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xix

Preface to the Third Edition

It has been almost ten years since the second edition of the Computational
Statistics Handbook with MATLAB® was published, and MATLAB has evolved
greatly in that time. There were also some relevant topics in computational
statistics that we always wanted to include, such as support vector machines
and multivariate adaptive regression splines. So, we felt it was time for a new
edition.

To use all of the functions and code described in this book, one needs to
have the MATLAB Statistics and Machine Learning Toolbox®, which is a
product of The MathWorks, Inc. The name of this toolbox was changed to the
longer title to reflect the connection with machine learning approaches, like
supervised and unsupervised learning (Chapters 10 and 11). We will keep to
the shorter name of “MATLAB Statistics Toolbox” in this text for readability.

We list below some of the major changes in the third edition.

• Chapter 10 has additional sections on support vector machines and
nearest neighbor classifiers. We also added a brief description of
naive Bayes classifiers.

• Chapter 12 was updated to include sections on stepwise regression,
least absolute shrinkage and selection operator (lasso), ridge
regression, elastic net, and partial least squares regression.

• Chapter 13 now has a section on multivariate adaptive regression
splines.

• Spatial statistics is an area that uses many of the techniques covered
in the text, but it is not considered part of computational statistics.
So, we removed Chapter 15. 

• The introduction to MATLAB given in Appendix A has been
expanded and updated to reflect the new desktop environment,
object-oriented programming, and more.

• The text has been updated for MATLAB R2015a and the corre-
sponding version of the Statistics and Machine Learning Toolbox.

We retained the same philosophy and writing style used in the previous
editions of the book. The theory is kept to a minimum and is included where
it offers some insights to the data analyst. All MATLAB code, example files,
and data sets are available for download at the CRC website for the book:
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http://www.crcpress.com/product/ISBN/9781466592735

The latest version of the Computational Statistics Toolbox can be found at
the CRC website and above at the following link:

http://www.pi-sigma.info/

We would like to acknowledge the invaluable help of the reviewers for the
previous editions. Reviewers for this edition include Tom Lane, Terrance
Savitsky, and Gints Jekabsons. We thank them for their insightful comments.
We are especially indebted to Tom Lane (from The MathWorks, Inc.) for his
vision and leadership, which we think were instrumental in making
MATLAB a leading computing environment for data analysis and statistics.
Finally, we are grateful for our editors at CRC Press (David Grubbs and
Michele Dimont) and the MATLAB book program at The MathWorks, Inc. 

Disclaimers

1. Any MATLAB programs and data sets that are included with the
book are provided in good faith. The authors, publishers, or dis-
tributors do not guarantee their accuracy and are not responsible
for the consequences of their use. 

2. Some of the MATLAB functions provided with the Computational
Statistics Toolbox were written by other researchers, and they
retain the copyright. References are given in the help section of
each function. Unless otherwise specified, the Computational Sta-
tistics Toolbox is provided under the GNU license specifications:

http://www.gnu.org/copyleft/gpl.html

3. The views expressed in this book are those of the authors and do
not necessarily represent the views of the United States govern-
ment.

MATLAB® and SIMULINK® are registered trademarks of The MathWorks,
Inc. For product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

Wendy L. and Angel R. Martinez
November 2015
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Preface to the Second Edition

We wrote a second edition of this book for two reasons. First, the Statistics
Toolbox for MATLAB® has been significantly expanded since the first
edition, so the text needed to be updated to reflect these changes. Second, we
wanted to incorporate some of the suggested improvements that were made
by several of the reviewers of the first edition. In our view, one of the most
important issues that needed to be addressed is that several topics that
should be included in a text on computational statistics were missing, so we
added them to this edition. 

We list below some of the major changes and additions of the second
edition.

• Chapters 2 and 4 have been updated to include new functions for
the multivariate normal and multivariate t distributions, which are
now available in the Statistics Toolbox.

• Chapter 5 of the first edition was split into two chapters and
updated with new material. Chapter 5 is still on exploratory data
analysis, but it now has updated information on new MATLAB
functionality for univariate and bivariate histograms, glyphs, par-
allel coordinate plots, and more. 

• Topics that pertain to touring the data and finding structure can
be found in Chapter 6. This includes new content on independent
component analysis, nonlinear dimensionality reduction, and mul-
tidimensional scaling. 

• Chapter 9 of the first edition was divided into two chapters (now
Chapters 10 and 11), and new content was added. Chapter 10 of
the new edition includes methods pertaining to supervised learn-
ing with new topics on linear classifiers, quadratic classifiers, and
voting methods (e.g., bagging, boosting, and random forests). 

• Methods for unsupervised learning or clustering have been moved
to Chapter 11. This content has been expanded and updated to
include model-based clustering and techniques for assessing the
results of clustering. 

• Chapter 12 on parametric models has been added. This has descrip-
tions of spline regression models, logistic regression, and general-
ized linear models. 
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• Chapter 13 on nonparametric regression has been expanded. It now
includes information on more smoothers, such as bin smoothing,
running mean and line smoothers, and smoothing splines. We also
describe additive models for nonparametric modeling when one
has many predictors.

• The text has been updated for MATLAB R2007a and the Statistics
Toolbox, V6.0. 

We tried to keep to the same philosophy and style of writing that we had
in the first book. The theory is kept to a minimum, and we provide references
at the end of the text for those who want a more in-depth treatment. All
MATLAB code, example files, and data sets are available for download at the
CRC website and StatLib:

http://lib.stat.cmu.edu
http://www.crcpress.com/e_products/downloads/

We also have a website for the text, where up-to-date information will be
posted. This includes the latest version of the Computational Statistics
Toolbox, code fixes, links to useful websites, and more. The website can be
found at

http://www.pi-sigma.info/

The first edition of the book was written using an older version of
MATLAB. Most of the code in this text should work with earlier versions, but
we have updated the text to include new functionality from the Statistics
Toolbox, Version 6.0.

We would like to acknowledge the invaluable help of the reviewers for the
second edition: Tom Lane, David Marchette, Carey Priebe, Jeffrey Solka,
Barry Sherlock, Myron Katzoff, Pang Du, and Yuejiao Ma. Their many
helpful comments made this book a much better product. Any shortcomings
are the sole responsibility of the authors. We greatly appreciate the help and
patience of those at CRC Press: Bob Stern, Jessica Vakili, Russ Heap, and
James Yanchak. We are grateful to Hsuan-Tien Lin for letting us use his
boosting code and Jonas Lundgren for his spline regression function. Finally,
we are especially indebted to Tom Lane and those members of the MATLAB
book program at The MathWorks, Inc. for their special assistance with
MATLAB.

Disclaimers

1. Any MATLAB programs and data sets that are included with the
book are provided in good faith. The authors, publishers, or dis-
tributors do not guarantee their accuracy and are not responsible
for the consequences of their use. 
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2. Some of the MATLAB functions provided with the Computational
Statistics Toolbox were written by other researchers, and they
retain the copyright. References are given in the help section of
each function. Unless otherwise specified, the Computational Sta-
tistics Toolbox is provided under the GNU license specifications:

http://www.gnu.org/copyleft/gpl.html

3. The views expressed in this book are those of the authors and do
not necessarily represent the views of the United States Department
of Defense or its components.

We hope that readers will find this book and the accompanying code useful
in their educational and professional endeavors. 

Wendy L. and Angel R. Martinez
November 2007

CompStats3.book  Page xxiii  Monday, November 16, 2015  1:55 PM



This page intentionally left blankThis page intentionally left blank



xxv

Preface to the First Edition

Computational statistics is a fascinating and relatively new field within
statistics. While much of classical statistics relies on parameterized functions
and related assumptions, the computational statistics approach is to let the
data tell the story. The advent of computers with their number-crunching
capability, as well as their power to show on the screen two- and three-
dimensional structures, has made computational statistics available for any
data analyst to use. 

Computational statistics has a lot to offer the researcher faced with a file
full of numbers. The methods of computational statistics can provide
assistance ranging from preliminary exploratory data analysis to
sophisticated probability density estimation techniques, Monte Carlo
methods, and powerful multi-dimensional visualization. All of this power
and novel ways of looking at data are accessible to researchers in their daily
data analysis tasks. One purpose of this book is to facilitate the exploration of
these methods and approaches and to provide the tools to make of this, not
just a theoretical exploration, but a practical one. The two main goals of this
book are

• To make computational statistics techniques available to a wide
range of users, including engineers and scientists, and

• To promote the use of MATLAB® by statisticians and other data
analysts.

We note that MATLAB and Handle Graphics® are registered trademarks of
The MathWorks, Inc. 

There are wonderful books that cover many of the techniques in
computational statistics and, in the course of this book, references will be
made to many of them. However, there are very few books that have
endeavored to forgo the theoretical underpinnings to present the methods
and techniques in a manner immediately usable to the practitioner. The
approach we take in this book is to make computational statistics accessible
to a wide range of users and to provide an understanding of statistics from a
computational point of view via methods applied to real applications. 

This book is intended for researchers in engineering, statistics, psychology,
biostatistics, data mining, and any other discipline that must deal with the
analysis of raw data. Students at the senior undergraduate level or beginning
graduate level in statistics or engineering can use the book to supplement
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course material. Exercises are included with each chapter, making it suitable
as a textbook for a course in computational statistics and data analysis.
Scientists who would like to know more about programming methods for
analyzing data in MATLAB should also find it useful.

