

ISOSURFACES

This page intentionally left blankThis page intentionally left blank

ISOSURFACES
GEOMETRY, TOPOLOGY,
AND ALGORITHMS

REPHAEL WENGER

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2013 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20121214

International Standard Book Number-13: 978-1-4665-7102-0 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but
the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to
trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained.
If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical,
or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without
written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright
Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a
variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to
infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

To my wife, Shifra,
for her love, companionship, and support.

This page intentionally left blankThis page intentionally left blank

CONTENTS

Preface xi

Acknowledgments xiii

1 Introduction 1
1.1 What Are Isosurfaces? . 1
1.2 Applications of Isosurfaces . 3
1.3 Isosurface Properties . 4
1.4 Isosurface Construction . 6
1.5 Limitations of Isosurfaces . 7
1.6 Multivalued Functions and Vector Fields 8
1.7 Definitions and Basic Techniques 9

2 Marching Cubes and Variants 17
2.1 Definitions . 17
2.2 Marching Squares . 18
2.3 Marching Cubes . 30
2.4 Marching Tetrahedra . 45
2.5 Notes and Comments . 52

3 Dual Contouring 55
3.1 Definitions . 56
3.2 Surface Nets . 57
3.3 Dual Marching Cubes . 75
3.4 Comparison of Algorithms . 90
3.5 Notes and Comments . 93

4 Multilinear Interpolation 97
4.1 Bilinear Interpolation: 2D . 98
4.2 The Asymptotic Decider: 3D 102
4.3 Trilinear Interpolation . 110
4.4 Notes and Comments . 113

vii

viii CONTENTS

5 Isosurface Patch Construction 115
5.1 Definitions and Notation . 116
5.2 Isosurface Patch Construction 118
5.3 Isosurface Table Construction 122
5.4 Marching Polyhedra Algorithm 123
5.5 Isohull . 143
5.6 Notes and Comments . 159

6 Isosurface Generation in 4D 161
6.1 Definitions and Notation . 162
6.2 Isosurface Table Generation in 4D 164
6.3 Marching Hypercubes . 171
6.4 Marching Simplices . 190
6.5 Marching Polytopes . 198
6.6 IsoHull4D . 203
6.7 4D Surface Nets . 206
6.8 Notes and Comments . 208

7 Interval Volumes 209
7.1 Definitions and Notation . 210
7.2 MCVol . 211
7.3 Automatic Table Generation 214
7.4 MCVol Interval Volume Properties 219
7.5 Tetrahedral Meshes . 232
7.6 Convex Polyhedral Meshes . 235
7.7 Notes and Comments . 238

8 Data Structures 239
8.1 Uniform Grid Partitions . 241
8.2 Octrees . 242
8.3 Span Space Priority Trees . 253
8.4 Seed Sets . 264
8.5 Notes and Comments . 278

9 Multiresolution Tetrahedral Meshes 281
9.1 Bisection of Tetrahedra . 282
9.2 Multiresolution Isosurfaces . 292
9.3 Notes and Comments . 315

10 Multiresolution Polyhedral Meshes 317
10.1 Multiresolution Convex Polyhedral Mesh 318
10.2 Multiresolution Surface Nets 334
10.3 Multiresolution in 4D . 339
10.4 Notes and Comments . 352

CONTENTS ix

11 Isovalues 355
11.1 Counting Grid Vertices . 357

11.2 Counting Grid Edges and Grid Cubes 363

11.3 Measuring Gradients . 369

11.4 Notes and Comments . 376

12 Contour Trees 379
12.1 Examples of Contour Trees . 379

12.2 Definition of Contour Tree . 383

12.3 Join, Split, and Merge Trees . 389

12.4 Constructing Join, Split, and Merge Trees 394

12.5 Constructing Contour Trees . 400

12.6 Theory and Proofs . 407

12.7 Simplification of Contour Trees 416

12.8 Applications . 418

12.9 Notes and Comments . 420

A Geometry 423
A.1 Affine Hull . 423

A.2 Convexity . 423

A.3 Convex Polytope . 424

A.4 Simplex . 425

A.5 Barycentric Coordinates . 425

A.6 Linear Function . 426

A.7 Congruent and Similar . 426

B Topology 427
B.1 Interiors and Boundaries . 427

B.2 Homeomorphism . 428

B.3 Manifolds . 429

B.4 Triangulations . 430

B.5 Convex Polytopal Meshes . 430

B.6 Orientation . 431

B.7 Piecewise Linear Functions . 432

B.8 Paths and Loops . 433

B.9 Separation . 434

B.10 Compact . 434

B.11 Connected . 435

B.12 Homotopy Map . 438

B.13 Embeddings . 439

C Graph Theory 445

x CONTENTS

D Notation 447
Greek Letters . 447
Roman Letters . 448
Operators . 452

Bibliography 453

Index 469

PREFACE

Ever since Lorensen and Cline published their 1987 paper on the Marching

Cubes algorithm, isosurfaces have been a standard technique for visualization
of three-dimensional volumetric data. Nevertheless, there is no book specifically
devoted to isosurfaces. Part of this is because of the elegance and simplicity of
the Marching Cubes algorithm, which can easily be described in a few pages.
Yet, extensive work has been done since 1987 on extensions and variations of the
Marching Cubes algorithm, on other algorithms for isosurface construction,
on isosurface simplification, and on isosurface topology.

This book is my attempt to give a clear presentation of the basic algorithms
for isosurface construction. It is also an attempt at a more rigorous, mathemat-
ical perspective for some of the algorithms and results. My targeted audience
is designers of visualization software who would like an organized overview of
the various algorithms associated with isosurfaces; graduate students pursuing
research in visualization who need a solid introduction to research in the areas;
and visualization researchers for whom this can serve as a reference for the vast
amount of literature on isosurfaces.

The mathematical proofs in this book are more rigorous and challenging than
one might see in a typical graphics or visualization text. Despite the many read-
ers who will skip the proofs, I have included them because they are “guarantors”
of the correctness of the claims about the various algorithms. Starting with the
paper by Lorensen and Cline, numerous papers on isosurfaces contain erroneous,
obscure, or unsubstantiated claims. The proofs in this book are an attempt to
remedy this deficiency. I have tried to place the proofs in separate sections so
that readers who wish to avoid them can easily do so.

Of course, it is possible (and probable) that some of the claims and/or proofs
in this book are incorrect. Providing the proofs will hopefully help others uncover
and correct any erroneous claims.

Because some readers will be interested only in a subset of the topics in this
book, I have tried to make the chapters as self-contained as possible. Unfortu-
nately, this resulted in some redundancy in the text, for which I apologize.

Everyone should read Chapters 1 and 2, the introduction and the Marching

Cubes algorithm. Chapters 5, 6, and 7 on isosurface patch construction, four-

xi

xii Preface

dimensional isosurfaces, and interval volumes are related and should be read in
order. Chapter 9 on multiresolution tetrahedral meshes should be read before
Section 10.1 on multiresolution convex polyhedral meshes. Chapter 3 on dual
contouring should be read before Section 10.2 on multiresolution surface nets.
The other chapters are relatively independent and can be read independently.

ACKNOWLEDGMENTS

I am indebted to many people for their support and assistance. First and fore-
most is my colleague Tamal Dey, who continually challenged me to apply rigorous
methods to geometric modeling. He is a source of inspiration and a role model
for research excellence. Roger Crawfis initiated my interest in isosurfaces during
a graduate seminar on isosurfaces. That seminar led to a joint paper on general-
izing the Marching Cubes algorithm to four dimensions and my ongoing interest
and research in isosurfaces. Colleagues and collaborators, Han-Wei Shen and
Yusu Wang, were also sources of encouragement and inspiration.

A special thanks to Josh Levine who carefully reviewed this book and sug-
gested numerous corrections and improvements. Thanks also to my former and
current students, Ramakrishnan Khaziyur-Mannar, Marc Khoury, and Arindam
Bhattacharya. Thanks to Hamish Carr at University of Leeds and Carlos Schei-
degger from ATT Labs for numerous conversations about isosurfaces and scalar
data sets. Thanks also for support from the National Science Foundation.

Many of the images in this text were produced from data sets compiled by
Michael Meissner at www.volvis.org and the data sets at the Volume Library,
www.stereofx.org, compiled by Stefan Roettger. These data sets are an invalu-
able resource for research in volume graphics.

Finally, thanks to my wife, Shifra. Without her encouragement and support,
I would never have completed this book.

xiii

This page intentionally left blankThis page intentionally left blank

CHAPTER 1

INTRODUCTION

1.1 What Are Isosurfaces?
A scalar field is a function φ which assigns a scalar value (a real number) to each
point in Rd. The value d is known as the dimension of the scalar field. Examples
of three-dimensional scalar fields are densities, pressures, or temperatures asso-
ciated with points in R3. If these values change with time, then the addition of
time as a fourth dimension gives a four-dimensional scalar field.

