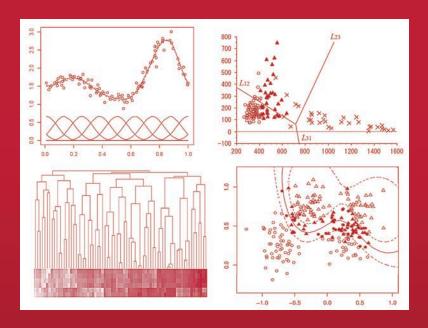
Introduction to Multivariate Analysis

Linear and Nonlinear Modeling



Sadanori Konishi

Introduction to Multivariate Analysis

Linear and Nonlinear Modeling

CHAPMAN & HALL/CRC

Texts in Statistical Science Series

Series Editors

Francesca Dominici, Harvard School of Public Health, USA Julian J. Faraway, University of Bath, UK Martin Tanner, Northwestern University, USA Jim Zidek, University of British Columbia, Canada

Statistical Theory: A Concise Introduction

F. Abramovich and Y. Ritov

$Practical\ Multivariate\ Analysis,\ Fifth\ Edition$

A. Afifi, S. May, and V.A. Clark

Practical Statistics for Medical Research

D.G. Altman

Interpreting Data: A First Course in Statistics

in Statistics

A.J.B. Anderson

Introduction to Probability with R

K. Baclawski

Linear Algebra and Matrix Analysis for Statistics

S. Banerjee and A. Roy

Statistical Methods for SPC and TOM

D. Bissell

Bayesian Methods for Data Analysis, Third Edition

B.P. Carlin and T.A. Louis

Second Edition

R Caulcutt

The Analysis of Time Series: An Introduction, Sixth Edition

C. Chatfield

Introduction to Multivariate Analysis

C. Chatfield and A.J. Collins

Problem Solving: A Statistician's Guide, Second Edition

C. Chatfield

Statistics for Technology: A Course in Applied Statistics, Third Edition

C. Chatfield

Bayesian Ideas and Data Analysis: An Introduction for Scientists and Statisticians

R. Christensen, W. Johnson, A. Branscum, and T.E. Hanson

Modelling Binary Data, Second Edition

D. Collett

Modelling Survival Data in Medical Research, Second Edition

D. Collett

Introduction to Statistical Methods for Clinical Trials

T.D. Cook and D.L. DeMets

Applied Statistics: Principles and Examples

D.R. Cox and E.J. Snell

Multivariate Survival Analysis and Competing Risks

M. Crowder

Statistical Analysis of Reliability Data

M.J. Crowder, A.C. Kimber, T.J. Sweeting, and R.L. Smith

An Introduction to Generalized Linear Models, Third Edition

A.I. Dobson and A.G. Barnett

Nonlinear Time Series: Theory, Methods, and Applications with R Examples

R. Douc, E. Moulines, and D.S. Stoffer

Introduction to Optimization Methods and

Their Applications in Statistics

B.S. Everitt

Extending the Linear Model with R:

Generalized Linear, Mixed Effects and

Nonparametric Regression Models

J.J. Faraway

A Course in Large Sample Theory

T.S. Ferguson

Multivariate Statistics: A Practical Approach

B. Flury and H. Riedwyl

Readings in Decision Analysis

S. French

Markov Chain Monte Carlo:

Stochastic Simulation for Bayesian Inference,

Second Edition

D. Gamerman and H.F. Lopes

Bayesian Data Analysis, Third Edition

A. Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson,

A. Vehtari, and D.B. Rubin

Multivariate Analysis of Variance and

Repeated Measures: A Practical Approach for

Behavioural Scientists

D.J. Hand and C.C. Taylor

Practical Data Analysis for Designed Practical Longitudinal Data Analysis

D.I. Hand and M. Crowder

Logistic Regression Models I.M. Hilbe

Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models

Using Random Effects J.S. Hodges

Statistics for Epidemiology

N.P. Jewell

Stochastic Processes: An Introduction,

Second Edition P.W. Jones and P. Smith

The Theory of Linear Models

B. Jørgensen

Principles of Uncertainty

J.B. Kadane

Graphics for Statistics and Data Analysis with R K.J. Keen

Mathematical Statistics

K. Knight

Introduction to Multivariate Analysis: Linear and Nonlinear Modeling

S. Konishi

Nonparametric Methods in Statistics with SAS Applications

O. Korosteleva

Modeling and Analysis of Stochastic Systems, Second Edition

V.G. Kulkarni

Exercises and Solutions in Biostatistical Theory

L.L. Kupper, B.H. Neelon, and S.M. O'Brien

Exercises and Solutions in Statistical Theory

L.L. Kupper, B.H. Neelon, and S.M. O'Brien

Design and Analysis of Experiments with SAS

I. Lawson

A Course in Categorical Data Analysis

T. Leonard

Statistics for Accountants

S. Letchford

Introduction to the Theory of Statistical

Inference

H. Liero and S. Zwanzig

Statistical Theory, Fourth Edition

B.W. Lindgren

Stationary Stochastic Processes: Theory and Applications

G. Lindgren

The BUGS Book: A Practical Introduction to

Bayesian Analysis

D. Lunn, C. Jackson, N. Best, A. Thomas, and

D. Spiegelhalter

Introduction to General and Generalized

Linear Models

H. Madsen and P. Thyregod

Time Series Analysis

H. Madsen

Pólya Urn Models

H Mahmoud

Randomization, Bootstrap and Monte Carlo

Methods in Biology, Third Edition

B.F.J. Manly

Introduction to Randomized Controlled

Clinical Trials, Second Edition

J.N.S. Matthews

Statistical Methods in Agriculture and Experimental Biology, Second Edition

R. Mead, R.N. Curnow, and A.M. Hasted

Statistics in Engineering: A Practical Approach

A.V. Metcalfe

Beyond ANOVA: Basics of Applied Statistics

R.G. Miller, Jr.

