
Numerical and Analytical
Methods with MATLAB®
for Electrical Engineers

William Bober • Andrew Stevens

Bober • Stevens

ISBN: 978-1-4398-5429-7

9 781439 854297

9 0 0 0 0

K12515

Electrical Engineering

Combining academic and practical approaches to this important topic,
Numerical and Analytical Methods with MATLAB® for Electrical Engineers
is the ideal resource for electrical and computer engineering students.
Based on a previous edition that was geared toward mechanical engineering
students, this book expands many of the concepts presented in that book
and replaces the original projects with new ones intended specifically for
electrical engineering students.

This book includes:

•	 An introduction to the MATLAB® programming environment
•	 Mathematical techniques for matrix algebra, root finding,

integration, and differential equations
•	 More advanced topics, including transform methods, signal

processing, curve fitting, and optimization
•	 An introduction to the MATLAB® graphical design environment,

Simulink®

Exploring the numerical methods that electrical engineers use for design
analysis and testing, this book comprises standalone chapters outlining a
course that also introduces students to computational methods and pro-
gramming skills, using MATLAB® as the programming environment. Helping
engineering students to develop a feel for structural programming—not just
button-pushing with a software program—the illustrative examples and
extensive assignments in this resource enable them to develop the necessary
skills and then apply them to practical electrical engineering problems
and cases.

Numerical and Analytical
Methods with MATLAB®
for Electrical Engineers

Num
erical and Analytical M

ethods w
ith M

ATLAB
® for Electrical Engineers

K12515_Cover_mech.indd 1 7/27/12 9:01 AM

Numerical and Analytical
Methods with MATLAB®
for Electrical Engineers

CRC Series in
COMPUTATIONAL MECHANICS

 and APPLIED ANALYSIS

Series Editor: J.N. Reddy
Texas A&M University

Published Titles

ADVANCED THERMODYNAMICS ENGINEERING, Second Edition
Kalyan Annamalai, Ishwar K. Puri, and Miland Jog

APPLIED FUNCTIONAL ANALYSIS
J. Tinsley Oden and Leszek F. Demkowicz

COMBUSTION SCIENCE AND ENGINEERING
Kalyan Annamalai and Ishwar K. Puri

CONTINUUM MECHANICS FOR ENGINEERS, Third Edition
Thomas Mase, Ronald Smelser, and George E. Mase

DYNAMICS IN ENGINEERING PRACTICE, Tenth Edition
Dara W. Childs

EXACT SOLUTIONS FOR BUCKLING OF STRUCTURAL MEMBERS
C.M. Wang, C.Y. Wang, and J.N. Reddy

THE FINITE ELEMENT METHOD IN HEAT TRANSFER AND FLUID DYNAMICS,
Third Edition

J.N. Reddy and D.K. Gartling

MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS:
THEORY AND ANALYSIS, Second Edition

J.N. Reddy

MICROMECHANICAL ANALYSIS AND MULTI-SCALE MODELING
USING THE VORONOI CELL FINITE ELEMENT METHOD

Somnath Ghosh

NUMERICAL AND ANALYTICAL METHODS WITH MATLAB®

William Bober, Chi-Tay Tsai, and Oren Masory

NUMERICAL AND ANALYTICAL METHODS WITH MATLAB®

FOR ELECTRICAL ENGINEERS
William Bober and Andrew Stevens

PRACTICAL ANALYSIS OF COMPOSITE LAMINATES
J.N. Reddy and Antonio Miravete

SOLVING ORDINARY AND PARTIAL BOUNDARY VALUE PROBLEMS
IN SCIENCE and ENGINEERING

Karel Rektorys

STRESSES IN BEAMS, PLATES, AND SHELLS, Third Edition
Ansel C. Ugural

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton London New York

Numerical and Analytical
Methods with MATLAB®
for Electrical Engineers

William Bober • Andrew Stevens

MATLAB® and Simulink® are trademarks of The MathWorks, Inc. and are used with permission. The Math-
Works does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion
of MATLAB® and Simulink® software or related products does not constitute endorsement or sponsorship
by The MathWorks of a particular pedagogical approach or particular use of the MATLAB® and Simulink®
software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2013 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20120801

International Standard Book Number-13: 978-1-4665-7607-0 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

v

Contents

Preface...ix
Acknowledgments...xi
About.the.Authors.. xiii

  1  Numerical.Methods.for.Electrical.Engineers..1
1.1	 Introduction	..1
1.2	 Engineering	Goals	...2
1.3	 Programming	Numerical	Solutions	...2
1.4	 Why	MATLAB?	..3
1.5	 The	MATLAB	Programming	Language	..4
1.6	 Conventions	in	This	Book	...5
1.7	 Example	Programs	...5

  2  MATLAB.Fundamentals...7
2.1	 Introduction	..7
2.2	 The	MATLAB	Windows	...8
2.3	 Constructing	a	Program	in	MATLAB...11
2.4	 MATLAB	Fundamentals	..12
2.5	 MATLAB	Input/Output	...21
2.6	 MATLAB	Program	Flow...26
2.7	 MATLAB	Function	Files	..32
2.8	 Anonymous	Functions	...36
2.9	 MATLAB	Graphics	...36
2.10	 Working	with	Matrices	... 46
2.11	 Working	with	Functions	of	a	Vector	..48
2.12	 Additional	Examples	Using	Characters	and	Strings49
2.13	 Interpolation	and	MATLAB’s	interp1	Function53
2.14	 MATLAB’s	textscan	Function	...55
2.15	 Exporting	MATLAB	Data	to	Excel	...57

vi  ◾  Contents

2.16	 Debugging	a	Program..58
2.17	 The	Parallel	RLC	Circuit	...60
Exercises	..63
Projects	..63
References	..76

  3  Matrices...77
3.1	 Introduction	... 77
3.2	 Matrix	Operations	.. 77
3.3	 System	of	Linear	Equations	...82
3.4	 Gauss	Elimination	...87
3.5	 The	Gauss-Jordan	Method	...92
3.6	 Number	of	Solutions	...94
3.7	 Inverse	Matrix	...95
3.8	 The	Eigenvalue	Problem	..100
Exercises	..104
Projects	..105
Reference	...108

  4  Roots.of.Algebraic.and.Transcendental.Equations..............................109
4.1	 Introduction	..109
4.2	 The	Search	Method	...109
4.3	 Bisection	Method	.. 110
4.4	 Newton-Raphson	Method	...112
4.5	 MATLAB’s	fzero	and	roots	Functions113

4.5.1	 The	fzero	Function.. 114
4.5.2	 The	roots	Function	... 118

Projects	.. 119
Reference	...128

  5  Numerical.Integration...129
5.1	 Introduction	..129
5.2	 Numerical	Integration	and	Simpson’s	Rule129
5.3	 Improper	Integrals	...133
5.4	 MATLAB’s	quad	Function	..135
5.5	 The	Electric	Field	...137
5.6	 The	quiver	Plot	..141
5.7	 MATLAB’s	dblquad	Function	...143
Exercises	..146
Projects	..147

  6  Numerical.Integration.of.Ordinary.Differential.Equations................157
6.1	 Introduction	.. 157
6.2	 The	Initial	Value	Problem	..158

