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Preface

Digital control systems design has become an important field in electrical
engineering and in systems and control theory. One of the important and
fundamental issues in digital control systems design is the filter or con-
troller coefficient sensitivity because even vanishingly small perturbations
in controller or filter coefficients may destabilize the resulting systems. In
the actual engineering systems, the controllers or filters realized by micro-
processors/microcontrollers do have some uncertainties due to limitations in
available microprocessor/microcontroller memory, effects of finite word length
(FWL) of digital processors, quantization of the A/D and D/A converters,
and so on. Therefore, non-fragile (insensitive) control is becoming popular in
many fields of engineering and science, and there is a vast amount of literature
on design and analysis of non-fragile control problems using rigorous methods
based on different performance criteria.

In order to obtain non-fragile (insensitive) controllers, numerous works in
the filtering and control theory are devoted to solving such problems. The
previous results were mainly developed in the framework of robust control
theory, that is, non-fragile controller/filter design methods have been pro-
posed to obtain the non-fragile controllers/filters which can be insensitive
or non-fragile with respect to controller/filter gain uncertainties by consider-
ing controller/filter gain uncertainties directly. There are two main types of
gain uncertainties considered in the design methods. One is known as norm-
bounded gain uncertainty, the other is known as interval-bounded coefficient
variations. It is worth mentioning that the type of norm-bounded uncertainty
cannot exactly reflect the uncertain information due to the FWL effects, while
the type of interval-bounded coefficient variations may result in numerical
problems because the number of linear matrix inequalities (LMIs) involved in
the design conditions grows exponentially with the number of uncertain pa-
rameters. On the other hand, sensitivity analysis techniques in performance
assessments are important in operations research as well as in the practical
design of control systems because sensitivity analysis provides valuable in-
sights into the influence of parameter variations on the dynamic behavior of
systems. However, they mainly consider the optimal realization of a controller
or filter via minimizing the coefficient sensitivity.

In this book, the aim is to present our recent research results in design-
ing non-fragile controllers/filters for linear systems. The main feature of this
text is that the algebraic Riccati equation technique is successfully introduced
to solve the type of additive/multiplicative norm-bounded controller/filter

ix



x Preface

gain uncertainty, while a structured vertex separator is proposed to approach
the numerical problem by considering interval-bounded coefficient variations.
Moreover, sensitivity theory is always used to characterize the phenomenon of
trivial deviations, which motivates us to design insensitive controllers/filters
in the framework of coefficient sensitivity theory because the controller/filter
coefficient variations resulting from limitations of the available computer mem-
ory are of trivial deviations. This book provides a coherent approach and con-
tains valuable reference materials for researchers wishing to explore the area
of non-fragile control/filtering. Its contents are also suitable for a one-semester
graduate course.

The text focuses exclusively on the issues of non-fragile control/filtering
in the framework of algebraic Riccati equations, LMI techniques, structured
vertex separator methods, and coefficient sensitivity methods. The book be-
gins with the development and main research methods in non-fragile con-
trol, while offering a systematic presentation of the newly proposed methods
for non-fragile control/filtering of linear systems with respect to additive/
multiplicative controller/filter gain uncertainties. The tools for design and
analysis presented in the book will be valuable in understanding and analyz-
ing parameter uncertainties.

This work was partially supported by the Funds of the National 973
Program of China (Grant No. 2009CB320604), the Funds of the National
Science of China (Grant Nos. 60974043, 61273148, 61104106, 61104029,
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(20100042110027), the Foundation for the Author of National Excellent Doc-
toral Dissertation of PR China (No. 201157), the Natural Science Foundation
of Liaoning Province (Grant No. 201202156), and by the Program for Liaoning
Excellent Talents in University (LNET)(LJQ2012100).
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Rn n-dimensional real
Euclidean space
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1

Introduction

With the rapid development of computer and automation technologies, more
and more attention is paid to the digital control system which has been consid-
ered as one of the most important and active fields in the research. A typical
configuration of the digital control system is shown in Figure 1.1, in which lim-
itation in available microprocessor memory, effects of finite word length (FWL)
of the digital processor, errors for truncation and quantization of the A/D and
D/A converters, and so on, always cause the controller parameters trivial de-
viations from the original design values [47]. Keel and Bhattacharyya [77], by
means of numerical examples, have shown that the controllers designed by
using weighted H∞, μ, and L1 synthesis techniques may be very sensitive, or
fragile with respect to relatively small perturbations in controller parameters.
Therefore, a significant issue is how to design a filter or controller for a given
plant such that the filter or controller is insensitive to some errors with re-
spect to its coefficients, that is, the designed filter or controller is insensitive
or non-fragile.