A Primer on Linear Models

J.F. Monahan

Applied Stochastic Modelling, Second Edition

B.J.T. Morgan

Elements of Simulation

B.J.T. Morgan

Probability: Methods and Measurement

A. O'Hagan

Introduction to Statistical Limit Theory

A.M. Polansky

Applied Bayesian Forecasting and Time Series

Analysis

A. Pole, M. West, and J. Harrison

Statistics in Research and Development,

Time Series: Modeling, Computation, and

Inference

R. Prado and M. West

Introduction to Statistical Process Control

P. Qiu

Sampling Methodologies with Applications P.S.R.S. Rao

A First Course in Linear Model Theory N. Ravishanker and D.K. Dey

Essential Statistics, Fourth Edition D.A.G. Rees

Stochastic Modeling and Mathematical Statistics: A Text for Statisticians and Quantitative

F.J. Samaniego

Statistical Methods for Spatial Data Analysis O. Schabenberger and C.A. Gotway

Large Sample Methods in Statistics P.K. Sen and J. da Motta Singer

Decision Analysis: A Bayesian Approach I.O. Smith

Analysis of Failure and Survival Data P. J. Smith

Applied Statistics: Handbook of GENSTAT Analyses

E.J. Snell and H. Simpson

Applied Nonparametric Statistical Methods, Fourth Edition

P. Sprent and N.C. Smeeton

Data Driven Statistical Methods P. Sprent

Generalized Linear Mixed Models: Modern Concepts, Methods and Applications W. W. Stroup

Survival Analysis Using S: Analysis of Time-to-Event Data M. Tableman and J.S. Kim

Applied Categorical and Count Data Analysis W. Tang, H. He, and X.M. Tu

Elementary Applications of Probability Theory, Second Edition H. C. Tuckwell

 $\label{eq:linear_continuity} \begin{tabular}{ll} \textbf{Introduction to Statistical Inference and Its} \\ \textbf{Applications with } R \\ \textbf{M.W. Trosset} \end{tabular}$

Understanding Advanced Statistical Methods P.H. Westfall and K.S.S. Henning

Statistical Process Control: Theory and Practice, Third Edition
G.B. Wetherill and D.W. Brown

Generalized Additive Models: An Introduction with R S. Wood

Epidemiology: Study Design and Data Analysis, Third Edition M. Woodward

Experiments B.S. Yandell

Texts in Statistical Science

Introduction to Multivariate Analysis

Linear and Nonlinear Modeling

Sadanori Konishi

Chuo University Tokyo, Japan

CRC Press is an imprint of the Taylor & Francis Group an **informa** business A CHAPMAN & HALL BOOK

TAHENRYO KEISEKI NYUMON: SENKEI KARA HISENKEI E by Sadanori Konishi © 2010 by Sadanori Konishi

Originally published in Japanese by Iwanami Shoten, Publishers, Tokyo, 2010. This English language edition published in 2014 by Chapman & Hall/CRC, Boca Raton, FL, U.S.A., by arrangement with the author c/o Iwanami Shoten, Publishers. Tokyo.

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

@ 2014 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works Version Date: 20140508

International Standard Book Number-13: 978-1-4665-6729-0 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Contents

Li	st of]	Figures		xiii
Li	st of '	Tables		xxi
Pr	Preface		xxiii	
1	Intr	oductio	on	1
	1.1	_	ssion Modeling	1
			Regression Models	2 4
		1.1.2	Risk Models	
		1.1.3	Model Evaluation and Selection	5 7
	1.2	Classi	fication and Discrimination	
			Discriminant Analysis	7
			Bayesian Classification	8
			Support Vector Machines	9
	1.3	Dimer	nsion Reduction	11
	1.4	Cluste	ering	11
			Hierarchical Clustering Methods	12
		1.4.2	Nonhierarchical Clustering Methods	12
2	Line	ear Reg	ression Models	15
	2.1	Relati	onship between Two Variables	15
		2.1.1	Data and Modeling	16
		2.1.2	Model Estimation by Least Squares	18
		2.1.3	Model Estimation by Maximum Likelihood	19
	2.2	Relati	onships Involving Multiple Variables	22
		2.2.1	Data and Models	23
		2.2.2	Model Estimation	24
		2.2.3	Notes	29
		2.2.4	Model Selection	31
		2.2.5	Geometric Interpretation	34
	23	Regula	arization	36

viii

		2.3.1	Ridge Regression	37
			Lasso	40
			L_1 Norm Regularization	44
3	Non	linear I	Regression Models	55
	3.1	Model	ling Phenomena	55
		3.1.1	Real Data Examples	57
	3.2		ling by Basis Functions	58
		3.2.1	Splines B-splines	59
		3.2.2	B-splines	63
		3.2.3	Radial Basis Functions	65
	3.3	Basis	Expansions	67
		3.3.1	Basis Function Expansions	68
			Model Estimation	68
		3.3.3	Model Evaluation and Selection	72
	3.4		arization	76
		3.4.1	Regularized Least Squares	77
			Regularized Maximum Likelihood Method	79
		3.4.3	Model Evaluation and Selection	81
4	Log	istic Re	gression Models	87
	4.1	Risk P	Prediction Models	87
		4.1.1	Modeling for Proportional Data	87
		4.1.2	Binary Response Data	91
	4.2	Multip	ole Risk Factor Models	94
		4.2.1	Model Estimation	95
		4.2.2	Model Evaluation and Selection	98
	4.3		near Logistic Regression Models	98
			Model Estimation	100
		4.3.2	Model Evaluation and Selection	101
5	Mod	del Eval	luation and Selection	105
	5.1	Criteri	ia Based on Prediction Errors	105
		5.1.1	Prediction Errors	106
			Cross-Validation	108
		5.1.3	Mallows' C_p	110
	5.2		nation Criteria	112
		5.2.1	Kullback-Leibler Information	113
			Information Criterion AIC	115
		5.2.3	Derivation of Information Criteria	121
		5.2.4	Multimodel Inference	127