Contents  ◾  vii

6.3	 The	Euler	Algorithm	..158
6.4	 Modified	Euler	Method	with	Predictor-Corrector	Algorithm160
6.5	 Numerical	Error	for	Euler	Algorithms	...166
6.6	 The	Fourth-Order	Runge-Kutta	Method167
6.7	 System	of	Two	First-Order	Differential	Equations169
6.8	 A	Single	Second-Order	Equation	...172
6.9	 MATLAB’s	ODE	Function	...175
6.10	 Boundary	Value	Problems	...179
6.11	 Solution	of	a	Tri-Diagonal	System	of	Linear	Equations180

Method	Summary	for	m	equations	...181
6.12	 Difference	Formulas	..183
6.13	 One-Dimensional	Plate	Capacitor	Problem186
Projects	..190

  7  Laplace.Transforms...201
7.1	 Introduction	..201
7.2	 Laplace	Transform	and	Inverse	Transform201

7.2.1	 Laplace	Transform	of	the	Unit	Step202
7.2.2	 Exponential	..202
7.2.3	 Linearity	...203
7.2.4	 Time	Delay	...203
7.2.5	 Complex	Exponential	.. 204
7.2.6	 Powers	of	t	..205
7.2.7	 Delta	Function	.. 206

7.3	 Transforms	of	Derivatives	..209
7.4	 Ordinary	Differential	Equations,	Initial	Value	Problem210
7.5	 Convolution	... 220
7.6	 Laplace	Transforms	Applied	to	Circuits	...223
7.7	 Impulse	Response	..227
Exercises	... 228
Projects	..229
References	..232

  8  Fourier.Transforms.and.Signal.Processing..239
8.1	 Introduction	..239
8.2	 Mathematical	Description	of	Periodic	Signals:	Fourier	Series241
8.3	 Complex	Exponential	Fourier	Series	and	Fourier	Transforms245
8.4	 Properties	of	Fourier	Transforms	...249
8.5	 Filters...251
8.6	 Discrete-Time	Representation	of	Continuous-Time	Signals253
8.7	 Fourier	Transforms	of	Discrete-Time	Signals255
8.8	 A	Simple	Discrete-Time	Filter	..258
Projects	..269
References	..273

viii  ◾  Contents

  9  Curve.Fitting...275
9.1	 Introduction	..275
9.2	 Method	of	Least	Squares	...275

9.2.1	 Best-Fit	Straight	Line	..275
9.2.2	 Best-Fit	mth-Degree	Polynomial277

9.3	 Curve	Fitting	with	the	Exponential	Function279
9.4	 MATLAB’s	polyfit	Function	..281
9.5	 Cubic	Splines	...285
9.6	 The	Function	interp1	for	Cubic	Spline	Curve	Fitting287
9.7	 Curve	Fitting	with	Fourier	Series	..289
Projects	..291

10  Optimization...295
10.1	 Introduction	..295
10.2	 Unconstrained	Optimization	Problems	...296
10.3	 Method	of	Steepest	Descent	..297
10.4	 MATLAB’s	fminunc	Function	...301
10.5	 Optimization	with	Constraints	...302
10.6	 Lagrange	Multipliers	.. 304
10.7	 MATLAB’s	fmincon	Function	...307
Exercises	..316
Projects	..316
Reference	...322

11  Simulink..323
11.1	 Introduction	..323
11.2	 Creating	a	Model	in	Simulink	...323
11.3	 Typical	Building	Blocks	in	Constructing	a	Model325
11.4	 Tips	for	Constructing	and	Running	Models328
11.5	 Constructing	a	Subsystem	...329
11.6	 Using	the	Mux	and	Fcn	Blocks	..330
11.7	 Using	the	Transfer	Fcn	Block	..330
11.8	 Using	the	Relay	and	Switch	Blocks	..331
11.9	 Trigonometric	Function	Blocks	...334
Exercises	..337
Projects	..337
Reference	...339

Appendix.A:.RLC.Circuits...341

Appendix.B:.Special.Characters.in.MATLAB®.Plots...................................353

ix

Preface

I	have	been	teaching	two	courses	in	computer	applications	for	engineers	at	Florida	
Atlantic	University	(FAU)	for	many	years.	The	first	course	is	usually	taken	in	the	
student’s	sophomore	year;	the	second	course	is	usually	taken	in	the	student’s	junior	
or	senior	year.	Both	computer	classes	are	run	as	lecture-laboratory	courses,	and	the	
MATLAB®	software	program	is	used	in	both	courses.	To	familiarize	students	with	
engineering-type	problems,	approximately	six	or	seven	projects	are	assigned	during	
the	semester.	Students	have,	depending	on	the	difficulty	of	the	project,	either	one	
week	or	two	weeks	to	complete	each	project.	I	believe	that	the	best	source	for	stu-
dents	to	complete	the	assigned	projects	in	either	course	is	this	textbook.

This	 book	 has	 its	 origin	 in	 a	 previous	 textbook,	 Numerical and Analytical
Methods with MATLAB®	 by	 William	 Bober,	 Chi-Tay	 Tsai,	 and	 Oren	 Masory,	
also	published	by	CRC	Press.	The	previous	book	was	primarily	oriented	 toward	
mechanical	engineering	students.	I	and	Jonathan	Plant	of	CRC	Press	envisioned	
that	a	similar	text	would	fill	a	need	in	electrical	engineering	curricula;	as	a	result,	
I	enlisted	Dr.	Andrew	Stevens	to	replace	the	projects	in	the	existing	textbook	with	
those	oriented	 toward	electrical	 engineering	 students.	This	new	 textbook	 retains	
the	philosophy	of	teaching	that	exists	in	the	original	textbook.

The	advantage	of	using	the	MATLAB	software	program	over	other	packages	
is	that	it	contains	built-in	functions	that	numerically	solve	systems	of	linear	equa-
tions,	systems	of	ordinary	differential	equations,	roots	of	transcendental	equations,	
integrals,	statistical	problems,	optimization	problems,	signal-processing	problems,	
and	many	other	types	of	problems	encountered	in	engineering.	A	student	version	
of	the	MATLAB	program	is	available	at	a	reasonable	cost.	However,	to	students,	
these	built-in	 functions	are	essentially	black	boxes.	By	combining	a	 textbook	on	
MATLAB	with	basic	numerical	and	analytical	analysis	(although	I	am	sure	that	
MATLAB	 uses	 more	 sophisticated	 numerical	 techniques	 than	 are	 described	 in	
these	textbooks),	the	mystery	of	what	these	black	boxes	might	contain	is	somewhat	
alleviated.	The	text	contains	many	sample	MATLAB	programs	that	should	provide	
guidance	to	the	student	on	completing	the	assigned	projects.	Many	of	the	projects	
in	this	book	are	non-trivial	and,	I	believe,	will	be	good	training	for	a	graduating	
engineer	entering	industry	or	in	an	advanced	degree	program.

x  ◾  Preface

Furthermore,	I	believe	that	there	is	enough	material	in	this	textbook	for	two	
courses,	especially	if	the	courses	are	run	as	lecture-laboratory	courses.	The	advan-
tage	of	running	these	courses	(especially	the	first	course)	as	a	lecture-laboratory	
course	is	that	the	instructor	is	 in	the	computer	laboratory	to	help	the	students	
debug	their	programs.	This	includes	the	sample	programs	as	well	as	the	projects.

