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Preface
There is a staggering number of research studies on the vibration of structures. 
Based on a simple search using the Science Citation Index, the numbers of references 
associated with the following words are 1,000 for “vibration and string,” 2,000 for 
“vibration and membrane,” 7,000 for “vibration and plate,” and 16,000 for “vibration 
and beam, bar or rod.” This clearly illustrates the importance of the subject of free 
and forced vibrations for analysis and design of structures and machines.

The free vibration of a structural member eventually ceases due to energy dissipation, 
either from the material strains or from the resistance of the surrounding fluid. The fre-
quency of such a system will be lowered by damping. But since damping also causes the 
amplitude to decay, the resonance with a forced excitation of a strongly damped system 
will not be as important as the weakly damped system. In this book, we shall consider the 
undamped system, which models the weakly damped system, and only focus on the exact 
solutions for free transverse vibration of strings, bars, membranes, and plates because 
these solutions elucidate the intrinsic, fundamental, and unexpected features of the solu-
tions. They also serve as benchmarks to assess the validity, convergence, and accuracy 
of numerical methods and approximate analytical methods. We define exact solutions to 
mean solutions in terms of known functions as well as those solutions determined from 
exact characteristic equations. However, this book will not cover longitudinal in-plane/
translational vibrations, shear waves, torsional oscillations, infinite domains (wave propa-
gation), discrete systems (such as linked masses), and frames. The exact solutions for a 
wide range of differential equations are useful to academics teaching differential equa-
tions, as they may draw the practical problems associated with the differential equations.

There are seven chapters in this book. Chapter 1 gives the introduction to struc-
tural vibration and the importance of the natural frequencies in design. Chapter 2 
presents the vibration solutions for strings. Chapter 3 presents the vibration solu-
tions for membranes. Chapter 4 deals with vibration of bars and beams. Chapter 5 
gives the vibration solutions for isotropic plates with uniform thickness. Chapter 6 
deals with plates with complicating effects such as the presence of in-plane forces, 
internal spring support, internal hinge, elastic foundation, and nonuniform thickness 
distribution. Chapter 7 presents vibration solutions for nonisotropic plates, such as 
orthotropic, sandwich, laminated, and functionally graded plates.

Owing to the vastness of the literature, there may be relevant papers that escaped 
our search in the Science Citation Index. To these authors, we offer our sincere apol-
ogy. Such omissions shall be rectified in a future edition.

Finally, we wish to express our thanks to Dr. Tay Zhi Yung and Mr. Ding Zhiwei 
of the National University of Singapore for checking the manuscript and plotting 
the vibration mode shapes and also to Dr. Liu Bo of The Solid Mechanics Research 
Centre, Beihang University, China, for contributing the sections on rectangular iso-
tropic and orthotropic Mindlin plates.

C. Y. Wang and C. M. Wang
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1 Introduction to 
Structural Vibration

1.1 WHAT IS VIBRATION?

Vibration may be regarded as any motion that repeats itself after an interval of time, 
or one may define vibrations as oscillations of a system about a position of equilib-
rium (Kelly 2007). Examples of vibratory motion include the swinging of a pen-
dulum, the motion of a plucked guitar string, tidal motion, the chirping of a male 
cicada by rubbing its wings, the flapping of airplane wings in turbulence, the sooth-
ing motion of a massage chair, or the swaying of a slender tall building due to wind 
or an earthquake.

The key parameters in describing vibration are amplitude, period, and frequency. 
The amplitude of vibration is the maximum displacement of a vibrating particle or 
body from its position of equilibrium, and this is related to the applied energy. The 
period is the time taken for one complete cycle of the motion. The frequency is the 
number of cycles per unit time or the reciprocal of the period. The angular (or cir-
cular) frequency is the product of the frequency and 2π, and hence its unit is radians 
per unit time.

