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Introduction

The physiological behaviors of cells (growth and division, differentiation, movement, 
death, etc.) are controlled by complex networks of interacting genes and proteins, and 
a fundamental goal of computational cell biology is to develop dynamical models of 
these regulatory networks that are realistic, accurate and predictive. Historically, these 
models have divided along two basic lines: deterministic or stochastic, and continu-
ous or discrete, with scattered efforts to develop hybrid approaches that bridge these 
divides. 

In chapter 1 of this volume, using the cell cycle control system in eukaryotes as an 
example, Singhania and colleagues propose a hybrid approach that combines a con-
tinuous representation of slowly changing protein concentrations with a discrete repre-
sentation of components that switch rapidly between “on” and “off” states, combining 
the deterministic causality of network interactions with the stochastic uncertainty of 
random events. The hybrid approach can be easily tailored to the available knowledge 
of control systems, and it provides both qualitative and quantitative results that can be 
compared to experimental data to test the accuracy and predictive power of the model.

In chapter 2, Head, Briels, and Gompper present the results of numerical simula-
tions of a discrete fi lament-motor protein model confi ned to a pressurized cylindri-
cal box. Stable spindles, nematic confi gurations, asters, and high-density semi-asters 
spontaneously emerge. State diagrams are presented delineating each stationary state 
as the pressure, motor speed and motor density are varied. The authors further high-
light a parameter regime where vortices form exhibiting collective rotation of all fi la-
ments, but have a fi nite lifetime before contracting to a semi-aster. They demonstrate 
that discrete fi lament-motor protein models provide new insights into the stationary 
and dynamical behavior of active gels and subcellular structures, because many phe-
nomena occur on the length-scale of single fi laments. 

In yet another scenario, the assembly of the Drosophila embryo mitotic spindle 
during prophase depends upon a balance of outward forces generated by cortical dy-
nein and inward forces generated by kinesin-14 and nuclear elasticity. Myosin II is 
known to contribute to the dynamics of the cell cortex but how this infl uences the 
prophase force-balance is unclear. Sommi and her colleagues investigate this ques-
tion in chapter 3; they did so by injecting the myosin II inhibitor, Y27632, into early 
Drosophila embryos. They observed a signifi cant increase in both the area of the dense 
cortical actin caps and in the spacing of the spindle poles. Their results suggest that 
two complementary outward forces are exerted on the prophase spindle by the over-
lying cortex. Specifi cally, dynein localized on the mechanically fi rm actin caps and 
the actomyosin-driven contraction of the deformable soft patches of the actin cortex, 
cooperate to pull astral microtubules outward. Thus, myosin II controls the size and 
dynamic properties of the actin-based cortex to infl uence the spacing of the poles of 
the underlying spindle during prophase.
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Reliable chromosome segregation is crucial to all dividing cells. In some bacteria, 
segregation has been found to occur in a rather counterintuitive way: the chromosome 
attaches to a fi lament bundle and erodes it by causing depolymerization of the fi la-
ments. Moreover, unlike eukaryotic cells, bacteria do not use molecular motors and/or 
macromolecular tethers to position their chromosomes. This raises the general ques-
tion of how depolymerizing fi laments alone can continuously and robustly pull cargo 
as the fi laments themselves are falling apart. In chapter 4, Banigan and his colleagues 
introduce the fi rst quantitative physical model for depolymerization-driven translo-
cation in a many-fi lament system. Their simulations of this model suggest a novel 
underlying mechanism for robust translocation, namely self-diffusiophoresis, motion 
of an object in a self-generated concentration gradient in a viscous environment. In 
this case, the cargo generates and sustains a concentration gradient of fi laments by 
inducing them to depolymerize. The authors demonstrate that their model agrees well 
with existing experimental observations such as segregation failure, fi lament-length-
dependent translocation velocity, and chromosomal compaction. In addition, they 
make several predictions–including predictions for the specifi c modes by which the 
chromosome binds to the fi lament structure and triggers its disassembly–that can be 
tested experimentally.

