxxi

� Privacy, security, and economics in opportunistic mobile social networks
(Chapters 10–12)

� Applications and testbeds in opportunistic mobile social networks (Chapters
13–16)

Introducing fundamental concepts and models in opportunistic mobile social net-
works, Chapter 1 presents a systematic analytical study of the constrained infor-
mation flow problem, which models a pair of networks (social and communica-
tion) as a composite graph. Chapter 2 reviews the recent literature of social influ-
ence in complex social networks. Chapter 3 provides a comprehensive overview
of the fundamental characteristics of link-level connectivity in opportunistic net-
works, which is crucial in understanding and evaluating network performance. Chap-
ter 4 uses WiFi interactive to discover and predict temporal networks and human
population dynamics. Chapter 5 shows how mobility and dynamic network struc-
ture impact the processing capacity of opportunistic mobile networks for cloud
applications.

In a discussion of routing and forwarding schemes, which spans Chapters 6 to
9, Chapter 6 provides a comprehensive overview of the routing schemes proposed
in opportunistic mobile social networks, with a focus on encounter-based unicasting
and social-based unicasting. A brief overview of several multicast approaches is also
given. Chapter 7 takes an in-depth look into multicast protocols, which are classified
based on the number of copies of the multicast message for opportunistic mobile
social networks. Chapter 8 focuses on providing pervasive data access to mobile
users without the support of cellular or Internet infrastructures. Chapter 9 adopts a
data-driven approach, which is based on multiple mobility traces collected from con-
ferences, university campuses, and metropolitan cities, to address four challenges:
efficiency, utilization, scalability, and trust.

Issues of privacy, security, and economics in opportunistic mobile social net-
works are examined in chapters 10 through 12. Chapter 10 applies privacy-preserving
techniques with packet forwarding to enhance communication performance and pro-
tect users’ sensitive information from disclosure. Chapter 11 surveys a collection of
approaches that have been recently proposed in the literature to address the need for
minimizing privacy leakage during opportunistic user profile exchange. Chapter 12
introduces economics concepts to help formalize the idea of incentives for rewarding
long-term participation.

In the final area of applications and testbeds, Chapter 13 deals with a P2P search
framework for intelligent crowdsourcing in opportunistic mobile social networks.
Chapter 14 introduces a framework for mobile peer rating using a multi-dimensional
metric scheme, based on encounter and location sensing. Chapter 15 investigates Ve-
hicular Ad hoc NETworks (VANETs), as a particular class of opportunistic mobile
social networks, under the assumption of social networking for vehicular applica-
tions (i.e., safety and entertainment applications). Chapter 16 develops a network
emulation testbed called QOMB, that can be used to validate the efficient operation
of opportunistic network applications and protocols in scenarios that involve both
node mobility and wireless communication.
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1.1 Introduction
The recent explosive growth in online social networks has been fueled by the pro-
liferation of high-speed and highly available communication networks such as the
Internet and broadband cellular wireless networks, as well as the increasing popular-
ity of mobile network-ready devices such as “smartphones” and tablets. People tend
to share information with other people they know, who subsequently forward that
information along various links in the social network—this occurs either verbatim
(for example, the directives from a commander flow through the chain of command)
or after modifications (for example, propagation of rumors, gossip, or news on Twit-
ter). A social network’s topology thus constrains or guides the flow and spread of
information through it. These constraints can force the information to traverse much
longer paths in the underlying communication network between its originator and
its ultimate consumers. This phenomenon, known as stretch, is justified because the
intermediaries may play a critical role in interpreting or modifying the information
or they may serve as important links in the acquaintance chain, without whom the
originator and the ultimate consumers would not have known each other.

When information gets stretched, the total time for it to spread through the entire
social network is often different from the time taken to simply multicast the informa-
tion on the underlying communication network to the set of ultimate consumers. An
additional undesirable side-effect of the “stretch” phenomenon is that an information
object may traverse a communication link or a node several times during the process,
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thus increasing resource consumption. While this is not a major issue for lightweight
content such as text (e.g., 140 character Twitter messages), it can be a significant
problem for multimedia content, especially in mobile ad hoc network (MANET) or
disruption-tolerant network (DTN) settings where accessing multimedia content di-
rectly from a server over a flaky network may not be feasible.