The configuration shown in Figure 1.2 simply describes the robust control.
Figure 1.3 shows the non-fragile control, while the robust non-fragile control
is shown in Figure 1.4, where P denotes the plant, ΔP stands for the un-
certainties of the plant P , K denotes the controller, and ΔK denotes the
inaccuracies or uncertainties in the implementation of a designed controller.
There are two main types of coefficient uncertainties considered in the designed
methods. One is of a norm-bounded type, the other is of an interval-bounded
type. Furthermore, the above two types also can be divided into additive case
and multiplicative case. Then, the models of the uncertainty ΔK are given as
follows:

• Norm-Bounded Uncertainty:

{
ΔK = HaΔaEa,Δ

T
aΔa ≤ I Additive Case

ΔK = HmΔmEmK,ΔT
mΔm ≤ I Multiplicative Case

(1.1)

where Ha, Ea, Hm, and Em are known constant matrices of appropriate di-
mensions, and Δa and Δm are the uncertain parameter matrices.

• Interval-Bounded Uncertainty:
{

ΔK = [θij ] Additive Case
ΔK = [θijkij ] Multiplicative Case

(1.2)

where kij denotes the (i, j)th element of the matrix K, and θij (|θij | ≤ θ) is

1
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A/D quantization

D/A quantization

Controller
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Computer
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Plant

Actuator

FIGURE 1.1
A typical digital control system configuration.

K PP

FIGURE 1.2
A robust control configuration.

used to describe the magnitude of the deviation of the matrix coefficient kij ,
where θ denotes the maximum possible deviation.

In recent years, the type of norm-bounded uncertainty (1.1), which is in-
vestigated in Chapters 3–5, has received wide attention, however, it cannot
exactly reflect the uncertain information due to implementation imprecision.
Therefore, the type of interval-bounded uncertainty (1.2) is introduced in
Chapters 6 and 7. Yet, it has a numerical problem because the number of
the linear matrix inequalities (LMIs) involved in the design conditions grows
exponentially with the number of uncertain parameters, which make it diffi-
cult to apply the results to systems with high orders. Although the structured
vertex separator method is proposed to deal with the numerical problem, the

KK P

FIGURE 1.3
A non-fragile control configuration.
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KK PP

FIGURE 1.4
A robust non-fragile control configuration.

number of LMI constraints involved in the design conditions is still large. Fur-
thermore, another important problem is that the computational efficiency is
critical in real-time applications, so it is highly desirable for a controller to
have a sparse structure, namely containing many trivial parameters (trivial
parameters mean that they are 0 and ±1, which can be digitally implemented
exactly and cause no rounding errors). Other parameters are, therefore, re-
ferred to as nontrivial parameters [92]. The problem of finding sparse con-
troller realizations has been considered by several researchers [3, 57, 58, 92].
These results consider the sparse structure problem from the point of view
the controller realization. How to design a controller with sparse structure is
a valuable problem.

On the other hand, sensitivity analysis allows us to assess the effects
of changes in the parameter values [12, 13, 23, 80]. Hence, it is very use-
ful to understand how changes in the parameter values influence the de-
sign [12, 13, 23, 50, 80]. After the hard work of many researchers in more than
one decade, fundamental results have been obtained for the study of sen-
sitivity analysis and performance limitations in automatic control systems
([see, for example, 21, 59, 60, 129, 140, 141], and the references therein), and
many different definitions of sensitivity have been used for sensitivity anal-
ysis [61–64, 87, 91, 100, 125, 131, 132, 136, 152]. One of the effective synthesis
methods is the coefficient sensitivity method, which describes the variations
in performance due to variations in the parameters that affect the system
dynamics [see 90, 92, 99, 121]. It is well known that very small perturbations
in the coefficient of the designed controller or filter may result in the serious
deterioration of the system performance, including instability. Therefore, the
controller or filter should be designed to be insensitive to some amount of
error with respect to its coefficients. Sensitivity theory is always used to char-
acterize the phenomenon of trivial deviations, which motivates us to design
insensitive controllers and filters in the framework of coefficient sensitivity
theory in Chapters 8–11 because the coefficient variations resulted from the
limitation of the available computer memory are of trivial deviations.