Next, in chapter 5, Zumdieck and his coauthors present a physical analysis of the 
dynamics and mechanics of contractile actin rings. In particular, they analyze the dy-
namics of ring contraction during cytokinesis in the Caenorhabditis elegans embryo. 
They present a general analysis of force balances and material exchange and estimate 
the relevant parameter values. The authors show that on a microscopic level contrac-
tile stresses can result from both the action of motor proteins, which cross-link fi la-
ments, and from the polymerization and depolymerization of fi laments in the presence 
of end-tracking cross-linkers.

In chapter 6 we turn our attention to cells that exhibit propagating membrane waves 
which involve the actin cytoskeleton. One type of such membranal waves are Circular 
Dorsal Ruffl es (CDR), which are related to endocytosis and receptor internalization. 
Experimentally, CDRs have been associated with membrane bound activators of actin 
polymerization of concave shape. Peleg and colleagues present experimental evidence 
for the localization of convex membrane proteins in these structures, and their insensi-
tivity to inhibition of myosin II contractility in immortalized mouse embryo fi broblasts 
cell cultures. These observations lead the authors to propose a theoretical model that 
explains the formation of these waves due to the interplay between complexes that 
contain activators of actin polymerization and membrane-bound curved proteins of 
both types of curvature (concave and convex). Their model predicts that the activity 
of both types of curved proteins is essential for sustaining propagating waves, which 
are abolished when one type of curved activator is removed. Within this model waves 
are initiated when the level of actin polymerization induced by the curved activators 
is higher than some threshold value, which allows the cell to control CDR formation. 
The authors demonstrate that the model can explain many features of CDRs, and give 
several testable predictions. This chapter demonstrates the importance of curved mem-
brane proteins in organizing the actin cytoskeleton and cell shape.
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Chapter 7 deals with actin waves that are spontaneously generated on the planar, 
substrate-attached surface of Dictyostelium cells. Gerisch reveals that the waves have 
the following characteristics: 

1. They are circular structures of varying shape, capable of changing the direc-
tion of propagation.

2. The waves propagate by treadmilling with a recovery of actin incorporation 
after photobleaching of less than 10 seconds.

3. The waves are associated with actin-binding proteins in an ordered 3-dimen-
sional organization: with myosin-IB at the front and close to the membrane, 
the Arp2/3 complex throughout the wave, and coronin at the cytoplasmic face 
and back of the wave. Coronin is a marker of disassembling actin structures.

4. The waves separate two areas of the cell cortex that differ in actin structure 
and phosphoinositide composition of the membrane. The waves arise at the 
border of membrane areas rich in phosphatidylinositol (3,4,5) trisphosphate 
(PIP3). The inhibition of PIP3 synthesis reversibly inhibits wave formation. 

5. The actin wave and PIP3 patterns resemble 2-dimensional projections of 
phagocytic cups, suggesting that they are involved in the scanning of surfaces 
for particles to be taken up.

Lengths and shapes are approached in different ways in different fi elds: they serve 
as a read-out for classifying genes or proteins in cell biology, whereas they result from 
scaling arguments in condensed matter physics. In chapter 8, Riveline proposes a com-
bined approach with examples illustrated for the fi ssion yeast Schizosaccharomyces 
pombe.

Cells have highly varied and dynamic shapes, which are determined by internal 
forces generated by the cytoskeleton. These forces include protrusive forces due to the 
formation of new internal fi bers and forces produced due to attachment of the cell to an 
external substrate. A longstanding challenge is to explain how the myriad components 
of the cytoskeleton self-organize to form the observed shapes of cells. In chapter 9, 
Kabaso and coauthors present a theoretical study of the shapes of cells that are driven 
only by protrusive forces of two types; one is the force due to polymerization of actin 
fi laments, which acts as an internal pressure on the membrane, and the second is the 
force due to adhesion between the membrane and external substrate. The key property 
is that both forces are localized on the cell membrane by protein complexes that have 
convex spontaneous curvature. This leads to a positive feedback that destabilizes the 
uniform cell shape and induces the spontaneous formation of patterns. The authors 
compare the resulting patterns to observed cellular shapes and fi nd good agreement, 
which allows them to explain some of the puzzling dependencies of cell shapes on the 
properties of the surrounding matrix.