Vibrations may be classified as either free vibration or forced vibration. Free vibra-
tion takes place when a system oscillates under the action of forces inherent within 
the system itself—when externally imposed forces are absent. A system under free 
vibration will vibrate at one or more of its natural frequencies, which are dependent 
on the mass and stiffness distributions as well as the boundary conditions. In con-
trast, forced vibration occurs when an external periodic force is applied to the system.

When the effects of friction can be neglected, the vibrations are referred to as 
undamped. Realistically, all vibrations are damped to some degree. If a free vibra-
tion is only slightly damped, its amplitude gradually decreases until the motion 
comes to an end after a certain time. If the damping is sufficiently large, vibration is 
suppressed, and the system then quickly regains its original equilibrium position. A 
damped forced vibration is maintained so long as the periodic force that causes the 
vibration is applied. The amplitude of the vibration is affected by the magnitude of 
the damping forces.

From an energy viewpoint, vibration may be defined as a phenomenon that 
involves alternating interchange of potential energy and kinetic energy. If the system 
is damped, then some energy is dissipated in each cycle of the vibration, and the 
vibratory motion will ultimately come to an end. If a steady motion of vibration is 
to be maintained, then the energy dissipated due to damping has to be compensated 
by an external source.
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1.2  BRIEF HISTORICAL REVIEW ON VIBRATION OF 
STRINGS, MEMBRANES, BEAMS, AND PLATES

According to Rao (1986, 2005), it is likely that the interest in vibration dates back to 
the time of the discovery of early musical instruments such as whistles, strings, or 
drums, which produce sound from vibration. Drawings of stringed instruments have 
been found on the walls of Egyptian tombs that were built around 3000 BC.

In the course of seeking why some notes sounded more pleasant than others, the 
Greek mathematician and philosopher Pythagoras (582–507 BC) conducted experi-
ments on vibrating strings, and he observed that the pitch of the note (the frequency 
of the sound) was dependent on the tension and length of the string. Galileo (1638), 
the Italian physicist and astronomer, took measurements to establish a relation-
ship between the length and frequency of vibration for a simple pendulum and for 
strings; he also observed the resonance of two connecting bodies. Marinus Mersenne 
(1636), a French mathematician and theologian, also studied the behavior of vibrat-
ing strings. English scientist Robert Hooke (1635–1703) and French mathematician 
and physicist Joseph Sauveur (1653–1716) performed further studies on the relation-
ship between the pitch and frequency of a vibrating taut string. Sauveur is noted for 
introducing the terms nodes (stationary points), loops, fundamental frequency, and 
harmonics, and he is the first scientist to record the phenomenon of beats.

The breakthrough in formulating the governing equations for structural vibra-
tion problems may be attributed to Sir Isaac Newton (1687), who was the first to 
formulate the laws of classical mechanics, and to Gottfried Leibniz (1693) as well as 
Newton for creating calculus. Euler (1744) and Bernoulli (1751) discovered the dif-
ferential equation governing the lateral vibration of prismatic bars and investigated 
its solution for the case of small deflections. Lagrange (1759) also made important 
contributions to the theory of vibrating strings. Euler (1766) derived the equations 
for the vibration of rectangular membranes under uniform tension as well as for the 
vibration of a ring. Poisson (1829) derived the governing equation for vibrating circu-
lar membranes and gave the solutions for the axisymmetric vibration mode. Pagani 
(1829) worked out the nonaxisymmetric vibration solution for circular membranes. 
Coulomb (1784) investigated the torsional oscillations of a metal cylinder suspended 
by a wire.

The German physicist Chladni observed nodal patterns on flat square plates at 
their resonant frequencies using sand spread evenly on the plate surface. The sand 
formed regular patterns as the sand accumulated along the nodal lines of zero ver-
tical displacements upon induction of vibration. Figure  1.1 shows the patterns of 
square plates that were originally published in Chladni’s book (Chladni 1802). In 
1816, Sophie Germain successfully derived the differential equation for the vibra-
tion of plates by means of calculus of variations. However, she made a mistake in 
neglecting the strain energy due to the twisting of the plate mid-plane. The cor-
rect version of the governing differential equation, without its derivation, was found 
posthumously among Lagrange’s notes in 1813. Thus, Lagrange has been credited as 
being the first to present the correct equation for thin plates. By using trigonometric 
series introduced by Fourier around that time, Navier (1823) was able to readily 
determine the exact vibration solutions for rectangular plates with simply supported 
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edges. Poisson (1829) extended Navier’s work to circular plates. The extended plate 
theory that considered the combined bending and stretching actions of a plate has 
been attributed to Kirchhoff (1850). His other significant contribution is the applica-
tion of a virtual displacement method for solving plate problems.