In this chapter, we present a systematic analytical study of the constrained infor-
mation flow problem—in particular, we model a pair of networks (social and commu-
nication) as a composite graph—a structure that results from embedding or mapping
the social network into the communication network using embedding / mapping func-
tions. A mapping function maps a node in the social network to one or more in the
communication network when the former uses the latter as his/her communication
portal(s). We consider unicast, broadcast, and multicast versions of this scenario. We
introduce several “composite graph” metrics that capture the effect of constraining
the flow of information in the communication network due to the social network,
for example, composite path stretch, composite broadcast time, composite between-
ness centrality, etc. We analytically study how these metrics scale with the sizes of
both networks under consideration under various random graph models and mapping
functions. The above modeling / analysis can be useful in an application scenario
such as the following: workers or soldiers equipped with wireless communication
devices have been deployed at a disaster relief site and their group leader dissemi-
nates messages to them following a specific chain of command, which is essentially
a social network. These messages trace a logical path in the social network that trans-
lates to a potentially longer physical path in the underlying communication network
(which is a MANET or a DTN).

Information multicast through a chain-of-command hierarchy can also be mod-
eled in the composite graph framework. For many operations and missions in prac-
tice, mere topological proximity to certain recipients of a message does not warrant
its direct delivery to the latter. Instead, certain hierarchical policies that define dif-
ferent roles and ranks of network nodes may constrain the message flow through the
network. For example, in military networks, communications between various nodes
may need to be observed and then cleared by individuals located higher in the chain-
of-command hierarchy, which is nothing but a social network. It is often the case
that a subset of nodes in the hierarchy are interested in participating together in a
multicast session. Therefore, we are motivated to construct multicast “routes” that
connect these nodes while being constrained by the relationships in the hierarchy.

1.1.1 Related Work
There are three classes of related work in this area: graph embedding, network sci-
ence approaches to studying composite networks, and overlay networks in the Inter-
net.

Graph embedding has received attention in the parallel computing domain where
the problem is to map a task graph onto a multiprocessor interconnection network
(also known as host graph) [6, 23, 15], and in the ubiquitous computing domain
where the problem is to map heterogeneous task graphs on non-regular networks such
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as mobile ad hoc networks [4], while attempting to determine the optimal mapping
(or task to processor assignment) function such that metrics such as delay-to-task-
completion, edge dilation (or stretch), node/edge congestion, etc., are minimized.
Instead of the aforementioned “optimization” approaches, in this chapter, we follow
the “scaling law analysis” approach where both the graphs and the mapping func-
tion are given (deterministic or stochastic), and we characterize how a different set
of appropriate “constrained” metrics such as composite path stretch, composite di-
ameter, broadcast time, and composite betweenness centrality scale as a function of
composite graph attributes.

There is a large body of work pertaining to the embedding of one metric space
into another—in particular, normed spaces such as d-dimensional Euclidean space
Rd)—with “low-distortion.” This has been summarized well in [16]. This entails es-
tablishing the necessary and sufficient conditions on the properties of the two spaces
for finding such embedding functions that yield a particular distortion, and in many
cases finding the best embedding function [2]. A related idea of finding embeddings
is popular in geographic routing—virtual coordinates are assigned to nodes in a hy-
perbolic space, and such an embedding guarantees that a greedy algorithm on the
virtual coordinate space yields a route between every source and destination, if one
exists [19].

Various flavors of layered or composite networks have received some attention
in the network science literature. Kurant and Thiran propose the Layered Complex
Network model [20] for studying load in transportation networks. They considered
2-layer graphs where the physical graph corresponds to the transportation network
and the logical graph corresponds to the traffic flow between various cities—they use
computational methods to determine different levels of load on various transporta-
tion sectors in Europe. In comparison, our approach is analytical and we study met-
rics that have not been studied in [20]. A recent analytical line of research considers
interdependent networks such as power grid and communication networks [8]—they
use percolation theory to determine the fraction of nodes whose removal is likely to
generate cascading failures in such networks. Leicht and D’Souza show that perco-
lation thresholds of composite networks is lower than the individual networks, when
considered separately [21]. While these approaches are all analytical, they study a
different graph metric, i.e., degree of failure tolerance.