Given a scalar field φ : Rd → R and a constant σ ∈ R, the set {x : φ(x) = σ}
is called a level set1 of φ. We use the notation φ−1(σ) to represent the level set
{x : φ(x) = σ}. If φ is a continuous function, then the level set φ−1(σ) separates
Rd into two sets of points, those with scalar value above σ and those with scalar
value below σ.

In two dimensions (d = 2), level sets are called isocontours or contour lines.
Contour lines in topographic maps are a familiar example of isocontours. Each
contour line on a topographic map represents a specific elevation. Walking along
the contour line means walking along a level path that does not change elevation.
Crossing contour lines means climbing up or down and changing elevations.

In three dimensions (d = 3), level sets are also called implicit surfaces or isosur-
faces. In computer graphics, the term implicit surface is generally used to refer
to surfaces defined by explicitly providing a function φ. Problems include ren-
dering such a surface, converting the implicit representation to a parameterized
one, and computing intersections of implicit surfaces.

1This mathematical formulation of level sets should not be confused with the level set
method for segmentation. The level set method defines a continuous, smooth function g based
on the input data and then uses the level sets from this function to segment the data.

1

2 1. Introduction

(a) (b)

(c) (d)

Figure 1.1. (a) Isosurface (isovalue 3) forming a torus. Scalar data set is a 20×20×20
regular grid with origin (0, 0, 0) measuring the distance to a circle with radius 6 centered
at (9.5, 9.5, 9.5). (b) Torus isosurface edges. (c) Isosurface (isovalue 600) of a micro
CT scan of a tooth using a GE Industrial Micro CT scanner. Data set created by GE
Aircraft Engines. (d) Isosurface (isovalue 80) of CT scan of an engine block. Data set
created by General Electric.

Isosurface is the term for level sets used in volume visualization. Generally,
it refers to a surface constructed from a finite set of input points, each associated
with a scalar value. (See Figure 1.1.) This set of input points is a sampling of
some continuous function φ and the isosurface is an approximation of the level
set of φ. Of course, numerous functions take on the same value at a finite set
of sample points, so the function φ and the isosurface are not uniquely defined.
In addition, sample data often contains noise and so is not even a precise rep-
resentation of φ at the sample points. Finally, the very idea that the input
data represents a sampling of some continuous function φ is itself a modeling
assumption and may be misleading.

1.2. Applications of Isosurfaces 3

Unfortunately, the term isosurface is sometimes used to represent the level
set of a function φ and at other times is used to represent an approximation to a
level set. In this book, we will always use level set to refer to the mathematically
defined set φ−1(σ). We use the term isosurface to refer to an approximation to a
level set φ−1(σ) where function φ is represented by a finite set of sample points.
The value σ is called the isovalue of the isosurface.

1.2 Applications of Isosurfaces
Two well-established procedures in medical imaging produce extensive scalar
field data. Computerized tomography (CT) scanners send beams of radiation
through a person and measure the amount of radiation that arrives at various
detectors. The radiation measurements are processed to produce a (radiation)
density at various sample points within the person. Magnetic resonance imaging
(MRI) scanners measure changes in a magnetic field caused by excited hydrogen
nuclei in water. Mathematical transformations map these measurements to wa-
ter density values at sample points within the person. The CT and MRI density
measurements implicitly represent a scalar density field on the scanned person
with each point associated with a density. Since CT and MRI scans are mea-
suring different material properties, they have different relative strengths and
weaknesses. CT scans excel at imaging solid organs while MRI scans are better
at imaging subtle differences in soft tissue.

The output of a CT or MRI scan is simply a set of values associated with
sample points, usually on a regular grid. Regions within this data represent
individual objects such as skin, muscle, or bones or pathologies such as tumors,
hemorrhages, or bowel obstructions. There are two approaches to visualizing
objects within this data. One, called direct volume rendering, is to cast imaginary
rays from a specified eye location through the data and integrate a color along
the rays based on the density values. A transfer function determines how the color
is constructed from the density values. By varying the transfer function, the user
can view or highlight different objects within the data. Direct volume rendering
can produce excellent images, but it is computationally expensive and produces
only a visual image of a specific view of the data. In addition, the transfer
function is difficult to set and adjust.

The other approach to visualizing data is to produce surfaces representing the
boundaries of objects within the data. This approach is called surface reconstruc-
tion. Once such surfaces are produced, they can be rendered from any viewpoint
using standard computer graphics techniques. Moreover, the surfaces model the
object boundaries and can be used to measure object volume and surface area.
The most direct way to produce surfaces from volumetric data is to construct an
isosurface that approximates the level set of a scalar field implicitly represented
by the data.

4 1. Introduction

Computational fluid dynamics also produces extensive scalar field data. In
computational fluid dynamics, the flow space is partitioned into small elements
(polyhedra). Each element has a flow density that is derived by solving a set of
finite difference equations. The flow density of an element can be thought of as
the density of some point within the element, perhaps the barycenter. Usually
this density varies with time. The objects of interest in fluid flow are high or low
pressure regions, perhaps representing shock waves or turbulence. Again, either
direct volume rendering or surface reconstruction can be used to visualize such
regions at a fixed time.

1.3 Isosurface Properties
As previously mentioned, we use the term isosurface to refer to an approximation
of a level set. There are infinitely many approximations to a level set. What
properties are required or desired in such an approximation?

One obvious property is that the isosurface should be a surface. However,
this is not as simple as it seems. For example, the level set is not necessarily
a surface: the level set of the constant function, φ(x, y, z) = σ, is all of R3 for
isovalue σ and the empty set for all other isovalues. If g : R3 → R is the distance
from (x, y, z) to the origin, then the level set of isovalue 0 is a point.

Another problem is what exactly is meant by surface. Consider the union of
two unit spheres in R

3, one lying above and one below the x−y plane, such that
the two spheres touch at the origin. Is the union of these two spheres a surface?
The union of two spheres tangent at the origin separates points inside the spheres
from points outside the spheres. On the other hand, in the neighborhood of the
origin this set of points looks like two surfaces glued together at a single point.
In technical terms, the union of two spheres is not a 2-manifold. Should the
isosurface be a 2-manifold?

An isosurface is an approximation to a level set of a continuous scalar field
φ. However, only a finite sampling P of φ is given. There are numerous scalar
fields φ with drastically different geometry and topology that have the same
scalar values on P . These different scalar fields can give rise to very different
isosurfaces. How do we choose among such isosurfaces?

One assumption we will make is that function φ is continuous. Under this
assumption, it is possible to at least identify some line segments that are inter-
sected by the level set φ−1(σ).

Let p and p′ be points in P where p has scalar values above σ ∈ R and
p′ has scalar values below σ. For any continuous field φ, the level set φ−1(σ)
intersects line segment (p, p′). Thus, any isosurface approximation of such a level
set should intersect line segment (p, p′).

On the other hand, if p and p′ both have scalar values above or both have
scalar values below σ, then the level set φ−1(σ) may or may not intersect line
segment (p, p′). In general, the isosurface should not intersect such an edge.

1.3. Isosurface Properties 5

1010

4

1 44 1 0

74

4 3 7

1014 4

37

47

6 77
v∗

14

104 6 8

1610

6 8 12

6420 8

12

8 16

104

8

12 1410

12

e

(a) (b)

Figure 1.2. (a) Scalar grid sampling the function φa(x, y) = (x − 2)2 − 3|y − 2| + 6,
the red level set φ−1

a (6) and the green isocontour with isovalue 6. Four branches of
the level set and four edges of the isocontour meet at the grid center, v∗. (b) Scalar
grid sampling the function φb(x, y) = 2x− |4y− 10|+10, the red level set φ−1

b (11) and
the green isocontour with isovalue 11. The red level set intersects the blue grid edge e
twice.

The boundary of many objects, particularly manufactured ones, is often
piecewise smooth but with sharp edges or corners connecting the pieces. An
isosurface representing such a boundary should not smooth over such edges or
corners.

We summarize some of the desirable properties of an isosurface:

1. It separates sample points with scalar value above isovalue from scalar
points with value below isovalue.

2. It does not intersect a grid edge more than once.

3. It does not intersect grid edges with both endpoint scalar values above or
both endpoint scalar values below the isovalue.

4. It is a manifold.

5. It represents sharp edges and corners.

Not all of these properties are always desirable. For instance, Figure 1.2(a)
displays a scalar grid sampling the function φa(x, y) = (x − 2)2 − 3|y − 2| + 6.
The vertex v∗ at the grid center has scalar value 6, so any isocontour with
isovalue 6 should pass through this vertex. Each of the four squares surrounding
v∗ contains a grid edge with scalar values of 4 and 7 so the isocontour passes
through each such grid edge. The result is that four isocontour edges meet at
v∗, and the isocontour is not a manifold. However, the isocontour does faithfully
represent the topology of φ−1

a (6) which has four curves meeting at v∗.