Lord Rayleigh (1877) presented a theory to explain the phenomenon of vibra-
tion that to this day is still used to determine the natural frequencies of vibrating 
structures. Based on the plate assumptions made by Kirchhoff (1850) and Rayleigh’s 
theory, early researchers used analytical techniques to solve the vibration problems 
of plates. For example, Voigt (1893) and Carrington (1925) successfully derived the 
exact vibration frequency solutions for a simply supported rectangular plate and a 
fully clamped circular plate, respectively. Ritz (1909) was one of the early research-
ers to solve the problem of the freely vibrating plate, which does not have an exact 
solution. He demonstrated how to reduce the upper-bound frequencies by including 
more than a single trial (admissible) function and performing a minimization with 
respect to the unknown coefficients of these trial functions. The method became 
known as the Ritz method. Liew and Wang (1992, 1993) automated the Ritz method 
for analysis of arbitrarily shaped plates.

80c80b80a79b79a

74b 75 76 77 78

74a73b73a72b72a

69 70 71a 71b 71c

68b68a67c67b67a

63 64 65 66a 66b

FIGURE 1.1 Chladni’s original figures of vibrating square plates showing nodal lines. 
Source: http://en.wikipedia.org/wiki/File:Chladini.Diagrams.for.Quadratic.Plates.svg.
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The theories of vibration of beams and plates were investigated further by 
Timoshenko (1921) and Mindlin (1951), and their theories allow for the effects of 
transverse shear deformation and rotary inertia. Other, more refined beam and plate 
theories that do away with the need for a shear correction factor were developed by 
Bickford (1982), Reddy (1984), and Reddy and Phan (1985), who employed higher-
order polynomials in the expansion of the displacement components through the 
beam or plate thickness. Leissa (1969) produced an excellent monograph entitled 
“Vibration of Plates,” which contains a wealth of vibration solutions for a wide range 
of plate shapes and boundary conditions. Originally published by NASA in 1969, 
Leissa’s monograph was reprinted in 1993 by the Acoustical Society of America due 
to popular demand.

1.3  IMPORTANCE OF VIBRATION ANALYSIS 
IN STRUCTURAL DESIGN

When designing structures, the effect of vibration on them is a very important factor 
to consider. Obviously, structures used to support heavy centrifugal machines like 
motors and turbines are subjected to vibration. Vibration causes excessive wear of 
bearings, material cracking, fasteners to become loose, noise, and abrasion of insula-
tion around electrical conductors, resulting in short circuiting (Wowk 1991). When 
cutting a metal, vibration can cause chatter, which affects the quality of the surface 
finish. Structural vibration may cause discomfort and even fear in the occupants 
working in the building, make it difficult to operate machinery, and cause malfunc-
tioning of equipment.

The natural frequencies of a structure are very important to structural and 
mechanical engineers when designing for human comfort, structural serviceability 
and operational requirements, and against the occurrence of resonance. Resonance 
occurs when the natural frequency of the structure coincides with the excitation 
frequency. This resonance phenomenon has to be avoided so as to prevent exces-
sive deformation, fatigue cracks, and even the collapse of the entire structure. For 
example, the spectacular collapse of the Tacoma Narrows suspension bridge (that 
spanned the Tacoma Narrows strait of Puget Sound between Tacoma and the Kitsap 
Peninsula in the U.S. state of Washington) in 1940 was a result of resonance caused 
by strong wind gusts. Therefore, structural engineers design their structures to have 
a fundamental natural frequency of vibration that satisfies a specific minimum 
frequency given in design codes. For instance, the American Association of State 
Highway and Transportation Officials (AASHTO) specifies the minimum frequency 
for a pedestrian bridge to be 3 Hz. For office buildings, it is recommended that the 
natural frequency of floor structures be kept to within 4 Hz, whereas for perfor-
mance stages and dance floors, this minimum limit of natural frequency may be 
raised to 8.4 Hz (Technical Guidance Note 2012).