Chapter 10 deals with amoeboid cells, which crawl using pseudopods, convex ex-
tensions of the cell surface. In many laboratory experiments, cells move on a smooth 
substrate, but in the wild cells may experience obstacles of other cells or dead mate-
rial, or may even move in liquid. To understand how cells cope with heterogeneous 
environments, Van Haastert has investigated the pseudopod life cycle of wild type 
and mutant cells moving on a substrate and when suspended in liquid. He shows that 



the same pseudopod cycle can provide three types of movement that he addresses as 
walking, gliding and swimming. In walking, the extending pseudopod will adhere 
fi rmly to the substrate, which allows cells to generate forces to bypass obstacles. Mu-
tant cells with compromised adhesion can move much faster than wild type cells on a 
smooth substrate (gliding), but cannot move effectively against obstacles that provide 
resistance. In a liquid, when swimming, the extending pseudopods convert to side-
bumps that move rapidly to the rear of the cells. Calculations suggest that these bumps 
provide suffi cient drag force to mediate the observed forward swimming of the cell.

During development, the formation of biological networks (such as organs and 
neuronal networks) is controlled by multicellular transportation phenomena based on 
cell migration. In multi-cellular systems, cellular locomotion is restricted by physical 
interactions with other cells in a crowded space, similar to passengers pushing others 
out of their way on a packed train. The motion of individual cells is intrinsically sto-
chastic and may be viewed as a type of random walk. However, this walk takes place 
in a noisy environment because the cell interacts with its randomly moving neighbors. 
Despite this randomness and complexity, development is highly orchestrated and pre-
cisely regulated, following genetic (and even epigenetic) blueprints. Although indi-
vidual cell migration has long been studied, the manner in which stochasticity affects 
multi-cellular transportation within the precisely controlled process of development 
remains largely unknown. To explore the general principles underlying multicellular 
migration, in chapter 11, the authors focus on the migration of neural crest cells, which 
migrate collectively and form streams. Yamoa, Naoki, and Ishii introduce a mechani-
cal model of multi-cellular migration. Simulations based on the model show that the 
migration mode depends on the relative strengths of the noise from migratory and 
non-migratory cells. Strong noise from migratory cells and weak noise from surround-
ing cells causes “collective migration,” whereas strong noise from non-migratory cells 
causes “dispersive migration.” Moreover, the authors’ theoretical analyses reveal that 
migratory cells attract each other over long distances, even without direct mechanical 
contacts. This effective interaction depends on the stochasticity of the migratory and 
non-migratory cells. On the basis of these fi ndings, the authors propose that stochastic 
behavior at the single-cell level works effectively and precisely to achieve collective 
migration in multi-cellular systems.

The actions of cell adhesion molecules, in particular, cadherins during embryonic 
development and morphogenesis more generally, regulate many aspects of cellular 
interactions, regulation and signaling. Often, a gradient of cadherin expression levels 
drives collective and relative cell motions generating macroscopic cell sorting. Com-
puter simulations of cell sorting have focused on the interactions of cells with only a 
few discrete adhesion levels between cells, ignoring biologically observed continuous 
variations in expression levels and possible nonlinearities in molecular binding. In the 
fi nal chapter, the authors present three models relating the surface density of cadherins 
to the net intercellular adhesion and interfacial tension for both discrete and continu-
ous levels of cadherin expression. Zhang and colleagues then use then the Glazier-
Graner-Hogeweg (GGH) model to investigate how variations in the distribution of the 
number of cadherins per cell and in the choice of binding model affect cell sorting. 
They fi nd that an aggregate with a continuous variation in the level of a single type 
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of cadherin molecule sorts more slowly than one with two levels. The rate of sorting 
increases strongly with the interfacial tension, which depends both on the maximum 
difference in number of cadherins per cell and on the binding model. The authors’ ap-
proach helps connect signaling at the molecular level to tissue-level morphogenesis, 
thus adding to our understanding of how biophysics relates to yet another realm of 
investigation.