We assume that the reader has the following background:

• Calculus: Since this book is computational in nature, the reader
needs only a rudimentary knowledge of calculus. Knowing the
definition of a derivative and an integral is all that is required.

• Linear Algebra: Since MATLAB is an array-based computing lan-
guage, we cast several of the algorithms in terms of matrix algebra.
The reader should have a familiarity with the notation of linear
algebra, array multiplication, inverses, determinants, an array
transpose, etc.

• Probability and Statistics: We assume that the reader has had intro-
ductory probability and statistics courses. However, we provide a
brief overview of the relevant topics for those who might need a
refresher.

We list below some of the major features of the book.

• The focus is on implementation rather than theory, helping the
reader understand the concepts without being burdened by the
theory.

• References that explain the theory are provided at the end of each
chapter. Thus, those readers who need the theoretical underpin-
nings will know where to find the information.

• Detailed step-by-step algorithms are provided to facilitate imple-
mentation in any computer programming language or appropriate
software. This makes the book appropriate for computer users who
do not know MATLAB.

• MATLAB code in the form of a Computational Statistics Toolbox
is provided. These functions are available for download. 

• Exercises are given at the end of each chapter. The reader is encour-
aged to go through these because concepts are sometimes explored
further in them. Exercises are computational in nature, which is in
keeping with the philosophy of the book.

• Many data sets are included with the book, so the reader can apply
the methods to real problems and verify the results shown in the
book. The data are provided in MATLAB binary files (.mat) as
well as text, for those who want to use them with other software.

• Typing in all of the commands in the examples can be frustrating.
So, MATLAB scripts containing the commands used in the exam-
ples are also available for download.
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• A brief introduction to MATLAB is provided in Appendix A. Most
of the constructs and syntax that are needed to understand the
programming contained in the book are explained.

• Where appropriate, we provide references to Internet resources for
computer code implementing the algorithms described in the chap-
ter. These include code for MATLAB, S-plus, Fortran, etc.

We would like to acknowledge the invaluable help of the reviewers: Noel
Cressie, James Gentle, Thomas Holland, Tom Lane, David Marchette,
Christian Posse, Carey Priebe, Adrian Raftery, David Scott, Jeffrey Solka, and
Clifton Sutton. Their many helpful comments made this book a much better
product. Any shortcomings are the sole responsibility of the authors. We owe
a special thanks to Jeffrey Solka for some programming assistance with finite
mixtures. We greatly appreciate the help and patience of those at CRC Press:
Bob Stern, Joanne Blake, and Evelyn Meany. We also thank Harris Quesnell
and James Yanchak for their help with resolving font problems. Finally, we
are indebted to Naomi Fernandes and Tom Lane at The MathWorks, Inc. for
their special assistance with MATLAB.

Disclaimers

1. Any MATLAB programs and data sets that are included with the book
are provided in good faith. The authors, publishers, or distributors
do not guarantee their accuracy and are not responsible for the
consequences of their use. 

2. The views expressed in this book are those of the authors and do not
necessarily represent the views of the Department of Defense or
its components.

Wendy L. and Angel R. Martinez
August 2001
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Chapter 1
Introduction

1.1 What Is Computational Statistics?

Obviously, computational statistics relates to the traditional discipline of
statistics. So, before we define computational statistics proper, we need to get
a handle on what we mean by the field of statistics. At a most basic level,
statistics is concerned with the transformation of raw data into knowledge
[Wegman, 1988].

When faced with an application requiring the analysis of raw data, any
scientist must address questions such as:

• What data should be collected to answer the questions in the anal-
ysis?

• How many data points should we obtain?
• What conclusions can be drawn from the data?
• How far can those conclusions be trusted?

Statistics is concerned with the science of uncertainty and can help the
scientist deal with these questions. Many classical methods (regression,
hypothesis testing, parameter estimation, confidence intervals, etc.) of
statistics developed over the last century are familiar to scientists and are
widely used in many disciplines [Efron and Tibshirani, 1991]. 

Now, what do we mean by computational statistics? Here we again follow
the definition given in Wegman [1988]. Wegman defines computational
statistics as a collection of techniques that have a strong “focus on the
exploitation of computing in the creation of new statistical methodology.”

Many of these methodologies became feasible after the development of
inexpensive computing hardware since the 1980s. This computing revolution
has enabled scientists and engineers to store and process massive amounts of
data. However, these data are typically collected without a clear idea of what
they will be used for in a study. For instance, in the practice of data analysis
today, we often collect the data and then we design a study to gain some
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useful information from them. In contrast, the traditional approach has been
to first design the study based on research questions and then collect the
required data.

Because the storage and collection is so cheap, the data sets that analysts
must deal with today tend to be very large and high-dimensional. It is in
situations like these where many of the classical methods in statistics are
inadequate. As examples of computational statistics methods, Wegman
[1988] includes parallel coordinates for visualizing high dimensional data,
nonparametric functional inference, and data set mapping, where the
analysis techniques are considered fixed.

Efron and Tibshirani [1991] refer to what we call computational statistics as
computer-intensive statistical methods. They give the following as examples for
these types of techniques: bootstrap methods, nonparametric regression,
generalized additive models, and classification and regression trees. They
note that these methods differ from the classical methods in statistics because
they substitute computer algorithms for the more traditional mathematical
method of obtaining an answer. An important aspect of computational
statistics is that the methods free the analyst from choosing methods mainly
because of their mathematical tractability.

Volume 9 of the Handbook of Statistics: Computational Statistics [Rao, 1993]
covers topics that illustrate the “... trend in modern statistics of basic
methodology supported by the state-of-the-art computational and graphical
facilities....” It includes chapters on computing, density estimation, Gibbs
sampling, the bootstrap, the jackknife, nonparametric function estimation,
statistical visualization, and others.

Gentle [2005] also follows the definition of Wegman [1988] where he states
that computational statistics is a discipline that includes a “... class of
statistical methods characterized by computational intensity...”. His book
includes Monte Carlo methods for inference, cross-validation and jackknife
methods, data transformations to find structure, visualization, probability
density estimation, and pattern recognition. 

We mention the topics that can be considered part of computational
statistics to help the reader understand the difference between these and the
more traditional methods of statistics. Table 1.1 [Wegman, 1988] gives an
excellent comparison of the two areas.
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1.2 An Overview of the Book

Philosophy

The focus of this book is on methods of computational statistics and how to
implement them. We leave out much of the theory, so the reader can
concentrate on how the techniques may be applied. In many texts and journal
articles, the theory obscures implementation issues, contributing to a loss of
interest on the part of those needing to apply the theory. The reader should
not misunderstand, though; the methods presented in this book are built on
solid mathematical foundations. Therefore, at the end of each chapter, we

TABLE 1.1

Comparison Between Traditional Statistics and Computational Statistics 
[Wegman, 1988] 

Traditional Statistics Computational Statistics

Small to moderate sample size Large to very large sample size

Independent, identically 
distributed data sets

Nonhomogeneous data sets

One or low dimensional High dimensional

Manually computational Computationally intensive

Mathematically tractable Numerically tractable

Well focused questions Imprecise questions

Strong unverifiable assumptions:
Relationships (linearity, 
additivity)

Error structures (normality)

Weak or no assumptions:
Relationships (nonlinearity)
Error structures (distribution free)

Statistical inference Structural inference

Predominantly closed form 
algorithms

Iterative algorithms possible

Statistical optimality Statistical robustness

Reprinted with permission from the Journal of the Washington Academy of Sci-
ences
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include a section containing references that explain the theoretical concepts
associated with the methods covered in that chapter.

What Is Covered

In this book, we cover some of the most commonly used techniques in
computational statistics. While we cannot include all methods that might be
a part of computational statistics, we try to present those that have been in
use for several years. 

Since the focus of this book is on the implementation of the methods, we
include step-by-step descriptions of the procedures. We also provide
examples that illustrate the use of the methods in data analysis. It is our hope
that seeing how the techniques are implemented will help the reader
understand the concepts and facilitate their use in data analysis. 

Some background information is given in Chapters 2, 3, and 4 for those
who might need a refresher in probability and statistics. In Chapter 2, we
discuss some of the general concepts of probability theory, focusing on how
they will be used in later chapters of the book. Chapter 3 covers some of the
basic ideas of statistics and sampling distributions. Since many of the
approaches in computational statistics are concerned with estimating
distributions via simulation, this chapter is fundamental to the rest of the
book. For the same reason, we present some techniques for generating
random variables in Chapter 4.

Some of the methods in computational statistics enable the researcher to
explore the data before other analyses are performed. These techniques are
especially important with high dimensional data sets or when the questions
to be answered using the data are not well focused. In Chapters 5 and 6, we
present some graphical exploratory data analysis techniques that could fall
into the category of traditional statistics (e.g., box plots, scatterplots). We
include them in this text so statisticians can see how to implement them in
MATLAB® and to educate scientists and engineers as to their usage in
exploratory data analysis. Other graphical methods in this book do fall into
the category of computational statistics. Among these are isosurfaces,
parallel coordinates, the grand tour, and projection pursuit. 

