Computer System iability Safety and Usability

B. S. DHILLON

Computer System Reliability

Safety and Usability

Computer System Reliability

Safety and Usability

B. S. DHILLON

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2013 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works Version Date: 20130410

International Standard Book Number-13: 978-1-4665-7313-0 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

This book is affectionately dedicated to all my Scythian ancestors for their firm belief in number 40. (This is my 40th book!)

Contents

Pref	ace			xv
Abo	out the	e Autho	9r	xvii
1.	Intro		1	
	1.1		round	
	1.2 Facts, Figures, and Examples			
	1.3		and Definitions	
	1.4		es To Obtain Information Related to Computer System	
		Reliab	ility, Safety, and Usability	
		1.4.1	Journals and Magazines	
		1.4.2	Conference Proceedings	
		1.4.3	Standards and Handbooks	
		1.4.4	Data Sources	
		1.4.5	Books	
	1.5		of the Book	
	Refer	ences		9
			matical Concepts	
	2.1		uction	
	2.2		netic Mean and Mean Deviation	
		2.2.1	Arithmetic Mean	
		2.2.2		
	2.3	Boolea	ın Algebra Laws	15
	2.4		pility Definition and Properties	
	2.5	Probability-Related Definitions		
		2.5.1	Cumulative Distribution Function	17
		2.5.2	Probability Density Function	18
		2.5.3	Expected Value	19
	2.6	Probab	pility Distributions	
		2.6.1	Exponential Distribution	20
		2.6.2	Rayleigh Distribution	
		2.6.3	Weibull Distribution	
		2.6.4	Bathtub Hazard Rate Curve Distribution	
	2.7		e Transform Definition, Common Laplace	22
	2.7		forms, and Final-Value Theorem's Laplace Transform	22
		2.7.1	Laplace Transform: Final-Value Theorem	
	2.8		e Transforms' Application in Solving First-Order	23
	2.0		ential Equations	24
	Rofor			
	reigh	ences		∠0

3.	Relia	bility, S	Safety, a	nd Usability Basics	29
	3.1	Introdu	uction		29
	3.2	Bathtu	b Hazaro	d Rate Curve	29
	3.3	Genera	al Reliabi	ility-Related Formulas	31
		3.3.1	Failure	(or Probability) Density Function	31
		3.3.2	Hazard	Rate (or Time-Dependent Failure Rate)	
			Functio	n	31
		3.3.3	General	Reliability Function	32
		3.3.4	Mean T	ime to Failure	33
	3.4	Reliabi	lity Con	figurations	34
		3.4.1	Series N	Jetwork	34
		3.4.2	Parallel	Network	37
		3.4.3	k-out-of	- <i>m</i> Network	39
		3.4.4	Standby	Redundancy	41
		3.4.5	Bridge I	Network	42
	3.5	Reliabi		uation Methods	
		3.5.1	Failure	Modes and Effect Analysis (FMEA)	44
		3.5.2		ee Analysis (FTA)	
			3.5.2.1	Common Fault Tree Symbols	
			3.5.2.2	Steps Involved in Developing a Fault Tree	46
			3.5.2.3	Probability Evaluation of Fault Trees	
		3.5.3	Markov	Method	48
	3.6	Need f	or Safety	and the Role of Engineers	
				or Safety	51
	3.7	Classif	ications	of Product Hazards	52
	3.8	Human	n Factors	Basics for Engineering Usability	53
		3.8.1		risons of Humans' and Machines'	
				ities/Limitations	54
		3.8.2		Human Behaviors and Their Corresponding	
			Design	Considerations	55
		3.8.3		Sensory Capacities	
			3.8.3.1	Touch	56
			3.8.3.2	Sight	56
			3.8.3.3	Vibration	57
			3.8.3.4	Noise	58
	Refer	ences			59
4.	Com	outer Sv	vstem Re	eliability Basics	61
	4.1				
	4.2			ability Versus Software Reliability	
	4.3			of Computer Failures and	
		Issues	in Comp	puter System Reliability	62
	4.4	Fault C	lassifica	tions and Computer Reliability Measures	64
	4.5				
	2.0				

