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“Introduction to Imaging from Scattered Fields is an essential guide to diffraction tomog-
raphy and inverse methods. The text combines theoretical analysis of scattering models with 
practical numerical analysis in a highly accessible narrative.”
—David J. Brady, Professor of Electrical and Computer Engineering and Michael J. Fitzpatrick 
Professor of Photonics, Duke University

“This excellent text provides a clear and systematic treatment of the fundamental theory of 
waves and inverse scattering whilst remaining accessible to practitioners in remote sensing 
and imaging. It includes a range of examples and MATLAB code, and it should prove a valu-
able reference and textbook …”
—Dr. Mark Spivack, Department of Applied Mathematics and Theoretical Physics, University 
of Cambridge

Introduction to Imaging from Scattered Fields presents an overview of the challenging 
problem of determining information about an object from measurements of the field scat-
tered from that object. It covers widely used approaches to recover information about the 
objects and examines the assumptions made a priori about the object and the consequenc-
es of recovering object information from limited numbers of noisy measurements of the 
scattered fields.

The book explores the strengths and weaknesses of using inverse methods for weak scat-
tering. These methods, including Fourier-based signal and image processing techniques, 
allow more straightforward inverse algorithms to be exploited based on a simple mapping 
of scattered field data.

The authors also discuss their recent approach based on a nonlinear filtering step in the 
inverse algorithm. They illustrate how to use this algorithm through numerous two-dimen-
sional electromagnetic scattering examples. MATLAB® code is provided to help you quickly 
apply the approach to a wide variety of inverse scattering problems.

In later chapters of the book, the authors focus on important and often forgotten overarch-
ing constraints associated with exploiting inverse scattering algorithms. They explain how 
the number of degrees of freedom associated with any given scattering experiment can be 
found and how this allows you to specify a minimum number of data that should be mea-
sured. They also describe how the prior discrete Fourier transform (PDFT) algorithm helps in 
estimating the properties of an object from scattered field measurements. 

This self-contained book provides the necessary details for you to design improved experi-
ments and process measured data more effectively. It shows you how to obtain the best 
estimate of a strongly scattering object from limited scattered field data.
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Preface

The objective of this book is to present an overview of the challenging prob-
lem of determining information about an object from measurements of the 
field scattered from that object. This problem is a very old one, since, in a 
fundamental sense, most of what we perceive and learn about objects around 
us is a result of electromagnetic or acoustic waves impinging on, interact-
ing with and scattering from those objects. The theoretical formalism of a 
scattering problem is increasingly complex, as the extent of the interactions 
increase between the fields with the object. The forward or direct problem 
generally demands a good model for the anticipated response of the object. 
Deducing information about the object generally demands knowledge of that 
model or that (acceptable) approximations can be made to simplify matters. 
Theoretical approaches to solving inverse problems have been widely studied 
and as a broad class of problems are known to suffer from concerns over lack 
of uniqueness and solution stability (ill-conditioning) but, despite modeling 
a physically well-defined problem, could also be formulated in a way that the 
very existence of a solution is questionable. In the specific context of inverse 
scattering theories and algorithms, we present in this text an overview of some 
of the more widely used approaches to recover information about objects. We 
consider both the assumptions made a priori about the object as well as the 
consequences of having to recover object information from limited numbers 
of noisy measurements of the scattered fields.

There is a wealth of literature dealing with scattering and inverse scat-
tering methods for relatively simple structures embedded in a homogeneous 
background. We introduce the terminology and concepts early in the text and 
review some important inverse methods. When the scattering is assumed to be 
“weak,” which we define in the text, inversion methods allow more straight-
forward inverse algorithms to be exploited. We highlight the consequences of 
the widespread practice of adopting such methods when they are not justified 
while recognizing their attractiveness from a practical implementation point 
of view. Assuming weak scattering allows many well-established techniques 
developed in Fourier-based signal and image processing to be incorporated. 
The weak scattering models facilitate a simple mapping of scattered field data 
onto a locus of points in the Fourier domain of the object of interest. More 
rigorous scattering methods that rely on iterative techniques or strong prior 
knowledge of the forward scattering model are often slow to implement and 
may not yield reliable information.

Over the last several years, we have been developing and improving an 
approach which, while governed by the usual limitations associated with 
inverse problems, retains many advantages in terms of implementing the weak 
scattering methods while addressing directly the multiple and strongly scatter-
ing phenomena that occur with most objects of interest. The approach is based 
on a nonlinear filtering step in the inverse algorithm, which requires some pre-
processing of the measured data. We illustrate how one can use this algorithm in 
a very practical way, providing MATLAB• code to help quickly begin applying 
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the approach to a wide variety of inverse scattering problems. We illustrate it 
using a number of two-dimensional electromagnetic scattering examples.

