

MIHH[II}HNTHHH[HS

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

NICROCONTROLLERS

HIGH-PERFORMANCE SYSTEMS
AND PROGRAMMING

Julio Sanchez

Eastern Florida State College

Maria P. Canfon

Brevard Public Schools

CRC Press
Taylor & Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20130923

International Standard Book Number-13: 978-1-4665-6665-1 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Sanchez, Julio, 1938-
Microcontrollers : high-performance systems and programming / Julio Sanchez, Maria P. Canton.
pages cm
Includes bibliographical references and index.
ISBN 978-1-4665-6665-1 (hardback)
1. Microcontrollers. 2. Microcontrollers--Programming. 3. Programmable controllers I. Canton,
Maria P. II. Title.

TJ223.P76S362 2013
629.895--dc23 2013036871

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Table of Contents

Preface

Chapter 1 Microcontrollers for Embedded Systems

1.1 Embedded Systems

1.2 Microchip PIC
1.2.1 PIC Architecture
1.2.2 Programming the PIC
PIC Programmers
Development Boards

1.8 PIC Architecture

1.3.1 Baseline PIC Family
PIC10 devices
PIC12 Devices

1.3.2 Mid-Range Family
P1C14 Devices
PIC16 Devices

1.3.3 High-Performance PICs and DSPs
Digital Signal Processor
Analog-to-Digital

Chapter 2 PIC18 Architecture

2.1 PIC18 Family Overview

2.1.1 PIC18FXX2 Group

2.1.2 PIC18FXX2 Device Group Overview

2.1.3 PIC18F4X2 Block Diagram

2.1.4 Central Processing Unit
Status Register
Program Counter Register
Hardware Multiplier
Interrupts

2.1.5 Special CPU Features
Watchdog Timer
Wake-Up by Interrupt
Low Voltage Detection
Device Configuration

2.2 Memory Organization
2.2.1 Program Memory

XX

QO ONOOPS DONMND—= =

—_
N = O

13

13
14
15
16
17
17
17
18
18
19
20
21
21
21

22
22

vi Table of Contents

2.2.2 18FXX2 Stack 23
Stack Operations 23

Fast Register Stack 24
Instructions in Memory 25

2.2.3 Data Memory 25
2.2.4 Data EEPROM Memory 27
2.2.5 Indirect Addressing 28

2.3 PIC18FXX2 Oscillator 29
2.3.1 Oscillator Options 29
Crystal Oscillator and Ceramic Resonator 29

RC Oscillator 30

External Clock Input 31

Phase Locked Loop Oscillator Mode 31

2.4 System Reset 31
2.4.1 Reset Action 32
Power-On Reset (POR) 33

Power-Up Timer (PWRT) 33

Oscillator Start-Up Timer (OST) 33

PLL Lock Time-Out 33

Brown-Out Reset (BOR) 33

Time-Out Sequence 33

2.5 1/0 Ports 34
2.5.1 Port Registers 34
2.5.2 Parallel Slave Port 35

2.6 Internal Modules 35
2.6.1 PIC18FXX2 Modules 35
Chapter 3 Programming Tools and Software 37
3.1 Environment 37
3.1.1 Embedded Systems 37
3.1.2 High- and Low-Level Languages 38
3.1.3 Language-Specific Software 40

3.2 Microchip's MPLAB 40
3.2.1 MPLAB X 40
3.2.2 Development Cycle 40

3.3 An Integrated Development Environment 41
3.3.1 Installing MPLAB 42
3.3.2 Creating the Project 43
3.3.3 Setting the Project Build Options 45
3.3.4 Adding a Source File 47
3.3.5 Building the Project 48
3.3.6 .hex File 48
3.3.7 Quickbuild Option 50

3.4 MPLAB Simulators and Debuggers 50
3.4.1 MPLAB SIM 51
Using Breakpoints 51

Watch Window 52

Simulator Trace 52

3.4.2 MPLAB Stimulus 54
Stimulus Dialog 54

3.4.3 MPLAB Hardware Debuggers 55

Table of Contents vii

3.4.4 An Improvised Debugger 56

3.5 Development Programmers 56
3.5.1 Microchip PICkit 2 and PICkit 3 58
3.5.2 Micropro USB PIC Programmer 60
3.5.3 MPLAB ICD 2 and ICD 3 In-Circuit Debuggers/Programmers 60

3.6 Test Circuits and Development Boards 61
3.6.1 Commercial Development Boards 61
3.6.2 Circuit Prototype 63
3.6.3 Breadboard 64
Limitations of Breadboards 65
Breadboarding Tools and Techniques 66

3.6.4 Wire Wrapping 67
3.6.5 Perfboards 67
3.6.6 Printed Circuit Boards 68
Chapter 4 Assembly Language Program 71
4.1 Assembly Language Code 71
4.1.1 A Coding Template 71
Program Header 73

Program Environment Directives 73
Configuration Bits 73

Error Message Level Control 74

Variables and Constants 74

Code Area and Interrupts 74

4.1.2 Programming Style 74
Source File Comments 75

4.2 Defining Data Elements 75
4.2.1 equ Directive 76
4.2.2 cblock Directive 76
4.2.3 Access to Banked Memory 77

4.3 Naming Conventions 77
4.3.1 Register and Bit Names 77

4.4 PIC 18Fxx2 Instruction Set 79
4.4.1 Byte-Oriented Instructions 80
4.4.2 Bit-Oriented Instructions 80
4.4.3 Literal Instructions 80
4.4.4 Control Instructions 80
Chapter 5 PIC18 Programming in C Language 85
5.1 C Compilers 85
5.1.1 C versus Assembly Language 85
5.1.2 MPLAB C18 86

5.2 MPLAB C18 Installation 86
5.2.1 MPLAB Software Components 87
5.2.2 Configuration Options 88
5.2.3 System Requirements 89
5.2.4 Execution Flow 90

5.3 C Compiler Project 91

5.3.1 Creating the Project 91

viii

Table of Contents

Select Hardware Device 92

Select the Language Toolsuite 92

Create a New Project 93

Add Files to the Project 95

5.3.2 Selecting the Build Directory 96

5.4 A First Program in C 98
5.4.1 Source Code Analysis 929
main() Function 100

Local Functions 101
Chapter 6 C Language in an Embedded Environment 103
6.1 MPLAB C18 System 103
6.1.1 PIC18 Extended Mode 104