The main contribution of this book is that the algebraic Riccati technique,
the linear matrix inequality technique, and the sensitivity analysis method
have been successfully combined to establish a set of new non-fragile (insensi-
tive) control methods [19,47–49,142–144,147–150]. The proposed method can
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optimize the closed-loop system performances and simultaneously make the
designed controllers or filters tolerant of coefficient variations in controller or
filter gain matrices. Parts of the developed theories are applied to the simu-
lation studies of the F-404 engine model and the F-18 aircraft model, which
show intuitively the feasibility and superiority of the newly proposed methods.

A summary of the rest of the chapters of this book is given below.
Chapter 2 presents some preliminaries about the considered problem. Some

lemmas to be used to derive the main results of this book are also given.
Chapter 3 investigates the problem of guaranteed cost control of discrete-

time linear systems subject to additive/multiplicative controller gain uncer-
tainties, respectively. First, an optimal guaranteed cost control design method
is presented by using the algebraic Riccati equation technique. It is worth men-
tioning that the standard optimal control design for the same system can be
obtained by modifying the cost function. Under a bound condition for the gain
uncertainties, an optimal guaranteed cost control design method is also given
for the case of the multiplicative gain uncertainties. The numerical example
has shown the effectiveness of the proposed design procedures.

Based on the results in Chapter 3, Chapters 4 and 5 deal with the cor-
responding non-fragile controller and filter design problems. The procedures
of designing non-fragile dynamic output-feedback controllers that can toler-
ate some additive/multiplicative controller gain uncertainties are presented in
Chapter 4 in terms of symmetric positive-definite solutions of algebraic Ric-
cati inequalities. Chapter 5 presents a robust non-fragile Kalman filter design
method corresponding to the filter gain uncertainties in terms of solutions to
algebraic Riccati equations, which depend on two design parameters, one from
the system uncertainty and another from the state estimator gain uncertainty.
When the controller/filter gain uncertainties are not considered, the results
are reduced to those for the standard control. Finally, the effectiveness of the
proposed methods is validated by numerical examples.

Chapter 6 studies the full parameterized and sparse structured non-fragile
H∞ controller design problems. The type of the additive interval-bounded co-
efficient variations, which less conservative than the type of norm-bounded
controller gain uncertainties, is considered. First, a two-step procedure is
adopted to solve the full parameterized controller design problem for the
discrete-time and continuous-time systems, respectively. In addition, a struc-
tured vertex separator is proposed to approach the numerical computational
problem resulting from the interval type of coefficient variations, and exploited
to develop sufficient conditions for the non-fragile H∞ controller design in
terms of solutions to a set of LMIs. Second, for the sparse structured con-
troller design problem, a class of sparse structures is specified. Then, a three-
step procedure for non-fragile H∞ controller design under the restriction of
the sparse structure is provided. The contribution of this method is that it
not only reduces the number of nontrivial parameters but also designs the
sparse structured controllers with non-fragility. The resulting designs of the
two cases guarantee that the closed-loop system is asymptotically stable and
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the H∞ performance from the disturbance to the regulated output is less than
a prescribed level. Finally, the effectiveness of the proposed design methods is
illustrated by numerical examples.