In later chapters of the book, we draw attention to some very important and 
often forgotten overarching constraints associated with exploiting inverse 
scattering algorithms. The inherent lack of uniqueness of a solution to an 
inverse problem when using finite data requires either implicitly or explicitly 
that a single solution be selected somehow. A figure of merit or cost function is 
needed to restore some confidence to the interpretation of the calculated image 
of the scattering object. The number of measurements made has an obvious and 
very significant effect on the quality and reliability of an object reconstruction. 
We explain how considerations of the number of degrees of freedom associ-
ated with any given scattering experiment can be found and how this dictates 
a minimum number of data that should be measured. We argue that estimat-
ing the properties of an object from scattered field measurements necessarily 
requires some prior estimate of the volume from which scattered field data 
are collected. The use of prior knowledge about the object or properties of the 
illuminating fields can be used for this purpose to good effect. We describe 
in detail what we refer to as the prior discrete Fourier transform or “PDFT” 
algorithm, which accomplishes this. The PDFT restores stability and improves 
estimates of the object even with severely limited data, provided it is sufficient 
to meet a criterion based on the number of degrees of freedom.

We have organized this book with graduate students and those practicing 
imaging from scattered fields in mind. This includes, for example, those work-
ing with medical, geophysical, defense, and industrial inspection inverse 
problems. It will be helpful for readers to have an understanding of basic elec-
tromagnetic principles, some background in calculus and Fourier analysis, 
and preferably familiarity with MATLAB (and possibly COMSOL®) in order 
to take advantage of the source code provided. The text is self-contained and 
gives the required background theory to be able to design improved experi-
ments and process measured data more effectively, to recover for a strongly 
scattering object an estimate that is not perfect, but probably the best that one 
can hope for from limited scattered field data. 

The authors would like to acknowledge their productive collaborations 
over the years on imaging and inverse scattering with Umer Shahid, Charlie 
Byrne, Markus Testorf, Bob McGahan, and Freeman Lin.

MATLAB® is registered trademark of The MathWorks, Inc. For product infor-
mation, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

Supplementary materials including MATLAB code for exercises are avail-
able on the book’s page at www.crcpress.com. Please visit the site, look up the 
book and click to the Downloads and Updates tab.
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Introduction to Inverse Scattering

1.1  Introduction

Considerable knowledge of the world around us is based on receiving and 
interpreting electromagnetic and acoustic waves. We extend the bandwidths 
and sensitivities of our senses by using instruments and collecting radiation 
from sources and scatterers of radiation. Active illumination or insonification 
of objects to probe and image their structures is an important tool in advancing 
our knowledge. However, we need to have a good physical model that describes 
the possible interactions of those waves with scattering objects. Constitutive 
parameters (such as permittivity, permeability, refractive index, impedance, 
etc.) that have spatially and temporally varying properties describe the scatter-
ing objects. Wave propagation and scattering characteristics are governed by 
the fundamental relationships between these properties and their effects on 
the components of the field, as governed, for example, by Maxwell’s equations. 
In either the electromagnetic case or the acoustical case, we need to derive a 
wave equation, both in differential or integral form, with appropriate bound-
ary conditions or coefficients, and then analytically or numerically solve that 
equation to find the field outside the object. This so-called “direct” problem, 
which assumes that the object parameters are known and scattered fields are 
to be determined, is itself a nontrivial exercise but well defined.

The complementary or “inverse” problem is much more difficult and is the 
focus of this book. Making measurements of the scattered field at various loca-
tions near or far from the object takes time and effort. One has to specify the 
incident field properties such as wavelength, polarization, and direction, and 
then, relative to these, measure the scattered field properties. The question 
immediately arises as to how many measurements does one need in order to 
recover the information one wants about the object being probed. Inverting 
the governing wave equation is, from a purely mathematical perspective, the 
so-called ill-posed problem. Such problems require that one formally estab-
lish the following:

	 1.	Whether there is a solution at all.
	 2.	Whether the solution, should it exist, is unique.
	 3.	Whether a calculated solution is or is not ill conditioned.