6.2 MPLAB C18 Libraries 104
6.2.1 Start-Up Routines 104
6.2.2 Online Help for C18 and Libraries 105

6.3 Processor-Independent Libraries 106
6.3.1 General Software Library 106
Character Classification Functions 107

Data Conversion Functions 107

Memory and String Manipulation Functions 108

Delay Functions 110

Reset Functions 111

Character Output Functions 112

6.4 Processor-Specific Libraries 115
6.4.1 Hardware Peripheral Library Functions 115
6.4.2 Software Peripherals Library Functions 116
6.4.3 Macros for Inline Assembly 116
6.4.4 Processor-Specific Header Files 117

6.5 Math Libraries 118
6.5.1 ANSI-IEEE 754 Binary Floating-Point Standard 118
Encodings 119

Rounding 119

6.5.2 Standard Math Library Functions 120
6.5.3 Floating-Point Math Sample Program 120

6.6 C18 Language Specifics 122
6.6.1 C18 Integer Data Types 122
6.6.2 C18 Floating-Point Data Types 122
6.6.3 Endianness 123
6.6.4 Storage Classes 123
6.6.5 Static Function Argument 123
6.6.6 Storage Qualifiers 123

far and near Qualifiers 123

rom and ram Qualifiers 124
Chapter 7 Programming Simple Input and Output 125
7.1 Port-Connected I/0 125
7.1.1 A Simple Circuit and Code 125
7.1.2 Circuit Schematics 125
7.1.3 Assembler Simple I/O Program 126

Table of Contents

7.2

7.3

7.4

7.5

7.1.4 Assembler Source Code Analysis
Command Monitoring Loop
Action on the LEDs
A Delay Routine

C Language Simple 1/0 Program
7.2.1 C Source Code Analysis
main() Function

Seven-Segment LED Programming
7.3.1 Computed Goto
7.3.2 Assembler Seven-Segment LED Program
Access Bank Operation
Port A for Digital Operation
DIP Switch Processing
Seven-Segment Code with Computed Goto
7.3.3 Assembler Table Lookup Sample Program

C Language Seven-Segment LED Programs
7.4.1 Code Selection by Switch Construct
7.4.2 Code Selection by Table Lookup

A Demonstration Board
7.6.1 Power Supply
Voltage Regulator

Chapter 8 Interrupts

8.1
8.2

8.3

Interrupt Mechanism

PIC18 Interrupt System
8.2.1 Hardware Sources
8.2.2 Interrupt Control and Status Registers
INTCON Registers
PIE Registers
PIR Registers
IPR Registers
8.2.3 Interrupt Priorities
High-Priority Interrupts
Low-Priority Interrupts
An Interrupt Interrupting Another One
8.2.4 Context Saving Operations
Context Saving during Low-Priority Interrupts

Port B Interrupts
8.3.1 Port B External Interrupt
8.3.2 INTO Interrupt Demo Program
cblock Directive
Vectoring the Interrupt
Initialization
Setup INTO
Program Foreground
Interrupt Service Routine
Switch Debouncing
Interrupt Action
8.3.3 Port B Line Change Interrupt
Reentrant Interrupts
Multiple External Interrupts

ix

129
129
130
130

131
132
133

134
135
136
136
137
138
139
140

141
142
142

143
145
145

147

147

147
148
148
149
151
152
152
154
154
155
155
155
156

157
158
158
158
159
160
160
161
161
162
162
163
164
165

8.3.4 Port B Line Change Interrupt Demo Program
Setting Up the Line Change Interrupt
Interrupt Service Routine

8.4 Sleep Mode and Interrupts
8.4.1 Wake-Up from SLEEP
8.4.2 Sleep_Demo Program

8.5 Interrupt Programming in C Language
8.5.1 Interrupt Action
Context in the Stack
Interrupt Data
8.5.2 Interrupt Programming in C18
Sleep Mode and RBO Interrupt Demo Program
Port B Interrupt on Change Demo Program

Chapter 9 Delays, Counters, and Timers

9.1 PIC18 Family Timers

9.2 Delay Timers
9.2.1 Power-Up Timer (PWRT)
9.2.2 Oscillator Start-Up Timer (OST)
9.2.3 Phase Locked Loop (PLL)
Power-Up Delay Summary
9.2.4 Watchdog Timer
Watchdog Timer Uses

9.3 Hardware Timer-Counters

9.4 Timer0 Module

9.4.1 Timer0 Architecture
16-bit Mode Operation
Timer and Counter Modes
Timer0 Interrupt
External Clock Source
Timer0 Prescaler

9.4.2 Timer0 as a Delay Timer
Long Delay Loops
Delay Accuracy Issues
Black—Ammerman Method
Delays with 16-Bit Timer0

9.4.3 Counter and Timer Programming
Programming a Counter
Timer0_as_Counter.asm Program
A Timer/Counter Test Circuit
TimerO _Delay.asm Program
A Variable Time-Lapse Routine
Timer0_VarDelay.asm Program
Interrupt-Driven Timer

9.5 Other Timer Modules
9.5.1 Timer1 Module
Timer1 in Timer Mode
Timer1 in Synchronized Counter Mode
External Clock Input Timing in Synchronized Mode
Timer1 Read and Write Operations
16-bit Mode Timer1 Write

Table of Contents

165
165
166

168
169
170

171
171
172
172
173
174
176

179

179

179
179
180
180
181
181
181

182

182
184
184
185
185
185
186
186
187
188
188
189
189
190
190
191
191
193
193
196

199
199
200
201
201
201
201

Table of Contents

16-Bit Read-Modify-Write

Reading and Writing Timer1 in Two 8-bit Operations
9.5.2 Timer2 Module

Timer Clock Source

TMR2 and PR2 Registers

Prescaler and Postscaler

Timer2 Initialization
9.5.3 Timer3 Module

Timer3 in Timer Mode

Timer3 in Synchronized Counter Mode

External Clock Input Timing

Timer3 in Asynchronous Counter Mode

External Clock Input Timing with Unsynchronized Clock

Timer3 Reading and Writing

Writing in 16-Bit Mode

16-bit Read-Modify-Write Operation

Reading in Asynchronous Counter Mode

Timer1 Oscillator in Timer3

9.6 C-18 Timer Functions

9.6.1 CloseTimerx Function
9.6.2 OpenTimerx Function
9.6.3 ReadTimerx Function
9.6.4 WriteTimerx Function

9.7 Sample Programs

9.7.1 Timer0_as_Counter program
9.7.2 Timer0_Delay Program
9.7.3 Timer0_VarDelay Program
9.7.4 Timer0_Varint Program
9.7.5 C_Timer_Show Program