The	common	core	of	the	book	is	the	introduction	to	the	MATLAB	program-
ming	environment	in	Chapter	2.	Then,	depending	on	the	individual	curriculum	
(but	typically	sophomore	year),	a	course	might	proceed	with	mathematical	tech-
niques	 for	 matrix	 algebra,	 root	 finding,	 integration,	 and	 differential	 equations	
(Chapters	3	through	6).	A	more	advanced	course	(perhaps	in	junior	or	senior	year)	
might	 include	 transform	 techniques	 (Chapters	 7	 and	8)	 and	 advanced	 topics	 in	
curve	fitting	and	optimization	(Chapters	9	and	10).	MATLAB’s	graphical	design	
environment,	Simulink®,	is	introduced	in	Chapter	11	and	could	be	relocated	else-
where	in	the	syllabus.

We	 have	 tried	 to	 make	 each	 chapter	 stand	 alone	 so	 that	 each	 may	 be	 rear-
ranged	based	on	the	preference	of	the	instructor.	In	many	cases,	we	have	used	the	
resistor-inductor-capacitor	(RLC)	circuit	as	an	example,	and	we	have	put	the	basic	
derivation	of	this	circuit	in	Appendix	A	to	minimize	the	chapter	dependencies	and	
facilitate	reordering.	In	all	cases,	we	have	attempted	to	provide	illustrative	examples	
using	modern	topics	in	electrical	engineering.

All	chapters	(except	for	Chapter	1)	contain	projects,	and	some	also	contain	sev-
eral	exercises	that	are	less	difficult	than	the	projects	and	might	be	assigned	prior	to	
a	project	assignment.	All	projects	require	the	student	to	write	a	computer	program,	
most	requiring	the	use	of	MATLAB	built-in	functions	and	solvers.

Additional	 materials,	 including	 down	 loadable	 copies	 of	 all	 examples	 in	 the	
textbook,	are	available	from	the	CRC	press	website:

http://www.crcpress.com/product/isbn/9781439854297
MATLAB	 and	 Simulink	 are	 registered	 trademarks	 of	 The	 MathWorks,	

Incorporated.	For	product	information,	please	contact

The	MathWorks,	Inc.
3	Apple	Hill	Drive
Natick,	MA	01760-2098	USA
Tel:	508-647-7000
Fax:	508-647-7001
E-mail:	info@mathworks.com
Web:	www.mathworks.com

William.Bober
Florida Atlantic University

Department of Civil Engineering

xi

Acknowledgments

We	wish	to	thank	Jonathan	Plant	of	CRC	Press	for	his	confidence	and	encourage-
ment	in	writing	this	textbook.	In	addition,	we	would	like	to	express	thanks	to	Chris	
LeGoff	for	help	in	preparing	the	artwork	and	to	Patrick	Farrell	and	Michael	Rohan	
for	their	technical	expertise.

We	also	wish	to	express	our	deep	gratitude	to	Selma	Bober,	Theresa	Stevens,	
and	Emma	Stevens	for	tolerating	the	many	hours	we	spent	on	the	preparation	of	
the	manuscript,	the	time	that	otherwise	would	have	been	devoted	to	our	families.

xiii

About the Authors

William.Bober,.Ph.D.,	 received	his	B.S.	degree	 in	 civil	 engineering	 from	 the	
City	 College	 of	 New	 York	 (CCNY),	 his	 M.S.	 degree	 in	 engineering	 science	
from	Pratt	Institute,	and	his	Ph.D.	degree	in	engineering	science	and	aerospace	
engineering	 from	 Purdue	 University.	 At	 Purdue	 University,	 he	 was	 on	 a	 Ford	
Foundation	 Fellowship;	 he	 was	 assigned	 to	 teach	 one	 engineering	 course	 each	
semester.	 After	 receiving	 his	 Ph.D.,	 he	 went	 to	 work	 as	 an	 associate	 engineer-
ing	 physicist	 in	 the	 Applied	 Mechanics	 Department	 at	 Cornell	 Aeronautical	
Laboratory	in	Buffalo,	New	York.	After	leaving	Cornell	Labs,	he	was	employed	
as	 an	associate	professor	 in	 the	Department	of	Mechanical	Engineering	at	 the	
Rochester	 Institute	 of	 Technology	 (RIT)	 for	 the	 following	 twelve	 years.	 After	
leaving	RIT,	he	obtained	 employment	 at	Florida	Atlantic	University	 (FAU)	 in	
the	Department	of	Mechanical	Engineering.	More	recently,	he	transferred	to	the	
Department	of	Civil	Engineering	 at	FAU.	While	 at	RIT,	he	was	 the	principal	
author	 of	 a	 textbook,	 Fluid Mechanics,	 published	 by	 John	 Wiley	 &	 Sons.	 He	
has	written	several	papers	for	The International Journal of Mechanical Engineering
Education	 (IJMEE)	 and	 more	 recently	 coauthored	 a	 textbook,	 Numerical and
Analytical Methods with MATLAB®.

Andrew.Stevens,.Ph.D.,.P.E.,	received	his	bachelor’s	degree	from	Massachusetts	
Institute	of	Technology,	his	master’s	degree	from	the	University	of	Pennsylvania,	
and	his	doctorate	from	Columbia	University,	all	in	electrical	engineering.	He	did	
his	 Ph.D.	 thesis	 work	 at	 IBM	 Research	 in	 the	 area	 of	 integrated	 circuit	 design	
for	high-speed	optical	networks.	While	at	Columbia,	he	lectured	a	course	in	the	
core	undergraduate	curriculum	and	won	the	IEEE	Solid-State	Circuits	Fellowship.	
He	 has	 held	 R&D	 positions	 at	 AT&T	 Bell	 Laboratories	 in	 the	 development	 of	
T-carrier	multiplexer	systems	and	at	Argonne	National	Laboratory	in	the	design	of	
radiation-hardened	integrated	circuits	for	colliding	beam	detectors.	Since	2001,	he	
has	been	president	of	Electrical	Science,	an	engineering	consulting	firm	specializing	
in	electrical	hardware	and	software.	He	has	published	articles	in	several	scientific	
journals	and	holds	three	patents	in	the	areas	of	analog	circuit	design	and	computer	
user	interfaces.

1

Chapter 1

Numerical Methods for 
Electrical Engineers

1.1   Introduction
All	disciplines	of	science	and	engineering	use	numerical	methods	for	the	analy-
sis	of	complex	problems.	However,	electrical	engineering	particularly	lends	itself	
to	 computational	 solutions	 due	 to	 the	 highly	 mathematical	 nature	 of	 the	 field	
and	 its	 close	 relationship	 with	 computer	 science.	 It	 makes	 sense	 that	 engineers	
who	 design	 high-speed	 computers	 would	 also	 use	 the	 computers	 themselves	 to	
aid	in	the	design	(a	process	known	as	bootstrapping).	In	fact,	the	entire	field	of	
computer-aided	design	(CAD)	 is	dedicated	 to	 the	creation	and	 improvement	of	
software	tools	to	enable	the	implementation	of	highly	complex	designs.