				ix
	5.3	Bayes	ian Model Evaluation Criterion	128
		5.3.1		128
		5.3.2	Derivation of the BIC	130
		5.3.3	Bayesian Inference and Model Averaging	132
6	Disc	rimina	nt Analysis	137
	6.1	Fisher	's Linear Discriminant Analysis	137
		6.1.1	Basic Concept	137
		6.1.2	Linear Discriminant Function	141
		6.1.3	Summary of Fisher's Linear Discriminant	
			Analysis	144
		6.1.4	Prior Probability and Loss	146
	6.2		fication Based on Mahalanobis Distance	148
		6.2.1	Two-Class Classification	148
		6.2.2		149
			Example: Diagnosis of Diabetes	151
	6.3		ble Selection	154
			Prediction Errors	154
		6.3.2	Bootstrap Estimates of Prediction Errors	156
		6.3.3	The .632 Estimator Example: Calcium Oxalate Crystals	158
		6.3.4	Example: Calcium Oxalate Crystals	160
		6.3.5	Stepwise Procedures	162
	6.4	Canon	nical Discriminant Analysis	164
		6.4.1	Dimension Reduction by Canonical	
			Discriminant Analysis	164
7	Bay	esian C	lassification	173
	7.1		'Theorem	173
	7.2	Classi	fication with Gaussian Distributions	175
		7.2.1	Probability Distributions and Likelihood	175
		7.2.2	Discriminant Functions	176
	7.3		tic Regression for Classification	179
			Linear Logistic Regression Classifier	179
		7.3.2	2 2	183
		7.3.3	E E	
			Classifier	187
8	Sup		ector Machines	193
	8.1	_	ating Hyperplane	193
		8.1.1	Linear Separability	193
		8.1.2	Margin Maximization	196

		8.1.3	Quadratic Programming and Dual Problem	198
	8.2	Linearl	y Nonseparable Case	203
		8.2.1	Soft Margins	204
		8.2.2	From Primal Problem to Dual Problem	208
	8.3	From I	Linear to Nonlinear	212
		8.3.1	Mapping to Higher-Dimensional Feature Space	213
		8.3.2	Kernel Methods	216
		8.3.3	Nonlinear Classification	218
9	Prin	cipal Co	omponent Analysis	225
	9.1	Princip	al Components	225
		9.1.1	Basic Concept	225
		9.1.2	Process of Deriving Principal Components and	
			Properties	230
		9.1.3	Dimension Reduction and Information Loss	234
		9.1.4	Examples	235
	9.2	Image	Compression and Decompression	239
	9.3	Singula	ar Value Decomposition	243
	9.4	Kernel	Principal Component Analysis	246
		9.4.1	Data Centering and Eigenvalue Problem	246
		9.4.2	Mapping to a Higher-Dimensional Space	249
		9.4.3	Kernel Methods	252
10	Clus	tering		259
	10.1	Hierard	chical Clustering	259
		10.1.1	Interobject Similarity	260
		10.1.2	Intercluster Distance	261
		10.1.3	Cluster Formation Process	263
		10.1.4	Ward's Method	267
	10.2	Nonhie	erarchical Clustering	270
		10.2.1	K-Means Clustering	271
		10.2.2	Self-Organizing Map Clustering	273
	10.3		e Models for Clustering	275
		10.3.1	Mixture Models	275
		10.3.2	Model Estimation by EM Algorithm	277
A	Boot	strap M	lethods	283
			rap Error Estimation	283
	A.2	Regres	sion Models	285
	A.3	Bootsti	rap Model Selection Probability	285

			xi
В	Lag	range Multipliers	287
	B.1	Equality-Constrained Optimization Problem	287
	B.2	Inequality-Constrained Optimization Problem	288
	B.3	Equality/Inequality-Constrained Optimization	289
C	EM	Algorithm	293
	C.1	General EM Algorithm	293
	C.2	EM Algorithm for Mixture Model	294
Bil	bliogi	aphy	299
Inc	Index		

This page intentionally left blank

List of Figures

1.1	The relation between falling time (x sec) and falling distance (y m) of a body.	3
1.2	The measured impact y (in acceleration, g) on the head of a dummy in repeated experimental crashes of a	4
1.3	motorcycle with a time lapse of x (msec). Binary data $\{0, 1\}$ expressing the presence or absence of response in an individual on exposure to various levels	•
1.4	of stimulus. Regression modeling; the specification of models that approximates the structure of a phenomenon, the estimation of their parameters, and the evaluation and selection	5
1.5	of estimated models. The training data of the two classes are completely separable by a hyperplane (left) and the overlapping data of the two classes may not be separable by a hyperplane (right).	6
1.6	Mapping the observed data to a high-dimensional feature space and obtaining a hyperplane that separates the two classes.	10
1.7	72 chemical substances with 6 attached features, classified by clustering on the basis of mutual similarity in substance qualities.	13
2.1	Data obtained by measuring the length of a spring $(y \text{ cm})$ under different weights $(x \text{ g})$.	17
2.2	The relationship between the spring length (y) and the weight (x) .	18
2.3	Linear regression and the predicted values and residuals.	20