Chapter 10 Data EEPROM

10.1

10.2

10.3

10.4

EEPROM on the PIC18 Microcontrollers
10.1.2 On-Board Data EEPROM

EEPROM Programming
10.2.1 Reading EEPROM Data
10.2.2 Writing EEPROM Data

Data EEPROM Programming in C Language
10.3.1 EEPROM Library Functions

10.3.2 Sample Code

EEPROM Demonstration Programs

10.4.1 EEPROM_to_7Seg Program

10.4.2 C_EEPROM_Demo Program

Chapter 11 Liquid Crystal Displays

111

LCD
11.1.1 LCD Features and Architecture
11.1.2 LCD Functions and Components
Internal Registers
Busy Flag
Address Counter

xi

202
202
203
204
204
205
205
205
207
207
208
208
208
208
208
209
209
210

210
210
211
211
212

212
212
215
216
220
224

227

227
227

228
228
230

231
232
232

233
233
237

239

239
239
240
240
240
240

xii

Display Data RAM (DDRAM)
Character Generator ROM (CGROM)
Character Generator RAM (CGRAM)
Timing Generation Circuit
Liquid Crystal Display Driver Circuit
Cursor/Blink Control Circuit

11.1.3 Connectivity and Pin Out

Interfacing with the HD44780

11.2.1 Busy Flag and Timed Delay Options
11.2.2 Contrast Control

11.2.3 Display Backlight

11.2.4 Display Memory Mapping

The HD44780 Instruction Set
11.3.1 Instruction Set Overview
Clearing the Display
Return Home
Entry Mode Set
Display and Cursor ON/OFF
Cursor/Display Shift
Function Set
Set CGRAM Address
Set DDRAM Address
Read Busy Flag and Address Register
Write data
Read data
11.3.2 18F452 8-Bit Data Mode Circuit

LCD Programming
11.4.1 Defining Constants and Variables
Constants
11.4.2 Using MPLAB Data Directives
Data Definition in Absolute Mode
Relocatable Code
Issues with Initialized Data
11.4.3 LCD Initialization
Reset Function
Initialization Commands
Function Preset Command
Function Set Command
Display Off
Display and Cursor On
Set Entry Mode
Cursor and Display Shift
Clear Display
11.4.4 Auxiliary Operations
Time Delay Routine
Pulsing the E Line
Reading the Busy Flag
Bit Merging Operations
11.4.5 Text Data Storage and Display
Generating and Storing a Text String
Data in Program Memory
Displaying the Text String
Sample Program LCD_18F_MsgFlag

Table of Contents

240
241
241
241
242
242
242

243
244
245
245
245

247
247
248
248
248
248
248
248
249
249
249
249
250
250

251
252
252
253
253
254
254
255
255
256
256
256
257
257
258
258
258
259
259
260
261
262
264
265
265
266
268

Table of Contents

11.5

11.7

Data Compression Techniques

11.5.1 4-Bit Data Transfer Mode

11.5.2 Preserving Port Data

11.5.3 Master/Slave Systems

11.5.4 4-Bit LCD Interface Sample Programs

LCD Programming in C18
11.6.1 Editing xlcd.h
Defining the Interface
Defining the Data Port and Tris Register
11.6.2 Timing Routines
11.6.3 XLCD Library Functions
BusyXLCD
OpenXLCD
putrXLCD
putsXLCD
ReadAddr
ReadDataXLCD
SetDDRamAddr
SetCGRamAddr
WriteCmdXLCD
WriteDataXLCD

LCD Application Development in C18
11.7.1 Using the Project Wizard
Main Program File

Chapter 12 Real-Time Clocks

121

12.2

12.3

12.4

Measuring Time
12.1.1 Clock Signal Source
32 kHz Crystal Circuit
12.1.2 Programming the Timer1 Clock
Setting Up Timer1 Hardware
Coding the Interrupt Handler
Sample Program RTC_18F_Timer1.asm

Real-Time Clock ICs

12.2.1 NJU6355

12.2.2 6355 Data Formatting

12.2.3 Initialization and Clock Primitives
Reading and Writing Clock Data
Initialize RTC

12.2.4 BCD Conversions

RTC Demonstration Circuit and Program

12.3.1 RTC_F18_6355.asm Program
Code Details
Code Listing

Real-Time Clocks in C18

12.4.1 Timeri-Based RTC in C18

xiii

278
279
279
280
281

291
292
292
293
294
295
295
296
296
296
296
297
297
297
298
298

299
299
300

303

303
303
304
305
305
306
306

309
310
310
311
311
314
316
318
318
319
319
336
336

xXiv

Chapter 13 Analog Data and Devices

13.1
13.2

13.3

13.4

Operations on Computer Data

18F452 A/D Hardware
13.2.1 A/D Module on the 18F452
ADCONO Register
ADCONT1 Register
SLEEP Mode Operation
13.2.2 A/D Module Sample Circuit and Program
Initialize A/D Module
A/D Conversion
13.2.3 A2D_Pot2LCD Program

A/D Conversion in C18
13.3.1 Conversion Primitives
Busy ADC
CloseADC
ConvertADC
OpenADC
ReadADC
SetChan ADC
13.3.2 C_ADConvert.c Program
C_ADConvert.c Code Listing

Interfacing with Analog Devices
13.4.1 LM 34 Temperature Sensor
13.4.2 LM135 Circuits