— Pavel Kraikivski, PhD
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1.1 INTRODUCTION

The timing of DNA synthesis, mitosis, and cell division is regulated by a complex 
network of biochemical reactions that control the activities of a family of cyclin-de-
pendent kinases. The temporal dynamics of this reaction network is typically modeled 
by nonlinear differential equations describing the rates of the component reactions. 
This approach provides exquisite details about molecular regulatory processes but is 
hampered by the need to estimate realistic values for the many kinetic constants that 
determine the reaction rates. It is difficult to estimate these kinetic constants from 
available experimental data. To avoid this problem, modelers often resort to ‘quali-
tative’ modeling strategies, such as Boolean switching networks, but these models 
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describe only the coarsest features of cell cycle regulation. In this chapter it describes 
a hybrid approach that combines the best features of continuous differential equations 
and discrete Boolean networks. Cyclin abundances are tracked by piecewise linear dif-
ferential equations for cyclin synthesis and degradation. The cyclin synthesis is regu-
lated by transcription factors whose activities are represented by discrete variables 
(0 or 1) and likewise for the activities of the ubiquitin-ligating enzyme complexes 
that govern cyclin degradation. The discrete variables change according to a predeter-
mined sequence, with the times between transitions determined in part by cyclin accu-
mulation and degradation and as well by exponentially distributed random variables. 
The model is evaluated in terms of flow cytometry measurements of cyclin proteins in 
asynchronous populations of human cell lines. The few kinetic constants in the model 
are easily estimated from the experimental data. Using this hybrid approach, modelers 
can quickly create quantitatively accurate, computational models of protein regulatory 
networks in cells.

The physiological behaviors of cells (growth and division, differentiation, move-
ment, death, etc.) are controlled by complex networks of interacting genes and pro-
teins, and a fundamental goal of computational cell biology is to develop dynamical 
models of these regulatory networks that are realistic, accurate and predictive. Histori-
cally, these models have divided along two basic lines: deterministic or stochastic, and 
continuous or discrete; with scattered efforts to develop hybrid approaches that bridge 
these divides. Using the cell cycle control system in eukaryotes as an example, we 
propose a hybrid approach that combines a continuous representation of slowly chang-
ing protein concentrations with a discrete representation of components that switch 
rapidly between ‘on’ and ‘off’ states, and that combines the deterministic causality 
of network interactions with the stochastic uncertainty of random events. The hybrid 
approach can be easily tailored to the available knowledge of control systems, and it 
provides both qualitative and quantitative results that can be compared to experimental 
data to test the accuracy and predictive power of the model.

The cell division cycle is the fundamental physiological process by which cells 
grow, replicate, and divide into two daughter cells that receive all the information 
(genes) and machinery (proteins, organelles, etc.) necessary to repeat the process un-
der suitable conditions [1]. This cycle of growth and division underlies all biological 
expansion, development, and reproduction. It is highly regulated to promote genetic 
fi delity and meet the demands of an organism for new cells. Altered systems of cell 
cycle control are root causes of many severe health problems, such as cancer and birth 
defects.

In eukaryotic cells, the processes of DNA replication and nuclear/cell division oc-
cur sequentially in distinct phases (S and M) separated by two gaps (G1 and G2). The 
mitosis (M phase) is further subdivided into stagesprophase (chromatin condensation, 
spindle formation, and nuclear envelope breakdown), prometaphase (chromosome at-
tachment and congression), metaphase (chromosome residence at the mid-plane of the 
spindle), anaphase (sister chromatid separation and movement to opposite poles of the 
spindle), telophase (re-formation of the nuclear envelopes), and cytokinesis (cell divi-
sion). The G1 phase is subdivided into uncommitted and committed sub-phases, often 
referred to as G1-pm (postmitotic interval) and G1-ps (pre S phase interval), separated 
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by the ‘restriction point’ [2]. In this chapter, it is refered as the sub-phases G1-pm and 
G1-ps as ‘G1a’ and ‘G1b’ respectively.

The progression through the correct sequence of cell-cycle events is governed by 
a set of cyclin-dependent kinases (Cdk’s), whose activities rise and fall during the 
cell cycle as determined by a complex molecular regulatory network. For example, 
cyclin synthesis and degradation are controlled, respectively, by transcription factors 
and ubiquitin-ligating complexes whose activities are, in turn, regulated by cyclin/Cdk 
complexes.