Based on the results of Chapter 6, Chapter 7 deals with the problem of
non-fragile H∞ filter design subject to the additive interval-bounded filter co-
efficient variations. The full parameterized and sparse structured filter design
problems are investigated simultaneously. For the full parameter filter design,
the structured vertex separator proposed in the previous chapter is exploited
to solve the numerical computational problem and to further develop sufficient
conditions for the non-fragile H∞ filter design in terms of solutions to a set of
LMIs. For the sparse structured filter design, first, a class of sparse structures
is specified. Then, an LMI-based procedure for non-fragile H∞ filters design
under the restriction of the sparse structure is provided. The effectiveness of
the proposed methods are illustrated via some numerical examples and their
simulations.

Chapter 8 investigates the problem of designing multi-objective coefficient
insensitive H∞ filters for linear continuous-time systems. Parameter sensitiv-
ity functions of transfer functions with respect to filter additive/multiplicative
parameter variations are defined first, and the H∞ norms of the sensitivity
functions are used to measure the sensitivity of the transfer functions with
respect to filter parameters. In addition, in order to deal with the filter design
problem for the multiplicative filter coefficient variation case, new measures
based on the average of the sensitivity functions are also defined. Based on
the above two types of sensitivity measures, novel methods for designing in-
sensitive H∞ filters subjected to additive/multiplicative filter coefficient vari-
ations, respectively, are given in terms of LMI techniques. Furthermore, an
indirect method for solving the multiplicative variations is also proposed. In
comparison with the existing method, the new proposed method has less com-
putational burden. In addition, it is difficult to use the techniques developed
in Chapter 7 to obtain convex conditions for the filter design problem with
respect to the interval multiplicative parameter variation case, while this prob-
lem can be resolved well by using the new proposed method. The simulation
examples have also shown the effectiveness of the proposed method.

Based on the results in Chapter 8, Chapters 9 and 10 focus on the problems
of designing multi-objective coefficient insensitive H∞ filters and an output
tracking controller for delta operator discrete-time systems, respectively. The
designed filters/controllers are insensitive to the filter/controller parameter
variations. Being different from using a common Lyapunov matrix of Chapter
8, the design conservatism is reduced by introducing slack variables in these
two chapters. It is worth mentioning that the delta operator approach offers
better parameter sensitivity than the traditional shift operator approach at a
high sampling rate. Finally, some numerical examples including a linearized
model of an F-404 engine and an F-18 aircraft are given to show the effective-
ness and superiority of the proposed approaches in the above two chapters.

Chapter 11 studies the problem of designing multi-objective coefficient
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insensitive H∞ dynamic output feedback controllers for linear discrete-time
systems. Two different design methods with different degrees of conservative-
ness and computational complexity are proposed for this problem. The de-
signed controllers are insensitive to the controller parameter variations. The
first method presents a necessary and sufficient condition for the existence of
the insensitive controller. The problem of designing multi-objective dynamic
output feedback controllers is a non-convex problem itself, an LMI-based pro-
cedure which is a sequential linear programming matrix method (SLPMM) is
proposed to solve this non-convex problem. However, the search for satisfac-
tory solutions may be difficult when the SLPMM algorithm acts on a module
of very high dimension. To overcome the above difficulty, the non-fragile con-
troller design method is adopted to obtain an initial solution for the SLPMM
algorithm for the first time. In the second method, a sufficient condition is
provided for the multiplicative parameter variation case based on a new type
of sensitivity measures. Finally, the effectiveness of the proposed method is
validated by numerical examples.



2

Preliminaries

In this chapter, non-fragile control and filtering problems for linear systems
are investigated under both H∞ and guaranteed cost performance index, using
the linear matrix inequality (LMI) technique and the coefficient sensitivity
method. For the convenience of discussion in the rest of this chapter, some
preliminaries, including a few definitions, notions, and lemmas, are presented
in this chapter.

2.1 Delta Operator Definition

A definition of delta operator or Euler operator is introduced as follows:

Definition 2.1 [44,45] For a continuous-time signal x(t), the discrete-time
sequence by sampling the continuous-time signal is x(nh) where h is the sam-
pling period and n = 0, 1, 2, · · · . We assume that h = 0 signifies x(nh) = x(t).
For h �= 0 we denote x(nh) = xq(k), x((n + 1)h) = xq(k + 1), k = 0, 1, 2, · · · .
Then, the definition of an incremental difference operator (or delta operator
for short) is given out as follows:

δx(k) �
{

d
dtx(t) h = 0

(x(k + 1)− x(k))/h h �= 0

where the delta representation converges to the continuous-time representation
as h = 0, and it converges to the discrete-time representation as h �= 0.
Obviously, the delta operator provides a theoretically unified formulation of
continuous-time and discrete-time systems.