This	book	describes	various	methods	and	 techniques	 for	numerically	 solving	
a	variety	of	common	electrical	engineering	applications,	including	circuit	design,	
electromagnetic	field	theory,	and	signal	processing.	Classical	engineering	curricula	
teach	a	variety	of	methods	for	solving	these	problems	using	techniques	such	as	linear	
algebra,	differential	equations,	transforms,	vector	calculus,	and	the	like.	However,	
in	many	cases,	the	search	for	a	closed-form	solution	leads	to	extreme	complexity,	
which	can	cause	us	to	lose	physical	insight	into	the	problem.	In	solving	these	same	
problems	numerically,	we	will	often	revert	to	fundamental	physical	relations,	such	
as	the	differential	relationship	between	capacitor	current	and	voltage	or	the	electric	
field	of	a	point	charge.	Often,	a	problem	that	seems	intractable	when	solved	sym-
bolically	can	become	trivial	when	solved	numerically.	And	sometimes,	the	simpler	
numerical	solution	can	be	elusive	because	we	are	so	used	to	thinking	in	terms	of	
advanced	calculus	(a	classic	case	of	not	being	able	to	see	the	forest	but	for	the	trees).

2  ◾  Numerical and Analytical Methods with MATLAB

1.2   Engineering Goals
Some	fundamental	goals	in	engineering	include

	◾ Design	new	products	or	improve	existing	ones

	◾ Improve	manufacturing	efficiency

	◾ Minimize	cost,	power	consumption,	and	nonreturnable	engineering	(NRE)	cost

	◾ Maximize	yield	and	return	on	investment	(ROI)

	◾ Minimize	time	to	market

The	engineer	will	 frequently	use	the	 laws	of	physics	and	mathematics	 to	achieve	
these	goals.

Many	electrical	engineering	processes	involve	expensive	manufacturing	steps	that	
are	both	delicate	and	time	consuming.	For	example,	the	fabrication	of	integrated	cir-
cuits	can	involve	thousands	of	manufacturing	steps,	including	wafer	preparation,	mask	
creation,	photolithography,	diffusion	and	implantation,	dicing,	testing,	packaging,	and	
more.	These	steps	can	take	weeks	or	months	to	perform	at	substantial	expense	and	in	
clean	rooms.	Any	design	mistakes	require	repeating	the	process;	thus,	it	is	our	job	as	
designers	to	model	and	simulate	designs	as	much	as	possible	in	advance	of	manufacture	
to	eliminate	flaws	and	minimize	the	iterations	necessary	to	produce	the	final	product.

Using	integrated	circuit	design	as	an	example,	we	might	use	computers	for	the

	 a.	Design	stage:	Solve	mathematical	models	of	physical	phenomena	(e.g.,	pre-
dicting	the	behavior	of	PN	junctions)

	 b.	Testing	stage:	Store	and	analyze	experimental	data	(e.g.,	comparing	the	labo-
ratory-measured	actual	behavior	of	PN	junctions	to	the	prediction)

	 c.	Manufacturing	stage:	Controlling	machine	operations	to	fabricate	and	test	
silicon	wafers	and	dice

1.3   Programming Numerical Solutions
Physical	phenomena	are	always	described	by	a	set	of	governing	equations,	and	numeri-
cal	methods	can	be	used	to	solve	the	set	of	governing	equations	even	in	the	absence	of	
a	closed-form	solution.	Numerical	methods	invariably	involve	the	computer,	and	the	
computer	performs	arithmetic	operations	on	discrete	numbers	in	a	defined	sequence	of	
steps.	The	sequence	of	steps	is	defined	in	the	program.	A	useful	solution	is	obtained	if

	 a.	The	mathematical	model	accurately	represents	the	physical	phenomena;	that	
is,	the	model	has	the	correct	governing	equations.

	 b.	The	numerical	method	is	accurate.
	 c.	The	numerical	method	is	programmed	correctly.

This	text	is	mainly	concerned	with	items	(b)	and	(c).

Numerical Methods for Electrical Engineers  ◾  3

The	advantage	of	using	the	computer	is	that	it	can	carry	out	many	calculations	in	
a	fraction	of	a	second;	at	the	time	of	this	writing,	computer	speeds	are	measured	in	
teraflops	(trillions	of	floating	point	operations	per	second).	However,	to	leverage	this	
power,	we	need	to	write	a	set	of	instructions,	that	is,	a	program.	For	the	problems	of	
interest	in	this	book,	the	digital	computer	is	only	capable	of	performing	arithmetic,	
logical,	 and	graphical	operations.	Therefore,	 arithmetic	procedures	must	be	devel-
oped	for	solving	differential	equations,	evaluating	integrals,	determining	roots	of	an	
equation,	solving	a	system	of	linear	equations,	and	so	on.	The	arithmetic	procedure	
usually	involves	a	set	of	algebraic	equations.	A	computer	solution	for	such	problems	
involves	developing	 a	 computer	program	 that	defines	 a	 step-by-step	procedure	 for	
obtaining	an	answer	to	the	problem	of	interest.	The	method	of	solution	is	called	an	
algorithm.	Depending	on	the	particular	problem,	we	might	write	our	own	algorithm,	
or	as	we	shall	see,	we	can	also	use	the	algorithms	built	into	a	package	like	MATLAB®	
to	perform	well-known	algorithms	such	as	 the	Runge-Kutta	method	for	 solving	a	
set	of	ordinary	differential	equations	or	use	Simpson’s	rule	for	evaluating	an	integral.

1.4   Why MATLAB?
MATLAB	was	originally	written	by	Dr.	Cleve	Moler	at	University	of	New	Mexico	
in	the	1970s	and	was	commercialized	by	MathWorks	in	the	1980s.	It	is	a	general-
purpose	numerical	package	that	allows	complex	equations	to	be	solved	efficiently	
and	 subsequently	 generate	 tabular	 or	 graphical	 output.	 While	 there	 are	 many	
numerical	 packages	 available	 to	 electrical	 engineers,	 many	 are	 highly	 focused	
toward	a	particular	application	(e.g.,	SPICE	for	modeling	electronic	circuits).	Also,	
MATLAB	is	not	to	be	confused	with	CAD	software	for	schematic	capture,	layout,	
or	physical	design,	although	this	software	often	integrates	with	an	accompanying	
numerical	package.

Originally,	MATLAB	was	a	command-line	program	that	ran	on	MS-DOS	and	
UNIX	hosts.	As	computers	have	evolved,	so	has	MATLAB,	and	modern	editions	of	
the	program	run	in	windowed	environments.	As	of	the	time	of	this	writing,	MATLAB	
R2011b	runs	natively	on	Microsoft	Windows,	Apple	MacOS,	and	Linux.	In	this	text,	
we	 assume	 that	 you	 are	 running	 MATLAB	 on	 your	 local	 machine	 in	 a	 Microsoft	
Windows	environment.	It	should	be	straightforward	for	non-Windows	users	to	translate	
the	usage	descriptions	to	their	preferred	environment.	In	any	case,	these	differences	are	
largely	limited	to	the	cosmetics	and	presentation	of	the	program	and	not	the	MATLAB	
commands	themselves.	All	versions	of	MATLAB	(on	any	platform)	use	the	same	com-
mand	set,	and	the	Command	Window	on	all	platforms	should	behave	identically.