Current models of the Cdk control system can be classified as either continuous or 
discrete. Continuous models track the changes of protein concentrations, Cj(t) for j 
= 1, 2, …, N, by solving a set of nonlinear ordinary differential equations (ODEs) of 
the form:

 ( )1 2
1

, , ...,
R

jr r N
r

dC j v C C C
dt

ρ
=

=∑  (1)

where ρr is the rate of the rth reaction and νir is the stoichiometric coefficient of species 
i in reaction r. To each rate term is associated one or more kinetic constants that deter-
mine exactly how fast the reaction proceeds under specific conditions. These kinetic 
constants must be estimated from experimental data, and often there is insufficient 
kinetic data to determine their values. Nonetheless, continuous models, based on rate 
equations, have been used successfully to account for the properties of cell prolifera-
tion in a variety of cell typesyeast [3-5], fruit fly [6], frog egg [7-8], and cultured mam-
malian cells [9-11]. They have also proved successful in predicting novel cell-cycle 
characteristics [12-13].

Discrete models, on the contrary, represent the state of each regulatory protein as 
Bj(τ ) = 0 or 1 (inactive or active), and the state variables update from one discrete time 
step to the next (τ = 0, 1, 2, … = ticks of a metronome) according to the rule:

 ( ) ( ) ( ) ( )( )1 21 , , ...,j j nB B B Bτ τ τ τ+ = Ψ  (2)

where Ψj(…) is a Boolean function (i.e., it equates to either 0 or 1) determined by the 
topology of the reaction network. For Boolean networks (BNs) there is no notion of 
reaction ‘rate’ and, hence, no need to estimate kinetic constants. The BN models of the 
Cdk regulatory network have been proposed for yeast cells [14,15] and for mammalian 
cells [16]. They have been used to study notions of ‘robustness’ of the cell cycle, but 
they have not been compared in detail to quantitative properties of cell cycle progres-
sion, and they have not been used as predictive tools.

In this chapter it is proposed to combine the strengths of both continuous and dis-
crete modeling, while avoiding the weaknesses of each. The ‘hybrid’ model is inspired 
by the work of Li et al. [14], who proposed a BN for cell cycle controls. Their model 
employs 11 state variables that move around in a space of 211 = 2048 possible states. 
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Quite remarkably they found that 1764 of these states converge quickly onto a ‘super 
highway’ of 13 consecutive states that represent a typical cell cycle trajectory (G1b—
S—G2—M—G1a). The results of Li et al. indicate that the cell cycle control network 
is ‘robustly designed’ in the sense that even quite large perturbations away from the 
usual sequence of cell cycle states are quickly restored to the super highway. In the 
model of Li et al., G1a is a stable steady state; they do not address the signals that drive 
cells past the restriction point (the G1a-to-G1b transition).

Despite their intuitive appeal, Boolean models have severe limitations. First of 
all, metronomic time in BN’s is unrelated to clock time in the laboratory, so Boolean 
models cannot be compared to even the most basic observations of time spent by cells 
in the four phases of the division cycle [1]. Also, these models do not incorporate cell 
size, so they cannot address the evident importance of cell growth in driving events of 
the cell cycle [17-19]. Lastly, cyclins are treated as either absent or present (0 or 1), so 
Boolean models cannot simulate the continuous accumulation and removal of cyclin 
molecules at different stages of the cell cycle [20].

The goal is to retain the elegance of the Boolean representation of the switch-
ing network, while introducing continuous variables for cell size, cell age, and cyclin 
composition, in order to create a model that can be compared in quantitative detail to 
experimental measurements with a minimal number of kinetic parameters that must 
be estimated from the data. To this end, to keep the cyclin regulators as Boolean vari-
ables but model the cyclins themselves as continuous concentrations that increase 
and decrease due to synthesis and degradation. Next, replace the Boolean model’s 
metronome with real clock time to account for realistic rates of cyclin synthesis and 
degradation, and for stochastic variability in the time spent in each Boolean state of 
the model. Finally, it introduced a cell size variable, M(t), which affects progression 
through late G1 phase. The M(t) increases exponentially with time as the cell grows 
and decreases by a factor of ~2 when the cell divides. (The assumption of exponential 
growth is not crucial; similar results are obtained assuming linear growth between cell 
birth and division.)