Overlay networks have received a lot of attention in the computer networking
literature in the past decade [22]. Works such as CAN [25] and CHORD [28] at-
tempt to design good distributed hash tables for P2P applications—for storing (key,
value) pairs overlaid on top of the Internet, so that efficient insertion and retrieval of
hashed content is feasible from any part of the network. While this is a good exam-
ple of a composite network, its similarities with our approach are slim. While overlay
networks attempt to design good overlay graphs for the purpose of optimization of
insertion/lookup overhead, in our problem space, the social network graph is given,
and we are interested in a different set of information flow metrics. Moreover, unlike
the Internet, which is a complete graph (or clique) for the purpose of connectivity in
P2P applications, our underlying network is a multi-hop network, in general.
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The focus of this chapter is not to find the best embedding function that yields
a low distortion—rather, it is to analyze the distortion (or stretch) of an information
flow that results from a random embedding of the nodes of the first graph onto the
second graph, in distribution or in expectation. The material in this chapter has been
derived in part from two recent publications co-authored by us [5, 3].

Our contributions in this chapter can be summarized as follows:

1. Novel models and metrics for constrained information flow in composite net-
works.

2. Mathematical analysis of scaling laws for constrained composite path stretch
when a social network path is randomly mapped onto a general graph under
both one-to-one and many-to-one mappings.

3. Scaling laws for constrained composite broadcast time of a tree social net-
work (chain of command) randomly mapped onto different communication
networks.

4. A hierarchy-compliant multicast algorithms for composite network multicast.

5. Validation of a subset of these results using two historical deployments of mil-
itary chain-of-command networks as well as the FOAF (friend of a friend) data
set embedded on a geometric communication graph.

We show that the composite betweenness centrality metric yields significantly
better insights about the structure of a communication network compared to classic
betweenness centrality computed on a single network. We also demonstrate that one
has to be willing to pay a 25% overhead for adhering to the social network structure
in certain realistic composite network multicast deployment scenarios.

1.2 Composite Graph Models
We define the composite graph G of two graphs G1 and G2 to be the 3-tuple
(G1,G2,R), where R⊆V (G1)×V (G2) is an embedding / mapping relation between
the vertex sets V (G1) and V (G2) of the two graphs, respectively. In general, every
element of R may have multiple attributes associated with it but in this preliminary
study we only consider a binary relation. This relation may be time-varying when
information is replicated or moves from one communication node to another over
time. Time-varying relations are outside the scope of this chapter.

1.2.1 Metrics on Composite Graphs
We first define constrained composite path stretch, a metric that is useful for mea-
suring how many physical communication hops are spanned by a logical information
flow under a given embedding of the logical flow on a physical network.

Throughout this chapter, let G = (G1,G2,R) be a composite graph, with Vi =
V (Gi) the vertex set of graph i and R an embedding relation as mentioned above.
Unless otherwise noted, Pk = Puv = {u = v0,v1, ...,vk = v} is a path of length k in
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G1, and dG2 : V2×V2 → R is a shortest path distance metric in G2. For clarity, we
introduce the notion of an itinerary in a graph.

Definition 1.1 (Itinerary) Given a list of vertices v0,v1, . . . ,vk in a graph, an
itinerary is a not necessarily simple path passing through v0,v1, . . . ,vk in order, for
which the path connecting consecutive vertices (vi,vi+1) is a shortest path, for all
0≤ i≤ k−1.

Intuitively, an itinerary is the shortest possible path through a sequence of not
necessarily neighboring vertices.

Definition 1.2 (cstretch) Given composite graph G = (G1,G2,R), the constrained
composite path stretch of Puv = {u = v0,v1, ...,vk = v} in G is defined as:

cstretchG2(Puv) =

k−1∑
i=0

max
s,t∈V2:

(vi,s)∈R∧(vi+1,t)∈R

{dG2(s, t)}. (1.1)

Equivalently, cstretchG2(Puv) is the longest itinerary through the vertices in G2 that
are images of the vertices of Puv in G1 under the mapping R. Note that in general,
R is not necessarily a bijection, and so there may be multiple vertices in G2 that
correspond to a single vertex in G1.