Given the undesirable and devastating effects that vibrations can have on machines 
and structures, vibration analysis and testing have become a standard procedure 
in the design of structures (Richardson and Ramsey 1981; McConnell and Varoto 
2008). Vibration may be reduced by using the illustrative vibrating mechanical 
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system shown in Figure 1.2, where the forcing excitations f(t) to the mechanical sys-
tem S cause the vibration response x(t). The problem at hand is to suppress x(t) to an 
acceptable level. The three general ways to do this are:

 1. Isolation. Suppress the excitations of the vibration. This method deals with 
the forcing excitation f(t)

 2. Design modification. Modify or redesign the mechanical system so that for 
the same levels of excitation, the resulting vibrations are acceptable. This 
method deals with the mechanical system S, which has a mass m, stiffness 
k, and damping coefficient c.

 3. Control. Absorb or dissipate the vibrations using external devices, through 
implicit or explicit sensing and control. This method deals with the vibra-
tion response x(t).

Within each category, there are several approaches for mitigating vibration. Actually, 
each of these approaches needs either redesign or modification. It is to be noted 
that the removal of faults (e.g., misalignments and malfunctions by repair or parts 
replacement) can also reduce vibrations. This approach may be included in any of the 
three categories listed here (De Silva 2007).

In order to understand isolation well, we need to know the concept of mechanical 
impedance (Wowk 1991). When vibrations travel through different materials and 
metal interfaces, they get reduced or attenuated. With the concept of impedance, we 
can insert materials into the force transmission path so as to reduce the amplitude 
of the vibration. Generally, any material with a lower stiffness than the adjacent 
material will function well to attenuate the force, and it works in both directions. 
Mechanical springs, air springs, cork, fiberglass, polymer, and rubber are the typical 
isolator materials. The performance of the isolator is a function of frequency.

On the other hand, vibration can also be useful in several industrial applica-
tions. For example, compactors, vibratory conveyors, hoppers, sieves, and washing 
machines take advantage of vibration to do the job. More interestingly, vibrations 
are found to be able to improve the efficiency of certain machining, casting, forging, 
and welding processes. Vibration is also used in nondestructive testing of materials 
and structures, in vibratory finishing processes, and in electronic circuits to filter out 
the unwanted frequencies (Rao 1986). It is also employed in shake tables to simulate 

m
k

Mechanical
vibrating system (S)

Vibration
response

x(t)Vibration
excitation

f(t)

c

FIGURE 1.2 A vibrating mechanical system.
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earthquakes for testing structural designs against seismic action. Of course, most 
people enjoy the vibration of a massaging chair/device on their bodies.

1.4 SCOPE OF BOOK

In this book, we focus our attention on the free, harmonic, and flexural vibration of 
strings, membranes, beams, and plates. Damping is assumed to be small, and hence it 
is neglected. In each of the many structural vibration problems treated herein, we pres-
ent the exact natural angular (or circular) frequencies and their accompanying mode 
shapes. Exact solutions are very important, as they clearly reveal the intrinsic fea-
tures of the solutions and provide benchmarks to assess the validity, convergence, and 
accuracy of numerical solutions. Here, we define an exact solution as one that can be 
expressed in terms of a finite number of terms, and the proposed solution may contain 
elementary or common functions such as harmonic or Bessel functions. Special func-
tions, such as hypergeometric functions, are excluded. Analytical solutions that are 
not exact, such as infinite series solutions and asymptotic solutions, are also excluded.