xiv LIST OF FIGURES

2.4	(a) Histogram of 80 measured values obtained while repeatedly suspending a load of 25 g and its approximated	
	probability model. (b) The errors (i.e., noise) contained	
	in these measurements in the form of a histogram having	
	its origin at the mean value of the measurements and its approximated error distribution.	21
2.5	Geometrical interpretation of the linear regression model	21
	$y = X\beta + \varepsilon$. $M(X)$ denotes the $(p+1)$ -dimensional linear subspace spanned by the $(p+1)$ <i>n</i> -dimensional column	
	vectors of the design matrix X .	35
2.6	Ridge estimate (left panel) and lasso estimate (right	
	panel): Ridge estimation shrinks the regression coeffi-	
	cients β_1, β_2 toward but not exactly to 0 relative to the	
	corresponding least squares estimates $\hat{\beta}$, whereas lasso estimates the regression coefficient β_1 at exactly 0.	41
2.7	The profiles of estimated regression coefficients for	
	different values of the L_1 norm = $\sum_{i=1}^{13} \beta_i(\lambda) $ with λ	
	varying from 6.78 to 0. The axis above indicates the	
2.8	number of nonzero coefficients.	45
2.8	The function $p_{\lambda}(\beta_j)$ (solid line) and its quadratic approximation (dotted line) with the values of β_i along	
	the x axis, together with the quadratic approximation for	
	a β_{j0} value of 0.15.	48
2.9	The relationship between the least squares estimator	
	(dotted line) and three shrinkage estimators (solid lines): (a) hard thresholding, (b) lasso, and (c) SCAD.	50
	(a) hard thresholding, (b) lasso, and (c) SCAD.	50
3.1	Left panel: The plot of 104 tree data obtained by	
	measurement of tree trunk girth (inch) and tree weight above ground (kg). Right panel: Fitting a polynomial	
	of degree 2 (solid curve) and a growth curve model	
	(dashed curve).	57
3.2	Motorcycle crash trial data $(n = 133)$.	59
3.3	Fitting third-degree polynomials to the data in the	
	subintervals $[a, t_1]$, $[t_1, t_2]$, \cdots , $[t_m, b]$ and smoothly connecting adjacent polynomials at each knot.	60
3.4	Functions $(x - t_i)_+ = \max\{0, x - t_i\}$ and $(x - t_i)_+^3$ included	00
٠	in the cubic spline given by (3.10).	61
3.5	Basis functions: (a) $\{1, x\}$; linear regression, (b) poly-	
	nomial regression; $\{1, x, x^2, x^3\}$, (c) cubic splines, (d)	
	natural cubic splines.	62

LIST OF FIGURES xv

3.6	A cubic <i>B</i> -spline basis function connected four different third-order polynomials smoothly at the knots 2, 3, and	
3.7	4. Plots of the first-, second-, and third-order <i>B</i> -spline	63
3.7	functions. As may be seen in the subintervals bounded by dotted lines, each subinterval is covered (piecewise)	
	by the polynomial order plus one basis function.	65
3.8	A third-order <i>B</i> -spline regression model is fitted to a set of data, generated from $u(x) = \exp\{-x\sin(2\pi x)\} + 0.5 + \varepsilon$ with Gaussian noise. The fitted curve and the true structure are, respectively, represented by the solid line	
3.9	and the dotted line with cubic <i>B</i> -spline bases. Curve fitting; a nonlinear regression model based on a	66
3.9	natural cubic spline basis function and a Gaussian basis	
2.10	function.	70
3.10	Cubic B-spline nonlinear regression models, each with a different number of basis functions (a) 10, (b) 20, (c) 30,	
	(d) 40, fitted to the motorcycle crash experiment data.	73
3.11	The cubic <i>B</i> -spline nonlinear regression model $y = \sum_{i=1}^{13} \hat{h}_i(x_i)$. The good linear regression model $y = \sum_{i=1}^{13} \hat{h}_i(x_i)$.	
	$\sum_{j=1}^{13} \hat{w}_j b_j(x)$. The model is estimated by maximum likelihood and selected the number of basis functions by	
	AIC.	75
3.12	The role of the penalty term: Changing the weight in the second term by the regularization parameter γ	
	changes $S_{\gamma}(w)$ continuously, thus enabling continuous	
2 12	adjustment of the model complexity.	78
3.13	The effect of a smoothing parameter λ : The curves are estimated by the regularized maximum likelihood	
	method for various values of λ .	82
4.1	Plot of the graduated stimulus levels shown in Table 4.1	
4.2	along the x axis and the response rate along the y axis.	89 90
4.2 4.3	Logistic functions. Fitting the logistic regression model to the observed data	90
7.5	shown in Table 4.1 for the relation between the stimulus	
	level x and the response rate y.	90
4.4	The data on presence and non-presence of the crystals are plotted along the vertical axis as $y = 0$ for the 44	
	individuals exhibiting their non-presence and $y = 1$ for	
	the 33 exhibiting their presence. The <i>x</i> axis takes the values of their urine specific gravity.	92
	various of men arme specime gravity.	94