6 1. Introduction

Some of the properties listed above are mutually exclusive. Figure 1.2(b)
displays a scalar grid sampling the function φb(x, y) = 2x−|4y−10|+10. The red
level set φ−1

b (11) has a sharp corner at (0.5,2.5) and intersects the blue grid edge
e twice. The green isocontour does not properly represent the sharp corner at
(0.5,2.5) and does not intersect grid edge e. Any isocontour that reproduces the
sharp corner, satisfying Property 5, would intersect grid edge e twice, violating
Properties 2 and 3.

1.4 Isosurface Construction
There are four basic approaches to isosurface construction. The first and ear-
liest approach is to partition volumetric data into two-dimensional (2D) slices,
construct isocontours in each slice, and then “stitch” together the slices using
triangles. This approach mimics the way early radiologists used CT and MRI
data by examining slices of the data. The difficulty is in the stitching, which is
both time-consuming and error-prone. This approach has been superseded by
volumetric methods, which construct the isosurface directly in 3-space.

The second approach is to partition space into cubes and associate each cube
with a scalar value. The isosurface is the boundary of all cubes with scalar val-
ues below a given value. This approach was motivated by pixel graphics, which
represents images as a collection of square pixels. The obvious drawback is that
the boundary of a set of cubes is extremely nonsmooth, with faces meeting at
ninety-degree angles. In visualization, this problem can be mitigated by ren-
dering the surface using “phony” surface normals constructed from the original
data. Alternatively, smoothing techniques can be applied to the choppy surface
but with potential loss of some detail.

The third and most popular approach is the Marching Cubes algorithm
and its variants introduced by Lorensen and Cline [Lorensen and Cline, 1987a]
in 1987. The Marching Cubes algorithm partitions the volume into cubes and
then independently constructs surface patches within each cube. Each patch is a
small triangulated surface with a boundary on the cube. Based on a comparison
of the scalar values of the cube corners and the isovalue, a cube is classified into
one of 256 cases. The surface patches are constructed using a precomputed table
based on these 256 cases.

The original Marching Cubes algorithm sometimes created cube patches
that did not properly meet the patches of adjacent cubes. A number of solutions
were proposed, the simplest being a change to the precomputed table of 256
cases.

Variants of the Marching Cubes algorithm include using tetrahedra instead
of cubes and extending the algorithm to higher dimensions.

The last and most recent approach is called dual contouring. The volume is
partitioned into cubes and each cube is replaced by a single point. Points in

1.5. Limitations of Isosurfaces 7

adjacent cubes are connected to form a surface using quadrilaterals that are the
dual of cube edges. Dual contouring has the nice property of producing surfaces
that are tiled by quadrilaterals, not triangles. It can also be easily used with
multiresolution techniques where the volume partitioning may not be uniform.
On the other hand, the surfaces produced by dual contouring are usually not
manifolds.

1.5 Limitations of Isosurfaces
Using isosurfaces to model object boundaries from volumetric data has some
significant advantages. Isosurfaces encode basic, simple structures of the scalar
field sampled in the input data. They are easy to define and understand. They
correspond to a formal mathematical object, the level set of a scalar field, and
so lend themselves to rigorous mathematical analysis. They can be constructed
in time proportional to the size of the input data (linear time).

Unfortunately, isosurfaces have some significant deficiencies and limitations
as models for object boundaries. These deficiencies are caused by problems of
sampling and noise and by the lack of any global criterion in the isosurface
definition. We list some below:

1. undersampling of the spatial domain,

2. high-frequency noise,

3. low-frequency noise,

4. overspecification of the scalar values,

5. lack of smoothness criterion,

6. choice of isosurface,

7. lack of global information,

8. lack of a priori information.

Undersampling and high-frequency noise generate adjacent samples with large
variations in scalar value. These scalar variations create surfaces with compli-
cated geometric and topological features that are not representative of the object.
In regions where scalar values are constant or near-constant, using scalar values
with precision beyond the range of the scanner creates isosurfaces which wind
arbitrarily through the regions. Without any smoothness criterion, isosurfaces
have no restrictions on their susceptibility to undersampling and noise, even
though most objects are best represented by some smooth or piecewise smooth
boundaries.

8 1. Introduction

Applying smoothing and noise reduction filters to the raw data helps miti-
gate some of the problems described above but at the expense of losing some
of the fine isosurface features and nonsmooth features that may be present in
the data. On the other hand, one of the benefits of isosurfaces is their faith-
fulness to the data, including all the irregularities and noise in the data. The
trade-off between smooth filtering versus exact data representation is data- and
application-dependent and is best left to the individual researcher or clinician.

Low-frequency noise produces shifts in scalar values in different regions of
the data. The boundary of the object or objects of interest may have different
scalar values in different regions of the data. One isosurface will capture the
objects in one region while a different isosurface with a different isovalue will
bound the objects in the other region. Between the two regions, an isosurface
may give object fragments, representing portions of the object. Normalizing the
data across regions by adjusting scalar values may help, but it creates the danger
of introducing normalization errors.

Isosurfaces depend upon a single parameter, the isovalue of the points on
the isosurface. Choosing this parameter is itself a challenging task. Both visu-
alization and data analysis tools exist to help in finding interesting or relevant
isovalues.

Isosurfaces are intrinsically local with no global criteria about their shape
or structure. In almost all applications such global criteria do exist and are
known to researchers or clinicians. On the other hand, because isosurfaces make
no application or data-specific assumptions, they are versatile structures that
can be used in almost any geometric application. They are a basic tool for
anyone visualizing or modeling data but only as the building blocks for more
sophisticated data-specific tools.

1.6 Multivalued Functions and Vector Fields
Many applications produce more than a single scalar value at each point. The
simplest example is color images that have an RGB (red, green, blue) value
associated with each pixel. In fluid flow simulation, both a pressure and temper-
ature could be associated with sample points in the flow. Combinations of scans
from different instruments, such as a CT scan and an MRI scan of the same
individual, can produce a radiation density and a water density at each sample
point.

Visualizing and modeling multivalued data is much more difficult than ana-
lyzing scalar fields. Sometimes multiple values are combined into a single scalar
value at each point producing a single scalar field. Isosurfaces can then be used to
visualize and model objects in that scalar field. The resulting surface is highly
sensitive to the function used to create the scalar field from the multivalued
functions.

1.7. Definitions and Basic Techniques 9

Vector fields are multivalued functions that map Rd to Rd. In fluid flow sim-
ulation, they can represent direction and speed of the flow. Critical points in a
vector field are points that are assigned the zero vector, (0, 0, . . . , 0). Visual-
ization and modeling of vector fields usually relies upon identification of critical
points and representation of the flow between critical points.

Various transformations can be used to transform a vector field into a scalar
one—for instance, by replacing each vector by its length. Such transformations
are usually too crude to extract all but the most rudimentary information.

1.7 Definitions and Basic Techniques
Before discussing isosurface construction, we need to review some basic defini-
tions and techniques that are used throughout this book.

1.7.1 Definitions
Regular scalar grid. Isosurface construction algorithms take as input a sample
set of points. This sample set is often represented by a regular grid.

In two dimensions, a regular grid is a partition of a large rectangle into small
congruent rectangles. More generally, a regular grid in Rd is a partition of a
large hyperrectangle into small congruent hyperrectangles. (See Figure 1.3.)
The vertices and edges of the regular grid are the vertices and edges of the
small hyperrectangles. A typical example of a regular grid is the partition of
the region [0,m1]× [0,m2]× [0,m3] into m1 ×m2 ×m3 cubes. Note that along
each axis d this regular grid has md edges and (md + 1) vertices. The grid has
(m1 + 1)× (m2 + 1)× (m3 + 1) vertices.

(a) A 2D regular grid. (b) A 3D regular grid.

Figure 1.3. (a) A 2D regular grid with vertex dimensions 5 × 4 and cube dimensions
4 × 3. (b) A 3D regular grid with vertex dimensions 5 × 4 × 3 and cube dimensions
4× 3× 2.

10 1. Introduction

The vertex dimensions of a regular grid is the number of vertices along each
axis. A regular grid of cubes with vertex dimensions n1×n2×n3 has nd vertices
along each axis, n1 × n2 × n3 vertices, and (n1 − 1)× (n2 − 1)× (n3 − 1) cubes.

The cube dimensions of a regular grid is the number of edges along each axis.
A regular grid of cubes with cube dimensions m1 × m2 × m3 has md edges
along each axis, (m1 + 1) × (m2 + 1) × (m3 + 1) vertices, and m1 × m2 × m3

cubes. A regular grid with cube dimensions m1×m2×m3 has vertex dimensions
(m1 + 1)× (m2 + 1)× (m3 + 1).

Unless otherwise noted, the dimensions of a grid refers to its vertex dimen-
sions. Thus, an n1 × n2 × n3 regular grid has vertex dimensions n1 × n2 × n3

and cube dimensions (n1 − 1)× (n2 − 1)× (n3 − 1).