The governing differential equations of motion for the problems treated herein 
are obtained by using the method of elementary analysis, and the equations are 
solved for different boundary conditions. Analytical vibration solutions of structures 
with complicated geometries and boundary conditions are difficult or impossible to 
obtain. In such cases, numerical methods are required. However, for some cases of 
structural geometries and boundary conditions, it is possible to solve the differential 
equations exactly in a closed form. In this book, the authors present as many analyti-
cal vibration solutions as possible in one single volume for ready use by engineers, 
academicians, and researchers in structural dynamic analysis and design. This book 
addresses a variety of boundary conditions, restraints, and mass and stiffness dis-
tributions in the hope that the reader may better understand the effects of shape, 
restraints, and boundary conditions on vibration frequencies and mode shapes.

The numerous differential equations and their solutions presented in this book are 
also useful for academicians, especially when they wish to provide practical prob-
lems to the differential equations that they present to students of engineering science.
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2 Vibration of Strings

2.1 INTRODUCTION

Strings are basic structural elements that support only tension. They also approxi-
mate cables, with negligible bending, and chains, with numerous links. There seems 
to be no exact solution to the vibration of strings where the static shape deviates from 
a straight line. We assume that the tension, density, and deflection are continuous 
functions of position along the string, except perhaps at a single point in the interior 
span of the string. Thus, we limit our presentation to a string with at most two con-
nected segments. For example, we include a string composed of two segments of 
different constant densities, but not multiple segments, since the solution of the latter 
can be extended similarly.

In the tables and figures of this chapter, we present the first five natural frequen-
cies of vibration. The lowest one is the fundamental frequency, below which no natu-
ral vibration would occur.

2.2 ASSUMPTIONS AND GOVERNING EQUATIONS FOR STRINGS

A string is slender, i.e., its lateral dimensions are infinitesimal compared to the lon-
gitudinal length. It does not admit any bending moment, shear, or axial compression. 
Rotational inertia is negligible. We assume that there is a stable equilibrium straight 
state. The vibrations, mainly lateral, are small compared to the string length, which 
is finite.

One can derive the string equations by considering the dynamic balance on an 
elemental segment as shown in Figure 2.1, or if damping is absent, by the energy 
method. The governing equation of a string, derived in many texts (e.g., see Magrab 
2004), is given by

 x
T x

w

x
x

w

t
( ) ( )

2

2

∂
∂ ′

′ ′ ∂ ′
∂ ′





 = ρ ′ ∂ ′

∂ ′  
(2.1)

Here w′ is the lateral deflection, x′ is the distance from one end, T ′(x′) > 0 is the ten-
sion, ρ(x′) > 0 is the density (mass per unit length), and t′ is the time. The tension is 
governed by the static force balance, i.e.,

 

dT

dx
f x( ) 0

′
′

+ ′ ′ =
 

(2.2)
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where f ′ is the force per length acting along the string. Of particular interest is when 
the string is hanging (i.e., f ′ is constant).

By normalizing all lengths by the string length L, the tension by the maximum 
tension T0, the density by the maximum density ρ0, and the time by L T/0 0ρ and 
dropping the primes, Equation (2.1) becomes

 x
T

w

x

w

t

2

2

∂
∂

∂ ′
∂





 = ρ ∂ ′

∂  
(2.3)

For free vibrations, we can assume that

 w x t w x e, ( ) i t( )′ ′ ′ = ω ′
 (2.4)

where i 1= −  and ω  is the angular frequency of vibration. Let w w L T T T/ , / ,0= = ′
t t L T/( / ),0 0= ′ ρ  L T/ ,0 0ω = ω ρ  and recognizing that only the real part of w has 
significance, Equation (2.3) becomes

 

d

dx
T

dw

dx
w 02



 + ρω =

 
(2.5)

2.3 BOUNDARY CONDITIONS

The boundary conditions at an end of a string include

•	 Fixed end, where

 w = 0 (2.6)

•	 Sliding end, where there is no transverse resistance

 

dw

dx
0=

 
(2.7)