In Chapters 7 and 8, we present methods that come under the general
heading of resampling. We first cover some of the main concepts in
hypothesis testing and confidence intervals to help the reader better
understand what follows. We then provide procedures for hypothesis testing
using simulation, including a discussion on evaluating the performance of
hypothesis tests. This is followed by the bootstrap method, where the data set
is used as an estimate of the population and subsequent sampling is done
from the sample. We show how to get bootstrap estimates of standard error,
bias, and confidence intervals. Chapter 8 continues with two closely related
methods called the jackknife and cross-validation.
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One of the important applications of computational statistics is the
estimation of probability density functions. Chapter 9 covers this topic, with
an emphasis on the nonparametric approach. We show how to obtain
estimates using probability density histograms, frequency polygons,
averaged shifted histograms, kernel density estimates, finite mixtures, and
adaptive mixtures.

Chapters 10 and 11 describe statistical pattern recognition methods for
supervised and unsupervised learning. For supervised learning, we discuss
Bayes decision theory, classification trees, and ensemble classifier methods.
We present several unsupervised learning methods, such as hierarchical
clustering, k-means clustering, and model-based clustering. In addition, we
cover the issue of assessing the results of our clustering, including how one
can estimate the number of groups represented by the data.

In Chapters 12 and 13, we describe methods for estimating the relationship
between a set of predictors and a response variable. We cover parametric
methods, such as linear regression, spline regression, and logistic regression.
This is followed by generalized linear models and model selection methods.
Chapter 13 includes several nonparametric methods for understanding the
relationship between variables. First, we present several smoothing methods
that are building blocks for additive models. For example, we discuss local
polynomial regression, kernel methods, and smoothing splines. What we
have just listed are methods for one predictor variable. Of course, this is
rather restrictive, so we conclude the chapter with a description of regression
trees, additive models, and multivariate adaptive regression splines. 

An approach for simulating a distribution that has become widely used
over the last several years is called Markov chain Monte Carlo. Chapter 14
covers this important topic and shows how it can be used to simulate a
posterior distribution. Once we have the posterior distribution, we can use it
to estimate statistics of interest (means, variances, etc.).

We also provide several appendices to aid the reader. Appendix A contains
a brief introduction to MATLAB, which should help readers understand the
code in the examples and exercises. Appendix B has some information on
indexes for projection pursuit. In Appendix C, we include a brief description
of the data sets that are mentioned in the book. Finally, we present a brief
overview of notation that we use in Appendix D.

A Word About Notation

The explanation of the methods in computational statistics (and the
understanding of them!) depends a lot on notation. In most instances, we
follow the notation that is used in the literature for the corresponding
method. Rather than try to have unique symbols throughout the book, we
think it is more important to be faithful to the convention to facilitate
understanding of the theory and to make it easier for readers to make the
connection between the theory and the text. Because of this, the same
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symbols might be used in several places to denote different entities or
different symbols could be used for the same thing depending on the topic.
However, the meaning of the notation should be clear from the context.

In general, we try to stay with the convention that random variables are
capital letters, whereas small letters refer to realizations of random variables.
For example, X is a random variable, and x is an observed value of that
random variable. When we use the term log, we are referring to the natural
logarithm.

A symbol that is in bold refers to an array. Arrays can be row vectors,
column vectors, or matrices. Typically, a matrix is represented by a bold
capital letter such as B, while a vector is denoted by a bold lowercase letter
such as b. Sometimes, arrays are shown with Greek symbols. For the most
part, these will be shown in bold font, but we do not always follow this
convention. Again, it should be clear from the context that the notation
denotes an array. 

When we are using explicit matrix notation, then we specify the
dimensions of the arrays. Otherwise, we do not hold to the convention that a
vector always has to be in a column format. For example, we might represent
a vector of observed random variables as  or a vector of parameters
as . 

Our observed data sets will always be arranged in a matrix of dimension
, which is denoted as X. Here n represents the number of observations

we have in our sample, and d is the number of variables or dimensions. Thus,
each row corresponds to a d-dimensional observation or data point. The ij-th
element of X will be represented by xij. Usually, the subscript i refers to a row
in a matrix or an observation, and a subscript j references a column in a
matrix or a variable. 

For the most part, examples are included after we explain the procedures,
which include MATLAB code as we describe next. We indicate the end of an
example by using a small box (❑), so the reader knows when the narrative
resumes. 

1.3 MATLAB® Code

Along with the explanation of the procedures, we include MATLAB
commands to show how they are implemented. To make the book more
readable, we will indent MATLAB code when we have several lines of code,
and this can always be typed in as you see it in the book. Since all examples
are available for download, you could also copy and paste the code into the
MATLAB command window and execute them.

Any MATLAB commands, functions, or data sets are in courier bold font.
For example, plot denotes the MATLAB plotting function. We note that due
to typesetting considerations, we often have to continue a MATLAB

x1 x2 x3, ,( )
μ σ,( )

n d×
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command using the continuation punctuation (...). See Appendix A for
more information on how this punctuation is used in MATLAB. 

Since this is a book about computational statistics, we assume the reader
has the MATLAB Statistics and Machine Learning Toolbox. In the rest of the
book, we will refer to this toolbox with its shortened name—the Statistics
Toolbox. We note in the text what functions are part of the main MATLAB
software package and which functions are available only in the Statistics
Toolbox. 

We try to include information on MATLAB functions that are relevant to
the topics covered in this text. However, this book is about the methods of
computational statistics and is not meant to be a user’s guide for MATLAB.
Therefore, we do not claim to include all relevant MATLAB capabilities.
Please see the documentation for more information on statistics in MATLAB
and current functionality in the Statistics Toolbox. We also recommend the
text by Martinez and Cho [2014] for those who would like a short user’s guide
with a focus on statistics. 

The choice of MATLAB for implementation of the methods in this text is
due to the following reasons:

• The commands, functions, and arguments in MATLAB are not
cryptic. It is important to have a programming language that is
easy to understand and intuitive, since we include the programs
to help teach the concepts. 

• It is used extensively by scientists and engineers.
• Student versions are available.
• It is easy to write programs in MATLAB. 
• The source code or M-files can be viewed, so users can learn about

the algorithms and their implementation.
• User-written MATLAB programs are freely available.
• The graphics capabilities are excellent.

It is important to note that the MATLAB code given in the body of the book
is for learning purposes. In many cases, it is not the most efficient way to
program the algorithm. One of the purposes of including the MATLAB code
is to help the reader understand the algorithms, especially how to implement
them. So, we try to have the code match the procedures and to stay away
from cryptic programming constructs. For example, we use for loops at
times (when unnecessary!) to match the procedure. We make no claims that
our code is the best way or the only way to program the algorithms.

When presenting the syntax for a MATLAB function we usually just give
the basic command and usage. Most MATLAB functions have a lot more
capabilities, so we urge the reader to look at the documentation. Another
very useful and quick way to find out more is to type help function_name
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at the command line. This will return information such as alternative syntax,
definitions of the input and output variables, and examples. 

In some situations, we do not include all of the code in the text. These are
cases where the MATLAB program does not provide insights about the
algorithms. Including these in the body of the text would distract the reader
from the important concepts being presented. However, the reader can
always consult the M-files for the functions, if more information is needed.

Computational Statistics Toolbox

Some of the methods covered in this book are not available in MATLAB. So,
we provide functions that implement most of the procedures that are given
in the text. Note that these functions are a little different from the MATLAB
code provided in the examples. In most cases, the functions allow the user to
implement the algorithms for the general case. A list of the functions and
their purpose is given at the end of each chapter.

The MATLAB functions for the book are in the Computational Statistics
Toolbox. To make it easier to recognize these functions, we put the letters cs
in front of most of the functions. We included several new functions with the
second edition, some of which were written by others. We did not change
these functions to make them consistent with the naming convention of the
toolbox. The latest toolbox can be downloaded from

http://www.pi-sigma.info/

http://www.crcpress.com/product/ISBN/9781466592735

Information on installing the toolbox is given in the readme file.

Internet Resources

One of the many strong points about MATLAB is the availability of functions
written by users, most of which are freely available on the Internet. With each
chapter, we provide information about Internet resources for MATLAB
programs (and other languages) that pertain to the techniques covered in the
chapter. 

The following are some Internet sources for MATLAB code. Note that these
are not necessarily specific to statistics, but are for all areas of science and
engineering.

• The main website at The MathWorks, Inc. has downloadable code
written by MATLAB users. The website for contributed M-files and
other useful information is called MATLAB Central. The link below
will take you to the website where you can find MATLAB code,
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links to websites, news groups, webinar information, blogs, and a
lot more. 

http://www.mathworks.com/matlabcentral/

• A good website for user-contributed statistics programs is StatLib
at Carnegie Mellon University. They have a section containing
MATLAB code. The home page for StatLib is 

http://lib.stat.cmu.edu

1.4 Further Reading

To gain more insight on what is computational statistics, we refer the reader
to the seminal paper by Wegman [1988]. Wegman discusses many of the
differences between traditional and computational statistics. He also
includes a discussion on what a graduate curriculum in computational
statistics should consist of and contrasts this with the more traditional course
work. A later paper by Efron and Tibshirani [1991] presents a summary of the
new focus in statistical data analysis that came about with the advent of the
computer age. Other papers in this area include Hoaglin and Andrews [1975]
and Efron [1979]. Hoaglin and Andrews discuss the connection between
computing and statistical theory and the importance of properly reporting
the results from simulation experiments. Efron’s article presents a survey of
computational statistics techniques (the jackknife, the bootstrap, error
estimation in discriminant analysis, nonparametric methods, and more) for
an audience with a mathematics background, but little knowledge of
statistics. Chambers [1999] looks at the concepts underlying computing with
data, including the challenges this presents and new directions for the future.