In addition, from the above definition, the delta operator and the tradi-
tional forward shift operator (q operator) are related as

δx(k) = δ[x(nh)] =
x(nh+ h)− x(nh)

h
=

q[x(nh)]− x(nh)

h
, for h �= 0 (2.1)

where q is a forward shift operator (qxq(k) = q[x(nh)] = xq(k + 1)) with
xq(k) being sampled by using the forward shift operator approach. The above
equation can be rewritten as

δ =
q − 1

h
.

7
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In view of this, δ as a dynamic operator provides the same flexibility and
implementability as a shift operator [44, 45]. However, it is well known that
the usual shift operator approach suffers from numerical ill-conditioning at
sufficiently small sampling periods. Therefore, in order to solve this problem,
the delta operator instead of the traditional shift operator was constructed
to study sampling continuous-time systems by Goodwin et al. [44, 45]. Two
major advantages are known for the use of delta operator parameterization: a
theoretically unified formulation of continuous-time and discrete-time systems,
and better numerical properties in FWL implementations when compared
with traditional z-transform at high sampling periods [90, 92]. Therefore, the
delta operator is widely applied in many fields such as high-speed digital signal
processing [36], system modeling [35,81], robust control/filtering [135], reliable
control [116], and non-fragile control/filtering [47, 96].

2.2 H∞ Performance Index

A popular performance measure of a stable linear time-invariant system is the
H∞ norm of its transfer function. It is defined as follows.

Definition 2.2 [154] Consider a linear time-invariant continuous-time sys-
tem

ẋ(t) = Ax(t) +B1ω(t)

z(t) = Cx(t) +D1ω(t) (2.2)

where x(t) ∈ Rn is the state, ω(t) ∈ Rs is an exogenous disturbance in
L2[0,∞], that is,

‖ω(t)‖22 =

∫ ∞

0

ωT (t)ω(t)dt < ∞

and z(t) ∈ Rris the regulated output, respectively. A, B1, C, D1 are known
constant matrices of appropriate dimensions.

Let γ > 0 be a given constant, then the system (2.2) is said to be with an
H∞ performance index no larger than γ, if the following conditions hold:
(1) Systems (2.2) are asymptotically stable
(2) Subject to initial conditions x(0) = 0, the transfer function matrix Tωz(s)
satisfies

‖Tωz(s)‖∞ := sup
‖ω‖2≤1

‖z‖2
‖ω‖2 ≤ γ (2.3)

Equation (2.3) is equivalent to
∫ ∞

0

zT (t)z(t)dt ≤ γ2

∫ ∞

0

ωT (t)ω(t)dt, ∀ω(t) ∈ L2[0,∞) (2.4)
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It is easy to see that the inequality (2.4) describes the restraint disturbance
ability. Moreover, the smaller the value of γ is, the better the system perfor-
mance is.

In addition, the definition of the H∞ performance index for the z-domain
or δ-domain is similar to Definition 2.2, therefore it is omitted here.

2.3 Operations on Systems

In this section, some facts about system interconnection are introduced, which
will be used to obtain the sensitivity functions.

For brevity, the state-space models in the s-, z-, and δ-domains are unified
as

ρx(t) = Aρx(t) + Bρu(t)

y(t) = Cρx(t) +Dρu(t)
(2.5)

where
⎧
⎨

⎩

ρx(t) = ẋ(t) s-domain
ρx(t) = x(t+ 1) z-domain
ρx(t) = δx(t) δ-domain

The state-space of the transfer function is described by

T (ρ) =

[
Aρ Bρ

Cρ Dρ

]

= Cρ(ρI −Aρ)
−1Bρ +Dρ

Then, the transpose of the transfer matrix T (ρ) (or the dual system) is
defined as

T T (ρ) =

[
AT

ρ CT
ρ

BT
ρ DT

ρ

]