’’

L
T´ T´

T´

T´ T´

x´

∂w´

∂w´ ∂w´
∂x´ ∂x´ ∂x́

∂+

∂x´

w´

T´

dx

dx´
dw´

T´

FIGURE 2.1 String under tension and an elemental segment of string.
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•	 Massed end, where, by transverse force balance,

 
T

w

x
m

w

t

2

2∓′ ∂ ′
∂ ′

= ∂ ′
∂ ′  

(2.8)

 or in a nondimensional form

 
T

dw

dx
w 02∓ αω =

 
(2.9)

  where m is the point mass at the end, m L/ 0α = ρ  is a mass ratio, the top 
sign is for an end with the normal in the x-direction, and the bottom sign 
otherwise.

•	 Elastically lateral supported end, where

 
T

w

x
kw∓′ ∂ ′

∂ ′
= ′

 
(2.10)

 or in a nondimensional form

 
T

dw

dx
w∓= β

 
(2.11)

  where k is the spring constant and kL T/ 0β =  is a normalized spring constant.

There are other boundary conditions, such as viscous dashpots, which are not as 
important. The aforementioned boundary conditions can be combined into a canoni-
cal form, i.e.,

 
T

dw

dx
w( ) 02∓ αω + β =

 
(2.12)

For a fixed end, α or β is infinite, and for a sliding end, α = β = 0.

2.4 CONSTANT PROPERTY STRING

In this case, the tension and density are constants. By setting T = ρ = 1, Equation 
(2.5) becomes

 

d w

dx
w 0

2

2
2+ ω =

 
(2.13)
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Let α0,β0 be the values at x = 0, and α1,β1 be the values at x = 1. The solution of 
Equation (2.13) is

 w C x C xsin( ) cos( )1 2= ω + ω  (2.14)

In view of the boundary conditions in Equation (2.12), one obtains

 C C( ) 01 0
2

0 2ω − α ω − β =  (2.15)

 
C C C C(cos sin ) ( )(sin cos ) 01 2 1

2
1 1 2ω ω − ω − α ω − β ω + ω =

 (2.16)

For nontrivial C1,C2, the exact characteristic equation for the frequency ω is

[( )cos sin ] ( )[ cos ( )sin ] 01
2

1 0
2

0 1
2

1ω α ω − β ω + ω ω − α ω − β ω ω − α ω − β ω =  
(2.17)

If both ends are fixed, set α0 or β0, and α1 or β1 to infinity. Thus, we obtain 
sin ω = 0 or ω = nπ, where n is a positive integer. The fundamental frequency, or the 
frequency below which the string would not vibrate, is ω = π. If both ends are sliding, 
set α0 = β0 = 0 and α1 = β1 = 0, and the frequencies are the same, i.e., ω = nπ. For one 
end fixed and one end sliding, we find cos ω = 0 or ω = (n − 1/2)π. The frequencies 
for other combinations can be generated from Equation (2.17). Strings with different 
end conditions are shown in Figure 2.2. Mode shapes for strings with different end 
conditions are shown in Figures 2.3a, 2.3b, and 2.3c. Since the vibration amplitudes 
are arbitrary, they are made equal in the figures.

2.5 TWO-SEGMENT CONSTANT PROPERTY STRING

We consider a composite string composed of two connected constant-property seg-
ments. Let a subscript 1 denote the segment 0 ≤ x ≤ b and a subscript 2 denote the 
segment b ≤ x ≤ 1. At the joint, the string is continuous

 w b w b( ) ( )1 2=  (2.18)

(a) String with fixed ends (b) String with sliding ends

(c) String with one end fixed and the other end sliding

FIGURE 2.2 Strings with different end conditions.
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Also there may be a point mass and a supporting spring at the joint. By carrying out 
a transverse force balance at x = b, one obtains

 
T

dw

dx
T

dw

dx
w( ) 02

2
1

1 2− + αω − β =
 

(2.19)

Three important cases will be illustrated. In each case we assume that the tension 
is the same, i.e., T1 = T2 = 1, and the ends are fixed.