Since the pioneering work of Leon Glass [21,22], hybrid (discrete-continuous) 
models have been employed by systems biologists in a variety of forms and con-
texts [23-25]. Engineers have been modeling hybrid control systems for many years 
[26-28], and they have created powerful simulation packages for such systems [29]: 
SIMULINK [28], SHIFT [30-31] and CHARON [32], to name a few. It has not used 
these simulation packages because model can be solved analytically.

1.2 METHODS

1.2.1 Simulations
It simulate a flow cytometry experiment with hybrid model in two steps.

Step 1: Creating complete ‘life histories’ for thousands of cells. At the start of the 
simulation, we specify initial conditions at the beginning of the cycle (State 1) for a 
progenitor cell. It used the following initial values of the state variables: [CycA] = 
[CycB] = [CycE] = 1 and M = 3. The strategy is to follow this cell through its cycle 
until it divides into two daughters. Then choose one of the two daughters at random 
and repeat the process, continuing for 32,500 iterations. The fi rst 500 cells discard, 
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and keep a sample of 32,000 cells that have completed a replication-division cycle 
according to our model. In the second step, create a simulated sample of 32,000 cells 
chosen at random phases of the cell cycle, to represent the cells that were assayed by 
the fl ow cytometer.

Let us consider cell i (1<i<32500) at the time of its birth, ti0. By defi nition, this cell 
is in State 1, and assume that know its birth mass, M(ti0), and its starting concentrations 
of cyclins A, B and E. Denote the starting concentrations as [CycA(ti0)], [CycB(ti0)], 
[CycE(ti0)]. In the ensuing discussion, unless it is necessary for clarity, drop the i sub-
script, it being understood that are talking about a representative cell in the population. 
It will follow this cell until it divides to produce a daughter cell with known concentra-
tions of cyclins.

According to Table 1, a cell in State 1 has no special conditions to satisfy before 
moving to State 2. Hence the residence time in State 1 is a random number T

1T  chosen 
from an exponential distribution with mean λ1 = 2 h. The cell enters State 2 at t1 = t0+

T
1T . 

Assuming exponential growth, its size at this time is M(t1) = M(t0) exp{γ(t1−t0)} = M(t0) 
exp{γA1}, where γ is the specifi c growth rate of the culture and A1 = t1−t0 is the age of 
the cell when it exits State 1. To illustrate how cyclin concentrations are computed at 
t = t1, let us consider cyclin A as an example. During the interval t0<t<t1, [CycA] satis-
fi es a linear ODE with effective rate constants ksa1 = k′sa = 5 and kda1 = k′da+k″′da = 1.4, 
because BTFE = BTFB = BCdc20A = 0 and BCdh1 = 1 for a cell in State 1. It can compute the 
concentration of cyclin A at any time during this interval from

 [ ] [ ] ( )1 01 1
0 0 1

1 1

( ) ( ) ,dak t tsa sa

da da

k k
CycA t CycA t e t t t

k k
− −

⎛ ⎞⎟⎜ ⎟= + − ≤ ≤⎜ ⎟⎜ ⎟⎜⎝ ⎠
 (3)

Setting t = t1 in this equation gives the number we seek. In this fashion, to start tabulat-
ing the following information for each simulated cell:

Time t0 t1 t2 …

Enter State 1 2 3 …

Age 0 A1=t1–t0 A2=t2–t0

Size M(t0) M(t1) M(t2) …

Cyclin A [CycA(t0)] [CycA(t1)] [CycA(t2)] …

Cyclin B [CycB(t0)] [CycB(t1)] [CycB(t2)] …

Cyclin E [CycE(t0)] [CycE(t1)] [CycE(t2)] … 

Notice that, at t = t1 when the cell enters State 2, the transcription factor (TFE) for 
cyclins E and A turns on, and these cyclins start to accumulate. The cell cannot leave 
State 2 until cyclin E accumulates to a sufficiently high level: [CycE](t)·M(t) = θE, ac-
cording to Table 1. When this condition is satisfied, the cell leaves State 2 and enters 
State 3. The size dependence on this transition is a way to couple cell growth to the 
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DNA replication-division cycle. According to the parameter settings in Table 1, there 
is no stochastic component to the transition out of State 2.