		4.5.1	Triple N	/Iodular Redundancy (TMR)	65
			4.5.1.1	TMR System Maximum Reliability with	
				Perfect Voter	67
			4.5.1.2	TMR System Time-Dependent Reliability	
				and Mean Time to Failure	68
			4.5.1.3	Reliability Analysis of TMR System with	
				Perfect Voter and Repair	70
		4.5.2	N-Mod	ular Redundancy (NMR)	
	4.6	Reliab		lysis of Redundant Computer Systems with	
				e Failures	73
		4.6.1	Model I	· · · · · · · · · · · · · · · · · · ·	74
		4.6.2	Model I	Ι	78
	Refer	ences			81
5.	Softv			Assessment and Improvement Methods	
	5.1				
	5.2	Softw		bility Assessment Methods	
		5.2.1	Softwar	re Metrics	
			5.2.1.1	Metric I: Code and Unit Test Phase Measure	84
			5.2.1.2	Metric II: Design Phase Measure	84
		5.2.2	Analyti	cal Methods	
		5.2.3		e Reliability Models	
			5.2.3.1	Air Force Model	86
			5.2.3.2	Musa Model	88
			5.2.3.3	Mills Model	89
			5.2.3.4	Power Model	91
			5.2.3.5	Shooman Model	92
	5.3	Softw	are Relial	bility Improvement Methods	93
		5.3.1		lerant Software Design Methods	
		5.3.2	Reliable	e Software Design Methods	95
		5.3.3			
		5.3.4		Methods	
	Refer	ences			98
6.	Softv				
	6.1				
	6.2	Softw	are Quali	ity Factors and Their Classifications	101
		6.2.1		t Revision Factors	
		6.2.2	Product	t Operation Factors	102
		6.2.3		t Transition Factors	
	6.3	Quali	ty Metho	ds for Use during Software Development	103
		6.3.1		Diagram	
		6.3.2	Checkli	sts	104
		6.3.3	Run Ch	arts	105

	6.4	Quality Measures during the Software Development				
		Life Cycle (SDLC)				
	6.5	Software Quality-Related Metrics				
		6.5.1 Metric I				
		6.5.2 Metric II	107			
		6.5.3 Metric III	108			
		6.5.4 Metric IV	108			
		6.5.5 Metric V	108			
		6.5.6 Metric VI	109			
		6.5.7 Metric VII	109			
		6.5.8 Metric VIII	109			
		6.5.9 Metric IX	109			
		6.5.10 Metrix X	109			
	6.6	Software Quality Assurance Manager's Responsibilities				
		and Elements of a Successful Software Quality Assurance				
		Program	110			
	6.7	Software Quality Assurance Standards and Advantages	111			
	Refer	rences	113			
7	LL	an Error and Caffriana Puga in Commutar Systems	115			
7.	7.1	an Error and Software Bugs in Computer Systems Introduction				
	7.1					
	7.2 7.3	Facts, Figures, and Examples1 Factors Affecting the Occurrence of Human Error				
	7.5	in Computer Systems	116			
	7.4	Computer Failure Categories and Hardware and Software	110			
	7.4	Error Sources	110			
	7.5					
	7.6	Common Software Errors in Programming	119			
	7.0	Factors Causing Human Errors during Software	110			
		Development and Maintenance 7.6.1 Classification I Factors				
		7.6.2 Classification II Factors	120			
	7.7	Methods To Prevent Programmers from Inadvertently	101			
	70	Introducing Bugs during the Software Writing Process				
	7.8	Software Error–Related Metrics				
		7.8.1 Metric I: Defect Density	122			
		7.8.2 Metric II: Cumulative Failure Profile				
		7.8.3 Metric III: Fault Density				
	D (7.8.4 Metric IV: Defect Indices				
	Refer	rences	125			
8.	Soft	ware Safety and Internet Reliability	127			
	8.1	Introduction	127			
	8.2	Software Safety Classifications and Potential Hazards	127			
	8.3	Software Risk Classifications	128			
	8.4	Basic Software System Safety-Related Tasks	129			