2.5.1 Different Densities

Figure  2.4 shows a two-segment composite string. Segment 1 has the maximum 
density (ρ1 = 1), whereas segment 2 has the smaller density (ρ2 < ρ1).

Let / 12 1γ = ρ ρ ≤ . The governing equations are

 

d w

dx
w 0

2
1

2
2

1+ ω =
 

(2.20)

 

d w

dx
w 0

2
2

2
2

2+ γω =
 

(2.21)

The boundary conditions are that the deflections are zero at the ends, i.e.,

 
w w(0) 0, (1) 01 2= =

 (2.22)
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ω3 = 9.4248

ω4 = 12.566
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FIGURE 2.3 (a) Mode shapes for a string with fixed ends. (continued)
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1

Density ρ1 Density ρ2

b

FIGURE 2.4 Composite string with two segments of different densities.
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ω1 = 3.1416
ω2 = 6.2832
ω3 = 9.4248
ω4 = 12.566
ω5 = 15.708

ω1 = 1.5708
ω2 = 4.7124
ω3 = 7.8540
ω4 = 10.996
ω5 = 14.137

FIGURE 2.3 (b) Mode shapes for a string with sliding ends. (c) Mode shapes with one end 
fixed and one end sliding. 
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The solutions for the foregoing governing equations and boundary conditions are

 
w C x w C xsin( ), sin 11 1 2 2 ( )= ω = γ ω −   (2.23)

At the joint, we have from Equation (2.19)

 

dw

dx
b

dw

dx
b( ) ( )1 2=

 
(2.24)

Equations (2.18) and (2.24) yield the characteristic equation

 
b b b bsin( )cos 1 cos( )sin 1 0( ) ( )γ ω γ ω −  + ω γ ω −  =

 
(2.25)

Equation (2.25) is equivalent to that found by Levinson (1976).
The first five frequencies for various γ and b are given in Table 2.1. Notice that the 

higher the average density, the lower is the frequency. Figure 2.5 shows sample mode 
shapes of a two-segment string with γ = 0.5, b = 0.5.

TABLE 2.1
Frequencies for Two-Segment String

b ω γ = 0.1 γ = 0.3 γ = 0.5 γ = 0.7 γ = 0.9

0.1 ω1

ω2

ω3

ω4

ω5

9.5592
16.112
23.223
32.944
42.260

5.6896
11.063
15.872
20.714
26.121

4.4281
8.7665

12.941
16.994
21.109

3.7497
7.4690

11.136
14.754
18.358

3.3103
6.6140
9.9067

13.189
16.464

0.3 ω1

ω2

ω3

ω4

ω5

5.5976
12.929
17.060
25.060
29.373

4.7628
8.9029

14.192
17.955
23.387

4.1072
7.6873

12.906
15.794
19.622

3.6338
7.0030

10.651
14.270
17.641

3.2841
6.4982
9.7650

13.062
16.284

0.5 ω1

ω2

ω3

ω4

ω5

3.9648
9.4712

15.065
19.354
23.038

3.7728
8.4791

12.024
16.060
20.681

3.5799
7.5415

10.840
14.888
18.314

3.3945
6.8937

10.191
13.771
17.010

3.2221
6.4531
9.6663

12.906
16.111

0.7 ω1

ω2

ω3

ω4

ω5

3.3401
7.2563

11.455
15.743
20.042

3.2984
7.0657

11.029
14.480
18.299

3.2552
6.8509

10.506
13.864
17.052

3.2106
6.6226

10.002
13.181
16.434

3.1648
6.3939
9.5921

12.741
15.945

0.9 ω1

ω2

ω3

ω4

ω5

3.1505
6.3462
9.6043

12.918
16.275

3.1486
6.3331
9.5694

12.854
16.175

3.1466
6.3196
9.5318

12.782
16.061

3.1446
6.3054
9.4913

12.702
15.930

3.1426
6.2908
9.4477

12.614
15.785