CStretch characterizes the scenario with a stringent requirement that the infor-
mation needs to traverse the nodes in the path Puv in order, and in the process need to
traverse the appropriately mapped nodes in G2. This is not a far-fetched scenario—
in military systems, the chain-of-command (modeled by graph G1) often mandates
a piece of information to flow through the logical chain even though the ultimate
recipient of the information may be in close proximity to the origin and the interme-
diate nodes are farther away from them. The reason behind this is that information
often needs to get refined or obfuscated at each level of the logical chain before it is
passed on further. Similarly, even in non-military applications (such as online social
networks such as Twitter) information such as news or gossip is often routed along
logical paths of friends who may be physically located all over the globe at large
“Internet distances” from each other.

In the composite graph setting, the notion of diameter1 can be extended to that
of the constrained composite diameter, which can be defined in terms of constrained
composite path stretch.

Definition 1.3 (ccd) The constrained composite diameter of G is defined as

ccd(G) = max
u,v∈V1

cstretchG2(Puv). (1.2)

1Diameter is the maximum length of the shortest path between any pair of nodes in a graph. It is an
important measure for communication networks because it gives us a sense of the amount of time required
(in the worst case) to traverse a network.
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The CStretch metric captures the extra distance in G2 that a message has to travel
in order to move through a path in G1. We need a different metric to capture the
combined stretch for a message traveling through a chain-of-command tree in a com-
posite graph. In this context, it is more natural to consider the constrained composite
broadcast time metric.

Definition 1.4 (cbtime) Let T be a tree in G1, with root u. Then the constrained
composite broadcast time of T in the composite graph G is defined as

cbtimeG2(T ) = max
v∈T

cstretchG2(Puv). (1.3)

The constrained composite broadcast time represents the stretch necessary to
send a message through a chain-of-command tree that is deployed in a network topol-
ogy. This may be of interest, for example, in a disaster relief situation when informa-
tion needs to travel from a central director to end caregivers while relief workers are
deployed in the field. In other words, it measures the time at which the last worker
received the message that was broadcast through the chain of command.

We are also interested in measuring the traffic load on a particular edge in G2 as
a result of the flows along the edges in G1.

Definition 1.5 (Load Indicator) For a specific edge e = (x,y) ∈ G2, we say the
edge bears a load from vi,vi+1 ∈V (G1) in the composite graph (G1,G2,R) if and only
if e lies along a shortest path from a vertex wi ∈ G2 to w j ∈ G2, where (vi,wi) ∈ R
and (vi+1,w j) ∈ R. Let Pi j be any shortest path from wi ∈ G2 to w j ∈ G2. Then,

χe(vi,vi+1) =

{
1 if e ∈ Pi j and ((vi,wi),(vi+1,w j)) ∈ R
0 otherwise.

Definition 1.6 (cload) Let Puv = {u = v0→ v1→ v2→ ·· · → vk = v} be a path in
graph G1. Then the composite load on e ∈ E(G2) of Puv in G2 is defined as:

cloadG2(Puv,e) =
k−1∑
i=0

χe(vi,vi+1).

Note that 0≤ cloadG2(Puv,e)≤ k. Naturally, we want to determine the maximum
and expected measures of load upon any edge in G2.

Finally, we extend the notion of betweenness centrality to composite graphs in
order to measure the load on certain vertices and edges in G2.

Definition 1.7 (cvbc) If (G1,G2,R) is a composite graph, let σst be the number of
shortest paths in G2 between s and t ∈ V (G2), and σst(u) be the number of shortest
paths in G2 between s and t which pass through vertex u. Then the composite vertex
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betweenness centrality of a vertex u ∈V (G2) is given by

cvbc(u) =
∑

s6=u6=t∈V (G2)
(v,w)∈E(G1)∧{(v,s),(w,t)}⊆R

σst(u)
σst

. (1.4)

Definition 1.8 (cebc) If (G1,G2,R) is a composite graph, let σst be the number
of shortest paths in G2 between s and t ∈V (G2), and σst(e) be the number of short-
est paths in G2 between s and t which pass through edge e. The composite edge
betweenness centrality of an edge e ∈V (G2) is given by

cebc(e) =
∑

s6=t∈V (G2)
(v,w)∈E(G1)∧{(v,s),(w,t)}⊆R

σst(e)
σst

. (1.5)

1.3 Composite Stretch Analysis
In this section, we focus on analyzing random embedding relations, where vertices
in G1 are mapped to vertices in G2 via some random process π . In particular, we
study two cases:

1. Each vertex in G1 is mapped to a vertex in G2 that has been sampled uniformly
at random with replacement. This is the many-to-one scenario, where many
“social network” nodes can get mapped to the same communication network
node.