A regular scalar grid is a regular grid where each grid vertex vi is associated
with a scalar value si ∈ R. A simple example is a grayscale image—for instance,
a black-and-white picture.2 The sample points are the pixel centers. The scalar
value at each point is the grayscale value of the pixel containing the point.

Triangulation. Isosurfaces are often triangulations, sets of triangles or simplices
with appropriate intersection conditions.

Definition 1.1. A triangulation τ is a set of simplices such that for every pair of
simplices t, t′ ∈ τ , the intersection t∩t′ is either empty or a face of each simplex.

For instance, if triangulation τ is a set of triangles, then the intersection t∩t′
is either empty, a common vertex of t and t′, or a common edge of t and t′. (See
Figure 1.4.)

Mathematics texts usually add a formal requirement that if simplex t is in
τ , then every face of t is in τ . See Appendix B.4 for further discussion and
definitions.

a
b

c

(a) (b)

Figure 1.4. (a) A triangulation of a rectangle. (b) A partition of a rectangle into
triangles, which is not a triangulation. The intersection of triangles a and c is a line
segment that is not an edge of c. The intersection of triangles b and c is also not an
edge of c.

2The term black-and-white is a bit misleading since black-and-white pictures generally con-
tain all different shades of gray.

1.7. Definitions and Basic Techniques 11

The notation |τ | represents the set of all points in all triangles of τ , i.e.,
|τ | =

⋃
t∈τ t.

Definition 1.2. A set X ⊆ R
d is piecewise linear if X equals |τ | for some triangula-

tion τ .

Convex Polyhedral Mesh. In many instances, a scalar field is represented not by
a regular scalar grid but by a mesh composed of triangles or convex polyhedra.

Definition 1.3. A convex polyhedral mesh Γ is a set of convex polyhedra in R
3 such

that for every pair of convex polyhedra c, c′ ∈ Γ, the intersection c∩ c′ is either
empty or a face of each convex polyhedron.

Mathematics texts usually add a formal requirement that if convex polyhe-
dron c is in Γ, then every face of c is in Γ.

The notation |Γ| represents the set of all points in all elements of Γ, i.e.,
|Γ| =

⋃
c∈Γ c.

A tetrahedral mesh is a convex polyhedral mesh where every mesh element is
a tetrahedron. A scalar mesh is a mesh where each mesh vertex vi is associated
with a scalar value si ∈ R.

The generalization of a convex polyhedral mesh to Rd is called a convex
polytopal mesh. The definition is given in Appendix B.5. A convex polytopal
mesh where every mesh element is a simplex is a triangulation. It is also sometimes
called a simplicial mesh.

Orientation. Let L be a line segment L with vertices {v0, v1}. The orientation of
L is an ordering of the vertices of L, either (v0, v1) or (v1, v0).

Let t be a triangle with vertices {v0, v1, v2}. The orientation of t is a cyclic
order of the vertices of t. (See Figure 1.5(a).) There are two possible cyclic

v0

v1 v2
(v0, v1, v2)

v0

v1 v2
(v2, v1, v0)

v0 v1

v2

v3

v4

e1

e2

(a) (b) (c)

Figure 1.5. (a) Triangle orientation (v0, v1, v2). (b) Triangle orientation (v2, v1, v0).
(c) Triangle orientations (v0, v1, v2), (v1, v3, v2), and (v4, v3, v2). Orientations
(v0, v1, v2) and (v1, v3, v2) are consistent. Orientation (v0, v1, v2) induces the orien-
tation (v1, v2) on edge e1 while (v1, v3, v2) induces the opposite orientation (v2, v1) on
edge e1. Orientations (v1, v3, v2) and (v4, v3, v2) are not consistent. Both orientations
induce the same orientation (v3, v2) on edge e2.

12 1. Introduction

orders, either (v0, v1, v2) or (v2, v1, v0). The sequences (v1, v2, v0) and (v2, v0, v1)
represent the same cyclic order as (v0, v1, v2). Only the starting vertex has
changed. Similarly, the sequences (v1, v0, v2) and (v0, v2, v1) represent the same
cyclic order as (v2, v1, v0).

The cyclic order (v0, v1, v2) induces orientations, (v0, v1), (v1, v2), and (v2, v0)
of the edges of t. The reverse cyclic order (v2, v1, v0) induces opposite orienta-
tions (v1, v0), (v2, v1), and (v0, v2) of the edges of t. Two oriented triangles,
t1 and t2, which share an edge e have consistent orientations if the orientation
of e induced by t1 is the opposite of the orientation of e induced by t2. (See
Figure 1.5(c).)

The orientation (v0, v1, v2) of a triangle t in R3 determines the vector

u = (v1 − v0)× (v2 − v0)
= v1 × v2 − v0 × v2 − v1 × v0
= v0 × v1 + v1 × v2 + v2 × v0,

where × is the cross product. Vector u is orthogonal to t. The sequence
(v1, v2, v0) determines the vector (v2−v1)× (v0−v1) = v0×v1+v1×v2+v2×v0
that is u. Similarly, (v2, v0, v1) determines the vector (v0− v2)× (v1− v2), which
equals u. Thus, the vector u is independent of the representation of the cycle
(v0, v1, v2). The orientation (v2, v1, v0) determines the vector

(v1 − v2)× (v0 − v2) = v1 × v0 − v1 × v2 − v2 × v0
= v1 × v0 + v2 × v1 + v0 × v2
= −u.

Thus, the two orientations of t determine two opposite vectors, u and −u, which
are both orthogonal to t.

In computer graphics, triangle orientations are used to determine the front
and back faces of triangles. Triangle shading is often dependent on whether the
viewer is seeing a front or back face. Thus, it is important that any two triangles
that share a common edge have consistent orientations.

Orientations are defined for higher dimensional simplices, where they are also
represented by sequences of simplex vertices. The orientation of a (d−1)-simplex
in Rd determines a unique vector u orthogonal to the simplex. The opposite
orientation determines the vector −u. Appendix B.6 contains the definition and
discussion of orientations in higher dimensional simplices.

Separation. An important property of isosurfaces is that they “separate” those
points with scalar value above the isovalue from those points with scalar value
below the isovalue [Nielson et al., 2003]. We give the following formal definition
of this concept.

Let X and Y be sets of points in Rd. We first define what it means for X to
separate two points in Y.

1.7. Definitions and Basic Techniques 13

Definition 1.4.

• Set X separates point p ∈ Y from point q ∈ Y if every path in Y connecting
p to q intersects X.

• Set X strictly separates p from q if X separates p from q and neither p nor q
is in X.

We next define what it means for X to separate two subsets of Y.

Definition 1.5.

• Set X separates Y1 ⊆ Y from Y2 ⊆ Y if X separates every p ∈ Y2 from
every q ∈ Y2.

• Set X strictly separates Y1 ⊆ Y from Y2 ⊆ Y if X separates Y1 from Y2 and
X does not intersect Y1 or Y2.

(See Appendix B.9 for further discussion of separation and its properties.)

Manifolds. A manifold is a mathematical formalization of the intuitive concept
of a surface.

Let Bk be the k-dimensional open ball with radius one centered at the origin.
Ball B1 is an open line segment and B2 is an open disk. A k-dimensional manifold
(k-manifold) is a set of points that locally resembles Bk. Examples of 1-manifolds
are circles or simple, closed curves. Every point of a 1-manifold has a small neigh-
borhood that is topologically equivalent to an open line segment (B1). Examples
of 2-manifolds are spheres, tori, or double tori. Every point of a 2-manifold has
a small neighborhood that is topologically equivalent to an open disk (B2).

Let Bk+ be the intersection of the open ball Bk and the closed half-space
{(x1, . . . , xk) : xk ≥ 0}. Note that Bk+ is neither closed nor open. B1+ is a
line segment open at one endpoint and closed at the other. B2+ is a half-disk,
open along the disk and closed at the bounding edge. B3+ is a half-sphere, open
along the sphere and closed at the bounding disk. A k-dimensional manifold with
boundary (k-manifold with boundary) is a set of points which locally resembles either
Bk or Bk+. Examples of 1-manifolds with boundary are line segments or simple
curves with two endpoints. Examples of 2-manifolds with boundary are disks or
convex polygons (including the polygon interior.) Examples of 3-manifolds with
boundary are closed balls or cubes (including the cube interior.) For more precise
definitions of k-manifold and k-manifold with boundary, see Appendix B.3.

Piecewise linear manifold. A k-manifold (possibly with boundary) is piecewise
linear if it is the union of a set of k-simplices that form a triangulation of the
manifold. A piecewise linear manifold is orientable if every simplex in the man-
ifold can be assigned an orientation and these orientations are consistent. The
orientation of the manifold is the orientation of all its simplices. If a piecewise

14 1. Introduction

linear manifold is connected and orientable, then assigning an orientation to one
simplex fixes the orientations of all the other manifold simplices.

1.7.2 Linear Interpolation
A basic step in Marching Cubes and its variants is approximating the inter-
section of a level set and a line segment. These algorithms use linear interpolation
to find a point on the line segment that approximates the intersection.