Calibrating the Sensor
13.4.3 C_ADC_LMS35.c Program

Chapter 14 Operating Systems

141

14.2

14.3

14.4

14.5

14.6

Time-Critical Systems
14.1.2 Multitasking in Real-Time

RTOS Scope
14.2.1 Tasks, Priorities, and Deadlines
14.2.2 Executing in Real-Time

RTOS Programming

14.3.1 Foreground and Background Tasks
Interrupts in Tasking

14.3.2 Task Loops

14.3.3 Clock-Tick Interrupt

14.3.4 Interrupts in Preemptive Multitasking

Constructing the Scheduler

14.4.1 Cyclic Scheduling

14.4.2 Round-Robin Scheduling

14.4.3 Task States and Prioritlzed Scheduling

A Small System Example

14.5.1 Task Structure

14.5.2 Semaphore

Sample OS Application

Table of Contents

343

343

343
344
345
347
348
349
350
351
352

365
365
365
365
366
366
367
367
368
368

371
371
372
372
373

377

377
378

378
379
381

381
382
382
383
383
383
384
384
385
385
386
386
387

388

Table of Contents

Appendix A MPLAB C18 Language Tutorial

Al

A2

A3

A4

A5

A.6

In This Appendix
A.1.1 About Programming

A.1.2 Communicating with an Alien Intelligence

A.1.3 Flowcharting

A.1.4 C Language Rules
Comments
Program Header
Programming Templates

Structure of a C Program

A.2.1 Sample Program C_LEDs_ON
Identifiers
Reserved Words
main() Function

A.2.2 Sample Program C_LEDs_Flash
Expressions and Statements
Variables
Scope and Lifetime of a Variable
Constants
Local Functions

A.2.3 Coding Style

C Language Data

A.3.1 Numeric Data

A.3.2 Alphanumeric Data

A.3.3 Arrays of Alphanumeric Data
A.3.4 Arrays of Numeric Data

Indirection

A.4.1 Storage of C Language Variables
A.4.2 Address of Operator

A.4.3 Indirection Operator

A.4.4 Pointers to Array Variables

A.4.5 Pointer Arithmetic

C Language Operators
A.5.1 Operator Action
A.5 2 Assignment Operator
A.5.3 Arithmetic Operators
Remainder Operator
A.5.4 Concatenation
A.5.5 Increment and Decrement
A.5.6 Relational Operators
A.5.7 Logical Operators
A.5.8 Bitwise Operators
AND Operator
OR Operator
XOR Operator
NOT Operator

Shift-Left and Shift-Right Operators

A.5.9 Compound Assignment Operators
A.5.10 Operator Hierarchy
Associativity Rules

Directing Program Flow

XV

413

413
413
414
415
417
418
418
419

419
420
420
421
421
422
423
423
425
426
427
428

428
429
430
430
431

431
432
432
433
434
435

436
436
437
438
439
439
440
441
442
443
445
446
447
447
448
449
449
450

451

xXvi

A.6.1 Decisions Constructs

if Construct
Statement Blocks
Nested if Construct
else Construct
Dangling else Case
else-if Clause

switch Construct

Conditional Expressions

A.7 Loops and Program Flow Control
A.7.1 Loops and lterations
A.7.2 Elements of a Program Loop
A.7.3 for Loop

Compound Statement in Loops

while Loop
do-while Loop
A.8 Breaking the Flow
A.8.1 goto Statement
A.8.2 break Statement
A.8.3 continue Statement
A.9 Functions and Structured Programming

A.9.1 Modular Construction
A.9.2 Structure of a Function

Function Prototype

Function Definition

Function Call

Return Keyword

Matching Arguments and Parameters

A.10 Visibility of Function Arguments

A.10.1
A.10.2

A.10.3

Using External Variables
Passing Data by Reference
Pointers and Functions
Passing Array Variables
Function-Like Macros
Macro Argument

A.11 Structures, Bit Fields, and Unions

A11.1

A11.2

A11.3
A11.4

A11.5

Structure Declaration

Structure Type Declaration
Structure Variable Declaration
Accessing Structure Elements
Initializing Structure Variables
Manipulating a Bit Field

Type Casting

Unions

Structures and Functions
Pointers to Structures

Pointer Member Operator
Passing Structures to Functions
Structures and Unions in MPLAB C18

Table of Contents

451
451
452
452
454
454
456
457
460

460
461
461
462
464
464
465

466
466
467
468

469
469
470
470
471
471
472
473

474
474
475
475
476
477
477

478
478
479
479
480
481
482
484
484
485
485
485
486
487

Table of Contents

Appendix B Debugging 18F Devices
B.1 Art of Debugging

B.1.1
B.1.2

Preliminary Debugging
Debugging the Logic

B.2 Software Debugging

B.2.1
B.2.2
B.2.3

B.2.4

B.2.5
B.2.6
B.2.7

B.2.8

B.2.9

Debugger-Less Debugging
Code Image Debugging
MPLAB SIM Features

Run Mode

Step Mode

Animate

Mode Differences

Build Configurations
Setting Breakpoints

PIC 18 Special Simulations
Reset Conditions

Sleep

Watchdog Timer

Special Registers

PIC 18 Peripherals
MPLAB SIM Controls
Viewing Commands
Dissasembly Listing

File Registers

Hardware Stack

Locals

Program Memory

Special Function Registers
Watch

Watch Window in C Language
Simulator and Tracing
Setting Up a Trace

Trace Menu

Stimulus

Stimulus Basics

Using Stimulus

Asynch Tab
Message-Based Stimulus
Pin/Register Actions Tab
Advanced Pin/Register Tab
Clock Stimulus Tab
Register Injection Tab
Register Trace Tab

B.3 Hardware Debugging

B.3.1

B.3.2

Microchip Hardware Programmers/Debuggers
MPLAB ICD2

MPLAB ICD3

MPLAB ICE 2000

MPLAB ICE 4000

MPLAB REAL ICE

MPLAB PICkit 2 and PICkit 3

Using Hardware Debuggers

xvii

491

491
492
492

493
493
493
494
494
494
494
494
495
495
495
495
495
496
496
496
497
498
498
499
500
500
500
501
502
504
504
505
506
507
508
509
510
510
510
512
513
514
515

516
516
516
517
517
518
519
519
519

xviii

Which Hardware Debugger?
ICSP

B.3.3 MPLAB ICD2 Debugger Connectivity
Connection from Module to Target
Debug Mode Requirements
Debug Mode Preparation
Debug Ready State
Breadboard Debugging

B.4 MPLAB ICD 2 Tutorial

B.4.1 Circuit Hardware

B.4.2 LedFlash_Reloc Program

B.4.3 Relocatable Code
Header Files
Program Memory
Configuration Requirements
RAM Allocations
LedFlash_Reloc.asm Program

B.4.4 Debugging Session

Appendix C Building Your Own Circuit Boards

C.1 Drawing the Circuit Diagram
C.2 Printing the PCB Diagram
C.3 Transferring the PCB Image
C.4 Etching the Board