To continue in this fashion until the cell leaves State 9 and returns to State 1, 
when cyclin B is degraded at the end of mitosis. This is the signal for cell division. 
The age of the cell at division is A9 =t9−t0, and the mass of the cell at division is M(t9) 
= M(t0) exp(γ·A9). The mass of the daughter cell at the beginning of her life history 
is Mdaughter(t0) = δ·Mmother(t9), where δ is a random number sampled from a normal dis-
tribution of mean 0.5 and standard deviation 0.0167 to allow for asymmetries of cell 
division.

Notice that simulating the life history of a single cell only requires generating 
about a dozen random numbers and performing a handful of algebraic calculations. 
At no point do we need to solve differential equations numerically. Hence, one can 
quickly calculate the life histories of tens of thousands of cells.

Step 2: Finding the DNA and cyclin levels of each cell in an asynchronous sample. 
In the fl ow cytometry experiments of Yan et al. [42], a random sample of cells is taken 
from an asynchronous population, the cells are fi xed and stained, and then run one-
by-one through laser beams where fl uorescence measurements are made. So each data 
point consists of measurements of light scatter (related to cell size) and fl uorescence 
proportional to DNA and cyclin content for a single cell taken at some random point in 
the cell cycle. To simulate this experiment we must assign to each of 32,000 simulated 
cells a number φi selected randomly from the interval [0,1], where φi refers to the frac-
tion of the cell cycle completed by cell i when it was fi xed and stained for measure-
ment. Because, each mother cell divides into two daughter cells, the density of cells 
at birth, φ = 0, is twice the density of cells at division, φ = 1. The ‘ideal’ probability 
density for an asynchronous population of cells expanding exponentially in number is

 ( ) ( ) 1ln 2 2f ϕϕ −= ×  (4)

According to the ‘transformation method’ [47, Chapter 7.2], to compute φ as

 2
2log

2 r
ϕ

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠−
 (5)

where r is a random number chosen from a uniform distribution on [0,1]. In this way, 
to generate 32,000 fractions, φi.

If φi is the cell-cycle location of the ith cell when it is selected for the fl ow cytometry 
measurements, then its age at the time of selection is ai = φi·Ai9, where Ai9 is the age of 
the ith cell at division. Given a value for ai, we then fi nd the state n ( = 1, 2, … or 9) of 
the ith cell at the time of its selection:

 , 1 0 ,i n i i i nt t a t− ≤ + <  (6)

where ti,n (as defined above) is the time at which the ith cell left state n to enter state n+1.
Once to know the state n of the cell, one can compute the concentration of each 

cyclin in the cell at its exact age ai by analogy to Eq. (3):
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  (7)

where ksa,n and kda,n are the synthesis and degradation rate constants for cyclin A in state 
n. This is a straightforward calculation because in Step 1 stored the values of tn and 
[CycA(tn)] for every state of each cell. It can also calculate the mass of cell i at the 
time of its selection:

  (8)

where M(ti0) is the mass at birth of cell i and γ is the specific growth rate of the cul-
ture. Because the flow cytometer measures the total amount of fluorescence propor-
tional to all cyclin A molecules in theith cell, we take as our measurable the product of 
[CycA(ai)] times M(ai).

Lastly, to determine the DNA content of cell i at age ai according to:
1. DNA = 1 for ti0≤ti0+ai<ti3 = entry of ith cell into S phase
2. DNA = 1+(ti0+ai−ti3)/(ti4−ti3) for ti3≤ti0+ai<ti4 = exit of ith cell from S phase
3. DNA = 2 for ti4≤ti0+ai<ti9

Now, one simulated values for the measurable quantities of each cell at the time 
point in the cell cycle when it was selected for analysis. Before, plotting these num-
bers, one should take into account experimental errors, such as probe quality, fi xation, 
staining and measurement. To do so by multiplying each measurable quantity (DNA 
content and cyclin levels) by a random number chosen from a Gaussian distribution 
with mean 1 and standard deviation = 0.03 for DNA measurements and 0.15 for cyclin 
measurements. These choices give scatter to the simulated data that is comparable to 
the scatter in the experimental data.