2. Each vertex in G1 is mapped to a vertex in G2 that has been sampled uni-
formly at random without replacement. This is the one-to-one scenario, where
a communication network node can host at most one social network node.

Specifically, we characterize the distribution of the constrained composite path
stretch of Pk over uniform random embeddings into G2. We first prove some general
results that apply to any graph G2, and then illustrate scaling laws for a few well-
known graph families.

1.3.1 Theoretical Results
For any graph G = (V,E), let DG be the geodesic graph distance matrix between all
pairs of vertices vi,v j ∈ V . That is, each entry di j in DG represents the shortest path
distance from vi to v j in G. Then we note that the sum of the geodesic distances
∆G =

∑
vi,v j∈V di j, is a constant depending only on the structure of G.

Lemma 1.1
Let G be a graph with |V |= n, and let X be a random variable denoting the geodesic
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distance between two vertices of G chosen uniformly at random. Then:

E[X ] =

{
∆G

n(n−1) , when sampling without replacement
∆G
n2 , when sampling with replacement.

Proof 1.1 The case where sampling is done with replacement is clear: since there
are n2 pairs of vertices from which to choose, the expression given is the average dis-
tance. If sampling is done without replacement, then ∆G double-counts the distance
for each of the

(n
2

)
unique pairs of vertices. Note that the n diagonal entries in DG

contribute nothing to ∆G.

Corollary 1.3.1 There is no asymptotic difference in E[X ] between sampling vertices
with or without replacement.

Proof 1.2 From the preceding lemma, it follows that the ratio of E[X ], when sam-
pling without replacement, to E[X ], when sampling with replacement, is 1+ 1

n → 1
as n→∞.

Next, we show that the expected stretch of a link is independent of the choices
of vertices already mapped, regardless of whether sampling is done with or without
replacement.

Lemma 1.2
Let v1,v2, ...,vi be a sequence of vertices chosen uniformly at random from V (with or
without replacement), and let Xi be the random variable giving the distance between
vi and vi−1. Then E[E[Xi+1|v1,v2, ...,vi]] = E[X2].

Proof 1.3 While the statement may be obvious for the case of sampling with re-
placement, we exercise more care for the case where sampling is done without re-
placement, and prove the statement combinatorially. For the RHS, select one vertex
uniformly at random and color it red (call it v1). Then select another from the re-
maining and color it blue (v2). The RHS counts the expected distance between these
two vertices. We now argue that the LHS counts the same. To see this, first color one
vertex blue (call it vi+1), and another vertex red (vi). Now color i− 1 other vertices
green (vi−1, ...,v1). The LHS counts the expected distance between the blue vertex
and the red vertex.

This leads us to a general theorem about the expected composite stretch of a path.

Theorem 1.3.1 For a path Pk embedded uniformly at random into any graph G2
(with the sampling performed with or without replacement),

E[cstretchπ
G2
(Pk)] = k ·E[X ] , (1.6)
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where X is the random variable giving the distance between two randomly chosen
vertices in G2.

We emphasize that the expectation is being taken over the uniform random em-
bedding Rπ . But as we saw in Lemma 1.1, for a specific G2, if the sampling method
of Rπ is known, then the expected distance E[X ] is a constant.

Composite Diameter: In addition to the average case, we also want to describe
the worst-case cstretch for a random embedding. It is easy to see that if Rπ sam-
ples vertices with replacement, then each successive link in any path can simply
bounce back and forth between the furthest two vertices in G2. Thus, ccd(G) =
diam(G1) ·diam(G2). However, when Rπ samples vertices without replacement, the
problem is an instance of MAX-TSP, which is MAX SNP-hard [14]. However, a
greedy approximation heuristic works well in practice.