Let φ : Rd → R be a scalar field and let σ ∈ R be an isovalue defining the
level set φ−1(σ). Given two grid vertices p and q where φ(p) �= φ(q), if σ is
between φ(p) and φ(q), then the level set intersects line segment [p, q]. We wish
to approximate the intersection of φ−1(σ) and line segment [p, q]. We do so by

defining a linear function φ̂ based on the two scalar values φ(p) and φ(q) and

calculating the point r ∈ [p, q] where φ̂(r) = σ.
Every point on line segment [p, q] can be described as a linear combination of

p and q. More specifically, every point on line segment [p, q] equals (1−α)p+αq
for some α where 0 ≤ α ≤ 1. For example, in R

3 where p equals (px, py, pz) and
q equals (qx, qy, qz), the linear combination is

((1− α)px + αqx, (1− α)py + αqy , (1− α)pz + αqz).

Define φ̂ : [p, q]→ R by

φ̂((1 − α)p+ αq) = (1− α)φ(p) + αφ(q).

Note that φ̂(p) = φ(p) (α = 0) and φ̂(q) = φ(q) (α = 1). Values of φ̂ vary
linearly with α.

We approximate the intersection of φ−1(σ) with [p, q] as the point r where

φ̂(r) equals σ. Since r is on line segment [p, q], point r equals (1 − αr)p + αrq
for some αr. Thus,

σ = φ̂(r) = φ̂((1 − αr)p+ αrq) = (1− αr)φ(p) + αrφ(q).

Solving for αr gives

αr =
σ − φ(p)
φ(q) − φ(p) .

Note that since φ(p) �= φ(q), the denominator φ(q)− φ(p) is nonzero.
In R3, the equations for the coordinates of r = (rx, ry, rz) are

rx = (1 − αr)px + αrqx,

ry = (1 − αr)py + αrqy,

rz = (1 − αr)pz + αrqz.

1.7. Definitions and Basic Techniques 15

Input : Points p, q ∈ Rd, scalar values sp, sq, and an isovalue σ.
Requires : sp �= sq and either sp ≤ σ ≤ sq or sp ≥ σ ≥ sq.
Output : Point r lying on [p, q].

LinearInterpolation(p, sp, q, sq, σ)

1 α← σ−sp
sq−sp

;

2 for i = 1 to d do
3 ri ← (1− α)pi + αqi;
4 end
5 return (r);

Algorithm 1.1. Linear interpolation.

More generally, in Rd the equations for the coordinates of r = (r1, r2, . . . , rd) are

r1 = (1− αr)p1 + αrq1,

r2 = (1− αr)p2 + αrq2,

· · ·
rd = (1− αr)pd + αrqd.

Pseudocode is given in Algorithm 1.1.
The assumption for all these algorithms is that φ(p) does not equal φ(q). If

both φ(p) and φ(q) equal σ, then the level set contains both p and q and there
is no way to approximate the intersection of φ−1(σ) and [p, q] by a single point.
Where or whether the isosurface approximation intersects line segment [p, q] is
dependent upon the specific isosurface construction algorithm.

1.7.3 Mesh Representation
The output of surface reconstruction algorithms is a mesh consisting of a set of
small, simple surface elements. Typical surface elements are triangles or quadri-
laterals. In curve reconstruction, the elements are line segments, while in higher
dimensions the elements are simplices, cubes or hypercubes.

A mesh is represented by a list of mesh vertices, L1, followed by a list,
L2, of surface elements. The list L1 of mesh vertices contains the mesh vertex
coordinates, the location of each mesh vertex in Rd. This representation is called
an indexed mesh or a face-vertex mesh.

The list L2 of surface elements contains the element vertices, the mesh ver-
tices determining the element. For instance, triangles are specified by three
vertices, while quadrilaterals are specified by four vertices in order around the

16 1. Introduction

1

1

2

2

3

3

4

4 5

v0 : (1, 1)

v1 : (2, 3)

v2 : (3, 2)

v3 : (4, 4)

v4 : (5, 1)

Figure 1.6. Triangle mesh. List of vertices (specified by vertex coordinates):
((1, 1), (2, 3), (3, 2), (4, 4), (5, 1)). List of triangles (specified by triangle vertices):
((v0, v2, v1), (v1, v2, v3), (v2, v4, v3)).

quadrilateral. Each mesh vertex stored in L2 is actually a reference to a mesh
vertex in the list L1.

Figure 1.6 contains an example of a triangle mesh. The list L1 of mesh
vertices for this mesh is ((1, 1), (2, 3), (3, 2), (4, 4), (5, 1)). The list L2 of mesh
triangles is ((v0, v2, v1), (v1, v2, v3), (v2, v4, v3)).

CHAPTER 2

MARCHING CUBES

AND VARIANTS

In the introduction, we mentioned four different approaches to isosurface con-
struction. In this chapter, we describe one of those approaches to isosurface
construction, the widely used Marching Cubes algorithm by Lorensen and
Cline [Lorensen and Cline, 1987a].

The Marching Cubes algorithm is based on two ideas. First, the isosurface
can be constructed piecewise within each cube of the grid without reference to
other grid cubes. Second, the combinatorial structure of each isosurface patch
in a grid cube can be retrieved from a lookup table. Since the main operation
is retrieving this structure from the lookup table, the algorithm runs in time
proportional to the number of grid cubes.

We first present a two-dimensional version of the algorithm, calledMarching

Squares, for constructing two-dimensional isocontours. Before discussing the
Marching Squares algorithm, we define some terminology that will be used
by the algorithms in this chapter.

2.1 Definitions
Given a regular scalar grid and an isovalue σ, it is convenient to assign “+” and
“−” labels to each grid vertex based on the relationship between its scalar value
and σ.

Definition 2.1.

• A grid vertex is positive, “+”, if its scalar value is greater than or equal to σ.

• A grid vertex is negative, “−”, if its scalar value is less than σ.

• A positive vertex is strictly positive if its scalar value does not equal σ.

17

18 2. Marching Cubes and Variants

Since the scalar value of a negative vertex never equals the isovalue, there is no
point in defining a similar “strictly negative” term.

Grid edges can be characterized by the labels at their endpoints.

Definition 2.2.

• A grid edge is positive if both its endpoints are positive.

• A grid edge is negative if both its endpoints are negative.

• A positive grid edge is strictly positive if both its endpoints are strictly pos-
itive.

• A grid edge is bipolar if one endpoint is positive and one endpoint is nega-
tive.

Note that a grid vertex or edge is only positive or negative in relationship to
some isovalue.

The definitions given above apply not just to regular scalar grids but also to
curvilinear grids. They also apply to the vertices and edges of polyhedral meshes
such as tetrahedral and simplicial meshes.

2.2 Marching Squares

2.2.1 Algorithm
Input to the Marching Squares algorithm is an isovalue and a set of scalar
values at the vertices of a two-dimensional regular grid. The algorithm has
three steps. (See Figure 2.1.) Read in the isocontour lookup table from a pre-
constructed data file. For each square, retrieve from the lookup table a set of

Read isocontour lookup table

��
For each grid square, retrieve isocontour edges

��
Compute isocontour vertex coordinates using linear interpolation

Figure 2.1. Marching Squares.

2.2. Marching Squares 19

6 7 81 2 3 4 5

14 15 169 10 11 12 13

Figure 2.2. Square configurations. Black vertices are positive.

6 7 81 2 3 4 5

14 15 169 10 11 12 13

Figure 2.3. Square isocontours. Configurations 1 and 9 have no isocontour. Isocontours
for configurations 2–7 and 10–15 are single line segments. Isocontours for configurations
8 and 16 are two line segments.

isocontour edges representing the combinatorial structure of the isocontour. The
endpoints of these edges form the isocontour vertices. Assign geometric locations
to the isocontour vertices based on the scalar values at the square edge endpoints.
We explain the last two steps of the algorithm next.

Each grid vertex is labeled positive or negative as described in Section 2.1.
(See Figure 2.4(b) for an example.) Since a square has four vertices, there are
24 = 16 different configurations of square vertex labels. These configurations are
listed in Figure 2.2.

The combinatorial structure of the isocontour within each square is deter-
mined from the configuration of the square’s vertex labels. In order to separate
the positive vertices from the negative ones, the isocontour must intersect any
square edge that has one positive and one negative endpoint. An isocontour
that intersects a minimal number of grid edges will not intersect any square edge
whose endpoints are both strictly positive or whose endpoints are both negative.

For each square configuration κ, let E
+/−
κ be the set of bipolar edges. Note

that the size of E
+/−
κ is either zero, two, or four. Pair the edges of E

+/−
κ . Each

such pair represents an isocontour edge with endpoints on the two elements
of the pair. Figure 2.3 contains the sixteen square configurations and their

20 2. Marching Cubes and Variants

1

2

2

3

3 3

3

4

4

5

6

6

6

6

7

7

7

7

8

8

8

8

8

9

9

1

2

2

3

3 3

3

4

4

5

6

6

6

6

7

7

7

7

8

8

8

8

8

9

9

(a) Scalar grid. (b) The +/− grid.