	8.5	Software Safety Assurance Program and Software Quality		
Assurance Organization's Role in Reg		Assurance Organization's Role in Regard to Software Safety	130	
	8.6	Software Hazard Analysis Methods	131	
		8.6.1 Code Walk-Through	132	
		8.6.2 Software Fault Tree Analysis (SFTA)	132	
		8.6.3 Software Sneak Circuit Analysis	133	
		8.6.4 Proof of Correctness		
		8.6.5 Failure Modes and Effect Analysis (FMEA)	134	
	8.7	Software Standards and Useful Software Safety		
		Design-Related Guidelines	134	
	8.8	Internet Facts, Figures, and Failure Examples; Benefits		
		and Impediments of Internet Electronic Commerce;		
		and Internet Reliability-Related Observations	135	
	8.9	Classifications of Internet Outages	137	
	8.10	An Approach for Automating Fault Detection in Internet		
		Services and Models for Performing Internet Reliability		
		and Availability Analysis	138	
		8.10.1 Model I	139	
		8.10.2 Model II	140	
	Refer	ences	143	
9	Softs	vare Usability	147	
	9.1	Introduction		
	9.2	Need for Considering Usability during the Software	11/	
		Development Phase and Basic Principles of		
		the Human-Computer Interface	147	
	9.3	Software Usability Engineering Process		
	9.4	Steps for Improving Software Product Usability		
	9.5	Software Usability Inspection Methods and	100	
	2.0	Considerations for Their Selection	151	
	9.6	Software Usability Testing Methods and Important Factors		
	210	in Regard to Such Methods	153	
	9.7	Guidelines for Conducting Software Usability Testing		
		ences		
10.		Usability		
	10.1	Introduction		
	10.2	Web Usability Facts and Figures		
	10.3	Common Web Design Errors	160	
	10.4	Web Page Design		
		10.4.1 Image Usage		
		10.4.2 Page Size		
		10.4.3 Textual Element Usage	163	
		10.4.4 Help for Users	164	
		10.4.5 Font Usage	164	

	10.5	Websit	e Design	165
		10.5.1	Shared Elements of Site Pages	165
			•	
			Site Organization	
	10.6		ition Aids	
			Menus and Menu Bar Usage	
			Navigation Bar Usage	
		10.6.3	Link Usage	169
	10.7		or Evaluating Web Usability	
			NetRaker	
		10.7.2	Web SAT	170
		10.7.3	Lift	171
		10.7.4	Max	171
	10.8		ons to Evaluate Effectiveness of Website Message	
			unication	
		10.8.1	Text	172
		10.8.2	Concept	173
		10.8.3	Content	173
		10.8.4	Mechanics	173
		10.8.5	Navigation	174
		10.8.6	Design	174
	Refer	ences	-	175
	_	_		
11.		puter Sy	stem Life-Cycle Costing	177
	11.1	Introdu	action	177
	11.2	Models	s for Estimating Computer System Life-Cycle Cost	177
			Model I	
			Model II	180
	11.3		s for Estimating Computer System Servicing-Labor	
			nd Maintenance Cost	
			Model I: Computer System Servicing-Labor Cost	
			Model II: Computer System Maintenance Cost	
	11.4		re Costing and Associated Problems and Steps	183
	11.5	11.5 Model for Estimating Software Life-Cycle Cost and		
		Influen	ncing Factors	185
	11.6		s for Estimating Software Costs	
			Model I	
		11.6.2	Model II	
		11.6.3	Model III	
			Model IV	
			Model V	
	11.7	Models	s for Estimating Software Costs	190
		11.7.1	Multiplicative Models	191
		11 7 0	A 1 (*) A 1 1	101
		11.7.2	Analytic Models	191

11.7.4	Tabular Models	
11.7.5	Composite Models	
	1	

Appendix: Bibliography of Literature on Computer System	
Reliability, Safety, and Usability	

Preface

Computer systems are increasingly being used at an alarming rate for various purposes. They have become an important element of the world economy because billions of dollars are spent each year to develop, manufacture, operate, and maintain various types of computer systems around the globe. Their reliability, safety, and usability have become an important concern because of problems such as high cost, wrong decisions and actions, and accidental deaths. For example, a study performed by the National Institute of Standards in 2002 found that software defects alone cost the United States economy about \$59 billion annually, i.e., around 0.6% of its gross domestic product (GDP).

Computer system reliability, safety, and usability have become more important than ever before. In response, a large number of journal and conference proceedings' articles on various aspects of computer system reliability, safety, and usability have been published over the years. However, to the best of the author's knowledge, there is no specific book on the topic. This causes a great deal of difficulty for information seekers because they have to consult many different and diverse sources.