1.2.2 Cells, Culture, and Fixation
Culture and fixation of RKO cells were described [42]. The immortalized HUVEC 
cells [48] at passage 93 were seeded at 2.5×103 cells/cm2 in 10 ml EGM-2 media with 
2% fetal bovine serum (Lonza, Basel). Duplicate plates were prepared for each time 
point at days 1, 2, 3, 4, 5, 6, 7, 10, and 15. The cells were fed every other day by re-
placing half the volume of used media. At the indicated times, cells were trypsinized, 
washed, and cell counts performed with a Guava Personal Cytometer (Millipore, Bil-
lerica, MA). Fixation was as previously described [49]; briefly, cells were treated with 
0.125% formaldehyde (Polysciences, Warrington, PA) for 10 min at 37°C, washed, 
then dehydrated with 90% Methanol. Cells were fixed in aliquots of 1×106 cells (days 
1–3) or 2×106 (days 4–15). Fixed cell samples were stored at −20°C until staining for 
cytometry.

1.2.3 Immunofluorescence Staining, Antibodies, Flow Cytometry
Staining and cytometry for RKO cells were described [42]. Briefly, cells were trypsin-
ized, fixed with 90% MeOH, washed with phosphate buffered saline, then stained with 
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monoclonal antibodies reactive with cyclin B1, cyclin A, phospho-S10-histone H3, 
and with 4′,6-diamidino-2-phenylindole (DAPI). For a detailed, updated version of 
antibodies, staining, and cytometry for cyclins A2 and B1, phospho-S10-histone H3, 
and DNA content, see Jacobberger et al. (38).

1.2.4 Data Pre-Processing
Data pre-processing was performed with WinList (Verity Software House, Topsham, 
ME). Doublet discrimination (peak versus area DAPI plot) was used to limit the analy-
sis to singlet cells; non-specific binding was used to remove background fluorescence 
from the total fluorescence related to cyclin A2 and B1 staining. The phycoerythrin 
channel (cyclin A2) was compensated for spectral overlap from FITC or Alexa Flu-
or 488. For simplification, very large 2C G1 HUVEC cells and any cells cycling at 
4C→8C were removed from the analysis. These were present at low frequency. 

1.3 DISCUSSION

It had constructed a simple, effective model of the cyclin-dependent kinase control 
system in mammalian cells and used the model to simulate faithfully the accumulation 
and degradation of cyclin proteins during asynchronous proliferation of RKO (colon 
carcinoma) cells. The model is inspired by the work of Li et al. [14], who proposed a 
robust Boolean model of cell cycle regulation in budding yeast. The goal was to retain 
the elegance of the Boolean representation of the switching network, while introducing 
continuous variables for cell size, cell age, and cyclin composition, in order to create 
a model that could be compared in quantitative detail to experimental measurements.

It was shown that this model can accurately simulate fl ow-cytometric measure-
ments of cyclin abundances in asynchronous populations of growing-dividing mam-
malian cells. The parameters in the model that allow for a quantitative description of 
the experimental measurements are easily estimated from the data itself. Now that the 
model is parameterized and validated for wild-type cells, are currently extending it to 
handle the behavior of cell populations perturbed by drugs and by genetic interference. 
In some cases, only modest extensions of the model are required; in other cases, a 
more thorough overhaul of the way the discrete and continuous variables interact with 
each other is necessary.

To choose parameter values in model to capture the major features of cyclin fl uc-
tuations as measured by fl ow cytometry during the somatic division cycle of mam-
malian cells. A human tumor cell line used to calibrate model. Between cell lines and 
normal human cultured cells, there are differences in the expressions of A and B cy-
clins [43]; however, when the levels of cyclin B1 were rigorously compared for HeLa, 
K562, and RKO cells, both the patterns and magnitudes of expression are remarkably 
similar, apparently dependent to some degree on the rate of population growth [44]. In 
addition, the patterns of expression of cyclins A2 and B1 are similar for these human 
tumor cell lines and stimulated normal human circulating lymphocytes (Supporting 
Fig. S2). Overall, the simulation outputs have satisfying similarity both in pattern and 
magnitude to the real data for RKO cells, and simulated expression patterns of cyclins 
A, B and E for the tumor cell line are quite similar to the simulated expression patterns 
in HUVEC cells (see Supporting Fig. S1).