1.3.2 Composite Stretch of Some Special Graphs
Theorem 1.3.1 shows that the expected stretch of a path is equal to the length of the
path times a constant depending only on the structure of G2 and the distribution of
the random embedding. In what follows, we present examples of some well-known
graph families, and illustrate how their structure affects the distribution of cstretch.

d-dimensional Discrete Lattice: Let Dd
n = {0,1, ...,n− 1}d be the d-dimensional

discrete lattice on nd points, and consider a composite graph with G2 = Dd
n . On this

graph topology, geodesic distance is equivalent to the `1-norm (Manhattan distance)
between two points in Dd

n . Thus, dG2(v,w) =
∑d

i=1 |vi−wi|, and summing all n2d of
these pairs gives

∆G2 =
∑

v,w∈V

d∑
i=1

|vi−wi|=
dn2d+1

3

(
1− 1

n2

)
. (1.7)

It follows from Lemma 1.1 and Theorem 1.3.1 that under a random uniform embed-
ding with replacement into the d-dimensional discrete lattice,

E[cstretchπ
G2
(Pk)] =

kdn
3

(
1− 1

n2

)
. (1.8)

Note that in this case it is also straightforward to fully explicate the distribution
of X . For any 1≤ i≤ d, let Xi = |vi−wi|. Then the probability mass function for Xi
is

pXi(δ ) =

{
1
n if δ = 0
2(n−δ )

n2 otherwise
, (1.9)

since each coordinate can take on any of n values, and there are n−δ ways to achieve
each value of δ between 0 and n−1. Since the Xi’s are independent and identically
distributed, we can extract (among other things), the second moment of X :

Var[X ] = d · (n
2−1)(n2 +2)

18n2 . (1.10)
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We can infer from this that the expected stretch is not likely to deviate significantly
from its mean.

For the discrete lattice, we have that diam(G2) = d(n− 1), so as mentioned
above, the ccd for Pk is k(n− 1). For the non-trivial “without replacement” sce-
nario, we implemented a greedy approximation heuristic, and verified that ccd for
both without and with replacement scenarios are O(n2).

Cycle: Let Cn be the cycle of length n, and consider uniform discrete mappings from
Pk onto Cn. Clearly, the maximum distance between two vertices in Cn is b n

2c. But, for
each possible distance x between 0 and n

2 , there are exactly n such pairs for x = 0, n
2 ,

and exactly 2n such pairs otherwise (we assume that in the case of a tie, only one
shortest path is kept). It is thus straightforward to show that

∆Cn =

{
n(n2−1)

4 if n is odd
n3

4 if n is even
. (1.11)

Application of Lemma 1.1 and Theorem 1.3.1 then reveal that for random uniform
embeddings onto Cn,

E[cstretchπ
Cn(Pk)] = k ·

(n
4
+o(1)

)
. (1.12)

Greedy is optimal on Cn, since if n is odd, it finds n− 1 pairs at distance b n
2c =

diam(G2) from each other, which is optimal by definition. On the other hand, if n
is even, it picks all n

2 pairs at distance n
2 = diam(G2) from each other, and another( n

2 −1
)

pairs at the next greatest distance
( n

2 −1
)
.

Balloon graph: Next, we consider a graph family with some interesting properties.
Let Bn,m be a balloon graph consisting of a string (line graph) of length m, connected
to a balloon (clique) of size n−m, for any 0 ≤ m < n. For clarity, we specify that
vertices {v0, ...,vm} make up the string, while vertices {vm, ...,vn−1} make up the
balloon (see Figure 1.1). Note that for any two indices 0 ≤ i < j ≤ n− 1 in this
graph, we have that

dBn,m(vi,v j) =


j− i if i < j ≤ m
m+1− i if i < m≤ j
1 if m≤ i < j.

Figure 1.1: The balloon graph B10,4.
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In particular, note that diam(Bn,m) = m+1. In computing the distance matrix, we
distinguish three cases based on the indices of the two vertices chosen:

1. If i≤ j≤m, then both vertices lie in the string, which is D1
m+1. This contributes

∆D1
m+1

toward ∆Bn,m .

2. If m ≤ i ≤ j, then both vertices lie in the balloon, and it is clear that on the
complete graph Kn,∆Kn = n2−n, since every pair of vertices are connected by
an edge, but there are n ways to choose the same vertex twice.