There are very few general books in the area of computational statistics.
One is a compendium of articles edited by C. R. Rao [1993]. This is a fairly
comprehensive summary of many topics pertaining to computational
statistics. The texts by Gentle [2005; 2009] are excellent resources for the
student or researcher. The edited volume by Gentle, Härdle, and Mori [2004]
is a wonderful resource with up-to-date articles on statistical computing,
statistical methodology, and applications. The book edited by Raftery,
Tanner, and Wells [2002] is another source for articles on many of the topics
covered in this text, such as nonparametric regression, the bootstrap, Gibbs
sampling, dimensionality reduction, and many others.

For those who need a resource for learning MATLAB, we recommend a
book by Hanselman and Littlefield [2011]. This gives a comprehensive
overview of MATLAB, and it has information about the many capabilities of
MATLAB, including how to write programs, graphics and GUIs, and much
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more. Martinez and Cho [2014] published a primer or short user’s guide on
using MATLAB for statistics.

The documentation for the Statistics Toolbox and base MATLAB is also a
very good resource for learning about many of the approaches discussed in
this book. See Appendix A for information about accessing these documents.
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Chapter 2
Probability Concepts

2.1 Introduction

A review of probability is covered here at the outset because it provides the
foundation for what is to follow: computational statistics. Readers who
understand probability concepts may safely skip over this chapter.

Probability is the mechanism by which we can manage the uncertainty
underlying all real world data and phenomena. It enables us to gauge our
degree of belief and to quantify the lack of certitude that is inherent in the
process that generates the data we are analyzing. For example: 

• To understand and use statistical hypothesis testing, one needs
knowledge of the sampling distribution of the test statistic.

• To evaluate the performance (e.g., standard error, bias, etc.) of an
estimate, we must know its sampling distribution.

• To adequately simulate a real system, one needs to understand the
probability distributions that correctly model the underlying pro-
cesses. 

• To build classifiers to predict what group an object belongs to based
on a set of features, one can estimate the probability density func-
tion that describes the individual classes.

In this chapter, we provide a brief overview of probability concepts and
distributions as they pertain to computational statistics. In Section 2.2, we
define probability and discuss some of its properties. In Section 2.3, we cover
conditional probability, independence, and Bayes’ theorem. Expectations are
defined in Section 2.4, and common distributions and their uses in modeling
physical phenomena are discussed in Section 2.5. In Section 2.6, we
summarize some MATLAB® functions that implement the ideas from
Chapter 2. Finally, in Section 2.7 we provide additional resources for the
reader who requires a more theoretical treatment of probability. 
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2.2 Probability 

Background

A random experiment is defined as a process or action whose outcome cannot
be predicted with certainty and would likely change when the experiment is
repeated. The variability in the outcomes might arise from many sources:
slight errors in measurements, choosing different objects for testing, etc. The
ability to model and analyze the outcomes from experiments is at the heart of
statistics. Some examples of random experiments that arise in different
disciplines are given next.

• Engineering: Data are collected on the number of failures of piston
rings in the legs of steam-driven compressors. Engineers would be
interested in determining the probability of piston failure in each
leg and whether the failure varies among the compressors [Hand,
et al.; Davies and Goldsmith, 1972].

• Medicine: The oral glucose tolerance test is a diagnostic tool for
early diabetes mellitus. The results of the test are subject to varia-
tion because of different rates at which people absorb the glucose,
and the variation is particularly noticeable in pregnant women.
Scientists would be interested in analyzing and modeling the vari-
ation of glucose before and after pregnancy [Andrews and
Herzberg, 1985].

• Manufacturing: Manufacturers of cement are interested in the ten-
sile strength of their product. The strength depends on many fac-
tors, one of which is the length of time the cement is dried. An
experiment is conducted where different batches of cement are
tested for tensile strength after different drying times. Engineers
would like to determine the relationship between drying time and
tensile strength of the cement [Hand, et al., 1994; Hald, 1952].

• Software Engineering: Engineers measure the failure times in CPU
seconds of a command and control software system. These data
are used to obtain models to predict the reliability of the software
system [Hand, et al., 1994; Musa, et al., 1987].

The sample space is the set of all outcomes from an experiment. It is
possible sometimes to list all outcomes in the sample space. This is especially
true in the case of some discrete random variables. Examples of these sample
spaces are listed next.
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• When observing piston ring failures, the sample space is 
where 1 represents a failure and 0 represents a non-failure.

• If we roll a six-sided die and count the number of dots on the face,
then the sample space is 

The outcomes from random experiments are often represented by an
uppercase variable such as X. This is called a random variable, and its value
is subject to the uncertainty intrinsic to the experiment. Formally, a random
variable is a real-valued function defined on the sample space. As we see in
the remainder of the text, a random variable can take on different values
according to a probability distribution. Using our examples of experiments
from above, a random variable X might represent the failure time of a
software system or the glucose level of a patient. The observed value of a
random variable X is denoted by a lowercase x. For instance, a random
variable X might represent the number of failures of piston rings in a
compressor, and  would indicate we observed 5 piston ring failures.

Random variables can be discrete or continuous. A discrete random
variable can take on values from a finite or countably infinite set of numbers.
Examples of discrete random variables are the number of defective parts or
the number of typographical errors on a page. A continuous random variable
is one that can take on values from an interval of real numbers. Examples of
continuous random variables are the inter-arrival times of planes at a
runway, the average weight of tablets in a pharmaceutical production line, or
the average voltage of a power plant at different times. 

We cannot list all outcomes from an experiment when we observe a
continuous random variable because there are an infinite number of
possibilities. However, we could specify the interval of values that X can take
on. For example, if the random variable X represents the tensile strength of
cement, then the sample space might be  

An event is a subset of outcomes in the sample space. An event might be
that a piston ring is defective or that the tensile strength of cement is in the
range 40 to 50 kg/cm2. The probability of an event is usually expressed using
the random variable notation illustrated next. 

• Discrete Random Variables: Letting 1 represent a defective piston
ring and letting 0 represent a good piston ring, then the probability
of the event that a piston ring is defective would be written as

.

• Continuous Random Variables: Let X denote the tensile strength
of cement. The probability that an observed tensile strength is in
the range 40 to 50 kg/cm2 is expressed as

.

1 0,{ },

1 2 3 4 5 6, , , , ,{ }.

x 5=

0 ∞,( ) kg/cm2.

P X 1=( )

P 40 kg/cm2 X 50 kg/cm2≤ ≤( )
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Some events have a special property when they are considered together.
Two events that cannot occur simultaneously or jointly are called mutually
exclusive events. This means that the intersection of the two events is the
empty set and the probability of the events occurring together is zero. For
example, a piston ring cannot be both defective and good at the same time.
So, the event of getting a defective part and the event of getting a good part
are mutually exclusive events. The definition of mutually exclusive events
can be extended to any number of events by considering all pairs of events.
Every pair of events must be mutually exclusive for all of them to be
mutually exclusive.

Probability

Probability is a measure of the likelihood that some event will occur. It is also
a way to quantify or to gauge the likelihood that an observed measurement
or random variable will take on values within some set or range of values.
Probabilities always range between 0 and 1. A probability distribution of a
random variable describes the probabilities associated with each possible
value for the random variable. 

We first briefly describe two somewhat classical methods for assigning
probabilities: the equal likelihood model and the relative frequency method.
When we have an experiment where each of n outcomes is equally likely,
then we assign a probability mass of  to each outcome. This is the equal
likelihood model. Some experiments where this model can be used are
flipping a fair coin, tossing an unloaded die, or randomly selecting a card
from a deck of cards.

With the relative frequency method, we conduct the experiment n times
and record the outcome. The probability of event E is then assigned by

, where f denotes the number of experimental outcomes that
satisfy event E.

Another way to find the desired probability that an event occurs is to use a
probability density function when we have continuous random variables or
a probability mass function in the case of discrete random variables. Section
2.5 contains several examples of probability density (mass) functions. In this
text,  is typically used to represent the probability mass or density
function for either discrete or continuous random variables, respectively. We
now discuss how to find probabilities using these functions, first for the
continuous case and then for discrete random variables.

To find the probability that a continuous random variable falls in a
particular interval of real numbers, we have to calculate the appropriate area
under the curve of . Thus, we have to evaluate the integral of  over
the interval of random variables corresponding to the event of interest. This
is represented by

1 n⁄

P E( ) f n⁄=

f x( )

f x( ) f x( )
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. (2.1)

The area under the curve of  between a and b represents the probability
that an observed value of the random variable X will assume a value between
a and b. This concept is illustrated in Figure 2.1 where the shaded area
represents the desired probability.