1

2

2

3

3 3

3

4

4

5

6

6

6

6

7

7

7

7

8

8

8

8

8

9

9

1

2

2

3

3 3

3

4

4

5

6

6

6

6

7

7

7

7

8

8

8

8

8

9

9

(c) Midpoint vertices. (d) Isocontour.

Figure 2.4. (a) 2D scalar grid. (b) Black vertices are positive. Vertex v with scalar
value sv is positive if sv >= 5 and negative if sv < 5. Note that sv = 5 for one grid
vertex v. (c) Isocontour with vertices at edge midpoints (before linear interpolation).
(d) Isocontour with isovalue 5.

isocontours. The isocontour lookup table, Table, contains sixteen entries, one for

each configuration. Each entry, Table[κ] is a list of the E
+/−
κ pairs.

In Figure 2.3 the isocontour edges are drawn connecting the midpoints of
each square edge. This is for illustration purposes only. The geometric locations
of the isocontour vertices are not defined by the lookup table.

The isocontour lookup table is constructed on the unit square with vertices
(0, 0), (1, 0), (0, 1), (1, 1). To construct the isocontour in grid square (i, j), we
have to map pairs of unit square edges to pairs of square (i, j) edges. Each
vertex v = (vx, vy) of the unit square maps to v + (i, j) = (vx, vy) + (i, j) =
(vx + i, vy + j). Each edge e of the unit square with endpoints (v, v′) maps to
edge e+ (i, j) = (v + (i, j), v′ + (i, j)). Finally, each edge pair (e1, e2) maps to
(e1 + (i, j), e2 + (i, j)).

The endpoints of the isocontour edges are the isocontour vertices. To map
each isocontour edge to a geometric line segment, we use linear interpolation to

2.2. Marching Squares 21

Input : F is a 2D array of scalar values.
Coord is a 2D array of (x, y) coordinates.
σ is an isovalue.

Result : A set Υ of isocontour line segments.

MarchingSquares(F, Coord, σ, Υ)

1 Read Marching Squares lookup table into Table;
/* Assign “+” or “−” signs to each vertex */

2 foreach grid vertex (i, j) do
3 if F[i, j] < σ then Sign[i, j]← “−”;
4 else Sign[i, j]← “+”; /* F[i, j] ≥ σ */

5 end
6 S← ∅;
/* For each grid square, retrieve isocontour edges */

7 foreach grid square (i, j) do
/* Grid square vertices are (i, j), (i+1, j), (i, j+1), (i+1, j+1) */

8 κ← (Sign[i, j],Sign[i+1, j],Sign[i, j+1],Sign[i+1, j+1]);
9 foreach edge pair (e1, e2) ∈ Table[κ] do

10 Insert edge pair (e1 + (i, j), e2 + (i, j)) into S;
11 end

12 end
/* Compute isocontour vertex coordinates using linear interpolation */

13 foreach bipolar grid edge e with endpoints (i1, j1) and (i2, j2) do
/* Compute the isosurface vertex we on edge e */

14 we ← LinearInterpolation

15 (Coord[i1, j1], F[i1, j1], Coord[i2, j2], F[i2, j2], σ);

16 end
/* Convert S to set of line segments */

17 Υ← ∅;
18 foreach pair of edges (e1, e2) ∈ S do
19 Υ← Υ ∪ {(we1 , we2)};
20 end

Algorithm 2.1. Marching Squares.

position the isocontour vertices as described in Section 1.7.2. Each isocontour
vertex v lies on a grid edge [p, q]. If sp and sq are the scalar values at p and q
and σ is the isovalue, then map v to (1−α)p+αq where α = (σ− sp)/(sq − sp).
Note that since p and q have different signs, scalar sp does not equal sq and the
denominator (sq − sp) is never zero.

The Marching Squares algorithm is presented in Algorithm 2.1. Function
LinearInterpolation, called by this algorithm, is defined in Algorithm 1.1 in
Section 1.7.2.

22 2. Marching Cubes and Variants

Figure 2.4 contains an example of a scalar grid, an assignment of positive and
negative labels to the grid vertices, the isocontour before linear interpolation, and
the final isocontour after linear interpolation.

2.2.2 Running Time
The Marching Squares algorithm runs in linear time.

Proposition 2.3. Let N be the total number of vertices of a 2D scalar grid. The
running time of the Marching Squares algorithm on the scalar grid is Θ(N).

Proof: Reading the Marching Square lookup table takes constant time. Each
grid square is processed once. At each grid square, at most two isocontour
edges are retrieved from the lookup table. Since the number of grid squares is
bounded by the number of grid vertices, determining the isocontour edges takes
O(N) time.

Computing the isocontour vertex on each grid edge takes time proportional
to the number of isocontour vertices. Since each grid edge has at most one
isocontour edge, the time to compute isocontour vertices is proportional the
number of grid edges. The number of grid edges is less than twice the number
of grid vertices, so the number of grid edges is at most 2N . Thus computing the
isocontour vertices takes O(N) time.

The algorithm examines every grid square, so its running time has an Ω(N)
lower bound. Thus, the running time of the Marching Squares algorithm is
Θ(N). �

2.2.3 Isocontour Properties
To properly discuss the output produced by the Marching Squares algorithm,
we need to differentiate between two cases based on the isovalue. In the first
case, the isovalue does not equal the scalar value of any grid vertex. In this
case, the Marching Squares algorithm produces a piecewise linear 1-manifold
with boundary. The boundary of the 1-manifold lies on the boundary of the
grid. In the second case, the isovalue equals the scalar value of one or more grid
vertices. In this case, the Marching Squares algorithm may not produce a
1-manifold with boundary or the boundary may not lie on the boundary of the
grid. For instance, the Marching Squares algorithm applied to the 3×3 grids
in Figures 2.5 and 2.6 produces non-manifold isocontours or isocontours with
boundary not on the scalar grid. In Figure 2.5(a), four isocontour line segments
intersect at a single point; in Figure 2.5(b), the isocontour is a single point, and
in Figure 2.6, the boundary of the isocontour lies inside the grid.

The two cases also differ in the nature of the line segments produced by the
algorithm. The isocontour produced by the Marching Squares algorithm is

2.2. Marching Squares 23

34

2

2

1 2

4

2 4

5

1

51

1

01

3

1 2 1

2

2 221

2

2 4 4 4

1

0

(a) (b)

Figure 2.5. Examples of non-manifolds produced by Marching Squares (isovalue 3).
Black vertices are positive. (a) Four curves joining at the grid vertex with isovalue 3.
(b) Isosurface includes an isolated point at the grid vertex with isovalue 3.

3 3

1 2 1 0

12

1 2 2 1

4442

Figure 2.6. Examples of a manifold produced by Marching Squares whose boundary
does not lie on the grid boundary (isovalue 3). Black vertices are positive.

a set of line segments whose vertices lie on the grid edges. If the isovalue does
not equal the scalar value of any grid vertex, then these line segments all have
positive length. If the isovalue equals the scalar value of one or more grid vertices,
then the isocontour may have zero-length edges. For instance, the Marching

Squares algorithm applied to the three grids in Figure 2.7 produces isocontours
for isovalue 3 with zero-length edges.

In Figure 2.7(a), the lower-left grid square has configuration 4, producing a
single isocontour edge, but both endpoints of that edge map to the vertex in the
middle of the grid. In Figure 2.7(b), each grid square produces an isocontour
edge, but all four edges have zero length and collapse to a single point. In
Figure 2.7(c), leftmost and rightmost grid squares produce zero-length isocontour
edges and two middle grid squares produce two duplicate isocontour edges on a
grid edge.

Marching Squares returns a finite set, Υ, of line segments. The isocontour
is the union of those line segments. The vertices of the isocontour are the endpoints
of the line segments.

The following properties apply to all isocontours produced by the Marching

Squares algorithm.

24 2. Marching Cubes and Variants

32

2

2 2

4

54

1

32

2

2 2

22

1

3

2

2

1

2

2

2 2

2

12

1

3

(a) (b) (c)

Figure 2.7. Examples of zero-length contour edges produced by Marching Squares

(isovalue 3). Black vertices are positive. (a) Isocontour with one zero-length isocontour
edge (from lower-left grid square). (b) Isocontour with four zero-length isocontour
edges. (c) Another isocontour with four zero-length isocontour edges. Isocontour also
has two duplicate nonzero isocontour edges (from the two middle grid squares).

Property 1. The isocontour is piecewise linear.

Property 2. The vertices of the isocontour lie on grid edges.

Property 3. The isocontour intersects every bipolar grid edge at exactly one
point.

Property 4. The isocontour does not intersect any negative or strictly positive
grid edges.

Property 5. The isocontour separates positive grid vertices from negative grid
vertices and strictly separates strictly positive grid vertices from negative grid
vertices.

