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Introduction to Multivariate Analysis: Linear and Nonlinear Modeling 
shows how multivariate analysis is widely used for extracting useful 
information and patterns from multivariate data and for understanding the 
structure of random phenomena. Along with the basic concepts of various 
procedures in traditional multivariate analysis, the book covers nonlinear 
techniques for clarifying phenomena behind observed multivariate data. It 
primarily focuses on regression modeling, classification and discrimination, 
dimension reduction, and clustering.

The text thoroughly explains the concepts and derivations of the AIC, BIC, 
and related criteria and includes a wide range of practical examples of 
model selection and evaluation criteria. To estimate and evaluate models 
with a large number of predictor variables, the author presents regularization 
methods, including the L1 norm regularization that gives simultaneous 
model estimation and variable selection.

Features
•	 Explains how to use linear and nonlinear multivariate techniques to 

extract information from data and understand random phenomena
•	 Includes a self-contained introduction to theoretical results
•	 Presents many examples and figures that facilitate a deep 

understanding of multivariate analysis techniques
•	 Covers regression, discriminant analysis, Bayesian classification, 

support vector machines, principal component analysis, and 
clustering

•	 Incorporates real data sets from engineering, pattern recognition, 
medicine, and more

For advanced undergraduate and graduate students in statistical science, 
this text provides a systematic description of both traditional and newer 
techniques in multivariate analysis and machine learning. It also introduces 
linear and nonlinear statistical modeling for researchers and practitioners in 
industrial and systems engineering, information science, life science, and 
other areas. Konishi
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Preface

The aim of statistical science is to develop the methodology and the the-
ory for extracting useful information from data and for reasonable infer-
ence to elucidate phenomena with uncertainty in various fields of the nat-
ural and social sciences. The data contain information about the random
phenomenon under consideration and the objective of statistical analysis
is to express this information in an understandable form using statisti-
cal procedures. We also make inferences about the unknown aspects of
random phenomena and seek an understanding of causal relationships.

Multivariate analysis refers to techniques used to analyze data that
arise from multiple variables between which there are some relation-
ships. Multivariate analysis has been widely used for extracting useful in-
formation and patterns from multivariate data and for understanding the
structure of random phenomena. Techniques would include regression,
discriminant analysis, principal component analysis, clustering, etc., and
are mainly based on the linearity of observed variables.

In recent years, the wide availability of fast and inexpensive com-
puters enables us to accumulate a huge amount of data with complex
structure and/or high-dimensional data. Such data accumulation is also
accelerated by the development and proliferation of electronic measure-
ment and instrumentation technologies. Such data sets arise in various
fields of science and industry, including bioinformatics, medicine, phar-
maceuticals, systems engineering, pattern recognition, earth and environ-
mental sciences, economics, and marketing. Therefore, the effective use
of these data sets requires both linear and nonlinear modeling strategies
based on the complex structure and/or high-dimensionality of the data in
order to perform extraction of useful information, knowledge discovery,
prediction, and control of nonlinear phenomena and complex systems.

The aim of this book is to present the basic concepts of various pro-
cedures in traditional multivariate analysis and also nonlinear techniques
for elucidation of phenomena behind observed multivariate data, focus-
ing primarily on regression modeling, classification and discrimination,
dimension reduction, and clustering. Each chapter includes many figures
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and illustrative examples to promote a deeper understanding of various
techniques in multivariate analysis.

In practice, the need always arises to search through and evaluate
a large number of models and from among them select an appropriate
model that will work effectively for elucidation of the target phenom-
ena. This book provides comprehensive explanations of the concepts and
derivations of the AIC, BIC, and related criteria, together with a wide
range of practical examples of model selection and evaluation criteria.
In estimating and evaluating models having a large number of predictor
variables, the usual methods of separating model estimation and evalu-
ation are inefficient for the selection of factors affecting the outcome of
the phenomena. The book also reflects these aspects, providing various
regularization methods, including the L1 norm regularization that gives
simultaneous model estimation and variable selection.