It should be noted that a valid probability density function should be non-
negative, and the total area under the curve must equal 1. If this is not the
case, then the probabilities will not be properly restricted to the interval

 This will be an important consideration in Chapter 9 when we discuss
probability density estimation techniques. 

The cumulative distribution function  is defined as the probability
that the random variable X assumes a value less than or equal to a given x.
This is calculated from the probability density function, as follows:

. (2.2)

FIGURE 2.1 
The area under the curve of f(x) between -1 and 4 is the same as the probability that an
observed value of the random variable will assume a value in the same interval.

P a X b≤ ≤( ) f x( ) xd
a

b

=

f x( )
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It is obvious from Equation 2.2 that the cumulative distribution function
takes on values between 0 and 1, so  A probability density
function, along with its associated cumulative distribution function, are
illustrated in Figure 2.2.

For a discrete random variable X, that can take on values , the
probability mass function is given by

, (2.3)

and the cumulative distribution function is

. (2.4)

Axioms of Probability

Probabilities follow certain axioms that can be useful in computational
statistics. We let S represent the sample space of an experiment and E
represent some event that is a subset of S. 

FIGURE 2.2
This shows the probability density function on the left with the associated cumulative
distribution function on the right. Notice that the cumulative distribution function takes
on values between 0 and 1.

0 F x( ) 1.≤ ≤
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x1 x2 …, ,

f xi( ) P X xi=( );= i 1 2 …, ,=

F a( ) f xi( );
xi a≤
= i 1 2 …, ,=
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Chapter 2: Probability Concepts 17

AXIOM 1 
The probability of event E must be between 0 and 1:

.

AXIOM 2 

.

AXIOM 3 
For mutually exclusive events, ,

.

Axiom 1 has been discussed before and simply states that a probability
must be between 0 and 1. Axiom 2 says that an outcome from our experiment
must occur. Axiom 3 enables us to calculate the probability that at least one
of the mutually exclusive events  occurs by summing the
individual probabilities. 

2.3 Conditional Probability and Independence

Conditional Probability 

Conditional probability is an important concept. It is used to define
independent events and enables us to revise our degree of belief given that
another event has occurred. Conditional probability arises in situations
where we need to calculate a probability based on some partial information
concerning the experiment, and we will see that it plays a vital role in
supervised learning applications.

The conditional probability of event E given event F is defined as follows:

CONDITIONAL PROBABILITY 

. (2.5)

0 P E( ) 1≤ ≤

P S( ) 1=

E1 E2 … Ek, , ,

P E1 E2 … Ek∪ ∪ ∪( ) P Ei( )
i 1=

k

=

E1 E2 … Ek, , ,

P E F( ) P E F∩( )
P F( )----------------------- P F( ) 0>;=
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Here  represents the joint probability that both E and F occur
together, and  is the probability that event F occurs. We can rearrange
Equation 2.5 to get the following rule:

MULTIPLICATION RULE

. (2.6)

Independence

Often we can assume that the occurrence of one event does not affect whether
or not some other event happens. For example, say a couple would like to
have two children, and their first child is a boy. The gender of their second
child does not depend on the gender of the first child. The fact that we know
they have a boy already does not change the probability that the second child
is a boy. Similarly, we can sometimes assume that the value we observe for a
random variable is not affected by the observed value of other random
variables. 

These types of events and random variables are called independent. If
events are independent, then knowing that one event has occurred does not
change our degree of belief or the likelihood that the other event occurs. If
random variables are independent, then the observed value of one random
variable does not affect the observed value of another.

In general, the conditional probability  is not equal to  In
these cases, the events are called dependent. Sometimes, we can assume
independence based on the situation or the experiment, which was the case
with our example above. However, to show independence mathematically,
we must use the following definition.

INDEPENDENT EVENTS
Two events E and F are said to be independent if and only if any of the following are
true:

(2.7)

Note that if events E and F are independent, then the Multiplication Rule
in Equation 2.6 becomes

,

which means that we simply multiply the individual probabilities for each
event together. This can be extended to k events to give

P E F∩( )
P F( )

P E F∩( ) P F( )P E F( )=

P E F( ) P E( ).

P E F∩( ) P E( )P F( ),=

P E( ) P E F( ).=

P E F∩( ) P F( )P E( )=
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, (2.8)

where events  and  (for all i and j, ) are independent.

Bayes’ Theorem

Sometimes we start an analysis with an initial degree of belief that an event
will occur. Later on, we might obtain some additional information about the
event that would change our belief about the probability that the event will
occur. The initial probability is called a prior probability. Using the new
information, we can update the prior probability using Bayes’ theorem to
obtain the posterior probability. 

The experiment of recording piston ring failure in compressors mentioned
at the beginning of the chapter is an example of where Bayes’ theorem might
be used, and we derive Bayes’ theorem using this example. Suppose our
piston rings are purchased from two manufacturers: 60% from manufacturer
A and 40% from manufacturer B. 

Let  denote the event that a part comes from manufacturer A and 
represent the event that a piston ring comes from manufacturer B. If we select
a part at random from our supply of piston rings, we would assign
probabilities to these events as follows: 

These are our prior probabilities that the piston rings are from the individual
manufacturers. 

Say we are interested in knowing the probability that a piston ring that
subsequently failed came from manufacturer A. This would be the posterior
probability that it came from manufacturer A, given that the piston ring failed.
The additional information we have about the piston ring is that it failed, and
we use this to update our degree of belief that it came from manufacturer A.

Bayes’ theorem can be derived from the definition of conditional
probability (Equation 2.5). Writing this in terms of our events, we are
interested in the following probability:

, (2.9)

where  represents the posterior probability that the part came from
manufacturer A, and F is the event that the piston ring failed. Using the
Multiplication Rule (Equation 2.6), we can write the numerator of Equation

P E1 E2 … Ek∩ ∩ ∩( ) P Ei( )
i 1=

k

∏=

Ei Ej i j≠

MA MB

P MA( ) 0.6,=

P MB( ) 0.4.=

P MA F( )
P MA F∩( )

P F( )----------------------------=

P MA F( )
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2.9 in terms of event F and our prior probability that the part came from
manufacturer A, as follows:

. (2.10)

The next step is to find . The only way that a piston ring will fail is if:
(1) it failed and it came from manufacturer A, or (2) it failed and it came from
manufacturer B. Thus, using the third axiom of probability, we can write

.

Applying the Multiplication Rule as before, we have

. (2.11)

Substituting this for  in Equation 2.10, we write the posterior probability
as

. (2.12)

Note that we need to find the probabilities  and  These are
the probabilities that a piston ring will fail given it came from the
corresponding manufacturer. These must be estimated in some way using
available information (e.g., past failures). When we revisit Bayes’ theorem in
the context of statistical pattern recognition (Chapter 10), these are the
probabilities that are estimated to construct a certain type of classifier.

Equation 2.12 is Bayes’ theorem for a situation where only two outcomes
are possible. In general, Bayes’ theorem can be written for any number of
mutually exclusive events, , whose union makes up the entire
sample space. This is given next.

BAYES’ THEOREM 

. (2.13)

P MA F( )
P MA F∩( )

P F( )----------------------------
P MA( )P F MA( )

P F( )-----------------------------------------= =

P F( )

P F( ) P MA F∩( ) P MB F∩( )+=

P F( ) P MA( )P F MA( ) P MB( )P F MB( )+=

P F( )

P MA F( )
P MA( )P F MA( )

P MA( )P F MA( ) P MB( )P F MB( )+
---------------------------------------------------------------------------------------=

P F MA( ) P F MB( ).

E1 … Ek, ,

P Ei F( )
P Ei( )P F Ei( )

P E1( )P F E1( ) … P Ek( )P F Ek( )+ +
-----------------------------------------------------------------------------------------=
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2.4 Expectation

Expected values and variances are important concepts in statistics. They are
used to describe distributions, to evaluate the performance of estimators, to
obtain test statistics in hypothesis testing, and many other applications. 

Mean and Variance

The mean or expected value of a random variable is defined using the
probability density or mass function. It provides a measure of central
tendency of the distribution. If we observe many values of the random
variable and take the average of them, we would expect that value to be close
to the mean. The expected value is defined below for the discrete case.

EXPECTED VALUE - DISCRETE RANDOM VARIABLES

. (2.14)

We see from the definition that the expected value is a sum of all possible
values of the random variable where each one is weighted by the probability
that X will take on that value. 

The variance of a discrete random variable is given by the following
definition.

VARIANCE - DISCRETE RANDOM VARIABLES

For ,

. (2.15)

From Equation 2.15, we see that the variance is the sum of the squared
distances from the mean, each one weighted by the probability that .
Variance is a measure of dispersion in the distribution. If a random variable
has a large variance, then an observed value of the random variable is more
likely to be far from the mean μ. The standard deviation  is the square root
of the variance.

μ E X[ ] xi f xi( )
i 1=

∞

= =

μ ∞<

σ2 V X( ) E X μ–( )2[ ] xi μ–( )2f xi( )
i 1=

∞

= = =

X xi=

σ
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The mean and variance for continuous random variables are defined
similarly, with the summation replaced by an integral. The mean and
variance of a continuous random variable are given next.