MATLAB	is	offered	with	accompanying	“toolboxes”	at	additional	cost	to	the	user.	
A	wide	variety	of	toolboxes	are	available	in	fields	such	as	control	systems,	image	pro-
cessing,	radio	frequency	(RF)	design,	signal	processing,	and	more.	However,	in	this	
text,	we	largely	focus	on	fundamental	numerical	concepts	and	limit	ourselves	to	basic	
MATLAB	functionality	without	requiring	the	purchase	of	any	additional	toolboxes.

4  ◾  Numerical and Analytical Methods with MATLAB

1.5   The MATLAB Programming Language
There	are	many	methodologies	for	computer	programming,	but	the	tasks	at	hand	
boil	down	to	the	following:

	 a.	Study	the	problem	to	be	programmed.
	 b.	List	the	algebraic	equations	to	be	used	in	the	program	based	on	the	known	

physical	phenomena	and	geometries	of	the	problem.
	 c.	Create	 a	 general	 design	 for	 the	 program	 flow	 and	 algorithms,	 perhaps	 by	

creating	a	flowchart	or	by	writing	high-level	pseudocode	to	outline	the	main	
program	modules.

	 d.	Carry	out	a	sample	calculation	by	hand	to	prove	the	algorithm.
	 e.	Write	the	program	using	the	list	of	algebraic	equations	and	the	outline.
	 f.	Debug	the	program	by	running	it	and	fixing	any	syntax	errors.
	 g.	Test	the	program	by	running	it	using	parameters	with	a	known	(or	intui-

tive)	solution.
	 h.	Iterate	over	these	steps	to	refine	and	further	debug	the	algorithm	and	pro-

gram	flow.
	 i.	If	necessary,	revise	the	program	to	obtain	faster	performance.

Experienced	 programmers	 might	 omit	 some	 of	 these	 steps	 (or	 do	 them	 in	 their	
head),	but	the	overall	process	resembles	any	engineering	project:	design,	create	a	
prototype,	test,	and	iterate	the	process	until	a	satisfactory	product	is	achieved.

MATLAB	may	be	considered	a	programming	or	scripting	language	unto	itself,	
but	like	every	programming	language,	it	has	the	following	core	components:

	 a.	Data	types,	i.e.,	formats	for	storing	numbers	and	text	in	the	program	(e.g.,	
integers,	double-precision	floating	point,	strings,	vectors,	matrices)

	 b.	Operators	(e.g.,	commands	for	addition,	multiplication,	cosine,	log)
	 c.	Control	flow	directives	for	making	decisions	and	performing	iterative	opera-

tions	(e.g.,	if,	while,	switch)
	 d.	Input/output	(“I/O”)	commands	for	receiving	input	from	a	user	or	file	and	

for	generating	output	to	a	file	or	the	screen	(e.g.,	fprintf,	fscanf,	plot,	
stem,	surf)

MATLAB	borrows	many	constructs	 from	other	 languages.	For	example,	 the	
while,	switch,	and	fprintf	commands	are	 from	the	C	programming	 lan-
guage	(or	its	descendents	C++,	Java,	and	Perl).	However,	there	are	some	fundamen-
tal	differences	as	well.	For	example,	MATLAB	stores	 functions	 (known	 in	other	
languages	as	“subroutines”)	in	separate	files.	The	first	entry	in	a	vector	(known	in	
most	other	languages	as	an	array)	is	indexed	by	the	number	1	and	not	0.	However,	
the	biggest	difference	is	that	all	MATLAB	variables	are	vectors,	thus	providing	the	
ability	to	manipulate	large	amounts	of	data	with	a	terse	syntax	and	allowing	for	the	

Numerical Methods for Electrical Engineers  ◾  5

solution	of	complicated	problems	in	just	a	few	lines	of	code.	In	addition,	because	
MATLAB	is	normally	run	interactively,	it	is	also	rich	in	presentation	functions	to	
display	sophisticated	plots	and	graphs.

1.6   Conventions in This Book
We	use	the	following	typographical	conventions	in	this	text:

	◾ All	input/output	to	and	from	MATLAB	are	in	typewriter	font.

	◾ In	cases	where	you	are	typing	directly	into	the	computer,	the	typed	text	is	
displayed	in	bold.

We	illustrate	this	in	the	following	example,	for	which	we	use	MATLAB	to	find
the	value	 =

πsin
4

x :

	 	 >>	x = sin(pi/4)
	 	 x	=
	 	 0.7071

In	this	case,	>>	represents	MATLAB’s	prompt,	x=sin(pi/4)	represents	text	typed	
into	the	MATLAB	command	window,	and	x	=	0.7071	represents	MATLAB’s	
response.

1.7   Example Programs
The	example	programs	in	this	book	may	be	downloaded	from	the	publisher’s	Web	
site	at	http://www.crcpress.com/product/isbn/9781439854297.	Students	may	then	
run	the	example	programs	on	their	own	computer	and	see	the	results.	It	also	may	
be	beneficial	for	students	to	type	in	a	few	of	the	sample	programs	(along	with	some	
inevitable	syntax	and	typographical	errors),	thereby	giving	them	the	opportunity	
to	see	how	MATLAB	responds	to	program	errors	and	subsequently	learn	what	they	
need	to	do	to	fix	the	problem.

7

Chapter 2

MATLAB Fundamentals

2.1   Introduction
MATLAB•	 is	 a	 software	 program	 for	 numeric	 computation,	 data	 analysis,	 and	
graphics.	One	advantage	that	MATLAB	has	for	engineers	over	programming	lan-
guages	such	as	C	or	C++	 is	that	the	MATLAB	program	includes	functions	that	
numerically	solve	large	systems	of	linear	equations,	systems	of	ordinary	differential	
equations,	roots	of	 transcendental	equations,	 integrals,	 statistical	problems,	opti-
mization	problems,	control	systems	problems,	and	many	other	types	of	problems	
encountered	in	engineering.	MATLAB	also	offers	toolboxes	(which	must	be	pur-
chased	separately)	that	are	designed	to	solve	problems	in	specialized	areas.

In	this	chapter,	the	following	items	are	covered:

	◾ The	MATLAB	desktop	environment

	◾ Constructing	a	script	(also	called	a	program)	in	MATLAB

	◾ MATLAB	 fundamentals	 and	 basic	 commands,	 including	 clear,	 clc,	
colon	 operator,	 arithmetic	 operators,	 trigonometric	 functions,	 logarithmic	
and	exponential	 functions,	 and	other	useful	 functions	 such	as	max,	min,	
and	length

	◾ Input/output	in	MATLAB,	including	the	input	and	fprintf	statements

	◾ MATLAB	 program	 flow,	 including	 for	 loops,	 while	 loops,	 if		and	
elseif	statements,	and	the	switch	group	statement

	◾ MATLAB	function	files	and	anonymous	functions

	◾ MATLAB	graphics,	including	the	plot	and	subplot	commands

8  ◾  Numerical and Analytical Methods with MATLAB

	◾ Working	with	matrices

	◾ Working	with	functions	of	a	vector

	◾ Working	with	characters	and	strings

	◾ Interpolation	and	MATLAB’s	interp1	function

	◾ MATLAB’s	textscan	function

	◾ Exporting	MATLAB	data	to	other	software,	such	as	Microsoft	Excel

	◾ Debugging	a	program

Many	example	scripts	are	 included	throughout	the	chapter	to	 illustrate	these	
various	topics.