C.5 Finishing the Board

C.6 Backside Image

Appendix D PIC18 Instruction Set

Appendix E Number Systems and Data Encoding

E.1 Decimal and Binary Systems
E.1.1 Binary Number System
E.1.2 Radix or Base of a Number System

E.2 Decimal versus Binary Numbers
E.2.1 Hexadecimal and Octal

E.3 Character Representations
E.3.1 ASCII
E.3.2 EBCDIC and IBM
E.3.3 Unicode

E.4 Encoding of Integers
E.4.1 Word Size
E.4.2 Byte Ordering
E.4.3 Sign-Magnitude Representation
E.4.4 Radix Complement Representation
E.4.5 Simplification of Subtraction

E.5 Binary Encoding of Fractional Numbers
E.5.1 Fixed-Point Representations
E.5.2 Floating-Point Representations

Table of Contents

520
520
521
522
523
523
524
525
526
526
527
527
527
527
528
528
529
531

533

533
535
535
536
536
536

539

633

633
633
634

634
635

636
636
638
639

639
640
641
642
643
645
646
647
648

Table of Contents

E.5.3 Standardized Floating-Point
E.5.4 Binary-Coded Decimals (BCD)
E.5.5 Floating-Point BCD

Appendix F Basic Electronics

F.1
F.2
F.3
F.4

F.5

F.6

F.7

Index

Atom
Isotopes and lons
Static Electricity

Electrical Charge
F.4.1 Voltage
F.4.2 Current
F.4.3 Power
F.4.4 Ohm's Law

Electrical Circuits
F.5.1 Types of Circuits

Circuit Elements

F.6.1 Resistors

F.6.2 Revisiting Ohm's Law

F.6.3 Resistors in Series and Parallel
F.6.4 Capacitors

F.6.5 Capacitors in Series and in Parallel
F.6.6 Inductors

F.6.7 Transformers

Semiconductors

F.7.1 Integrated Circuits

F.7.2 Semiconductor Electronics
F.7.3 P-Type and N-Type Silicon
F.7.4 Diode

Xix

649
650
650

653

654
654
655

656
656
656
657
657

658
658

660
661
661
662
664
665
666
667

667
668
668
669
669

671

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Preface

Microcontrollers: High-Performance Systems and Programming can be considered
a continuation of and a complement to our previous two titles on the subject of
microcontroller programming. In the present book we focus on the line of high-per-
forance microcontrollers offered by Microchip. In addition to their enhanced fea-
tures, extended peripherals, and improved performance, there are several practical
factors that make the high-performance PIC series a better choice than their
mid-range predecessors for most systems:

e The possibility of programming high-performance microcontrollers in a
high-level language (C language).

¢ Source code compatibility with PIC16 microcontrollers, which facilitates code
migration from mid-range to PIC18 devices.

¢ Pin compatibility of some PIC18 devices with their PIC16 predecessors. This
makes possible the reuse of PIC16 controllers in circuits originally designed for
mid-range hardware. For example, the PIC18F442 and PIC18F452 in 40-pin DIP
configuration are pin-compatible with the popular PIC16F877. Similarly, the
PIC18F242 and PIC18F252, in 28-pin DIP format, are pin compatible with the
PIC16F684.

¢ Microchip pricing policy makes available the high-performance chips at a lower
cost than their mid-range equivalents. Recently we have priced the 18F452 at
$6.32 while the 16F877 sells from the same source at $6.72.

Expanded functionality, high-level programmability, architectural improvements
that simplify hardware implementation, code and pin-layout compatibility, and
lower cost make it easy to select a high-performance PIC over its mid-range coun-
terpart. One consideration that is sometimes mentioned in favor of the mid-range
devices is the abundance of published application circuits and code samples. Our
book attempts to correct this. Although it should also be mentioned that some
PIC16 processors with small footprints have no PIC18 equivalent, which explains
why some mid-range devices continue to hold a share of the microcontroller mar-
ketplace.

Like our preceding titles in this field, the book is intended as a reference and re-

source for engineers, scientists, and electronics enthusiasts. The book focuses on
the needs of the working professional in the fields of electrical, electronic, com-

XXi

XXii Preface

puter, and software engineering. In developing the material for this book, we have
adopted the following rules:

1. The use of standard or off-the-shelf components such as input/output devices, in-
tegrated circuits, motors, and programmable microcontrollers, which readers
can easily duplicate in their own circuits.

2. The use of inexpensive or freely available development tools for the design and
prototyping of embedded systems, such as electronic design programs, program-
ming languages and environments, and software utilities for creating printed cir-
cuit boards.

3. Oursample circuits and programs are not copyrighted or patented so that readers
can freely use them in their own applications.

Our book is designed to be functional and hands-on. The resources furnished to
the reader include sample circuits with their corresponding programs. The circuits
are depicted and labeled clearly, in a way that is easy to follow and reuse. Each cir-
cuit includes a parts list of the resources and components required for its fabrica-
tion. For the most important circuits, we also provide tested PCB files. The sample
programs are matched to the individual circuits but general programming tech-
niques are also discussed in the text. There are appendices with useful information
and the book's online software contains a listing of all the sample programs devel-
oped in the text.

Julio Sanchez

Maria P. Canton

Chapter 1

Microcontrollers for Embedded Systems

1.1 Embedded Systems

An embedded system is a computer with specific control functions. It can be part of a
larger computer system or a stand-alone device. Most embedded systems must oper-
ate within real-time constraints. Embedded systems contain programmable proces-
sors that are either microcontrollers or digital signal processors (DSPs). The
embedded system is sometimes a general-purpose device, but more often it is used in
specialized applications such as washing machines, telephones, microwave ovens,
automobiles, and many different types of weapons and military hardware.

A microcontroller or DSP usually includes a central processor, input and output
ports, memory for program and data storage, an internal clock, and one or more pe-
ripheral devices such as timers, counters, analog-to-digital converters, serial com-
munication facilities, and watchdog circuits. More than two dozen companies in the
United States and abroad manufacture and market microcontrollers. Mostly they
range from 8- to 32-bit devices. Those at the low end are intended for very simple
circuits and provide limited functions and program space, while the ones at the high
end have many of the features associated with microprocessors. The most popular
microcontrollers include several from Intel (such as the 8051), from Zilog (deriva-
tives of their famous Z-80 microprocessor) from Motorola (such as the 68HC05),
from Atmel (the AVR), the Parallax (the BASIC Stamp), and many from Microchip.
Some of the high-end Microchip microcontrollers and DSPs are the topic of this
book.