EXPECTED VALUE - CONTINUOUS RANDOM VARIABLES

. (2.16)

VARIANCE - CONTINUOUS RANDOM VARIABLES

For ,

. (2.17)

We note that Equation 2.17 can also be written as

.

Other expected values that are of interest in statistics are the moments of a
random variable. These are the expectation of powers of the random variable.
In general, we define the r-th moment as

, (2.18)

and the r-th central moment as

. (2.19)

The mean corresponds to , and the variance is given by . 

Skewness

The third central moment  is often called a measure of asymmetry or
skewness in the distribution. The uniform and the normal distribution are
examples of symmetric distributions. The gamma and the exponential are
examples of skewed or asymmetric distributions. The following ratio is
called the coefficient of skewness, which is often used to measure this
characteristic:

μ E X[ ] xf x( ) xd
∞–

∞

= =

μ ∞<

σ2 V X( ) E X μ–( )2[ ] x μ–( )2f x( ) xd
∞–

∞

= = =

V X( ) E X2[ ] μ2– E X2[ ] E X[ ]( )2–= =

μ'r E Xr[ ]=

μr E X μ–( )r[ ]=

μ'1 μ2

μ3
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. (2.20)

Distributions that are skewed to the left will have a negative coefficient of
skewness, and distributions that are skewed to the right will have a positive
value [Hogg and Craig, 1978]. The coefficient of skewness is zero for
symmetric distributions. However, a coefficient of skewness equal to zero
does not imply that the distribution must be symmetric.

Kurtosis

Skewness is one way to measure a type of departure from normality.
Kurtosis measures a different type of departure from normality by indicating
the extent of the peak (or the degree of flatness near its center) in a
distribution. The coefficient of kurtosis is given by the following ratio:

. (2.21)

We see that this is the ratio of the fourth central moment divided by the
square of the variance. If the distribution is normal, then this ratio is equal to
3. A ratio greater than 3 indicates more values in the neighborhood of the
mean (is more peaked than the normal distribution). If the ratio is less than 3,
then it is an indication that the curve is flatter than the normal. 

Sometimes the coefficient of excess kurtosis is used as a measure of
kurtosis. This is given by

. (2.22)

In this case, distributions that are more peaked than the normal correspond
to a positive value of , and those with a flatter top have a negative
coefficient of excess kurtosis.

2.5 Common Distributions

In this section, we provide a review of some useful probability distributions
and briefly describe some applications to modeling data. Most of these
distributions are used in later chapters, so we take this opportunity to define
them and to fix our notation. We first cover two important discrete

γ1
μ3

μ2
3 2⁄---------=

γ2
μ4

μ2
2-----=

γ2'
μ4

μ2
2----- 3–=

γ2'
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distributions: the binomial and the Poisson. These are followed by several
continuous distributions: the uniform, the normal, the exponential, the
gamma, the chi-square, the Weibull, the beta, the Student’s t distribution, the
multivariate normal, and the multivariate t distribution. 

Binomial

Let’s say that we have an experiment, whose outcome can be labeled as a
“success” or a “failure.” If we let  denote a successful outcome and

 represent a failure, then we can write the probability mass function as

(2.23)

where p represents the probability of a successful outcome. A random
variable that follows the probability mass function in Equation 2.23 for

 is called a Bernoulli random variable. 
Now suppose we repeat this experiment for n trials, where each trial is

independent (the outcome from one trial does not influence the outcome of
another) and results in a success with probability p. If X denotes the number
of successes in these n trials, then X follows the binomial distribution with
parameters n and p. Examples of binomial distributions with different
parameters are shown in Figure 2.3. 

To calculate a binomial probability, we use the following formula:

. (2.24)

The mean and variance of a binomial distribution are given by

and

Some examples where the results of an experiment can be modeled by a
binomial random variable are

• A drug has probability 0.90 of curing a disease. It is administered
to 100 patients, where the outcome for each patient is either cured
or not cured. If X is the number of patients cured, then X is a
binomial random variable with parameters (100, 0.90).

X 1=
X 0=

f 0( ) P X 0=( ) 1 p,–= =

f 1( ) P X 1=( ) p,= =

0 p 1< <

f x n; p,( ) P X x=( ) n
x 

  px 1 p–( )n x– x; 0 1 … n, , ,= = =

E X[ ] np,=

V X( ) np 1 p–( ).=
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• The National Institute of Mental Health estimates that there is a
20% chance that an adult American suffers from a psychiatric dis-
order. Fifty adult Americans are randomly selected. If we let X
represent the number who have a psychiatric disorder, then X takes
on values according to the binomial distribution with parameters
(50, 0.20).

• A manufacturer of computer chips finds that on the average 5%
are defective. To monitor the manufacturing process, they take a
random sample of size 75. If the sample contains more than five
defective chips, then the process is stopped. The binomial distri-
bution with parameters (75, 0.05) can be used to model the random
variable X, where X represents the number of defective chips.

Example 2.1
Suppose there is a 20% chance that an adult American suffers from a
psychiatric disorder. We randomly sample 25 adult Americans. If we let X
represent the number of people who have a psychiatric disorder, then X is a
binomial random variable with parameters  We are interested in
the probability that at most 3 of the selected people have such a disorder. We
can use the MATLAB Statistics Toolbox function binocdf to determine

, as follows:

FIGURE 2.3
Examples of the binomial distribution for different success probabilities.
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prob = binocdf(3,25,0.2);

We could also sum up the individual values of the probability mass function
from  to :

prob2 = sum(binopdf(0:3,25,0.2));

Both of these commands return a probability of 0.234. We now show how to
generate the binomial distributions shown in Figure 2.3.

% Get the values for the domain, x.
x = 0:6;
% Get the values of the probability mass function.
% First for n = 6, p = 0.3:
pdf1 = binopdf(x,6,0.3);
% Now for n = 6, p = 0.7:
pdf2 = binopdf(x,6,0.7);

Now we have the values for the probability mass function (or the heights of
the bars). The plots are obtained using the following code:

% Do the plots.
subplot(1,2,1),bar(x,pdf1,1,'w')
title(' n = 6, p = 0.3')
xlabel('X'),ylabel('f(X)')
axis square
subplot(1,2,2),bar(x,pdf2,1,'w')
title(' n = 6, p = 0.7')
xlabel('X'),ylabel('f(X)')
axis square

❑

Poisson

If a random variable X is a Poisson random variable with parameter 
 then it has the probability mass function given by

(2.25)

where  denotes the factorial of x. The factorial of a non-negative integer x
is the product of all positive integers less than or equal to x.

The expected value and variance of a Poisson random variable are both λ,
thus,

,

X 0= X 3=

λ,
λ 0,>

f x λ;( ) P X x=( ) e λ– λx

x!
----- x; 0 1 … ,, ,= = =

x!

E X[ ] λ=

CompStats3.book  Page 26  Monday, November 16, 2015  1:55 PM



Chapter 2: Probability Concepts 27

and

.

The Poisson distribution can be used in many applications. Examples
where a discrete random variable might follow a Poisson distribution are

• the number of typographical errors on a page,
• the number of vacancies in a company during a month, or
• the number of defects in a length of wire.

The Poisson distribution is often used to approximate the binomial. When
n is large and p is small (so  is moderate), then the number of successes
occurring can be approximated by the Poisson random variable with
parameter 

The Poisson distribution is also appropriate for some applications where
events occur at points in time or space. Examples include the arrival of jobs
at a business, the arrival of aircraft on a runway, and the breakdown of
machines at a manufacturing plant. The number of events in these
applications can be described by a Poisson process. 

Let , , represent the number of events that occur in the time
interval . For each interval ,  is a random variable that can
take on values . If the following conditions are satisfied, then the
counting process { , } is said to be a Poisson process with mean rate

 [Ross, 2000]:

1. .
2. The process has independent increments.
3. The number  of events in an interval of length t follows a

Poisson distribution with mean . Thus, for  and 

. (2.26)

From the third condition, we know that the process has stationary
increments. This means that the distribution of the number of events in an
interval depends only on the length of the interval and not on the starting
point. The second condition specifies that the number of events in one
interval does not affect the number of events in other intervals. The first
condition states that the counting starts at time  The expected value of

 is given by

.

V X( ) λ=

np

λ np.=

N t( ) t 0≥
0 t,[ ] 0 t,[ ] N t( )

0 1 2 …, , ,
N t( ) t 0≥

λ

N 0( ) 0=

N t( )
λt s 0≥ t 0,≥

P N t s+( ) N s( )– k=( ) e λt– λt( )k
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Example 2.2
In preparing this text, we executed the spell check command, and the editor
reviewed the manuscript for typographical errors. In spite of this, some
mistakes might be present. Assume that the number of typographical errors
per page follows the Poisson distribution with parameter  We
calculate the probability that a page will have at least two errors as follows:

We can get this probability using the MATLAB Statistics Toolbox function
poisscdf. Note that  is the Poisson cumulative
distribution function for  (see Equation 2.4), which is why we use 1 as
the argument to poisscdf. 

prob = 1-poisscdf(1,0.25);

❑

Example 2.3
Suppose that accidents at a certain intersection occur in a manner that
satisfies the conditions for a Poisson process with a rate of 2 per week
( ). What is the probability that at most 3 accidents will occur during the
next 2 weeks? Using Equation 2.26, we have

.