The book is written in the hope that, through its fusion of knowl-
edge gained in leading-edge research in statistical multivariate analysis,
machine learning, and computer science, it may contribute to the un-
derstanding and resolution of problems and challenges in this field of
research, and to its further advancement.

This book might be useful as a text for advanced undergraduate and
graduate students in statistical sciences, providing a systematic descrip-
tion of both traditional and newer techniques in multivariate analysis and
machine learning. In addition, it introduces linear and nonlinear statisti-
cal modeling for researchers and practitioners in various scientific disci-
plines such as industrial and systems engineering, information science,
and life science. The basic prerequisites for reading this textbook are
knowledge of multivariate calculus and linear algebra, though they are
not essential as it includes a self-contained introduction to theoretical
results.

This book is basically a translation of a book published in Japanese
by Iwanami Publishing Company in 2010. I would like to thank Uichi
Yoshida and Nozomi Tsujimura of the Iwanami Publishing Company for
giving me the opportunity to translate and publish in English.

I would like to acknowledge with my sincere thanks Yasunori Fu-
jikoshi, Genshiro Kitagawa, and Nariaki Sugiura, from whom I have
learned so much about the seminal ideas of statistical modeling. I
have been greatly influenced through discussions with Tomohiro Ando,
Yuko Araki, Toru Fujii, Seiya Imoto, Mitsunori Kayano, Yoshihiko
Maesono, Hiroki Masuda, Nagatomo Nakamura, Yoshiyuki Ninomiya,
Ryuei Nishii, Heewon Park, Fumitake Sakaori, Shohei Tateishi, Takahiro
Tsuchiya, Masayuki Uchida, Takashi Yanagawa, and Nakahiro Yoshida.



xxv

I would also like to express my sincere thanks to Kei Hirose, Shuichi
Kawano, Hidetoshi Matsui, and Toshihiro Misumi for reading the
manuscript and offering helpful suggestions. David Grubbs patiently en-
couraged and supported me throughout the final preparation of this book.
I express my sincere gratitude to all of these people.

Sadanori Konishi
Tokyo, January 2014



This page intentionally left blankThis page intentionally left blank



Chapter 1

Introduction

The highly advanced computer systems and progress in electronic mea-
surements and instrumentation technologies have together facilitated the
acquisition and accumulation of data with complex structure and/or high-
dimensional data in various fields of science and industry. Data sets arise
in such areas as genome databases in life science, remote-sensing data
from earth-observing satellites, real-time recorded data of motion pro-
cess in system engineering, high-dimensional data in character recogni-
tion, speech recognition, image analysis, etc. Hence, it is desirable to re-
search and develop new statistical data analysis techniques to efficiently
extract useful information as well as elucidate patterns behind the data in
order to analyze various phenomena and to yield knowledge discovery.
Under the circumstances linear and nonlinear multivariate techniques are
rapidly developing by fusing the knowledge in statistical science, ma-
chine learning, information science, and mathematical science.

The objective of this book is to present the basic concepts of vari-
ous procedures in the traditional multivariate analysis and also nonlinear
techniques for elucidation of phenomena behind the observed multivari-
ate data, using many illustrative examples and figures. In each chapter,
starting from an understanding of the traditional multivariate analysis
based on the linearity of multivariate observed data, we describe nonlin-
ear techniques, focusing primarily on regression modeling, classification
and discrimination, dimension reduction, and clustering.

1.1 Regression Modeling

Regression analysis is used to model the relationship between a response
variable and several predictor (explanatory) variables. Once a model has
been identified, various forms of inferences such as prediction, control,
information extraction, knowledge discovery, and risk evaluation can be
done within the framework of deductive argument. Thus, the key to solv-
ing various real-world problems lies in the development and construction
of suitable linear and nonlinear regression modeling.