Thus, the main objective of this book is to combine computer system reliability, safety, usability, and other related topics into a single volume and to eliminate the need to consult many different and diverse sources to obtain desired information. The book contains a chapter on mathematical concepts considered necessary to understand the material presented in subsequent chapters.

The topics covered in the volume are treated in such a manner that the reader will require no previous specialized knowledge to understand the contents. At appropriate places, the book contains examples along with their solutions, and at the end of each chapter there are numerous problems to test the reader's comprehension. The sources of most of the materials presented are given in the reference section at the end of each chapter. An extensive list of publications dating from 1967 to 2011—directly or indirectly related to computer system reliability, safety, and usability—is provided at the end of this book to give readers a view of the intensity of the developments in this area.

The book is composed of 11 chapters. Chapter 1 presents various introductory aspects of computer system reliability including safety; usabilityrelated facts, figures, terms, and definitions; and sources for obtaining useful information on computer system reliability, safety, and usability. Chapter 2 reviews mathematical concepts considered useful to understanding subsequent chapters. Some of the topics covered in the chapter are arithmetic mean and mean deviation, Boolean algebra laws, probability properties, probability distributions, and useful definitions. Chapter 3 presents various introductory aspects of reliability, safety, and usability. Chapter 4 presents computer system reliability basics. Some of the topics covered in this chapter are hardware reliability versus software reliability, major sources of computer failures, issues in computer system reliability, fault classifications, fault masking, and computer reliability measures. Chapter 5 is devoted to software reliability assessment and improvement methods. A number of methods grouped under seven categories are presented in this chapter.

Chapters 6 and 7 present various important aspects of software quality and human error and software bugs in computer systems, respectively. Chapter 8 is devoted to software safety and Internet reliability. It covers topics such as software safety classifications; potential software hazards; software safety assurance programs; software hazard analysis methods; Internet facts, figures, and examples; Internet outage classifications; and models for performing Internet reliability and availability analysis.

Chapter 9 covers various important aspects of software usability, including the need to consider usability during the software development phase, the software usability engineering process, software usability inspection methods, software usability test methods, and guidelines for conducting software usability testing. Chapter 10 is devoted to web usability. Some of the topics covered in the chapter are web usability facts and figures, common web design errors, web page design, tools for evaluating web usability, and questions to evaluate the effectiveness of website message communications. Finally, Chapter 11 presents various important aspects of computer system life-cycle costing.

This book will be useful to many individuals, including computer engineers, software engineers, design engineers, system engineers, human factors engineers, and other professionals involved with computers and the Internet—engineering managers and administrators; reliability and other engineers-at-large; researchers and instructors involved with computer systems; and graduate and senior undergraduate students in computer engineering, software engineering, system engineering, computer science, etc.

The author is deeply indebted to many individuals, including family members, friends, colleagues, and students, for their invisible input. The unseen contributions of my children also are appreciated. Last but not least, I thank my wife, Rosy, my other half and friend, for typing this entire book and her timely help in proofreading.

B. S. Dhillon *Ottawa, Ontario*

About the Author

Dr. B. S. Dhillon is a professor of engineering management in the Department of Mechanical Engineering at the University of Ottawa. He has served as a chairman/director of the Mechanical Engineering Department/ Engineering Management Program for over ten years at the same institution. He is the founder of the probability distribution named the "Dhillon Distribution/Law/Model" by statistical researchers in their publications around the world. He has published over 364 (i.e., 217 [70 single authored and 147 coauthored] journal and 147 conference proceedings) articles on reliability engineering, maintainability, safety, engineering management, etc. He is or has been on the editorial boards of eleven international scientific journals. In addition, Dr. Dhillon has written forty books on various aspects of health care, engineering management, design, reliability, safety, and quality published by Wiley (1981), Van Nostrand (1982), Butterworth (1983), Marcel Dekker (1984), Pergamon (1986), etc. His books are being used in over one hundred countries, and many of them are translated into languages such as German, Russian, Chinese, and Persian (Iranian).