Expanding this out yields

.

As before, we can use the poisscdf function with parameter given by
.

prob = poisscdf(3,2*2);

❑

Uniform

Perhaps one of the most important distributions is the uniform distribution
for continuous random variables. One reason is that the uniform (0, 1)
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distribution is used as the basis for simulating most random variables as we
discuss in Chapter 4. 

A random variable that is uniformly distributed over the interval (a, b)
follows the probability density function given by

. (2.27)

The parameters for the uniform are the interval endpoints, a and b. The mean
and variance of a uniform random variable are given by

and

.

The cumulative distribution function for a uniform random variable is 

(2.28)

Example 2.4
In this example, we illustrate the uniform probability density function over
the interval (0, 10), along with the corresponding cumulative distribution
function. The MATLAB Statistics Toolbox functions unifpdf and unifcdf
are used to get the desired functions over the interval.

% First get the domain over which we will 
% evaluate the functions.
x = -1:.1:11;
% Now get the probability density function
% values at x.
pdf = unifpdf(x,0,10);
% Now get the cdf.
cdf = unifcdf(x,0,10);

Plots of the functions are provided in Figure 2.4, where the probability
density function is shown in the left plot and the cumulative distribution on

f x a; b,( ) 1
b a–
----------- a x b< <;=

E X[ ] a b+
2-----------=

V X( ) b a–( )2

12------------------=

F x( )

0; x a≤
x a–
b a–
-----------; a x b< <

1; x b.≥





=
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the right. These plots are constructed using the following MATLAB
commands.

% Do the plots.
subplot(1,2,1),plot(x,pdf)
title('PDF')
xlabel('X'),ylabel('f(X)')
axis([-1 11 0 0.2])
axis square
subplot(1,2,2),plot(x,cdf)
title('CDF')
xlabel('X'),ylabel('F(X)')
axis([-1 11 0 1.1])
axis square

❑

Normal

A well-known distribution in statistics and engineering is the normal
distribution. Also called the Gaussian distribution, it has a continuous
probability density function given by

FIGURE 2.4
On the left is a plot of the probability density function for the uniform (0, 10). Note that
the height of the curve is given by  The corresponding cumulative
distribution function is shown on the right.
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 (2.29)

where

.

The normal distribution is completely determined by its parameters (
and ), which are also the expected value and variance for a normal random
variable. The notation  is used to indicate that a random variable
X is normally distributed with mean  and variance . Several normal
distributions with different parameters are shown in Figure 2.5. 

Some special properties of the normal distribution are given here.

• The value of the probability density function approaches zero as x
approaches positive and negative infinity.

• The probability density function is centered at the mean , and
the maximum value of the function occurs at 

• The probability density function for the normal distribution is sym-
metric about the mean 

The special case of a standard normal random variable is one whose mean
is zero  and whose standard deviation is one . If X is normally
distributed, then 

(2.30)

is a standard normal random variable. 
Traditionally, the cumulative distribution function of a standard normal

random variable is denoted by 

. (2.31)

The cumulative distribution function for a standard normal random
variable can be calculated using the error function, denoted by erf. The
relationship between these functions is given by
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. (2.32)

The error function can be calculated in MATLAB using erf(x). The
MATLAB Statistics Toolbox has a function called normcdf(x,mu,sigma)
that will calculate the cumulative distribution function for values in x. Its use
is illustrated in the example given next.

Example 2.5
Similar to the uniform distribution, the functions normpdf and normcdf are
available in the MATLAB Statistics Toolbox for calculating the probability
density function and cumulative distribution function for the Gaussian.
There is another special function called normspec that determines the
probability that a random variable X assumes a value between two limits,
where X is normally distributed with mean  and standard deviation 
This function also plots the normal density, where the area between the
specified limits is shaded. The syntax is shown next.

% Set up the parameters for the normal distribution.
mu = 5;

FIGURE 2.5 
Examples of probability density functions for normally distributed random variables. Note
that as the variance increases, the height of the probability density function at the mean
decreases. 
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sigma = 2;
% Set up the upper and lower limits. These are in 
% the two element vector 'specs'.
specs = [2, 8];
prob = normspec(specs, mu, sigma);

The resulting plot is shown in Figure 2.6. By default, MATLAB will put the
probability between the limits in the title, which in this case is 0.87. Note that
the default title and labels can be changed easily using the title, xlabel,
and ylabel functions. You can also obtain tail probabilities by using -Inf
as the first element of specs to designate no lower limit or Inf as the second
element to indicate no upper limit.
❑

Exponential

The exponential distribution can be used to model the amount of time until
a specific event occurs or to model the time between independent events.
Some examples where an exponential distribution is appropriate are

• The time until the computer locks up,

FIGURE 2.6
This shows the output from the function normspec. Note that it shades the area between
the lower and upper limits that are specified as input arguments. The probability between
the limits is approximately 0.87.
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• The time between arrivals of telephone calls, or
• The time until a part fails. 

The exponential probability density function with parameter  is 

. (2.33)

The mean and variance of an exponential random variable are given by the
following:

and

.

The cumulative distribution function of an exponential random variable is
given by

FIGURE 2.7
Exponential probability density functions for various values of .
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(2.34)

The exponential distribution is the only continuous distribution that has
the memoryless property. This property describes the fact that the remaining
lifetime of an object (whose lifetime follows an exponential distribution) does
not depend on the amount of time it has already lived. This property is
represented by the following equality, where  and :

.

In words, this means that the probability that the object will operate for time
, given it has already operated for time s, is simply the probability that it

operates for time t.
When the exponential distribution is used to represent interarrival times,

then the parameter  is a rate with units of arrivals per time period. When
the exponential is used to model the time until a failure occurs, then  is the
failure rate. Several examples of the exponential distribution are shown in
Figure 2.7.

Example 2.6
The time between arrivals of vehicles at an intersection follows an
exponential distribution with a mean of 12 seconds. What is the probability
that the time between arrivals is 10 seconds or less? We are given the average
interarrival time, so . The required probability is obtained from
Equation 2.34 as follows

.

You can calculate this using the MATLAB Statistics Toolbox function
expcdf(x, 1/ ). Note that this MATLAB function is based on a different
definition of the exponential probability density function, which is given by

. (2.35)

In the Computational Statistics Toolbox, we include a function called
csexpoc(x, ) that calculates the exponential cumulative distribution
function using Equation 2.34.
❑
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Gamma 

The gamma probability density function with parameters  and  is
given by

(2.36)

where t is a shape parameter, and λ is the scale parameter. The gamma
function  is defined as

. (2.37)

For integer values of t, Equation 2.37 becomes

. (2.38)

Note that for t = 1, the gamma density is the same as the exponential. When
t is a positive integer, the gamma distribution can be used to model the
amount of time one has to wait until t events have occurred, if the inter-
arrival times are exponentially distributed.

The mean and variance of a gamma random variable are

and

.

The cumulative distribution function for a gamma random variable is
calculated using [Meeker and Escobar, 1998; Banks, et al., 2001] 

(2.39)

Equation 2.39 can be evaluated in MATLAB using the gammainc( x,t)
function, where the above notation is used for the arguments.
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Example 2.7
We plot the gamma probability density function for  (this should
look like the exponential), , and . You can use the
MATLAB Statistics Toolbox function gampdf(x,t,1/λ) or the function
csgammp(x,t,λ). The resulting curves are shown in Figure 2.8.

% First get the domain over which to 
% evaluate the functions.
x = 0:.1:3;
% Now get the functions values for
% different values of lambda.
y1 = gampdf(x,1,1/1);
y2 = gampdf(x,2,1/2);
y3 = gampdf(x,3,1/3);
% Plot the functions.
plot(x,y1,'r',x,y2,'g',x,y3,'b')
title('Gamma Distribution')
xlabel('X')
ylabel('f(x)')

❑

FIGURE 2.8
We show three examples of the gamma probability density function. We see that when

, we have the same probability density function as the exponential with param-
eter .
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Chi-Square 

A gamma distribution where  and , with  a positive
integer, is called a chi-square distribution (denoted as ) with  degrees of
freedom. The chi-square distribution is used to derive the distribution of the
sample variance and is important for goodness-of-fit tests in statistical
analysis [Mood, Graybill, and Boes, 1974]. 

The probability density function for a chi-square random variable with 
degrees of freedom is

. (2.40)

The mean and variance of a chi-square random variable can be obtained from
the gamma distribution. These are given by

and

.

Weibull

The Weibull distribution has many applications in engineering. In particular,
it is used in reliability analysis. It can be used to model the distribution of the
amount of time it takes for objects to fail. For the special case where 
and  the Weibull reduces to the exponential with 

The Weibull density for  and  is given by

(2.41)

and the cumulative distribution is

(2.42)
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The location parameter is denoted by  and the scale parameter is given by
α. The shape of the Weibull distribution is governed by the parameter β.

The mean and variance [Banks, et al., 2001] of a random variable from a
Weibull distribution are given by

and

.

Example 2.8 
Suppose the time to failure of piston rings for stream-driven compressors can
be modeled by the Weibull distribution with a location parameter of zero, β
= 1/3, and α = 500. We can find the mean time to failure using the expected
value of a Weibull random variable, as follows

Let’s say we want to know the probability that a piston ring will fail before
2000 hours. We can calculate this probability using

.