1
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1.1.1 Regression Models

Housing prices vary with land area and floor space, but also with proxim-
ity to stations, schools, and supermarkets. The quantity of chemical prod-
ucts is sensitive to temperature, pressure, catalysts, and other factors. In
Chapter 2, using linear regression models, which provide a method for
relating multiple factors to the outcomes of such phenomena, we de-
scribe the basic concept of regression modeling, including model spec-
ification based on data reflecting the phenomena, model estimation of
the specified model by least squares or maximum likelihood methods,
and model evaluation of the estimated model. Throughout this modeling
process, we select a suitable one among competing models.

The volume of extremely high-dimensional data that are observed
and entered into databases in biological, genomic, and many other fields
of science has grown rapidly in recent years. For such data, the usual
methods of separating model estimation and evaluation are ineffectual
for the selection of factors affecting the outcome of the phenomena, and
thus effective techniques are required to construct models with high re-
liability and prediction. This created a need for work on modeling and
has led, in particular, to the proposal of various regularization methods
with an L1 penalty term (the sum of absolute values of regression co-
efficients), in addition to the sum of squared errors and log-likelihood
functions. A distinctive feature of the proposed methods is their capabil-
ity for simultaneous model estimation and variable selection. Chapter 2
also describes various regularization methods, including ridge regression
(Hoerl and Kennard, 1970) and the least absolute shrinkage and selection
operator (lasso) proposed by Tibshirani (1996), within the framework of
linear regression models.

Figure 1.1 shows the results of an experiment performed to investi-
gate the relation between falling time (x sec) and falling distance (ym) of
a body. The figure suggests that it should be possible to model the rela-
tion using a polynomial. There are many phenomena that can be modeled
in this way, using polynomial equations, exponential functions, or other
specific nonlinear functions to relate the outcome of the phenomenon
and the factors influencing that outcome.

Figure 1.2, however, poses new difficulties. It shows the measured
impact y (in acceleration, g) on the head of a dummy in repeated experi-
mental crashes of a motorcycle into a wall, with a time lapse of x (msec)
as measured from the instant of collision (Härdle, 1990). For phenom-
ena with this type of apparently complex nonlinear structure, it is quite
difficult to effectively capture the structure by modeling with specific
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Figure 1.1 The relation between falling time (x sec) and falling distance (y m)
of a body.

nonlinear functions such as polynomial equations and exponential func-
tions.

Chapter 3 discusses nonlinear regression modeling for extracting
useful information from data containing complex nonlinear structures. It
introduces models based on more flexible splines, B-splines, and radial
basis functions for modeling complex nonlinear structures. These models
often serve to ascertain complex nonlinear structures, but their flexibility
often prevents their effective function in the estimation of models with
the traditional least squares and maximum likelihood methods. In such
cases, these estimation methods are replaced by regularized least squares
and regularized maximum likelihood methods.

The latter two techniques, which are generally referred to as regular-
ization methods, are effectively used to reduce over-fitting of models to
data and thus prevent excessive model complexity, and are known to con-
tribute for reducing the variability of the estimated models. This chapter
also describes regularization methods within the framework of nonlinear
regression modeling.
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Figure 1.2 The measured impact y (in acceleration, g) on the head of a dummy
in repeated experimental crashes of a motorcycle with a time lapse of x (msec).

1.1.2 Risk Models

In today’s society marked by complexity and uncertainty, we live in a
world exposed by various types of risks. The risk may be associated
with occurrences such as traffic accidents, natural disasters such as earth-
quakes, tsunamis, or typhoons, or development of a lifestyle disease, with
transactions such as credit card issuance, or with many other occurrences
too numerous to enumerate. It is possible to gauge the magnitude of risk
in terms of probability based on past experience and information gained
in life in society, but often with only a limited accuracy.

All of this poses the question of how to probabilistically assess un-
known risks for a phenomenon using information obtained from data.
For example, in searching for the factors that induce a certain disease,
the problem is in how to construct a model for assessing the probabil-
ity of its occurrence based on observed data. The effective probabilistic
model for assessing the risk may lead to its future prevention. Through
such risk modeling, moreover, it may also be possible to identify impor-
tant disease-related factors.