2.2   The MATLAB Windows
Under	Microsoft	Windows,	MATLAB	may	be	started	via	the	Start	menu	or	clicking	
on	the	MATLAB	icon	on	the	desktop.	On	startup,	a	new	window	will	open	contain-
ing	the	MATLAB	“desktop”	(not	to	be	confused	with	the	Windows	desktop),	and	
one	or	more	MATLAB	windows	will	open	within	the	desktop	(see	Figure 2.1	for	the	

Figure 2.1  MATLAB desktop windows. (From MATLAB, with permission.)

MATLAB Fundamentals  ◾  9

default	configuration).	The	main	windows	are	the	Command	window,	Command	
History,	Current	Folder,	and	Workspace.	You	can	customize	the	MATLAB	windows	
that	appear	on	startup	by	opening	the	Desktop	menu	and	checking	(or	unchecking)	
the	windows	that	you	wish	to	appear	on	the	MATLAB	desktop.	Figure 2.1	shows	the	
Command	window	(in	the	center),	the	Current	Folder	(on	the	left),	the	Workspace	
(on	the	top	right),	the	Command	History	(on	the	bottom	right),	and	the	Current	
Folder	box	(in	the	icon	toolbar,	second	from	the	top,	just	above	the	Command	win-
dow).	These	windows	and	the	current	folder	box	are	summarized	as	follows:

	◾ Command Window:	In	the	Command	window	you	can	enter	commands	and	
data,	 make	 calculations,	 and	 print	 results.	 You	 can	 write	 a	 program	 in	 the	
Command	 window	 and	 execute	 the	 program.	 However,	 writing	 a	 program	
directly	into	the	Command	window	is	discouraged	because	it	will	not	be	saved,	
and	if	an	error	is	made,	the	entire	program	must	be	retyped.	By	using	the	up	
arrow	(↑)	key	on	your	keyboard,	the	previous	command	can	be	retrieved	(and	
edited)	for	reexecution.

	◾ Command History Window: This	window	lists	a	history	of	the	commands	that	
you	have	executed	in	the	Command	window.

 ◾ Current Folder Box: 	 This	 box	 lists	 the	 active	 Current	 Folder	 (also	 called	
the	Current	Directory	in	older	versions	of	MATLAB).	To.run.a.MATLAB.
script.(program),	the.script.of.interest.needs.to.be.in.the.folder.listed.in.
this.box..By	clicking	on	the	down	arrow		within	the	box,	a	drop-down	menu	
will	appear	that	contains	names	of	folders	that	you	have	previously	used.	This	
will	allow	you	to	select	the	folder	in	which	the	script	of	interest	resides	(see	
Figure	2.2).	If	the	folder	containing	the	script	of	interest	is	not	listed	in	the	
drop-down	menu,	you	can	click	on	the	adjacent	little	box	containing	three	
dots,	which	allows	you	to	browse	for	the	folder	containing	the	program	of	
interest	(see	Figure	2.3).

	◾ Current Folder Window	 (on	 the	 left):	This	window	 lists	 all	 the	files	 in	 the	
Current	Folder.	By	double	clicking	on	a	file	in	this	window,	the	file	will	open	
within	MATLAB.

	◾ Script Window (also	 called	 the	Editor	window	 in	older	MATLAB	versions):	
To	open	this	window,	use	the	File	menu	at	the	top	of	the	MATLAB	desktop	
and	choose	New	and	then	Script	(or	in	older	versions	of	MATLAB,	click	on	
New M-File)	(see	Figure 2.4).	The	Script	Window	may	be	used	to	create,	edit,	
and	execute	MATLAB	scripts.	Scripts	 are	 then	 saved	as	M-Files.	These	files	
have	the	extension	.m,	such	as	circuit.m.	To	execute	the	program,	you	can	click	
the	Save and Run	 icon	 (the	green	arrow)	 in	 the	Script	window	or	 return	 to	
the	Command	window	and	type	in	the	name	of	the	program	(without	the	.m	
extension).

10  ◾  Numerical and Analytical Methods with MATLAB

Figure 2.3  Drop-down menu for selecting folder containing program of interest. 
(From MATLAB, with permission.)

Figure 2.2  Drop-down menu  in  the Current  Folder window.  (From MATLAB, 
with permission.)

MATLAB Fundamentals  ◾  11

2.3   Constructing a Program in MATLAB
This	list	summarizes	the	steps	for	writing	your	first	MATLAB	program:

	 1.	Start	the	MATLAB	desktop	via	the	Windows	Start	menu	or	by	double	click-
ing	on	the	MATLAB	icon	on	the	desktop.

	 2.	Click	on	File-New-Script.	This	brings	up	a	new	Script	window.
	 3.	Type	your	script	into	the	Script	window.
	 4.	Save	the	script	by	clicking	on	the	Save	icon	in	the	icon	toolbar	or	clicking	on	

File	in	the	menu	bar	and	selecting	Save	in	the	drop	down	menu.	In	the	dialog	
box	that	appears,	select	the	folder	where	the	script	is	to	reside	and	type	in	a	
file	name	of	your	own	choosing.	It	is	best	to	use	a	folder	that	contains	only	
your	own	MATLAB	scripts.

	 5.	Before	you	can	run	your	script,	you	need	to	go	to	the	Current	Folder	box	at	
the	 top	of	 the	MATLAB	desktop,	 clicking	on	 the	down	arrow	and	 in	 the	
drop	down	menu,	selecting	(or	browsing	to)	the	folder	that	contains	your	new	
script.

	 6.	You	may	run	your	script	from	the	Script	window	by	clicking	on	the	Save and
Run	green	arrow	in	the	icon	toolbar	(see	Figure	2.5)	or	alternatively,	from	the	

Figure 2.4  Opening up the Script window. (From MATLAB, with permission.)

12  ◾  Numerical and Analytical Methods with MATLAB

command	window	by	typing	the	script	name	(without	the	.m	extension)	after	
the	MATLAB	prompt	 (>>).	 For	 example,	 if	 the	program	has	 been	 saved	 as	
circuit.m,	 then	 type	circuit	 after	 the	MATLAB	prompt	 (>>),	 as	 shown	
below:

	 >> circuit

If	you	need	additional	help	getting	started,	you	can	click	on	Help	in	the	menu	
bar	in	the	MATLAB	window	and	then	select	Product Help	from	the	drop-down	
menu.	This	will	bring	up	the	help	window	as	shown	in	Figure 2.6.	By	clicking	on	
the	little	‘+’	box	next	to	the	MATLAB	listing	in	the	left	column,	you	will	get	addi-
tional	help	topics	as	shown	in	Figure 2.7.	Once	you	select	one	of	the	help	topics,	the	
help	information	will	be	in	the	right-hand	window.	You	can	also	type	in	a	topic	in	
the	search	window	to	obtain	information	on	that	topic.