He has served as general chairman of two international conferences on reliability and quality control held in Los Angeles and Paris in 1987. Professor Dhillon has also served as a consultant to various organizations and bodies and has many years of experience in the industrial sector. At the University of Ottawa, he has been teaching reliability, quality, engineering management, design, and related areas for over thirty-three years, and he has also lectured in over fifty countries, including keynote addresses at various international scientific conferences held in North America, Europe, Asia, and Africa. In March 2004, Dr. Dhillon was a distinguished speaker at the Conference/Workshop on Surgical Errors (sponsored by White House Health and Safety Committee and Pentagon) held on Capitol Hill (One Constitution Avenue, Washington, DC).

Professor Dhillon attended the University of Wales, where he received a BS in electrical and electronic engineering and an MS in mechanical engineering. He received a PhD in industrial engineering from the University of Windsor.

1

Introduction

1.1 Background

Nowadays, computer systems have become an important element of the world economy, and each year billions of dollars are spent to develop, manufacture, operate, and maintain various types of computer systems around the globe. Their reliability, safety, and usability have become an important concern because of problems such as high cost, wrong decisions and actions, and accidental deaths. For example, a study conducted by the National Institute of Standards and Technology in 2002 found that software defects alone cost the U.S. economy about \$59 billion annually, i.e., around 0.6% of its gross domestic product (GDP) [1].

The history of computer system reliability can be traced back to the late 1940s and 1950s to the works of Shannon [2], Hamming [3], Von Neumann [4], and Moore and Shannon [5]. For example, in 1956 Von Neumann [4] proposed the triple modular redundancy (TMR) scheme (nowadays widely used in computers) to improve system reliability. In 1965, Pierce published a book entitled *Failure Tolerant Design* [6]. This was probably the first book concerned with computer system reliability.

Over the years, a large number of publications related to computer system reliability have appeared. A comprehensive list of useful publications is provided in the appendix to this book.

1.2 Facts, Figures, and Examples

Some facts, figures, and examples concerned with computer system reliability are as follows:

• In 2002, a study commissioned by the National Institute of Standards and Technology (NIST) reported that software errors cost the U.S. economy about \$59 billion annually [1].

- As per Kletz [7] and Herrman [8], the number of people killed due to computer system malfunctions worldwide up to the end of 1992 was somewhere between 1,000 and 3,000.
- The Internet has grown from four hosts in 1969 to over 147 million hosts and thirty-eight sites in 2002, and in 2001 there were over 52,000 Internet-related incidents and failures [9, 10].
- In 2000, the Internet economy generated about \$830 billion in revenues in the United States [9–11].
- National Aeronautics and Space Administration's (NASA's) Saturn V Launch computer (circa 1964) had a mean time to failure (MTTF) of 25,000 hours [12–14].
- As per Landauer [15], an average software program contains about forty design flaws that impair the ability of workers to use it effectively.
- A pilot set the heading in a plane's computer-controlled inertial navigation system as 270° instead of 027°; the plane ran out of fuel and caused twelve fatalities [16].
- In 1966, European Space Agency's US\$1 billion prototype Ariane 5 rocket was destroyed just forty seconds after launch because of a bug in the onboard guidance computer program [17].
- On April 25, 1997, a misconfigured router of a Virginia service provider injected an incorrect map into the global Internet. In turn, this caused network congestion, instability, and overload of Internet router table memory that ultimately shut down the majority of the main Internet backbones for about 2 hours [18].
- In 1963, a software error resulted in the incapacitation of a North American Air Defense Command (NORAD) exercise [19].
- As per Myers and Robson [20], 50% to 80% of all source code development accounts, directly or indirectly, for the user interface.
- A software error in the code controlling the Therac-25 radiation therapy machine caused many deaths in the 1980s [21].
- A computer opened the vent valve on the wrong vessel due to a software error, and fourteen tons of carbon dioxide were vented and lost [16, 22].
- As per Kuhn [23], a number of studies conducted over the years indicate that the reliability of Internet paths falls far short of the 99.999% availability expected in the public-switched telephone network (PSTN).
- In 1981, the launching of the first U.S. space shuttle was postponed for about twenty minutes prior to the scheduled launching time due to a software error [24].
- Some small-scale studies performed in 1994 and 2000 clearly reported that the probability of encountering a major routing pathology along a path (with respect to the Internet) was roughly 1.5% to 3.3% [25, 26].