In most practical situations, one only measures a finite number of data on the 
scattered field, and uniqueness is impossible. One can fit an infinite number of 
functions (i.e., images) to a finite data set. This lack of uniqueness requires that 
we either explicitly or implicitly adopt a uniqueness criterion such as mini-
mum energy, maximum entropy or some other such criterion using which one 
can define a unique solution and hope that it has a physical meaning.
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In some imaging applications, one cannot measure the scattered field itself, 
for example at very high frequencies. Above ~1 THz we do not have detectors 
fast enough to measure the fluctuating field and all we acquire is a time aver-
aged quantity. In electromagnetic problems we assume this is proportional to 
the magnitude squared of the (electric) field, |E|2. As we shall see, the infor-
mation required to solve the inverse problem and calculate an image of the 
object demands that we solve another problem, namely that of estimating 
from |E|, the function E = |E| exp(iϕ) or solve the so-called phase-retrieval 
problem (ϕ denotes phase). This is also nontrivial and, without knowledge of 
the phase, the information we can recover about the object is severely limited 
and at best statistical in nature.

Most problematic is the inevitable presence of noise in our measured data. 
Inverse procedures, as we shall see in the coming chapters, are always ill 
conditioned. This means that one can expect small changes in the data as a 
result of noise to lead to very large differences in our images. The instability 
of inverse methods can be understood mathematically and remedied using 
the so-called regularization techniques. The price to be paid to control ill 
conditioning is a degradation of the image, for example, a loss of resolution. 
However, since we cannot guarantee a unique solution in practice, we have 
to accept further compromises in order to obtain an image we can have some 
confidence in.

From a practical standpoint, we hope to collect the minimal amount of 
data to provide the image quality needed for the task at hand. Maps of spa-
tially varying contrast might suffice while, for other purposes, for example, 
in medical imaging, a quantitatively accurate map of a constitutive parameter 
such as impedance might be essential. Overarching all of these issues is the 
more important problem of the governing equation to be inverted being inher-
ently nonlinear in nature. The scattered field for all but the weakest scatter-
ing objects depends on the complexity of the scattering processes that occur 
within the object itself. For inverse problems, for by very definition we do not 
know the structure of the object, we cannot know a priori the extent of multi-
ple scattering that occurs within it. We can define what we mean by “weakly” 
scattering, and that assumption, while rarely valid in practice, does lead to a 
more tractable inversion method but one that still suffers from the questions 
of uniqueness and ill conditioning mentioned above. For more interesting, 
but strongly scattering objects, we need to address the nonlinear aspect of the 
inverse problem. We will describe methods that do this but emphasize now 
that there are, at the time of this writing, still no fast and reliable methods one 
can take off the shelf and use. Indeed, despite many decades of effort, inverse 
scattering methods remain very challenging and an active field of research. 
Methods we describe here have a range of applicability that limits their use to 
situations for which some prior knowledge about the object is available. This 
is certainly possible in some applications such as imaging a limb or probing 
a suitcase, and prior knowledge can play an important role in addressing the 
uniqueness question, as we shall see.

1.2  Inverse Scattering Problem Overview

The wavelength of the radiation used with respect to the scale of the features 
one wishes to image provides a convenient way to segregate inverse scattering 
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problems. In the limit of the wavelength becoming relatively small, geometrical 
optics or ray-based approximations become reasonable. In the very high fre-
quency limit, for example, when using x-rays, one can assume that the radia-
tion emerging from an object has not been refracted at all, and the measured 
data are interpreted as a shadow of the attenuation in the object. The math-
ematics describing this is well established, dating back to Radon (1986). Johann 
Radon’s original paper was published in 1917 (Radon, 1917). The Fourier trans-
form plays an important role here and throughout this book (see Appendix A). 
The technique of computed tomography, which incorporates a Radon transform 
(Wolf, 1969), uses projection data which measures the line integral of an object 
parameter, for example, of f(x,y) in the equation shown below, along straight 
lines (y-axis in this example). This enables the Fourier Slice Theorem to be used 
to build up information about F(kx,ky) by rotating the illumination direction.
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where kx and ky are the spatial frequency variables that have units of recipro-
cal distance, that is, kxx is dimensionless. When object constitutive param-
eter fluctuations or inhomogeneities such as refractive index fluctuations in 
a semitransparent object are comparable in size to the interrogating wave-
length, then scattering or diffraction effects become significant. As we shall 
see, Fourier data on the object are still obtainable in this situation provided 
the Born or Rytov approximations are valid. We will describe these approxi-
mations, which allow inversion algorithms to be formulated, and we will dis-
cuss in detail the criteria for their validity. When inverting Fourier data there 
is the question of how to make the best use of the limited set of noisy samples 
available. At optical frequencies, there is also an additional problem: that the 
phase of the scattered field may only be measured with difficulty. Some meth-
ods for phase retrieval are discussed in Appendix B.