Set Y ⊆ X separates point p ∈ X from point q ∈ X if every path in X connecting
p to q intersects Y. Set Y strictly separates p from q if Y separates p from q and
neither p nor q is on Y. (See Section 1.7.1 and Appendix B.9.)

Properties 3 and 4 imply that the isocontour intersects a minimum number
of grid edges. If both endpoints of a grid edge have scalar value equal to the
isovalue, then the isocontour may intersect the grid edge zero, one, or two times
or may contain the grid edge. (See Figure 2.8.)

A grid vertex may have scalar value equal to the isovalue and yet no iso-
contour passes through any edge containing that grid vertex. For instance, the
Marching Squares algorithm returns the empty set when run on the scalar
grid in Figure 2.9 with isovalue 3. Each vertex, including the center vertex, is
positive, so each grid square has configuration 9 (Figure 2.2) and has no isocon-
tour edges.

By Property 3, the isocontour intersects every bipolar grid edge. However,
the bipolar grid edge may be intersected by zero-length isocontour edges as in
Figure 2.7(b).

The following properties apply to Marching Squares isocontours whose
isovalues do not equal the scalar value of any grid vertex.

2.2. Marching Squares 25

4

4 4

2

4

4

2

2

2

1

2

2

1

2

1

4

22

4

4

33

55 44

2

1

4

3 3 3 3 3 3

22

2

54 42

1

2

12

2

222

1

2

12

2

24 42 24 42

4

(a) (b) (c) (d)

eeee

Figure 2.8. Examples of grid edges with both endpoint scalar values equal to the
isovalue (3). Black vertices are positive. (a) Red grid edge e does not intersect the
isocontour. (b) Red grid edge e intersects the isocontour at one endpoint. (c) Red grid
edge e intersects the isocontour at both endpoints. (d) Red grid edge e is contained in
the isocontour.

4

4

4

54

5

3

44

Figure 2.9. Example of a scalar grid whose Marching Squares isocontour is the
empty set, even though the center grid vertex has scalar value equal to the isovalue 3.
All vertices are positive.

Property 6. The isocontour is a piecewise linear 1-manifold with boundary.

Property 7. The boundary of the isocontour lies on the boundary of the grid.

Property 8. Set Υ does not contain any zero-length line segments or dupli-
cate line segments, and the line segments in Υ form a “triangulation” of the
isocontour.

The triangulation in Property 8 simply means that line segments in Υ inter-
sect at their endpoints. The isocontour is one-dimensional and does not contain
any triangles.

2.2.4 Proof of Isocontour Properties
We give a proof of each of the properties listed in the previous section.

Property 1. The isocontour is piecewise linear.

Property 2. The vertices of the isocontour lie on grid edges.

26 2. Marching Cubes and Variants

6 7 81 2 3 4 5

14 15 169 10 11 12 13

Figure 2.10. Red, positive regions and blue, negative regions for each square configu-
ration. The green isocontour is part of the positive region. Black vertices are positive.

Proof of Properties 1 & 2: The Marching Squares isocontour consists of a finite
set of line segments, so it is piecewise linear. These line segments intersect only at
their endpoints and thus form a triangulation of the isocontour. The endpoints
of these line segments lie on the grid edges, confirming Property 2. �

Property 3. The isocontour intersects every bipolar grid edge at exactly one
point.

Property 4. The isocontour does not intersect any negative or strictly positive
grid edges.

Proof of Properties 3 & 4: Each isocontour edge is contained in a grid square. Since
the grid squares are convex, only isocontour edges with endpoints (vertices) on
the grid edge intersect the grid edge. If the grid edge has one positive and one
negative endpoint, the unique location of the isocontour vertex on the grid edge
is determined by linear interpolation. Thus the isocontour intersects a bipolar
grid edge at only one point.

If the grid edge is negative or strictly positive, then no isocontour vertex lies
on the grid edge. Thus the isocontour does not intersect negative or strictly
positive grid edges. �

Within each grid square the isocontour partitions the grid square into two
regions. Let the positive region for a grid square c be the set of points which can
be reached by a path ζ from a positive vertex. More precisely, a point p is in the
positive region of c if there is some path ζ ⊂ c connecting p to a positive vertex
of c such that the interior of ζ does not intersect the isocontour. A point p is
in the negative region of c if there is some path ζ ⊂ c connecting p to a negative
vertex of c such that ζ does not intersect the isocontour. Since any path ζ ⊂ c
from a positive to a negative vertex must intersect the isocontour, the positive
and negative regions form a partition of the square c. Figure 2.10 illustrates the
positive and negative regions, colored red and blue, respectively, for each square
configuration.

2.2. Marching Squares 27

c1 c2
c3

c4

e1 e2 e3

Figure 2.11. Adjacent grid squares, c1, c2, c3, and c4, and their positive (red) regions,
R+

c1 , R
+
c2 , R

+
c3 and R+

c4 , respectively. Yellow edges e1, e2 and e3 separate the squares.
Positive regions agree on the grid square boundaries, i.e., R+

c1 ∩ e1 = R+
c2 ∩ e1 and

R+
c2 ∩ e2 = R+

c3 ∩ e2 and R+
c3 ∩ e3 = R+

c4 ∩ e3.

Note the asymmetry in the definitions of the positive and negative regions.
For the positive region the interior of ζ does not intersect the isocontour, while
for the negative region the entire path ζ must not intersect the isocontour. Thus,
the positive region contains the isocontour while the negative region does not.
The positive region is also closed. Any point within the positive region that does
not lie in the isocontour has a neighborhood contained in the positive region.

Every negative vertex is contained in the negative region since the zero-length
path connects the vertex to itself. Similarly, every positive vertex is contained
in the positive region.

Let R+
c be the positive region for a grid square c. We claim that positive and

negative regions agree on the grid square boundaries. For instance, in Figure 2.11
R+

c1 ∩ e1 equals R+
c2 ∩ e1 where R+

c1 and R+
c2 are the positive regions for grid

squares c1 and c2, respectively, and e1 is the edge between c1 and c2. Similarly,
R+

c2 ∩ e2 equals R+
c3 ∩ e2 and R+

c3 ∩ e3 equals R+
c4 ∩ e3.

Lemma 2.4. Let c1 and c2 be adjacent grid squares where each vertex of c1 and
c2 has a positive or a negative label. Let p be a point in c1 ∩ c2. Point p is in
R+

c1 if and only if p is in R+
c2 .

Proof: If p is a grid vertex, then p is in R+
c1 and R+

c2 if it is positive and not in
R+

c1 or R+
c2 if it is negative. Otherwise, p must be in the interior of some grid

edge e. If edge e is positive, then p is in R+
c1 and R+

c2 . If edge e is negative, then
p is not in R+

c1 or R+
c2 . If one endpoint, v1, is positive and the other endpoint,

v2, is negative, then the isocontour in both grid squares intersects the grid edge
in the same interpolated point q. The closed segment [v1, q] is in both R+

c1 and
R+

c2 while the segment (q, v2] (open at q and closed at v2) is in neither. Thus if
p is in [v1, q], then p is in both R+

c1 and R+
c2 and if p is in (q, v2], then p is in

neither. �

Using Lemma 2.4, we prove that the isocontour separates positive vertices
from negative ones.

28 2. Marching Cubes and Variants

Property 5. The isocontour separates positive grid vertices from negative grid
vertices and strictly separates strictly positive grid vertices from negative grid
vertices.

Proof: For all the possible configurations, a path from a positive vertex to a
negative one in a grid square must intersect the isocontour. We must show that
this also holds true for paths through many grid squares.

Let R+ be the union of the positive regions over all the grid squares. Consider
a path ζ in the grid from a positive grid vertex to a negative one. The positive
grid vertex lies in R+ while the negative one does not. Thus ζ must intersect some
point p on the boundary of R+ where it crosses out of R+. Every neighborhood
of p must contain points that are not in R+.

Since R+ is closed, point p lies in R+. Thus point p lies in R+
c′ for some grid

square c′. By Lemma 2.4, point p lies in R+
c for every grid square c containing

p. Assume p is not on the isocontour. Within each grid square containing p,
some neighborhood of p is contained in the positive region for that grid square.
The union of those neighborhoods is a neighborhood of p within the grid and is
contained in R+. Thus ζ does not cross out of R+ at p. We conclude that p must
lie on the isocontour and that ζ intersects the isocontour. Thus the isocontour
separates positive from negative grid vertices.

If the scalar value of a grid vertex does not equal the isovalue, then the grid
vertex does not lie on the isocontour. Thus the isocontour strictly separates
strictly positive grid vertices from negative ones. (By definition, the scalar value
of a negative vertex never equals the isovalue.) �

To prove properties 6 and 7, we prove something slightly more general.

Proposition 2.5. Let p be any point on the Marching Squares isocontour that
is not a grid vertex with scalar value equal to the isovalue.

1. If p is in the interior of the grid, then the isocontour restricted to some
sufficiently small neighborhood of p is a 1-manifold.