1.2 Microchip PIC

The names PIC and PICmicro are trademarks of Microchip Technology. Microchip
prefers the latter designation because PIC is aregistered trademark in some European
countries. It is usually assumed that PIC stands for Peripheral Interface Controller, al-
though the original acronym was Programmable Interface Controller. More recently,
Microchip has stated that PIC stands for Programmable Intelligent Computer, a much
nicer, albeit not historically true version of the acronym.

2 Chapter 1

The original PIC was built to complement a General Instruments 16-bit CPU des-
ignated the CP-1600. The first 8-bit PIC was developed in 1975 to improve the per-
formance of the CP-1600 by offloading I/O tasks from the CPU. In 1985, General
Instrument spun off its microelectronics division. At that time, the PIC was re-de-
signed with internal EPROM to produce a programmable controller. Today, hun-
dreds of versions and variations of PIC microcontrollers are available from
Microchip. Typical on-board peripherals include input and output ports, serial com-
munication modules, UARTSs, and motor control devices. Program memory ranges
from 256 words to 64k words and more. The word size varies from 12 to 14 or 16
bits, depending on the specific PIC family.

1.2.1 PIC Architecture

PIC microcontrollers contain an instructions set that varies in length from 35 instruc-
tions for the low-end devices to more than 70 for the high end. The accumulator, which
is known as the work register in PIC documentation, is part of many instructions be-
cause thelow-and mid-range PICs contain no other internal registers accessible to the
programmer. The PICs are programmable in their native Assembly Language. C lan-
guage and BASIC compilers have also been developed. Open-source Pascal, JAL, and
Forth compilers are also available, although not very popular.

It is often mentioned that one of the reasons for the success of the PIC is the sup-
port provided by Microchip. This support includes development software, such as a
professional-quality development environment called MPLAB, which can be down-
loaded free from the company's website (www.microchip.com). The MPLAB pack-
age includes an assembler, a linker, a debugger, and a simulator. Microchip also sells
an in-circuit debugger called MPLAB ICD 2. Other development products intended
for the professional market are also available from Microchip.

In addition to the development software, the Microchip website contains a multi-
tude of free support documents, including data sheets, application notes, and sam-
ple code. Furthermore, the PIC microcontrollers have gained the support of many
hobbyists, enthusiasts, and entrepreneurs who develop code and support products
and publish their results on the Internet. This community of PIC users is a treasure
trove of information and know-how easily accessible to the beginner and useful
even to the professional. One such Internet resource is an open-source collection of
PIC tools named GPUTILS, which is distributed under the GNU General Public Li-
cense. GPUTILS includes an assembler and a linker. The software works on Linux,
Mac OS, 0S/2, and Windows. Another product, called GPSIM™, is an open source
simulator featuring PIC hardware modules.

1.2.2 Programming the PIC

Stand-alone programming a PIC microcontroller requires the following tools and
components:

¢ An Assembler or high-level language compiler. The software package usually in-
cludes a debugger, simulator, and other support programs.

¢ A computer (usually a PC) on which to run the development software.

Microcontrollers for Embedded Systems 3

¢ A hardware device called a programmer that connects to the computer through
the serial, parallel, or USB line. The PIC is inserted in the programmer and “blown”
by downloading the executable code generated by the development system. The
hardware programmer usually includes the support software.

¢ A cable or connector for connecting the programmer to the computer.
¢ A PIC microcontroller.

Alternatively, some PIC microcontrollers can be programmed while installed in
their applications boards. Although this option can be very useful as a production
and distribution tool, for reasons of space it is not discussed in this book.

PIC Programmers

The development system (assembler or compiler) and the programmer driver are the
software components. The computer, programmer, and connectors are the hardware
elements. Figure 6.1 shows a commercial programmer that connects to the USB port
of a PC. The one in the illustration is made by MicroPro.

Figure 1.1 USB PIC programmer made by MicroPro.

Many other programmers are available on the market. Microchip offers several
high-end models with in-circuit serial programming (ICSP) and low-voltage pro-
gramming (LVP) capabilities. These devices allow the PIC to be programmed in the
target circuit. Some PICs can write to their own program memory. This makes possi-
ble the use of so-called bootloaders, which are small resident programs that allow
loading user software over the RS-232 or USB lines. Programmer/debugger combi-
nations are also offered by Microchip and other vendors.

4 Chapter 1

Development Boards

A development board is a demonstration circuit that usually contains an array of con-
nected and connectable components. Their main purpose is as a learning and experi-
ment tool. Like programmers, PIC development boards come in a wide range of prices
and levels of complexity. Most boards target a specific PIC microcontroller or a PIC
family of related devices. Lacking a development board, the other option is to build
the circuits oneself, a time-consuming but valuable experience. Figure 1.2 shows the
LAB-X1 development board for the 16F87x PIC family.

S M
SEEPROM 'SEEFROM SEEP

J8=R5232
J10=RS485

0000000CO0000000000C0 ™,
0000000000000 0C0CO0C0O0
C0000C00C00O0000O00C000
000000000000 C0O00C000
00000000 CO0O00COO00
%~ 0000000C00000000000

Figure 1.2 LAB-X1 development board.

The LAX-X1 board, as well as several other models, are products of
microEngineering Labs, Inc. Development boards from Microchip and other ven-
dors are also available.

1.3 PIC Architecture

PIC microcontrollers are roughly classified by Microchip into three groups: baseline,
mid-range, and high-performance. Figure 1.3 shows the components of each PIC fam-
ily at the time of this writing.

Microcontrollers for Embedded Systems

Microchip PIC and dsPIC Families

MPLAB DEVELOPMENT ENVIRONMENT

Baseline family

Mid-range family
—— High-performance family

PIC10 PIC12 PIC16! PIC18 PIC24F PIC24H dsPIC30 dsPIC32 PIC32

8-bit

Assembly Language
programmable

. 16-bit 32-bit

<4——)» MPLAB C Compiler programmable
1

Figure 1.3 Microchip PIC and dsPIC families.

Within each of the groups the PIC are classified based on the first two digits of

the PIC's family type.