Usually, approximations are employed to make the scattered fields (which 
can be expressed by Fredholm integral equations of the first kind) more trac-
table for numerical computation. The merits of the Born and the Rytov approxi-
mations, and more sophisticated techniques derived from them, have spawned 
a lot of controversy over the years. A principle cause for controversy is that these 
approximations are based on the interpretation given when strong inequalities 
are met, in order to simplify (or linearize) the governing equation. The physical 
interpretation of imposing these inequalities can be rather subjective. It is also 
problematic that sometimes these approximations appear to provide reasonably 
good images when one might not expect them to. This issue also illustrates one 
of the cautionary messages to be conveyed when working with inverse prob-
lems, which is that deliberate or inadvertent inverse crimes can be committed! 
These are crimes by which, because of the difficulty of acquiring real data 
from known objects with which to test an inversion method, the direct prob-
lem is solved to generate data. Occasionally approximations made in solving 
the direct problem are the very ones employed in the inverse method, thereby 
increasing the chances that the recovered image will look good. Consequently, 
we spend some time in this book describing the importance of understanding 
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the nature of scattered field data used to validate imaging algorithms and sug-
gest methods to generate such data. This of course is only necessary in the 
absence of real measured data from known targets, but despite the best efforts 
of many, real data sets are still few and far between. Data provided since the 
early 1990s by the US Air Force and the Institut Fresnel (Belkebir and Saillard, 
2001, 2005) have done a tremendous service in providing high quality data 
from known objects, which provides a means for comparing different inverse 
scattering techniques and thereby improves them. For a scatterer of compact 
support (with d as the size of its largest dimension), the qualitative statement 
is usually made that the (first) Born approximation is valid only when the 
scatterer is “small” on the scale of the incident wavelength; this is discussed 
in more detail in Chapter 4.

The Born series solution to the integral equation of scattering is an infinite 
series which is traditionally defined as only valid when the criterion kVmd < 1 
is met. Here, k is the wavenumber k = 2π/λ where λ is a measure of the wave-
length inside the scattering object. This is obviously difficult to determine for 
an unknown object’s constitutive parameter V(r) that is being imaged. Vm is 
some measure of the maximum or mean value of V(r) which is also unknown; 
consequently there is a temptation to apply the first Born approximation. This 
requires that kVmd ≪ 1 and, as we shall see, makes recovering an image com-
putationally straightforward. Indeed it reduces the inverse scattering prob-
lem to one of a limited-data Fourier estimation problem. This is a problem 
on which there is much written, and it provides a comfort zone in which to 
work and process scattered field data, in the (vain) hope that images obtained 
when kVmd is not less than 1 still convey some meaningful information. The 
criterion for the validity of the Rytov approximation is equally vague, relying 
on the qualitative statement that spatial fluctuations in V be slow on the scale 
of the wavelength, but that the magnitude of the fluctuations of V need not 
necessarily be small or of low contrast. In other words, this physical inter-
pretation of the validity of the Rytov approximation is based on the require-
ment that the absolute value of the rate of change of the complex phase of the 
scattered field within V be small compared with k∇V, where ∇ is the gradient 
operator. If this assumption is reasonable, one can formulate the inverse Rytov 
method as a limited-data Fourier estimation problem as well.

An interesting and important question to ask is what errors are introduced 
if one does adopt the Born or Rytov approximation. This is a very reasonable 
and insightful step to take and doing so has revealed classes of objects for 
which one can expect the approximations to do poorly or fail altogether. There 
is also much to be said for bringing to the inverse scattering problem a wealth 
of signal and image-processing knowledge that has been established over the 
years for dealing with limited data, especially limited Fourier data. By more 
carefully formulating the inverse problem in terms of these approximations 
and having a description for the errors and artifacts the “first Born approxi-
mate” image might possess, one can develop methods to postprocess those 
images to try to recover V(r). This is the approach we have adopted and will 
describe in more detail in a later chapter.

These inverse scattering algorithms that have been developed over the 
years, often referred to as diffraction tomography algorithms, fall into two 
classes. Devaney (1983) and Pan and Kak (1983) have modified the filtered 
back-projection algorithm used in conventional tomography to give a filtered 