- In 1991, a software fault caused a MIM-104 Patriot (surface-to-air missile system) to fail to intercept an incoming Iraqi Scud missile that caused twenty-eight American fatalities in Saudi Arabia [27].
- On August 14, 1998, a misconfigured Key Internet Database server mistakenly directed all queries for Internet machines with names ending in ".net" to the wrong secondary database server. This problem resulted in the failure of most connections to ".net" Internet web servers and other end stations for many hours [28].
- A case study performed in regard to Internet outages over a period of one year (November 1997–November 1998) categorized the outages under the following classifications (along with their occurrence percentages in parentheses) [28]:
 - Software problems (1.3%)
 - Malicious attacks (1.5%)
 - Sluggish/congestion (4.6%)
 - Unknown/undetermined/no problem (5.6%)
 - Miscellaneous (5.9%)
 - Routing problem (6.1%)
 - Interface down (6.2%)
 - Hardware problem (6.2%)
 - Unreachable (12.6%)
 - Fiber cut/circuit carrier problem (15.3%)
 - Power outage (16%)
 - Maintenance (16.2%)

1.3 Terms and Definitions

This section presents some useful terms and definitions concerned with various aspects of computer system reliability [14, 29–41].

- **Accident.** An event that involves damage to a certain system/unit that suddenly disrupts the potential or current system/unit output.
- **Availability.** The probability that an item/system is available for use or application when needed.
- Debugging. The process of isolating and eradicating errors.
- **Downtime.** The time period during which the item/system is not in a condition to perform its specified mission.
- Failure. The inability of an item/system to perform its stated function.

Fault. An attribute that adversely affects the reliability of an item.

- **Fault-tolerant computing.** The ability to execute specified algorithms successfully, irrespective of computer hardware malfunctions and software errors.
- **Hazard.** The source of energy and the physiological and behavioral factors that, when uncontrolled, lead to harmful occurrences.
- **Human error.** The failure to carry out a specified task (or the performance of a prohibited action) that could result in disruption of scheduled operations or damage to property.
- **Human factors.** A body of scientific facts concerning the human characteristics (the term includes all biomedical and psychosocial considerations).
- **Mission time.** The time during which the item/system is carrying out its stated mission.
- **Redundancy.** The existence of more than one means to carry out a specified function.
- **Reliability.** The probability that a system/unit/item will perform its assigned mission satisfactorily for the stated period of time when used according to the specified conditions.
- **Safety.** Conservation of human life and the prevention of damage to systems/units/items as per mission-stated requirements.
- **Software error.** A conceptual clerical or syntactic discrepancy that leads to one or more faults in the software.
- **Software reliability.** The probability of a given software functioning for a specified time interval, without an error, when used according to the designed conditions on the stated machine.
- **Usability.** The quality of an interactive system with respect to factors such as user satisfaction, ease of learning, and ease of use.
- **Usability evaluation.** Any analytical or empirical study directed at assessing or understanding the usability of an interactive system/product.
- **User-centered design.** An early and continuous involvement of potential users in the product design process.
- **User interface.** The physical representations and procedures to view and interact with the product/system functionality.

1.4 Sources To Obtain Information Related to Computer System Reliability, Safety, and Usability

There are many different sources for obtaining information related to computer system reliability, safety, and usability. These include journals and magazines, conference proceedings, industry standards and handbooks, data sources, and books. Some of these sources are listed in the following subsections [14, 29, 30]:

1.4.1 Journals and Magazines

ACM Transactions on Computer-Human Interaction (TOCHI) Human-Computer Interaction IEEE Transactions on Reliability Interacting with Computers International Journal of Industrial Ergonomics International Journal of Man-Machine Studies International Journal of Reliability, Quality, and Safety Engineering Journal of Safety Research National Safety News Professional Safety Quality and Reliability Engineering Reliability Engineering and System Safety Reliability Review Safety Science User Modeling and User-Adopted Interaction (UMUAI)

1.4.2 Conference Proceedings

Proceedings of the Annual Conference on Computer Assurance (USA) Proceedings of the Annual Reliability and Maintainability Symposium (USA)

Proceedings of the Annual Reliability Engineering Conference for the Electric Power Industry (USA)

Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (USA)

Proceedings of the International Conference on Reliability and Exploitation of Computer Systems (Poland)

Proceedings of the Symposium on Reliability in Electronics (Hungary)

1.4.3 Standards and Handbooks

ANSI/AIAA R-103, *Recommended Practice for Software Reliability*, American National Standards Institute (ANSI), New York.