= BT
ρ (ρI −AT

ρ )
−1CT

ρ +DT
ρ

or equivalently [
Aρ Bρ

Cρ Dρ

]

	−→
[

AT
ρ CT

ρ

BT
ρ DT

ρ

]

Further, suppose that T1(ρ) and T2(ρ) are two subsystems with state-space
representations:

{
ρx1(t) = A1

ρx1(t) +B1
ρu1(t)

y1(t) = C1
ρx1(t) +D1

ρu1(t)
{

ρx2(t) = A2
ρx2(t) +B2

ρu2(t)

y2(t) = C2
ρx2(t) +D2

ρu2(t)
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FIGURE 2.1
Two subsystems in a series.

The state-space of their transfer functions can be described by

T1(ρ) =

[
A1

ρ B1
ρ

C1
ρ D1

ρ

]

= C1
ρ(ρI −A1

ρ)
−1B1

ρ +D1
ρ

T2(ρ) =

[
A2

ρ B2
ρ

C2
ρ D2

ρ

]

= C2
ρ(ρI −A2

ρ)
−1B2

ρ +D2
ρ

Then the series or cascade connection of these two subsystems is a system
with the output of the second subsystem as the input of the first subsystem
as shown in the following.

u(ρ) = u2(ρ), u1(ρ) = y2(ρ), y(ρ) = y1(ρ)

The diagram is shown in Figure 2.1.
This operation in terms of the transfer matrices of the two subsystems is

essentially the product of two transfer matrices. Hence, the representation for
the series system can be obtained as

T (ρ) = T1(ρ)T2(ρ)

=

[
A1

ρ B1
ρ

C1
ρ D1

ρ

] [
A2

ρ B2
ρ

C2
ρ D2

ρ

]

=

⎡

⎣
A1

ρ B1
ρC

2
ρ

0 A2
ρ

B1
ρD

2
ρ

B2
ρ

C1
ρ D1

ρC
2
ρ D1

ρD
2
ρ

⎤

⎦

=

⎡

⎣
A2

ρ 0
B1

ρC2 A1
ρ

B2
ρ

B1
ρD

2
ρ

D1
ρC

2
ρ C1

ρ D1
ρD

2
ρ

⎤

⎦

Similarly, the parallel connection or the addition of T1(ρ) and T2(ρ) can
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FIGURE 2.2
Two subsystems in parallel.

be obtained as

T (ρ) = T1(ρ) + T2(ρ)

=

[
A1

ρ B1
ρ

C1
ρ D1

ρ

]

+

[
A2

ρ B2
ρ

C2
ρ D2

ρ

]

=

⎡

⎣
A1

ρ 0
0 A2

ρ

B1
ρ

B2
ρ

C1
ρ C2

ρ D1
ρ +D2

ρ

⎤

⎦

The diagram is shown in Figure 2.2.
More system operations can be found in Zhou, Doyle, and Glover [154].

2.4 Some Other Definitions and Lemmas

Some other definitions and lemmas that will be used in this chapter are pre-
sented as follows.

Definition 2.3 [152] For a matrix M ∈ Rn×m, mij denotes the (i, j)th

element of the matrix M . Then, ∂M−1

∂mij
can be evaluated by

∂M−1

∂mij
= −M−1 ∂M

∂mij
M−1

Definition 2.4 [43] Let mij denote the (i, j)th element of the matrix M with
M being an m×n real matrix and let f(M) be a matrix function of M . Then,
the coefficient sensitivity function of f with respect to the (i, j)th element of
M is given by

Sij =
∂f

∂mij
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Definition 2.5 [111, 151] Let V (xδ(k)) be a Lyapunov functional in the
delta-domain. A delta operator system is asymptotically stable, if the following
conditions hold:

(i) V (xδ(k)) ≥ 0, with equality if and only if xδ(k) = 0;

(ii) δV (xδ(k)) = [V (xδ(k + 1))− V (xδ(k))]/h < 0.