❑

You can use the MATLAB Statistics Toolbox function for applications
where the location parameter is zero ( ). This function is called
weibcdf (for the cumulative distribution function), and the input
arguments are (x,α−β,β). The reason for the different parameters is that
MATLAB uses an alternate definition for the Weibull probability density
function given by

. (2.43)

Comparing this with Equation 2.41, we can see that   and
. You can also use the function csweibc(x,ν, α, β) to evaluate the

cumulative distribution function for a Weibull.
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Beta

The beta distribution is very flexible because it covers a range of different
shapes depending on the values of the parameters. It can be used to model a
random variable that takes on values over a bounded interval and assumes
one of the shapes governed by the parameters. A random variable has a beta
distribution with parameters  and  if its probability density
function is given by

, (2.44)

where 

. (2.45)

The function  can be calculated in MATLAB using the beta(α,β)
function. The mean and variance of a beta random variable are

and

.

The cumulative distribution function for a beta random variable is given by
integrating the beta probability density function as follows

. (2.46)

The integral in Equation 2.46 is called the incomplete beta function. This can
be calculated in MATLAB using the function betainc(x,alpha,beta).

Example 2.9
We use the following MATLAB code to plot the beta density over the interval
(0,1). We let  and  

% First get the domain over which to evaluate
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% the density function.
x = 0.01:.01:.99;
% Now get the values for the density function.
y1 = betapdf(x,0.5,0.5);
y2 = betapdf(x,3,3);
% Plot the results.
plot(x,y1,'r',x,y2,'g')
title('Beta Distribution')
xlabel('x')
ylabel('f(x)')

The resulting curves are shown in Figure 2.9. You can use the MATLAB
Statistics Toolbox function betapdf(x,α,β), as we did in the example, or
the function csbetap(x,α,β). 
❑

Student’s t Distribution

An important distribution often used in inferential statistics is the t
distribution. This distribution was first developed by William Gossett in
1908. He published his results under the pseudonym “Student,” hence the
distribution is sometimes known as the Student’s t distribution. 

FIGURE 2.9. 
Beta probability density functions for various parameters. 
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The t distribution comes from the ratio of a standard normal random
variable Z to the square root of an independently distributed chi-square
random variable U divided by its degrees of freedom 

. (2.47)

It can be shown that the density of the random variable in Equation 2.47 is
given by 

. (2.48)

The probability density function for the t distribution is symmetric and bell-
shaped, and it is centered at zero. 

The mean and variance for the t random variable are given by

,

and

.

Since it is bell-shaped, the t distribution looks somewhat like the normal
distribution. However, it has heavier tails and a larger spread. As the degrees
of freedom gets large, the t distribution approaches a standard normal
distribution. 

Example 2.10
The MATLAB Statistics Toolbox has a function called tpdf that creates a
probability density function for the Student’s t distribution with  degrees of
freedom. The following steps will evaluate the density function for 

% First we get the domain for the function.
x = -6:.01:6;
% Now get the values for the density function.
y = tpdf(x,5);
% Plot the results.
plot(x,y)
xlabel('x')
ylabel('f(x)')
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The resulting curve is shown in Figure 2.10. Compare this with the
probability density function for the standard normal shown in Figure 2.5,
and note the fatter tails with the t distribution. 
❑

Multivariate Normal

So far, we have discussed several univariate distributions for discrete and
continuous random variables. In this section, we describe the multivariate
normal distribution for continuous variables. This important distribution is
used throughout the rest of the text. Some examples of where we use it are in
exploratory data analysis, probability density estimation, and statistical
pattern recognition.

The probability density function for a general multivariate normal density
for d dimensions is given by

, (2.49)

FIGURE 2.10
This illustrates the probability density function for a t random variable with 5 degrees of
freedom.
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where x is a d-component column vector,  is the  column vector of
means, and  is the  covariance matrix. The superscript T represents
the transpose of an array, and the notation  denotes the determinant of a
matrix.

The mean and covariance are calculated using the following formulas:

(2.50)

and

, (2.51)

where the expected value of an array is given by the expected values of its
components. Thus, if we let  represent the i-th component of x and  the
i-th component of , then the elements of Equation 2.50 can be written as

.

If  represents the ij-th element of  then the elements of the covariance
matrix (Equation 2.51) are given by

.

The covariance matrix is symmetric  positive definite (all
eigenvalues of  are greater than zero) for most applications of interest to
statisticians and engineers.

We illustrate some properties of the multivariate normal by looking at the
bivariate ( ) case. The probability density function for a bivariate
normal is represented by a bell-shaped surface. The center of the surface is
determined by the mean , and the shape of the surface is determined by the
covariance . If the covariance matrix is diagonal (all of the off-diagonal
elements are zero), and the diagonal elements are equal, then the shape is
circular. If the diagonal elements are not equal, then we get an ellipse with
the major axis vertical or horizontal. If the covariance matrix is not diagonal,
then the shape is elliptical with the axes at an angle. Some of these
possibilities are illustrated in the next example.

Example 2.11
We first provide the following MATLAB function to calculate the
multivariate normal probability density function and illustrate its use in the
bivariate case. The function is called csevalnorm, and it takes input
arguments x,mu,cov_mat. The input argument x is a matrix containing the
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points in the domain where the function is to be evaluated, mu is a d-
dimensional row vector, and cov_mat is the  covariance matrix. 

function prob = csevalnorm(x,mu,cov_mat);
[n,d] = size(x);
% center the data points
x = x-ones(n,1)*mu; 
a = (2*pi)^(d/2)*sqrt(det(cov_mat));
arg = diag(x*inv(cov_mat)*x');
prob = exp((-.5)*arg);
prob = prob/a;

We now call this function for a bivariate normal centered at zero and
covariance matrix equal to the identity matrix. The density surface for this
case is shown in Figure 2.11.

% Get the mean and covariance.
mu = zeros(1,2);
cov_mat = eye(2);% Identity matrix
% Get the domain.
% Should range (-4,4) in both directions.
[x,y] = meshgrid(-4:.2:4,-4:.2:4);
% Reshape into the proper format for the function.
X = [x(:),y(:)];
Z = csevalnorm(X,mu,cov_mat);
% Now reshape the matrix for plotting.
z = reshape(Z,size(x));
subplot(1,2,1) % plot the surface
surf(x,y,z),axis square, axis tight

FIGURE 2.11
This figure shows a standard bivariate normal probability density function that is centered
at the origin. The covariance matrix is given by the identity matrix. Notice that the shape
of the surface looks circular. The plot on the right is for a viewpoint looking down on the
surface.
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title('BIVARIATE STANDARD NORMAL')

Next, we plot the surface for a bivariate normal centered at the origin with
non-zero off-diagonal elements in the covariance matrix. Note the elliptical
shape of the surface shown in Figure 2.12.

subplot(1,2,2) % look down on the surface
pcolor(x,y,z),axis square
title('BIVARIATE STANDARD NORMAL')
% Now do the same thing for a covariance matrix
% with non-zero off-diagonal elements.
cov_mat = [1 0.7 ; 0.7 1];
Z = csevalnorm(X,mu,cov_mat);
z = reshape(Z,size(x));
subplot(1,2,1)
surf(x,y,z),axis square, axis tight
title('BIVARIATE NORMAL')
subplot(1,2,2)
pcolor(x,y,z),axis square
title('BIVARIATE NORMAL')

The Statistics Toolbox has a function called mvnpdf that will evaluate the
multivariate normal density. 
❑

The probability that a point  will assume a value in a region
R can be found by integrating the bivariate probability density function over
the region. Any plane that cuts the surface parallel to the  plane
intersects in an elliptic (or circular) curve, yielding a curve of constant

FIGURE 2.12
This shows a bivariate normal density where the covariance matrix has non-zero off-
diagonal elements. Note that the surface has an elliptical shape. The plot on the right is
for a viewpoint looking down on the surface.
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density. Any plane perpendicular to the  plane cuts the surface in a
normal curve. This property indicates that in each dimension, the
multivariate normal is a univariate normal distribution. 

Multivariate t Distribution

The univariate Student’s t distribution can also be generalized to the
multivariate case. The multivariate t distribution is for d-dimensional
random vectors where each variable has a univariate t distribution. Not
surprisingly, it is used in applications where the distributions of the variables
have fat tails, thus providing an alternative to the multivariate normal when
working with real-world data.

A d-dimensional random vector 

has the t distribution if its joint probability density function is given by

(2.52)

The multivariate t distribution has three parameters: the correlation matrix
R, the degrees of freedom  and the d-dimensional mean . If the mean is
zero ( ), then the distribution is said to be central. Similar to the
univariate case, when the degrees of freedom gets large, then the joint
probability density function approaches the d-variate normal.

The correlation matrix is related to the covariance matrix via the following
relationship:

,

where  is the ij-th element of R. Note that the diagonal elements of R are
equal to one.

Example 2.12
The MATLAB Statistics Toolbox has several functions for the central
multivariate t distribution. These include the mvtpdf (evaluates the
multivariate t probability density function) and the mvtcdf (computes the
cumulative probabilities). These functions use the d-variate t distribution
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