2.4   MATLAB Fundamentals

	◾ Variable	names

	− must	start	with	a	letter.

Save and Run
button

Figure 2.5  Save and run button in the script window. (From MATLAB, with permission.)

MATLAB Fundamentals  ◾  13

	− can	contain	letters,	digits	and	the	under	score	character.

	− can	be	of	any	length,	but	must	be	unique	within	the	first	19	characters.

	 Note:	Do	not	use	a	variable	name	that	is	the	same	name	as	the	name	of	a	file,	
a	MATLAB	function,	or	a	self	written	function.

	◾ MATLAB	command	names	and	variable	names	are	case	sensitive.	Use	lower	
case	letters	for	commands.

	◾ Semicolons	 are	 usually	 placed	 after	 variable	 definitions	 and	 program	
statements	when	you	do	not	want	the	command	echoed	to	the	screen.	In	
the	 absence	 of	 a	 semicolon,	 the	defined	 variable	 appears	 on	 the	 screen.	
For	 example,	 if	 you	 entered	 the	 following	 assignment	 in	 the	 command	
window:

	 >>	A = [3 4 7 6]

Figure 2.6  Product help window. (From MATLAB, with permission.)

14  ◾  Numerical and Analytical Methods with MATLAB

	 In	the	command	window,	you	would	see

	 A	=
	 3	4	7	6
	 >>

	 	 Alternatively,	if	you	add	the	semicolon,	then	your	command	is	executed	
but	 there	 is	 nothing	 printed	 to	 the	 screen,	 and	 the	 prompt	 immediately	
appears	for	you	to	enter	your	next	command:

	 >>	A = [3 4 7 6];
	 >>

	◾ Percent	sign	(%)	is	used	for	a	comment	line.

	◾ A	separate	Graphics	window	opens	to	display	plots	and	graphs.

	◾ There	are	several	commands	for	clearing	windows,	clearing	the	work	space	
and	stopping	a	running	program.

Figure 2.7  Getting started in product help window. (From MATLAB, with permission.)

MATLAB Fundamentals  ◾  15

	 	 clc	 	 clears	the	Command	window
	 	 clf	 	 clears	the	Graphics	window
	 	 clear	 	 removes	all	variables	and	data	from	the	workspace
	 	 Ctl-C	 	 aborts	a	program	that	may	be	running	in	an	infinite	loop

	◾ the	quit	or	exit	commands	terminate	MATLAB.

	◾ the	save	command	saves	variables	or	data	in	the	workspace	of	the	current	
directory.	The	file	name	containing	the	data	will	have	.mat	extension.

	◾ User-defined	functions	(also	called	self-written	functions)	are	also	saved	as	M-files.

	◾ Scripts	and	functions	are	saved	as	ASCII	text	files.	Thus,	they	may	be	written	
either	in	the	built-in	Script	window,	Notepad,	or	any	word	processor	(saved	
as	a	text	file).

	◾ The	basic	data	structure	in	MATLAB	is	a	matrix.

	◾ A	matrix	 is	 surrounded	by	brackets	 and	may	have	 an	arbitrary	number	of	

rows	and	columns;	for	example,	the	matrix	 =
1 3

6 5
A 	may	be	entered	into	

MATLAB	as

	 >>	A = [1 3	<enter>
	 	 6 5];	<enter>

	 or

	 >>	A = [1 3 ; 6 5];	<enter>

	 where	 the	 semicolon	 within	 the	 brackets	 indicates	 the	 start	 of	 a	 new	 row	
within	the	matrix.

	◾ A	matrix	of	one	row	and	one	column	is	a	scalar;	for	example:

	 >>	A = [3.5];

	 Alternatively,	MATLAB	also	accepts	A = 3.5	(without	brackets)	as	a	scalar.

	◾ A	matrix	consisting	of	one	row	and	several	columns	or	one	column	and	sev-
eral	rows	is	considered	a	vector;	for	example:

	 >>	A = [2 3 6 5] (row	vector)

	 >>	A = [2
3
6
5]	(column	vector)

16  ◾  Numerical and Analytical Methods with MATLAB

A	matrix	can	be	defined	by	including	a	second	matrix	as	one	of	the	elements;	
example:

	 >> B = [1.5 3.1];
	 >> C = [4.0 B];	 (thus	C	=	[4.0	1.5	3.1])

	◾ A	specific	element	of	matrix	C	can	be	selected	by	writing

	 	 >>	a = C(2);	(thus	a =	1.5)

	 If	you	wish	to	select	the	last	element	in	a	vector,	you	can	write

	 	 >>	a = c(end);.(thus	a =	3.1)

	◾ The	colon	operator	(:)	may	be	used	to	create	a	new	matrix	from	an	existing	
matrix;	for	example:

	

if

5 7 10

2 5 2

1 3 1

A=

	 	 then gives
5
2
1

x= A(:,1) x =

	 The	colon	in	the	expression	A(:,1)	implies	all	the	rows	in	matrix	A,	and	
the	1 implies	column	1.

	 gives =

7 10

5 2

3 1

x= A(:,2:3) x

	 The	first	colon	in	the	expression	A(:,2:3)	implies	all	the	rows	in	A,	and	
the	2:3	implies	columns	2	and	3.

	 We	can	also	write

	 y	=	A(1,:),	which	gives		y		=		[5				7				10]

The	1	implies	the	first	row,	and	the	colon	implies	all	the	columns.

MATLAB Fundamentals  ◾  17

	◾ A	colon	can	also	be	used	to	generate	a	series	of	numbers.	The	format	is:

n	=	starting	value	:	step	size	:	final	value.	If	omitted,	the	default	step	size	
is	1.	For	example:

	
gives 1 2 3 4 5 6 7 8 .n = 1:8 n []=

To	increment	in	steps	of	2,	use

	 gives 1 3 5 7n=1:2:7 n []=

	 These	types	of	expressions	are	often	used	in	a	for	loop,	which	is	discussed	
later	in	this	chapter.

	◾ Arithmetic	operators:

+ addition

- subtraction
* multiplication
/ division
^ exponentiation

	◾ To	display	a	variable	value,	just	type	the	variable	name	without	the	semico-
lon,	and	the	variable	will	appear	on	the	screen.

	 Examples	(try	typing	these	statements	into	the	Command	window):

 clc;
 x = 5;
 y = 10;
 z = x + y
 w = x – y
 z = y/x
 z = x*y
 z = x^2

	 	 Note	that	in	the	arithmetic	statement	z	=	x	+	y,	the	values	for	x	and	y	
were	assigned	in	the	two	prior	lines.	In	general,	all	variables	on	the	right-hand	
side	of	an	arithmetic	statement	must	be	assigned	a	value	before	they	are	used.