3. If i < m < j, then one vertex lies in the string, and the other lies in the balloon.
Consider any vertex w j in the balloon. Its distance from the set of vertices in
the string is simply m+1,m,m−1, ...,2. Thus, the contribution to ∆Bn,m is

2(n−m−1)
m+1∑
i=2

i = m(m+3)(n−m−1) .

Adding these three quantities yields

∆Bn,m =−2
3

m3 +(n−2)m2 +

(
n− 4

3

)
m+n2−n. (1.13)

The reader may verify that setting m = 0 corresponds to the special case where the
balloon graph is itself a clique, while setting m = n−1 yields the special case where
Bn,n−1 = D1

n.
By Theorem 1.3.1 and Lemma 1.1, the expected stretch for a path of length k

onto Bn,m is thus:

E[cstretchπ
Bn,m(Pk)] = k ·

(
1+O

(
m2

n

))
(1.14)

Random Geometric Graph: Lastly, we consider the composite stretch when Pk is
mapped onto a random geometric graph G2 = RGG(n,r(n)), where r(n) is the radius
of communication. That is, G2 consists of n vertices placed uniformly at random
in [0,1]2, wherein any two vertices are connected with an edge if and only if the
Euclidean distance between them is at most r(n). Gupta and Kumar [13] showed that

a radius of connectivity of r(n) =
√

lnn+c(n)
πn ensures asymptotic connectivity in the

RGG with high probability if and only if c(n)→ +∞. In all of our discussions on
RGG in this chapter, we assume that the radius of connectivity is at least this large,
i.e., r(n) = Ω(

√
lnn/n).

As before, Theorem 1.3.1 still applies, so it remains only to characterize the dis-
tribution of the random variable X giving the geodesic distance between two vertices
in RGG(n,r(n)) selected uniformly at random. Note that in contrast to the previous
examples we have considered, we now have two sources of randomness: 1) the ran-
domized construction of the RGG; and 2) the random uniform embedding. If the
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Euclidean distance between two vertices in an RGG is δ , then recent results confirm
that with high probability, the geodesic distance X differs from its minimum of δ/r
by at most a constant [7].

Theorem 1.3.2 With high probability, the expected geodesic distance in RGG(n,r(n))
satisfies

∆(2)
r(n)

≤ E[X ]≤ κ(n) · ∆(2)
r(n)

, (1.15)

where ∆(2)≈ 0.5214054331 is a known constant, and κ(n)≥ 1 is O(1).

Proof 1.4 Let v,w be two vertices in RGG(n,r(n)) selected uniformly at random,
and set δ = ||v−w||2. Clearly, X ≥ δ/r. Conversely, if δ = Ω(log3.5 n/r2), then by
a result from [7], X = O(δ/r).

Taking expectation yields the result, since E[δ ] = ∆(2) is a known constant [29].

Synthetic analysis suggests that κ(n) < 1.3 for n > 1000. Therefore, as before,
we can easily bound (from above) the expected composite stretch.

Corollary 1.3.2 For r(n) sufficiently large (i.e., greater than the critical connec-
tivity threshold), the composite stretch of a path Pk on a random geometric graph
RGG(n,r(n)) satisfies with high probability:

E[cstretchπ
RGG(Pk)] = k ·κ(n) · ∆(2)

r(n)
= O

(
k ·
√

n
lnn

)
. (1.16)

1.3.3 Average vs. Worst-Case Analysis
We have so far characterized the average case (expected cstretch) and the worst case
(ccd) for a random uniform embedding of a path onto several graph families. For
both the lattice and the cycle, these quantities were of the same order of magnitude.
A natural question is:

Are there graphs for which the ratio of the maximum cstretch to the
average cstretch of Pk is not O(1)?

Indeed, the balloon graph is one such graph. As the diameter of Bn,m is m+ 1,
the maximum stretch is diam(G1) · (m+ 1). If we let φ(Bn,m) be the ratio of the
maximum cstretch to the mean cstretch, we can see that:

φ(Bn,m) =
diam(G1)(m+1)

diam(G1)
(

1+O
(

m2

n

)) = O
( n

m

)
.