Chapter 4 presents an answer to this question, in the form of model-
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ing for the risk evaluation, and in particular describes the basic concept
of logistic regression modeling, together with its extension from linear
to nonlinear modeling. This includes models to assess risks based on bi-
nary data {0, 1} expressing the presence or absence of response in an
individual or object on exposure to various levels of stimulus, as shown
in Figure 1.3.

Figure 1.3 Binary data {0, 1} expressing the presence or absence of response in
an individual on exposure to various levels of stimulus.

1.1.3 Model Evaluation and Selection

Figure 1.4 shows a process consisting essentially of the conceptualiza-
tion of regression modeling; the specification of models that approxi-
mates the structure of a phenomenon, the estimation of their parameters,
and the evaluation and selection of estimated models.

In relation to the data shown in Figure 1.1 for a body dropped from
a high position, for example, it is quite natural to consider a polyno-
mial model for the relation between the falling time and falling distance
and to carry out polynomial model fitting. This represents the processes
of model specification and parameter estimation. For elucidation of this



6 INTRODUCTION

Figure 1.4 Regression modeling; the specification of models that approximates
the structure of a phenomenon, the estimation of their parameters, and the eval-
uation and selection of estimated models.

physical phenomenon, however, a question may remain as to the opti-
mum degree of the polynomial model. In the prediction of housing prices
with linear regression models, moreover, a key question is what factors
to include in the model. Furthermore, in considering nonlinear regression
models, one is confronted by the availability of infinite candidate models
for complex nonlinear phenomena controlled by smoothing parameters,
and the need for selection of models that will appropriately approximate
the structures of the phenomena, which is essential for their elucidation.

In this way, the need always arises to search through and evaluate
a large number of models and from among them select one that will
work effectively for elucidation of the target phenomena, based on the
information provided by the data. This is commonly referred to as the
model evaluation and selection problem.

Chapter 5 focuses on the model evaluation and selection problems,
and presents various model selection criteria that are widely used as in-
dicators in the assessment of the goodness of a model. It begins with
a description of evaluation criteria proposed as estimators of prediction
error, and then discusses the AIC (Akaike information criterion) based
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on Kullback-Leibler information and the BIC (Bayesian information cri-
terion) derived from a Bayesian view point, together with fundamental
concepts that serve as the bases for derivation of these criteria.

The AIC, proposed in 1973 by Hirotugu Akaike, is widely used in
various fields of natural and social sciences and has contributed greatly
to elucidation, prediction, and control of phenomena. The BIC was pro-
posed in 1978 by Gideon E. Schwarz and is derived based on a Bayesian
approach rather than on information theory as with the AIC, but like the
AIC it is utilized throughout the world of science and has played a cen-
tral role in the advancement of modeling. Chapters 2 to 4 of this book
show the various forms of expression of the AIC for linear, nonlinear,
logistic, and other models, and give examples for model evaluation and
selection problems based on the AIC.

Model selection from among candidate models constructed on the
basis of data is essentially the selection of a single model that best ap-
proximates the data-generated probability structure. In Chapter 5, the
discussion is further extended to include the concept of multimodel in-
ference (Burnham and Anderson, 2002) in which the inferences are based
on model aggregation and utilization of the relative importance of con-
structed models in terms of their weighted values.

1.2 Classification and Discrimination

Classification and discrimination techniques are some of the most widely
used statistical tools in various fields of natural and social sciences. The
primary aim in discriminant analysis is to assign an individual to one
of two or more classes (groups) on the basis of measurements on fea-
ture variables. It is designed to construct linear and nonlinear decision
boundaries based on a set of training data.

1.2.1 Discriminant Analysis

When a preliminary diagnosis concerning the presence or absence of
a disease is made on the basis of data from blood chemistry analysis,
information contained in the blood relating to the disease is measured,
assessed, and acquired in the form of qualitative data. The diagnosis of
normality or abnormality is based on multivariate data from several test
results. In other words, it is an assessment of whether the person exam-
ined is included in a group consisting of normal individuals or a group
consisting of individuals who exhibit a disease-related abnormality.

This kind of assessment can be made only if information from test re-