	◾ Special	values:

pi π

i or j −1

inf ∞

ans the last computed unassigned result to an expression typed
in the Command window

18  ◾  Numerical and Analytical Methods with MATLAB

	 Examples	(try	typing	these	statements	in	the	command	window):

	 x = pi;
 z = x/0	(gives	inf)

	◾ Trigonometric	functions:

sin sine
sinh hyperbolic sine
asin inverse sine
asinh inverse hyperbolic sine
cos cosine
cosh hyperbolic cosine
acos inverse cosine
acosh inverse hyperbolic cosine
tan tangent
tanh hyperbolic tangent
atan inverse tangent
atan2 four-quadrant inverse tangent
atanh inverse hyperbolic tangent
sec secant

sech hyperbolic secant
asec inverse secant
asech inverse hyperbolic secant
csc cosecant
csch hyperbolic cosecant
acsc inverse cosecant
acsch inverse hyperbolic cosecant
cot cotangent
coth hyperbolic cotangent
acot inverse cotangent
acoth inverse hyperbolic cotangent

	 	 The	arguments	of	these	trigonometric	functions	are	in	radians.	However,	
the	arguments	can	be	made	in	degrees	if	a	“d” is	placed	after	the	function	
name,	such	as	sind(x).

	 	 Examples	(try	typing	these	statements	into	the	Command	window):

	 clc;
	 x = pi/2;
	 y = sin(x)

MATLAB Fundamentals  ◾  19

	 z = atan(1.0)
	 x = 30;
	 w = sind(x)
	 z = atand(1.0)

	◾ Exponential,	square	root,	and	error	functions:

exp exponential

log natural logarithm

log10 common (base 10) logarithm

sqrt square root

erf error function

	 Examples	(try	typing	these	statements	into	the	Command	window):

	 clc;
	 x = 2.5;
	 y = exp(x)
	 z = log(y)
	 w = sqrt(x)

	◾ Complex	numbers:

	 Complex	numbers	may	be	written	in	two	forms:	Cartesian,	such	as	z	=	x	
+	yj;	or	polar,	such	as	z	=	r	*	exp(j*theta).	Note	that	we	use	j	for
	 −1	throughout	this	text.	However,	MATLAB	allows	the	use	of	i	for	 −1	
as	well.	Note:	i	and	j	are	also	legal	MATLAB	variable	names	which	are	
often	used	within	loops.	To	avoid	confusion,	programs	which	involve	com-
plex	numbers	should	not	use	i	or	j	as	variable	names.

abs absolute value (magnitude)

angle phase angle (in radians)

conj complex conjugate

imag complex imaginary part

real complex real part

	 Examples	(try	typing	these	statements	into	the	Command	window):

	 clc;
	 z1 = 1 + j;
	 z2 = 2 * exp(j * pi/6)
	 y = abs(z1)

20  ◾  Numerical and Analytical Methods with MATLAB

	 w = real(z2)
	 v = imag(z1)
	 phi = angle(z1)

	◾ Other	useful	functions:

length(X) Gives the number of elements in the vector X.

size(X) Gives the size (number of rows and the number of
columns) of matrix X.

sum(X) For vectors, sum(X) gives the sum of the elements in X.
For matrices, gives a row vector containing the sum of
the elements in each column of the matrix.

max(X) For vectors, max(X) gives the maximum element in X.
For matrices, max(X) gives a row vector containing the
maximum in each column of the matrix. If X is a column
vector, it gives the maximum value of X.

min(X) Same as max(X)	except it gives the minimum element
in X.

sort(X) For vectors, sort(X) sorts the elements of X in
ascending order. For matrices, sort(X) sorts each
column in the matrix in ascending order.

factorial(n) n ! = 1 × 2 × 3 × ⋯ × n

mod(x,y) modulo operator, gives the remainder resulting from
the division of x by y. For example, mod(13,5)	=	3,
that is, 13 ÷ 5 gives 2 plus remainder of 3 (the 2 is
discarded). As another example,	mod(n,2)	gives zero
if n is an even integer and one if n is an odd integer.

	 Examples	(try	typing	these	statements	into	the	Command	window):

	 clc;
	 A = [2 15 6 18];
	 length(A)
	 y = max(A)
	 z = sum(A)
	 A = [2 15 6 18; 15 10 8 4; 10 6 12 3];
	 x = max(A)
	 y = sum(A)
	 size(A)
	 mod(21,2)
	 mod(20,2)

	◾ A	list	of	the	complete	set	of	elementary	math	functions	can	be	obtained	by	
typing	help elfun	in	the	Command	window.

MATLAB Fundamentals  ◾  21

	◾ Sometimes,	it	is	necessary	to	preallocate	a	matrix	of	a	given	size.	This	can	be	
done	by	defining	a	matrix	of	all	zeros	or	ones;	for	example:

	

=

0 0 0

0 0 0

0 0 0

A = zeros(3)

	

0 0

0 0

0 0

B = zeros(3,2)=

	 	

1 1 1

1 1 1

1 1 1

C = ones(3)=

	

1 1 1

1 1 1
D = ones(2,3)=

	 	 The	function	to	generate	the	identity	matrix	(main	diagonal	of	ones;	all	
other	elements	are	zero)	is	eye;	example:

	 	

1 0 0

0 1 0

0 0 1

I = eye(3)=

2.5   MATLAB Input/Output
	◾ If	you	wish	to	have	your	program	pause	to	accept	input	from	the	keyboard,	

use	the	input	function;	for	example,	to	enter	a	2	by	3	matrix,	use

	 	 Z	=	input('Enter	values	for	Z	in	brackets	\n');

	 then	type	in:

	 	 [5.1 6.3 2.5; 3.1 4.2 1.3]

22  ◾  Numerical and Analytical Methods with MATLAB

	 Thus,

	
=

5.1 6.3 2.5

3.1 4.2 1.3
Z

	 Note	that	the	argument	to	input()	is	a	character	string	enclosed	by	single	
quotation	marks,	which	will	be	printed	to	the	screen.	The	\n	(newline)	tells	
MATLAB	to	move	 the	cursor	 to	 the	next	 line.	Alternatively,	\t	 (tab)	 tells	
MATLAB	to	move	the	cursor	several	spaces	along	the	same	line.

	 	 If	 you	wish	 to	 enter	 text	data	 to	input,	 you	need	 to	 enclose	 the	 text	
with	single	quotation	marks.	However,	you	can	avoid	this	requirement	by	
entering	 a	 second	argument	of	's'	 to	input	 as	 shown	 in	 the	 following	
statement:

	 response	=	input('Plot	function?	(y/n):\n',	's');

	 	 In	this	case,	the	user	can	respond	with	either	a	y	or	n	(without	single	quo-
tation	marks).

	 	 Examples	(try	typing	these	statements	into	the	Command	window):

	 z = input ('Enter a 2x3 matrix of your choosing\n')

	 name=input('Enter name enclosed by single quote marks:')

 response = input('Plot function? (y/n):\n', 's');

	◾ The	disp	 command	prints	 just	 the	 contents	of	 a	matrix	or	 alphanumeric	
information;	for	example	(assuming	that	matrix	X	has	already	been	entered	
in	the	Command	window):

	 >>	 x = [3.6 7.1]; disp(X); disp('volt');

	 The	following	will	be	displayed	on	the	screen:

	 	 3.6000	7.1000
	 	 volt
	 >>

	◾ The	fprintf	 command	prints	 formatted	 text	 to	 the	 screen	or	 to	a	file;	
for	example:

	 >>	I = 2.2;
	 >>	fprintf ('The current is %f amps \n', I);