Remark 2.1 For Lyapunov functional V (•) both in the z-domain and the s-
domain, the condition (i) in Definition 2.5 can always be given. In condition
(ii), when h = 1, there exists

δV (xδ(k))|h=1 = V (x(nh+h))−V (x(nh))
h |h=1 = ΔV (xq(k)) < 0.

On the other hand, when h → 0, referring to Equation (2.1) there exists

lim
h→0

δV (xδ(k)) = lim
h→0

V (x(nh+h))−V (x(nh))
h = dV (x(t))

dt < 0.

The above results imply that the Lyapunov functional in the δ-domain can be
reduced to the traditional Lyapunov functional in the z-domain and s-domain
when the sampling period is 1 or tends to be 0.

Now, some important lemmas are introduced, which will be useful in this
chapter.

Lemma 2.1 [11] (Schur Complement Lemma) For any given symmetric ma-

trix S =

[
S11 S12

ST
12 S22

]

, where S11 ∈ Rr×r. Then the following three conditions

are equivalent:
(i) S < 0
(ii) S11 < 0, S22 − ST

12S
−1
11 S12 < 0

(ii) S22 < 0, S11 − S12S
−1
22 ST

12 < 0

Lemma 2.2 [113] Let matrices Q = QT , G, and a compact subset of real
matrices H be given. Then the following statements are equivalent:

(i) for each H ∈ H

ξTQξ < 0 for all ξ �= 0 such that HGξ = 0;

(ii) there exists Θ = ΘT such that

Q+GTΘG < 0,NT
HΘNH ≥ 0 for all H ∈ H.

Lemma 2.3 [154] Let Tazω = Ca(sI − Aa)
−1Ba, then Aa is Hurwitz and

‖Tazω‖ < γ for some constant γ > 0 if and only if there exists a symmetric
matrix X > 0 such that

AT
aX +XAa +

1

γ2
XBaB

T
a X + CT

a Ca < 0.
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Lemma 2.4 [46] Let Gazω(z) = Ca(zI − Aa)
−1Ba, then Aa is Shur stable

and ‖Gazω(z)‖ < γ for some constant γ > 0 if and only if there exists a
symmetric matrix X > 0, such that

⎡

⎢
⎢
⎣

−X 0 XAa XBa

∗ −I Ca 0
∗ ∗ −X 0
∗ ∗ ∗ −γ2I

⎤

⎥
⎥
⎦ < 0 (2.6)

Denote
G0zω(z) = Ce0(zI −Ae0)

−1Be0, (2.7)

where

Ae0 =

[
A B2Ck

BkC2 Ak

]

, Be0 =

[
B1

BkD21

]

, Ce0 =
[
C1 D12Ck

]
, (2.8)

with Ak ∈ Rn×n.
Then, we have the following lemma.

Lemma 2.5 Let γ > 0 be a given constant. Then the following statements
are equivalent:

(i) Ae0 is Shur stable, and ‖G0zω(z)‖ < γ;

(ii) there exists a symmetric positive matrix X > 0 such that
⎡

⎢
⎢
⎣

−X 0 XAe0 XBe0

∗ −I Ce0 0
∗ ∗ −X 0
∗ ∗ ∗ −γ2I

⎤

⎥
⎥
⎦ < 0 (2.9)

(iii) there exists a symmetric positive matrix X > 0 and a matrix G such
that

⎡

⎢
⎢
⎣

X −G−GT 0 GTAe0 GTBe0

∗ −I Ce0 0
∗ ∗ −X 0
∗ ∗ ∗ −γ2I

⎤

⎥
⎥
⎦ < 0 (2.10)

(iv) there exists a nonsingular matrix T and a symmetric matrix P > 0 with

P =

[
Y N
N −N

]

, (2.11)

such that
⎡

⎢
⎢
⎣

−P 0 PAea PBea

∗ −I Cea 0
∗ ∗ −P 0
∗ ∗ ∗ −γ2I

⎤

⎥
⎥
⎦ < 0 (2.12)
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where

Aea =

[
A B2Cka

BkaC2 Aka

]

, Bea =

[
B1

BkaD21

]

,

Cea =
[
C1 D12Cka

] (2.13)

and
Aka = T−1AkT, Bka = T−1Bk, Cka = CkT.