xvi LIST OF FIGURES

4.5	The fitted logistic regression model for the 77 set of data expressing observed urine specific gravity and presence	02
4.6	or non-presence of calcium oxalate crystals. Plot of post-operative kyphosis occurrence along $Y = 1$	93
4.0	and non-occurrence along $Y = 0$ versus the age $(x; in)$	
	months) of 83 patients.	99
4.7	Fitting the polynomial-based nonlinear logisitic regres-	
	sion model to the kyphosis data.	103
5.1	Fitting of 3rd-, 8th-, and 12th-order polynomial models	
	to 15 data points.	107
5.2	Fitting a linear model (dashed line), a 2nd-order poly-	
	nomial model (solid line), and an 8th-order polynomial	110
	model (dotted line) to 20 data.	119
6.1	Projecting the two-dimensional data in Table 6.1 onto	
	the axes $y = x_1$, $y = x_2$ and $y = w_1x_1 + w_2x_2$.	139
6.2	Three projection axes (a), (b), and (c) and the distribu-	
	tions of the class G_1 and class G_2 data when projected	1.40
6.3	on each one. Fisher's linear discriminant function.	140 143
6.4	Mahalanobis distance and Euclidean distance.	151
6.5	Plot of 145 training data for a normal class G_1 (\circ), a	131
	chemical diabetes class G_2 (\blacktriangle), and clinical diabetes	
	class G_3 (×).	152
6.6	Linear decision boundaries that separate the normal	
	class G_1 , the chemical diabetes class G_2 , and the clinical	154
6.7	diabetes class G_3 . Plot of the values obtained by projecting the 145	154
0.7	observed data from three classes onto the first two	
	discriminant variables (y_1, y_2) in (6.92) .	170
7.1		
7.1	Likelihood of the data: The relative level of occurrence of males 178 cm in height can be determined as	
	fence of males 178 cm in neight can be determined as $f(178 170,6^2)$.	176
7.2	The conditional probability $P(x G_i)$ that gives the relative	1,0
	level of occurrence of data x in each class.	178
7.3	Decision boundary generated by the linear function.	184
7.4	Classification of phenomena exhibiting complex class	107
	structures requires a nonlinear discriminant function	185

LIST OF FIGURES xvii

7.5	Decision boundary that separates the two classes in the nonlinear logistic regression model based on the Gaussian basis functions.	187
8.1	The training data are completely separable into two classes by a hyperplane (left panel), and in contrast, separation into two classes cannot be obtained by any such linear hyperplane (right panel).	194
8.2	Distance from $\mathbf{x}_0 = (x_{01} \ x_{02})^T$ to the hyperplane $w_1x_1 + w_2x_2 + b = \mathbf{w}^T\mathbf{x} + b = 0$.	196
8.3	Hyperplane (H) that separates the two classes, together with two equidistant parallel hyperplanes $(H_+$ and $H)$	
	on opposite sides.	197
8.4 8.5	Separating hyperplanes with different margins. Optimum separating hyperplane and support vectors represented by the black solid dots and triangle on the	198
	hyperplanes H_+ and H .	202
8.6	No matter where we draw the hyperplane for separation of the two classes and the accompanying hyperplanes for the margin, some of the data (the black solid dots	
8.7	and triangles) do not satisfy the inequality constraint. The class G_1 data at $(0, 0)$ and $(0, 1)$ do not satisfy the original constraint $x_1 + x_2 - 1 \ge 1$. We soften this constraint to $x_1 + x_2 - 1 \ge 1 - 2$ for data $(0, 0)$ and $x_1 + x_2 - 1 \ge 1 - 1$ for $(0, 1)$ by subtracting 2 and 1,	205
	respectively; each of these data can then satisfy its new inequality constraint equation.	205
8.8	The class G_2 data $(1, 1)$ and $(0, 1)$ are unable to satisfy the constraint, but if the restraint is softened to $-(x_1 + x_2 - 1) \ge 1 - 2$ and $-(x_1 + x_2 - 1) \ge 1 - 1$ by	
	subtracting 2 and 1, respectively, each of these data can then satisfy its new inequality constraint equation.	206
8.9	A large margin tends to increase the number of data that intrude into the other class region or into the region	
	between hyperplanes H_+ and H .	207
8.10	A small margin tends to decrease the number of data	
	that intrude into the other class region or into the region between hyperplanes H_+ and H .	207
8.11	Support vectors in a linearly nonseparable case: Data corresponding to the Lagrange multipliers such that	207
	$0 < \hat{\alpha}_i \le \lambda$ (the black solid dots and triangles).	211

xviii LIST OF FIGURES

8.12	Mapping the data of an input space into a higher- dimensional feature space with a nonlinear function.	214
8.13	The separating hyperplane obtained by mapping the two-dimensional data of the input space to the higher-dimensional feature space yields a nonlinear discriminant function in the input space. The black solid data	
0 1 /	indicate support vectors.	216
8.14	Nonlinear decision boundaries in the input space vary with different values σ in the Gaussian kernel; (a)	
	$\sigma = 10$, (b) $\sigma = 1$, (c) $\sigma = 0.1$, and (d) $\sigma = 0.01$.	221
9.1	Projection onto three different axes, (a), (b), and (c) and the spread of the data.	226
9.2	Eigenvalue problem and the first and second principal components.	230
9.3	Principal components based on the sample correlation matrix and their contributions: The contribution of the first principal component increases with increasing	
	correlation between the two variables.	237
9.4	Two-dimensional view of the 21-dimensional data set, projected onto the first (x) and second (y) principal	
	components.	239
9.5	Image digitization of a handwritten character.	240
9.6	The images obtained by first digitizing and compressing the leftmost image 7 and then decompressing transmitted data using a successively increasing number of principal components. The number in parentheses shows the	
9.7	cumulative contribution rate in each case. Mapping the observed data with nonlinear structure to a higher-dimensional feature space, where PCA is performed with linear combinations of variables	242
	$z_1, z_2, z_3.$	250
10.1	Intercluster distances: Single linkage (minimum dis-	
	tance), complete linkage (maximum distance), average linkage, centroid linkage.	262
10.2	Cluster formation process and the corresponding den- drogram based on single linkage when starting from the	
	distance matrix in (10.7).	265