However, the sub-classification is not very strict, as there is

some overlap. In fact, we find PICs with 16X designations that belong to the base-
line family and others that belong to the mid-range group. In the following sub-sec-
tions we describe the basic characteristics of the various sub-groups of the three
major PIC families with 8-bit architectures.Table 1.1 shows the principal hardware
characteristics of each of the four 8-bit PIC families

Table 1.1
8-bit PIC Architectures Comparison Chart
BASELINE MID-RANGE ENHANCED PIC18
Pin Count 6-40 8-64 8-64 18-100
Interrupts No Single interrupt Single interrupt Multiple
Context saved Interrupts
Context saved
Performance 5 MIPS 5 MIPS 8 MIPS Up to 16 MIPS
Instructions 33, 12-bit 35, 14-bit 49, 14-bit 83, 16-bit
Program Memory Up to 3 KB Upto 14 KB Up to 28 KB Up to 128 KB
Data Memory 138 Bytes 368 Bytes 1,5 KB 4 KB
Hardware Stack 2 level 8 level 16 level 32 level
Total Number
of Devices 16 58 29 193
Families PIC10 PIC12 PIC12FXXX PIC18
PIC12 PIC16 PIC16F1XX
PIC14
PIC16

1.3.1 Baseline PIC Family

This group includes members of the PIC10, PIC12, PIC14, and PIC16 families. The de-
vices in the baseline group have 12-bit program words and are supplied in 6- to 28-pin
packages. The microcontrollers in the baseline group are described as being suited for

6 Chapter 1

battery-operated applications because they have low power requirements. The typi-
cal member of the baseline group has alow pin count, flash program memory, and low
power requirements. The following types are in the Baseline group:

e PIC10 devices
e PIC12 devices
¢ PIC14 devices
e Some PIC16 devices

We present a short summary of the functionality and hardware types of the base-
line PICs in the sections that follow, although these devices are not covered in this
book.

PIC10 devices

The PIC10 devices are low-cost, 8-bit, flash-based CMOS microcontrollers. They use
33 single-word, single-cycle instructions (except for program branches, which take
two cycles. The instructions are 12-bits wide. The PIC10 devices feature power-on re-
set, an internal oscillator mode which saves having to use ports for an external oscilla-
tor. They have a power-saving SLEEP mode, A Watchdog Timer, and optional code
protection.

The recommended applications of the PIC10 family range from personal care ap-
pliances and security systems to low-power remote transmitters and receivers. The
PICs of this family have a small footprint and are manufactured in formats suitable
for both through hole or surface mount technologies. Table 1.2 lists the characteris-
tics of the PIC10F devices.

Table 1.2
PIC10F Devices
10F200 10F202 10F204 10F206

Clock:

Maximum Frequency

of Operation (MHz) 4 4 4 4
Memory:

Flash Program

Memory 256 512 256 512

Data Memory (bytes) 16 24 16 24
Peripherals:

Timer Module(s) TMRO TMRO TMRO TMRO

Wake-up from Sleep Yes Yes Yes Yes

Comparators 0 0 1 1
Features:

1/0 Pins 3 3 3 3

Input Only Pins 1 1 1 1

Internal Pull-ups es Yes Yes Yes

In-Circuit Serial

Programming Yes Yes Yes Yes

Instructions 33 33 33 33
Packages: 6-pin SOT-23

8-pin PDIP

Microcontrollers for Embedded Systems 7

Two other PICs of this series are the 10F220 and the 10F222. These versions in-
clude four I/0 pins and two analog-to-digital converter channels. Program memory
is 256 words on the 10F220 and 512 in the 10F222. Data memory is 16 bytes on the
F220 and 23 in the F222.

PIC12 Devices

The PIC12C5XX family are 8-bit, fully static, EEPROM/EPROM/ROM-based CMOS
microcontrollers. The devices use RISC architecture and have 33 single-word, sin-
gle-cycle instructions (except for program branches that take two cycles). Like the
PIC10 family, the PIC12C5XX chips have power-on reset , device reset, and an internal
timer. Four oscillator options can be selected, including a port-saving internal oscilla-
tor and a low-power oscillator. These devices can also operate in SLEEP mode and
have watchdog timer and code protection features.

The PIC12C5XX devices are recommended for applications ranging from per-
sonal care appliances, security systems, and low-power remote transmitters and re-
ceivers. The internal EEPROM memory makes possible the storage of user-defined
codes and passwords as well as appliance setting and receiver frequencies. The var-
ious packages allow through-hole or surface mounting technologies. Table 1.3 lists
the characteristics of some selected members of this PIC family.

Table 1.3
PIC 12CXXX and 12CEXXX Devices

12C508(A) 12C518 12CE519 12C671 12CE674
12C509A 12C672
12CR509A 12C673

Clock:
Maximum
Frequency
of Operation
(MHz) 4 4 4 10 10

Memory:

EPROM

Program

Memory

(bytes) 25/41/41 25 41 128 128
Peripherals:

EEPROM

Data Memory

(bytes) — 16 16 0/0/16 16

Timer

Module(s) TMRO TMRO TMRO TMRO TMRO

A/D Converter

(8-bit)

Channels — — — 4 4

Features:

Interrupt

Sources — — —
I/0 Pins
Input Pins 1

o
e
e
W EN
o

(continues)

Chapter 1

Table 1.3

PIC 12CXXX and 12CEXXX Devices (continued)

12C508(A) 12C518 12CE519 12C671 12CE674
12C509A 12C672
12CR509A 12C673

Internal

Pull-ups Yes/Yes/No Yes Yes Yes Yes

In-Circuit

Serial

Programming Yes/No Yes Yes

Number of

Instructions 33 33 35

Packages 8-pin DIP 8-pin DIP 8-pin DIP 8-pin DIP 8-pin DIP
SOIC JW,SOIC JW. SOIC SOIC

Two other members of the PIC12 family are the 12F510 and the 16F506. In most
respects these devices are similar to the ones previously described, except that the
12F510 and 16F506 both have flash program memory. Table 1.4 lists the most impor-

tant features of these two PICs.