2. If p is on the boundary of the grid, then the isocontour restricted to some
sufficiently small neighborhood of p is a 1-manifold with boundary.

Proof: Let v be a grid vertex with scalar value sv. If sv is not the isovalue, then
the isocontour does not contain v, so point p is not v. If sv equals the isovalue,
then, by assumption, point p is not v. Therefore, point p is not a grid vertex.

If p lies in the interior of a grid square, then it lies in the interior of some
isocontour edge. The interior of this edge is a 1-manifold containing p.

Assume p lies on the boundary of a grid square but not on the boundary of
the grid. Since p is not a grid vertex, point p must lie in the interior of some
grid edge e with one positive and one negative vertex. The two grid squares
containing e each contain a single contour edge with endpoint at p. The interior
of these two contour edges and the point p form a 1-manifold containing p.

2.2. Marching Squares 29

Finally, assume p lies on the boundary of the grid. Since p is not a grid
vertex, point p is contained in a single grid square. This grid square contains
a single contour edge with endpoint at p. This contour edge is a manifold with
boundary containing p. �

Properties 6 and 7 apply to Marching Squares isocontours whose isovalues
do not equal the scalar value of any grid vertex.

Property 6. The isocontour is a piecewise linear 1-manifold with boundary.

Property 7. The boundary of the isocontour lies on the boundary of the grid.

Proof of Properties 6 & 7: Consider a point p on the isocontour. Since the isovalue
does not equal the scalar value of any grid vertex, point p is not a grid vertex. By
Proposition 2.5, the isocontour restricted to some suitably small neighborhood of
point p is either a 1-manifold or a 1-manifold with boundary. Thus the isocontour
is a 1-manifold with boundary. Since the restricted isocontour is a 1-manifold
whenever p is in the interior of the grid, the boundary of the isocontour must lie
on the grid boundary. �

The last property is that Υ does not contain any zero-length or duplicate
edges and forms a triangulation of the isocontour.

Property 8. Set Υ does not contain any zero-length line segments or dupli-
cate line segments, and the line segments in Υ form a “triangulation” of the
isocontour.

Proof: Since no grid vertex has scalar value equal to the isovalue, no isocontour
vertex lies on a grid vertex. By Property 4, each bipolar grid edge contains only
one isocontour vertex. Thus, the linear interpolation on isocontour vertices does
not create any zero-length or duplicate isocontour edges. Since isocontour edges
intersect only at their endpoints, Υ forms a triangulation of the isocontour. �

2.2.5 2D Ambiguity

Set E
+/−
κ is the set of bipolar square edges for configuration κ. The combinatorial

structure of the isocontour depends upon the matching of the elements of E
+/−
κ .

If E
+/−
κ has two elements, then there is no choice. However, if E

+/−
κ has four

bipolar edges, then there are two possible pairings and two possible isocontours
that could be constructed for configuration κ. Configurations 8 and 16 from
Figure 2.2 have four bipolar edges. They are called ambiguous configurations.
These two ambiguous configurations are shown in Figure 2.12 along with the
two combinatorially distinct isocontours for each ambiguous configuration.

Choosing different isocontours for the ambiguous configurations will change
the topology of the overall isocontour. For instance, Figure 2.13 shows the same

30 2. Marching Cubes and Variants

8−I 16−I 16−II8−II

168

Figure 2.12. Ambiguous square configurations.

14

2

22 2

1121

2

2

4

2

1

1

14

2

22 2

1121

2

2

4

2

1

1

Figure 2.13. Topologically distinct isocontours created by using different isocontours
for the ambiguous configuration in the central grid square.

scalar grid with two topologically distinct isocontours created by different resolu-
tions of the ambiguous configurations. The first isocontour has two components
while the second has one.

While the choice of isocontours for the ambiguous configurations changes
the isocontour topology, any of the choices will produce isocontours that are 1-
manifolds and strictly separate strictly positive vertices from negative vertices.
As we shall see, this is not true in three dimensions.

2.3 Marching Cubes

2.3.1 Algorithm

The three-dimensional Marching Cubes algorithm follows precisely the steps
in the two-dimensional Marching Squares algorithm. Input to the March-

2.3. Marching Cubes 31

Read isosurface lookup table

��
For each grid cube, retrieve isosurface triangles

��
Compute isosurface vertex coordinates using linear interpolation

Figure 2.14. Marching Cubes.

ing Cubes algorithm is an isovalue and a set of scalar values at the vertices of a
three-dimensional regular grid. The algorithm has three steps. (See Figure 2.14.)
Read the isosurface lookup table from a preconstructed data file. For each cube,
retrieve from the lookup table a set of isosurface triangles representing the com-
binatorial structure of the isosurface. The vertices of these triangles form the
isosurface vertices. Assign geometric locations to the isosurface vertices based
on the scalar values at the cube edge endpoints. We explain the last two steps
below.

Grid vertices are labeled positive or negative as described in Section 2.1. Grid
edges are labeled positive, negative, or bipolar.

The combinatorial structure of the isosurface within each cube is determined
from the configuration of the cube’s vertex labels. In order to separate the posi-
tive vertices from the negative ones, the isosurface must intersect any cube edge
that has one positive and one negative endpoint. An isosurface that intersects
a minimal number of grid edges will not intersect any edge whose endpoints are
both strictly positive or whose endpoints are both negative.

Since each vertex is either positive or negative and a cube has eight vertices,
there are 28 = 256 different configurations of cube vertex labels. Many of these
configurations are rotations or reflections of one another. By exploiting this
symmetry, the number of distinct configurations can be reduced to twenty-two.1

These distinct configurations are listed in Figure 2.15. All other configurations
are rotations or reflections of these twenty-two.

For each cube configuration κ, let E
+/−
κ be the set of edges with one positive

and one negative endpoint. The isosurface lookup table contains 256 entries,

one for each configuration κ. Each entry is a list of triples of edges of E
+/−
κ .

Each triple (e1, e2, e3) represents a triangle whose vertices lie on e1, e2, and e3.
The list of triples define the combinatorial structure of the isosurface patch for

1Lorensen and Cline’s original paper on Marching Cubes [Lorensen and Cline, 1987a] listed
only fifteen configurations. For reasons discussed in Section 2.3.5, twenty-two configurations
are preferable.

32 2. Marching Cubes and Variants

Zero

One

Two

Three

Four

Five

Six

Seven

Eight

2A 2B 2C

0

1

3A 3B 3C

4A 4B 4C 4D 4E 4F

5A 5B 5C

6A 6B 6C

7

8

Positive
Vertices

Figure 2.15. Twenty-two distinct cube configurations. Black vertices are positive.

2.3. Marching Cubes 33

Positive
Vertices

Zero

One

Two

Three

Four

Five

Six

Seven

Eight

2A 2C

0

1

3A 3B 3C

4A 4B 4C 4D 4E 4F

5A 5B 5C

6A 6B 6C

7

8

2B

Figure 2.16. Isosurfaces for twenty-two distinct cube configurations.

34 2. Marching Cubes and Variants

(a) (b)

Figure 2.17. (a) Adjacent configurations sharing a common face. (b) Incompatible
isosurface patches for the adjacent configurations.

Figure 2.18. Compatible isosurface patches for adjacent configurations in Fig-
ure 2.17(a).

configuration κ. The isosurface patch intersects every edge of E
+/−
κ exactly once

and does not intersect any other grid cube edges.
To define the 256 entries in the table, it is only necessary to determine the

table entries for the twenty-two distinct configurations. The table entries for
the other configurations can be derived using rotation and reflection symme-
try. Figure 2.16 contains the twenty-two distinct cube configurations and their
isosurfaces.

The isosurface lookup table is constructed on the unit cube with vertices
(0, 0, 0), (1, 0, 0), (0, 1, 0), . . . , (0, 1, 1), (1, 1, 1). To construct the isosurface in grid
cube (i, j, k), we have to map unit cube edges to edges of cube (i, j, k). Each
vertex v = (vx, vy, vz) of the unit cube maps to v + (i, j, k) = (vx, vy, vz) +
(i, j, k) = (vx + i, vy + j, vz + k). Each edge e of the unit square with endpoints
(v, v′) maps to edge e + (i, j, k) = (v + (i, j, k), v′ + (i, j, k)). Finally, each edge
triple (e1, e2, e3) maps to (e1 + (i, j, k), e2 + (i, j, k), e3 + (i, j, k)).

In Figure 2.16, the isosurface vertices lie on the midpoints of the grid edges.
This is for illustration purposes only. The geometric locations of the isosurface
vertices are not defined by the lookup table.

The vertices of the isosurface triangles are the isosurface vertices. To map
each isosurface triangle to a geometric triangle, we use linear interpolation to
position the isosurface vertices as described in Section 1.7.2. Each isosurface
vertex v lies on a grid edge [p, q]. If sp and sq are the scalar values at p and q
and σ is the isovalue, then map v to (1− α)p+ q where α = (σ − sp)/(sq − sp).