LIST OF FIGURES xix

10.3	The dendrograms obtained for a single set of 72 six-	
	dimensional data using three different linkage tech-	
	niques: single, complete, and centroid linkages. The	
	circled portion of the dendrogram shows a chaining	
	effect.	266
10.4	Fusion-distance monotonicity (left) and fusion-distance	
	inversion (right).	267
10.5	Stepwise cluster formation procedure by Ward's method	
	and the related dendrogram.	271
10.6	Stepwise cluster formation process by <i>k</i> -means.	272
10.7	The competitive layer comprises an array of m nodes.	
	Each node is assigned a different weight vector \mathbf{w}_i	
	$= (w_{i1}, w_{i2}, \dots, w_{ip})^T (j = 1, 2, \dots, m),$ and the	
	Euclidean distance of each <i>p</i> -dimensional data to the	
	weight vector is computed.	274
10.8	Histogram based on observed data on the speed of	
	recession from Earth of 82 galaxies scattered in space.	276
10.9	Recession-speed data observed for 82 galaxies are	
	shown on the upper left and in a histogram on the	
	upper right. The lower left and lower right show the	
	models obtained by fitting with two and three normal	
	distributions respectively	279

This page intentionally left blank

List of Tables

2.1	The length of a spring under different weights.	16
2.2	The <i>n</i> observed data.	17
2.3	Four factors: temperature (x_1) , pressure (x_2) , PH (x_3) , and catalyst quantity (x_4) , which affect the quantity of	
	product (<i>y</i>).	23
2.4	The response y representing the results in n trials, each with a different combination of p predictor variables x_1 ,	
	x_2, \cdots, x_p .	23
2.5	Comparison of the sum of squared residuals $(\hat{\sigma}^2)$	
	divided by the number of observations, maximum	
	log-likelihood $\ell(\hat{\beta})$, and AIC for each combination of	
	predictor variables.	33
2.6	Comparison of the estimates of regression coefficients	
	by least squares (LS) and lasso L_1 .	44
4.1	Stimulus levels and the proportion of individuals re-	
	sponded.	88
5.1	Comparison of the values of RSS, CV, and AIC for	
	fitting the polynomial models of order 1 through 9.	119
6.1	The 23 two-dimensional observed data from the varieties	
0.1	A and B .	138
6.2	Comparison of prediction error estimates for the clas-	
	sification rule constructed by the linear discriminant	
	function.	161
6.3	Variable selection via the apparent error rates (APE).	161

This page intentionally left blank

Preface

The aim of statistical science is to develop the methodology and the theory for extracting useful information from data and for reasonable inference to elucidate phenomena with uncertainty in various fields of the natural and social sciences. The data contain information about the random phenomenon under consideration and the objective of statistical analysis is to express this information in an understandable form using statistical procedures. We also make inferences about the unknown aspects of random phenomena and seek an understanding of causal relationships.

Multivariate analysis refers to techniques used to analyze data that arise from multiple variables between which there are some relationships. Multivariate analysis has been widely used for extracting useful information and patterns from multivariate data and for understanding the structure of random phenomena. Techniques would include regression, discriminant analysis, principal component analysis, clustering, etc., and are mainly based on the linearity of observed variables.

In recent years, the wide availability of fast and inexpensive computers enables us to accumulate a huge amount of data with complex structure and/or high-dimensional data. Such data accumulation is also accelerated by the development and proliferation of electronic measurement and instrumentation technologies. Such data sets arise in various fields of science and industry, including bioinformatics, medicine, pharmaceuticals, systems engineering, pattern recognition, earth and environmental sciences, economics, and marketing. Therefore, the effective use of these data sets requires both linear and nonlinear modeling strategies based on the complex structure and/or high-dimensionality of the data in order to perform extraction of useful information, knowledge discovery, prediction, and control of nonlinear phenomena and complex systems.

The aim of this book is to present the basic concepts of various procedures in traditional multivariate analysis and also nonlinear techniques for elucidation of phenomena behind observed multivariate data, focusing primarily on regression modeling, classification and discrimination, dimension reduction, and clustering. Each chapter includes many figures

xxiv PREFACE

and illustrative examples to promote a deeper understanding of various techniques in multivariate analysis.

In practice, the need always arises to search through and evaluate a large number of models and from among them select an appropriate model that will work effectively for elucidation of the target phenomena. This book provides comprehensive explanations of the concepts and derivations of the AIC, BIC, and related criteria, together with a wide range of practical examples of model selection and evaluation criteria. In estimating and evaluating models having a large number of predictor variables, the usual methods of separating model estimation and evaluation are inefficient for the selection of factors affecting the outcome of the phenomena. The book also reflects these aspects, providing various regularization methods, including the L_1 norm regularization that gives simultaneous model estimation and variable selection.

The book is written in the hope that, through its fusion of knowledge gained in leading-edge research in statistical multivariate analysis, machine learning, and computer science, it may contribute to the understanding and resolution of problems and challenges in this field of research, and to its further advancement.

This book might be useful as a text for advanced undergraduate and graduate students in statistical sciences, providing a systematic description of both traditional and newer techniques in multivariate analysis and machine learning. In addition, it introduces linear and nonlinear statistical modeling for researchers and practitioners in various scientific disciplines such as industrial and systems engineering, information science, and life science. The basic prerequisites for reading this textbook are knowledge of multivariate calculus and linear algebra, though they are not essential as it includes a self-contained introduction to theoretical results.

This book is basically a translation of a book published in Japanese by Iwanami Publishing Company in 2010. I would like to thank Uichi Yoshida and Nozomi Tsujimura of the Iwanami Publishing Company for giving me the opportunity to translate and publish in English.