(v) there exist a symmetric matrix X > 0 and a matrix G with structure

G =

[
Y N
N −N

]

, (2.14)

such that
⎡

⎢
⎢
⎣

X −G−GT 0 GTAea GTBea

∗ −I Cea 0
∗ ∗ −X 0
∗ ∗ ∗ −γ2I

⎤

⎥
⎥
⎦ < 0 (2.15)

holds, where Aea, Bea, and Cea are defined by (2.13).

Proof 2.1 (i) ⇐⇒ (ii). From Lemma 2.3, the equivalence of (i) and (ii) is
immediate.
(ii) ⇐⇒ (iii). On the one hand, let G = GT = X, then (iii) holds if (ii) holds.
On the other hand, if (iii) holds, we have X − G − GT < 0; obviously, G is
invertible. It is known to all that

GTX−1G > GT +G−X. (2.16)

In fact, (GT −X)X−1(G−X) > 0. Now, according to (2.16), if (2.10) holds,
then the following inequality holds:

⎡

⎢
⎢
⎣

−GTX−1G 0 GTAe0 GTBe0

∗ −I Ce0 0
∗ ∗ −X 0
∗ ∗ ∗ −γ2I

⎤

⎥
⎥
⎦ < 0. (2.17)

Let T = diag{G−1X, I, I, I} perform a transformation with T on (2.17), re-
sulting in (2.9), which establishes that (iii) implies (ii).
(ii) ⇐⇒ (iv). Notice the fact that, for any square matrix E and scalar
η > 0, there exists an ε > 0 with ε < η such that E + εI is nonsingu-
lar, which implies statement (ii) if and only if there exists a symmetric ma-

trix X =

[
X11 X12

XT
12 X22

]

> 0 with X12 nonsingular such that (2.9) holds. Let

Aka = (X−1
12 )TX22AkX

−1
22 XT

12, Bka = −(X−1
12 )TX22Bk, Cka = −CkX

−1
22 XT

12,
Y = X11, and N = −X12X

−1
22 XT

12.
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Denote Γ̄ = diag{Γ, I,Γ, I}, where Γ =

[
I 0
0 −X12X

−1
22

]

. Then

P = ΓXΓT =

[
Y N
N −N

]

and

⎡

⎢
⎢
⎣

−P 0 PAea PBea

∗ −I Cea 0
∗ ∗ −P 0
∗ ∗ ∗ −γ2I

⎤

⎥
⎥
⎦

= Γ̄

⎡

⎢
⎢
⎣

−X 0 XAe0 XBe0

∗ −I Ce0 0
∗ ∗ −X 0
∗ ∗ ∗ −γ2I

⎤

⎥
⎥
⎦ Γ̄T < 0,

so inequalities X > 0 and (2.9) are equivalent to P > 0 and (2.12), respec-
tively.
(iv) ⇐⇒ (v). On the one hand, let G = GT = X = P > 0 with the structure
(2.11), then (2.15) holds if (2.12) holds.
On the other hand, let X = P with the structure (2.11), according to (2.16),
then we have

⎡

⎢
⎢
⎣

−GTP−1G 0 GTAea GTBea

∗ −I Cea 0
∗ ∗ −P 0
∗ ∗ ∗ −γ2I

⎤

⎥
⎥
⎦ < 0, (2.18)

which holds if (2.15) holds. Let Υ = diag{G−1P, I, I, I} perform a transfor-
mation with Υ on (2.18), resulting in (2.12), which establishes that (v) implies
(iv).
Thus, the proof is complete.

Denote
T0zω = Ce0(sI −Ae0)

−1Be0.

Let controller gain matrices Ak, Bk, and Ck be given, and such that

‖T0zω‖ = ‖Ce0(sI −Ae0)
−1Be0‖ < γ. (2.19)

Lemma 2.6 Let Tazω = Ca(sI−Aa)
−1Ba, then Aa is stable and ‖Tazω‖ < γ

for some constant γ > 0 if and only if there exists a symmetric matrix X > 0,
such that

AT
aX +XAa +

1

γ2
XBaB

T
a X + CT

a Ca < 0.