In particular then, for m =
√

n, the ratio of the maximum stretch to the mean stretch
for the balloon graph Bn,m is O(

√
n). Explicit calculations reveal that for m =

√
n, in

fact E[X ]→ 2 as n→∞.
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Table 1.1 Summary of Path Stretch Metrics for Uniform Random
Embeddings of Pk

G1 G2 E[cstretch] max[cstretch]

Pk

Dd
n

kdn
3

(
1−n−2

)
kd(n−1)

Cn k ·
( n

4 +o(1)
)

k · b n
2c

Bn,m k ·
(

1+O
(

m2

n

))
k(m+1)

RGG(n,r(n)) O
(
k
√ n

lnn

)
More interesting is the fact that this gap appears to be mainly an artifact of the

difference between sampling with and without replacement. The results of our greedy
algorithm for CCD without replacement suggest that with m =

√
n; the CCD and

expected cstretch are of the same order of magnitude.
Table 1.1 summarizes our theoretical results.

1.4 Composite Broadcast Time
In this section, we analytically characterize the expected composite broadcast time
for tree topologies. Social networks for information dissemination commonly have
tree structures (more on this in Section 1.7), hence this analysis can be useful for
specific communication network deployment scenarios. Let Tk be a k-node tree of
height h and maximum (out)degree δ , for some 1≤ δ < k. We assume that Tk exists
in some G1, and examine the constrained composite broadcast time for sending a
message from the root to each of the other nodes.

Star Topology: We begin with the special case where Tk is a k-star. First, we intro-
duce a notation. Let

pk =
1(n−1
k

)
0, ...,0︸ ︷︷ ︸

k

,1,
(

k
k−1

)
, ...,

(
n−2
k−1

) ∈ Rn

be a column vector, and note that ||pk||1 = 1. The ith entry in pk represents the
probability that the ith largest among n values is returned, when this value is the
maximum among a subset of size k chosen uniformly at random. Furthermore, let
f : Rm×n→ Rm×n be the function that sorts the rows of a matrix in ascending order
from left to right. That is,

D =


d1
d2
...

dm

⇒ f (D) =


sort(d1)
sort(d2)

...
sort(dm)

 ,

where di is the ith row of D. Finally, vm = 1
m (1, ...,1) ∈ Rm.
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Theorem 1.4.1 For any graph G2, the broadcast time of a star of size k satisfies

E[cbtimeG2(Sk)] = vT
n · f (DG2) · pk. (1.17)

Proof 1.5 Let di be the ith row of DG2 , and suppose that the root of the star Sk
is mapped to node i in G2. The broadcast time of Sk is the maximum cstretch from
among its k children. But since the jth entry of pk is the probability that the jth largest
value in di will be returned, the inner product 〈sort(di), pk〉 gives the expected value
of the maximum of the k cstretches. Multiplication on the left by vT

n simply averages
these n values over all n rows.

Note that this is consistent with Theorem 1.3.1 for the special case where k = 2.
Theorem 1.4.1 allows us to compute the broadcast time of a k-star for a variety of
graph families, and we later use these as building blocks for bounds on general trees.
Moreover, Theorem 1.4.1 improves on the trivial upper bound of diam(G2) for the
broadcast time of a star. A better bound can be derived by considering the average
eccentricity of G2. The eccentricity ε of a vertex in a graph is defined as the maximum
geodesic distance between that vertex and any other.

Corollary 1.4.1 For any graph G2, the broadcast time of a star of size k satisfies

E[cbtimeG2(Sk)]≤
1
n

∑
v∈V2

ε(v). (1.18)

Proof 1.6 Substituting pn−1 in place of pk−1 returns the average eccentricity of
the vertices in G2.

Corollary 1.4.1 provides a better bound than the diameter, but is not nearly as good
as when using Theorem 1.4.1 directly. To illustrate how Theorem 1.4.1 can be used
for a specific G2, we provide an upper bound on the broadcast time of a star, when
G2 is the line lattice above.

Corollary 1.4.2 For G2 = D1
n, the line lattice, the broadcast time of a star of size k

satisfies

E[cbtimeG2(Sk)]≤
k

k+1
·n. (1.19)

Proof 1.7 The maximum product on the right certainly occurs at d1 =