I would like to acknowledge with my sincere thanks Yasunori Fujikoshi, Genshiro Kitagawa, and Nariaki Sugiura, from whom I have learned so much about the seminal ideas of statistical modeling. I have been greatly influenced through discussions with Tomohiro Ando, Yuko Araki, Toru Fujii, Seiya Imoto, Mitsunori Kayano, Yoshihiko Maesono, Hiroki Masuda, Nagatomo Nakamura, Yoshiyuki Ninomiya, Ryuei Nishii, Heewon Park, Fumitake Sakaori, Shohei Tateishi, Takahiro Tsuchiya, Masayuki Uchida, Takashi Yanagawa, and Nakahiro Yoshida.

I would also like to express my sincere thanks to Kei Hirose, Shuichi Kawano, Hidetoshi Matsui, and Toshihiro Misumi for reading the manuscript and offering helpful suggestions. David Grubbs patiently encouraged and supported me throughout the final preparation of this book. I express my sincere gratitude to all of these people.

Sadanori Konishi

Tokyo, January 2014

This page intentionally left blank

Chapter 1

Introduction

The highly advanced computer systems and progress in electronic measurements and instrumentation technologies have together facilitated the acquisition and accumulation of data with complex structure and/or high-dimensional data in various fields of science and industry. Data sets arise in such areas as genome databases in life science, remote-sensing data from earth-observing satellites, real-time recorded data of motion process in system engineering, high-dimensional data in character recognition, speech recognition, image analysis, etc. Hence, it is desirable to research and develop new statistical data analysis techniques to efficiently extract useful information as well as elucidate patterns behind the data in order to analyze various phenomena and to yield knowledge discovery. Under the circumstances linear and nonlinear multivariate techniques are rapidly developing by fusing the knowledge in statistical science, machine learning, information science, and mathematical science.

The objective of this book is to present the basic concepts of various procedures in the traditional multivariate analysis and also nonlinear techniques for elucidation of phenomena behind the observed multivariate data, using many illustrative examples and figures. In each chapter, starting from an understanding of the traditional multivariate analysis based on the linearity of multivariate observed data, we describe nonlinear techniques, focusing primarily on regression modeling, classification and discrimination, dimension reduction, and clustering.

1.1 Regression Modeling

Regression analysis is used to model the relationship between a response variable and several predictor (explanatory) variables. Once a model has been identified, various forms of inferences such as prediction, control, information extraction, knowledge discovery, and risk evaluation can be done within the framework of deductive argument. Thus, the key to solving various real-world problems lies in the development and construction of suitable linear and nonlinear regression modeling.

2 INTRODUCTION

1.1.1 Regression Models

Housing prices vary with land area and floor space, but also with proximity to stations, schools, and supermarkets. The quantity of chemical products is sensitive to temperature, pressure, catalysts, and other factors. In Chapter 2, using *linear regression* models, which provide a method for relating multiple factors to the outcomes of such phenomena, we describe the basic concept of *regression modeling*, including model specification based on data reflecting the phenomena, model estimation of the specified model by least squares or maximum likelihood methods, and model evaluation of the estimated model. Throughout this modeling process, we select a suitable one among competing models.

The volume of extremely high-dimensional data that are observed and entered into databases in biological, genomic, and many other fields of science has grown rapidly in recent years. For such data, the usual methods of separating model estimation and evaluation are ineffectual for the selection of factors affecting the outcome of the phenomena, and thus effective techniques are required to construct models with high reliability and prediction. This created a need for work on modeling and has led, in particular, to the proposal of various regularization methods with an L_1 penalty term (the sum of absolute values of regression coefficients), in addition to the sum of squared errors and log-likelihood functions. A distinctive feature of the proposed methods is their capability for simultaneous model estimation and variable selection. Chapter 2 also describes various regularization methods, including *ridge* regression (Hoerl and Kennard, 1970) and the least absolute shrinkage and selection operator (lasso) proposed by Tibshirani (1996), within the framework of linear regression models.

Figure 1.1 shows the results of an experiment performed to investigate the relation between falling time (x sec) and falling distance (y m) of a body. The figure suggests that it should be possible to model the relation using a polynomial. There are many phenomena that can be modeled in this way, using polynomial equations, exponential functions, or other specific nonlinear functions to relate the outcome of the phenomenon and the factors influencing that outcome.

Figure 1.2, however, poses new difficulties. It shows the measured impact y (in acceleration, g) on the head of a dummy in repeated experimental crashes of a motorcycle into a wall, with a time lapse of x (msec) as measured from the instant of collision (Härdle, 1990). For phenomena with this type of apparently complex nonlinear structure, it is quite difficult to effectively capture the structure by modeling with specific

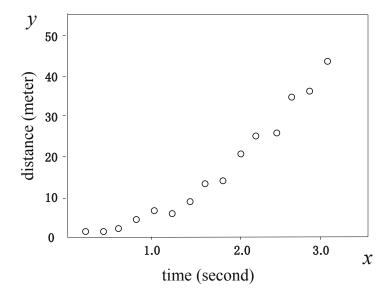


Figure 1.1 The relation between falling time (x sec) and falling distance (y m) of a body.

nonlinear functions such as polynomial equations and exponential functions.

Chapter 3 discusses *nonlinear regression* modeling for extracting useful information from data containing complex nonlinear structures. It introduces models based on more flexible splines, *B*-splines, and radial basis functions for modeling complex nonlinear structures. These models often serve to ascertain complex nonlinear structures, but their flexibility often prevents their effective function in the estimation of models with the traditional least squares and maximum likelihood methods. In such cases, these estimation methods are replaced by regularized least squares and regularized maximum likelihood methods.

The latter two techniques, which are generally referred to as *regularization* methods, are effectively used to reduce over-fitting of models to data and thus prevent excessive model complexity, and are known to contribute for reducing the variability of the estimated models. This chapter also describes regularization methods within the framework of nonlinear regression modeling.

4 INTRODUCTION

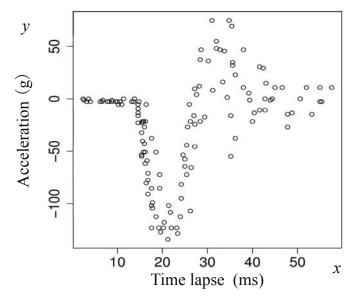


Figure 1.2 The measured impact y (in acceleration, g) on the head of a dummy in repeated experimental crashes of a motorcycle with a time lapse of x (msec).

1.1.2 Risk Models

In today's society marked by complexity and uncertainty, we live in a world exposed by various types of risks. The risk may be associated with occurrences such as traffic accidents, natural disasters such as earth-quakes, tsunamis, or typhoons, or development of a lifestyle disease, with transactions such as credit card issuance, or with many other occurrences too numerous to enumerate. It is possible to gauge the magnitude of risk in terms of probability based on past experience and information gained in life in society, but often with only a limited accuracy.

All of this poses the question of how to probabilistically assess unknown risks for a phenomenon using information obtained from data. For example, in searching for the factors that induce a certain disease, the problem is in how to construct a model for assessing the probability of its occurrence based on observed data. The effective probabilistic model for assessing the risk may lead to its future prevention. Through such risk modeling, moreover, it may also be possible to identify important disease-related factors.

Chapter 4 presents an answer to this question, in the form of model-

ing for the risk evaluation, and in particular describes the basic concept of *logistic regression modeling*, together with its extension from linear to nonlinear modeling. This includes models to assess risks based on binary data {0, 1} expressing the presence or absence of response in an individual or object on exposure to various levels of stimulus, as shown in Figure 1.3.

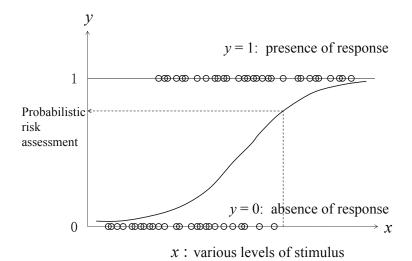


Figure 1.3 Binary data {0, 1} expressing the presence or absence of response in an individual on exposure to various levels of stimulus.

1.1.3 Model Evaluation and Selection

Figure 1.4 shows a process consisting essentially of the conceptualization of *regression modeling*; the specification of models that approximates the structure of a phenomenon, the estimation of their parameters, and the evaluation and selection of estimated models.

In relation to the data shown in Figure 1.1 for a body dropped from a high position, for example, it is quite natural to consider a polynomial model for the relation between the falling time and falling distance and to carry out polynomial model fitting. This represents the processes of model specification and parameter estimation. For elucidation of this

6 INTRODUCTION

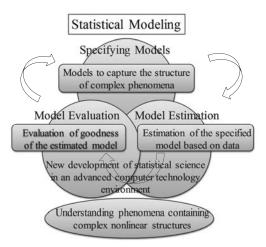


Figure 1.4 Regression modeling; the specification of models that approximates the structure of a phenomenon, the estimation of their parameters, and the evaluation and selection of estimated models.

physical phenomenon, however, a question may remain as to the optimum degree of the polynomial model. In the prediction of housing prices with linear regression models, moreover, a key question is what factors to include in the model. Furthermore, in considering nonlinear regression models, one is confronted by the availability of infinite candidate models for complex nonlinear phenomena controlled by smoothing parameters, and the need for selection of models that will appropriately approximate the structures of the phenomena, which is essential for their elucidation.

In this way, the need always arises to search through and evaluate a large number of models and from among them select one that will work effectively for elucidation of the target phenomena, based on the information provided by the data. This is commonly referred to as the *model evaluation and selection* problem.

Chapter 5 focuses on the model evaluation and selection problems, and presents various model selection criteria that are widely used as indicators in the assessment of the *goodness* of a model. It begins with a description of evaluation criteria proposed as estimators of prediction error, and then discusses the AIC (Akaike information criterion) based

on Kullback-Leibler information and the BIC (Bayesian information criterion) derived from a Bayesian view point, together with fundamental concepts that serve as the bases for derivation of these criteria.

The AIC, proposed in 1973 by Hirotugu Akaike, is widely used in various fields of natural and social sciences and has contributed greatly to elucidation, prediction, and control of phenomena. The BIC was proposed in 1978 by Gideon E. Schwarz and is derived based on a Bayesian approach rather than on information theory as with the AIC, but like the AIC it is utilized throughout the world of science and has played a central role in the advancement of modeling. Chapters 2 to 4 of this book show the various forms of expression of the AIC for linear, nonlinear, logistic, and other models, and give examples for model evaluation and selection problems based on the AIC.

Model selection from among candidate models constructed on the basis of data is essentially the selection of a single model that best approximates the data-generated probability structure. In Chapter 5, the discussion is further extended to include the concept of *multimodel inference* (Burnham and Anderson, 2002) in which the inferences are based on model aggregation and utilization of the relative importance of constructed models in terms of their weighted values.

1.2 Classification and Discrimination

Classification and discrimination techniques are some of the most widely used statistical tools in various fields of natural and social sciences. The primary aim in discriminant analysis is to assign an individual to one of two or more classes (groups) on the basis of measurements on feature variables. It is designed to construct linear and nonlinear decision boundaries based on a set of training data.

1.2.1 Discriminant Analysis

When a preliminary diagnosis concerning the presence or absence of a disease is made on the basis of data from blood chemistry analysis, information contained in the blood relating to the disease is measured, assessed, and acquired in the form of qualitative data. The diagnosis of normality or abnormality is based on multivariate data from several test results. In other words, it is an assessment of whether the person examined is included in a group consisting of normal individuals or a group consisting of individuals who exhibit a disease-related abnormality.

This kind of assessment can be made only if information from test re-