Table 1.4

PIC12F510 and 12F675

Clock:

Maximum Frequency of Operation (MHz)

Memory:
Flash Program Memory
Data Memory (SRAM bytes)
Peripherals:
Timers 8/16 bits
Wake-up from Sleep on Pin Change
Features:
I/0 Pins
Analog comparator module
Analog-to-digital converter
In-Circuit Serial Programming
Enhanced Timerl module
Interrupt capability
Number of Instructions
Relative addressing
Packages

12F629

20

1024
64

1/1
Yes

6
Yes
No
Yes
Yes
Yes
35
Yes

8-pin PDIP,

SOIC,
DFN-S

12F675
20

1024
64

1/1
Yes

6

Yes
10-bit
Yes
Yes
Yes

35

Yes
8-pin PDIP
SOIC,
DFN-S

Two other members of the PIC12F are the 12F629 and 12F675. The only differ-
ence between these two devices is that the 12F675 has a 10-bit analog-to-digital con-
verter while the 629 has not A/D converter. Table 1.5 lists some important features

of both PICs.

Microcontrollers for Embedded Systems 9

Table 1.5
PIC12F629 and 12F675
12F629 12F675
Clock:
Maximum Frequency of Operation (MHz) 20 20
Memory:
Flash Program Memory 1024 1024
Data Memory (SRAM bytes) 64 64
Peripherals:
Timers 8/16 bits 11 11
Wake-up from Sleep on Pin Change Yes Yes
Features:
I/0 pins 6 6
Analog comparator module Yes Yes
Analog-to-digital converter No 10-bit
In-circuit serial programming Yes Yes
Enhanced Timer1 module Yes Yes
Interrupt capability Yes Yes
Number of instructions 35 35
Relative addressing Yes Yes
Packages 8-pin PDIP 8-pin PDIP
SOIC SOIC
DFN-S DFN-S

Several members of the PIC12 family, 12F635, 12F636, 12F639, and 12F683, are
equipped with special power-management features (called nanowatt technology by
Microchip). These devices were especially designed for systems that require ex-
tended battery life.

PIC14 Devices

The single member of this family is the PIC14000, which is built with CMOS technol-
ogy. This makes the PIUC14000 fully static and gives it industrial temperature range.
The 14000 is recommended for battery chargers, power supply controllers, power
management system controllers, HVAC controllers, and for sensing and data acquisi-
tion applications.1.3.2

1.3.3 Mid-range PIC Family

The mid-range PICs includes members of the PIC12 and PIC16 groups as well as the
PIC 18 group. According to Microchip the mid-range PICs all have 14-bit program
words with either flash or OTP program memory. Those with flash program memory
also have EEPROM data memory and support interrupts. Some members of the
mid-range group have USB, I2C, LCD, USART, and A/D converters. Implementations
range form 8 to 64 pins.

PIC16 Devices

This is by far the largest mid-range PIC group. Currently over 80 versions of the PIC16
arelisted in production by Microchip. Although we do not cover the mid-range devices

10 Chapter 1

in this book, we have selected a few of its most prominent members of the PIC16 fam-
ily to list their most important features. These are found in Table 1.6.

Table 1.6
PIC16 Devices
'
16C432 16C58 16C770 16F54 16F84A 16F946
Clock:
Maximum Frequency MHz 20 40 20 20 20 20
Memory :
Program memory type OTP oTP oTP Flash Flash Flash
K-bytes 3.5 3 3.5 0.75 1.75 14
K-words 2 2 2 0.5 1 8
Data EEPROM 0 0 0 0 64 256
Peripherals:
I/0 channels 12 12 16 12 13 53
ADC channels 0 0 6 0 0 8
Comparators 0 0 0 0 0 2
Timers 1/8-bit 1/8-bit 2/8-bit 1/8-bit 1/8-bit 2/8-bit
1/16-bit 1/16-bit
Watchdog timer Yes Yes Yes Yes Yes Yes
Features:
ICsp Yes No Yes No Yes Yes
ICD No No No No 0 1
Pin count 20 18 20 18 18 64
Communications - - MPC/SPI - - AUSART
Packages 20/CERDIP, 18/CERDIP 20/CERDIP 18/PDIP 18/PDIp 64/TQFP
20/ssop 18/PDIP 20/PDIP 18/S0IC 18/s01IC
208mil 18/s01IC 20/S0IC 300mil 300mil

300mil 300mil

Microchip documentation refers to an enhanced mid-range family composed of
PIC12FXXX and PIC16F1XX devices. These devices maintain compatibility with the
previous members of the mid-range family while providing additional performance.
Their most important new features include multiple interrupts, fourteen additional
instructions, up to 28 KB program memory, and additional peripheral modules.

1.3.3 High-Performance PICs and DSPs

The high-performance PICs belong to the PIC18 and PIC32 groups. The motivation for
expanding the PIC arquitecture and modifying the core of the mid-range PICs relate to
the following limitations:

¢ Small-size stack

¢ Single interrupt vector

¢ Limited instruction set

¢ Small memory size

¢ Limited number of peripherals

¢ No high-level language programmability

The devices in the PIC16 group have 16-bit program words, flash program mem-
ory, a linear memory space of up to 2 Mbytes, as well as protocol-based communica-
tions facilities. They all support internal and external interrupts and a much larger
instruction set than members of the baseline and mid-range families. The PIC18
family is also a large one, with over seventy different variations currently in produc-

Microcontrollers for Embedded Systems 11

tion. These devices are furnished in 18 to 80 pin packages. Microchip describes the
PICs in this family as high-performance with integrated A/D converters.

Digital Signal Processor

The notion of digital signal processing starts with the conversion of analog signal in-
formation such as voice, image, temperature, or pressure primitive data to digital val-
ues that can be stored and manipulated by a computing device. Converting the data
from its primitive analog form to a digital format makes it much easier to analyze, dis-
play, store, process, or convert the data to another format. Digital signal processing is
based on the fact that computing and data processing operations are easier to perform
on digital data than on raw analog signals.

The concept of digital signal processing can be illustrated by means of a satel-
lite-based Earth imagining system (such as the Landsat EROS) shown in Figure 1.4.

data storage

digitizer and
transmitter

sensor

optical

system scanning

mirror

image data
processing

scan line

scanning

direction L.
receiving

station

Figure 1.4 Schematic of a space-borne imaging system.

The optical-mechanical instrument onboard a spacecraft, shown in Figure 1.4,
consists of several subsystems. The scanning mirror collects the radiation, which is
imaged by an optical system onto a sensor device. The sensor performs an ana-
log-to-digital conversion and places the digital values in a temporary storage struc-
ture. During its orbit, the satellite reaches a location in space from which it can
communicate with an Earth receiving station. At this time, the transmitter and sup-
port circuitry send the digital data to the receiving station. The receiving station

12 Chapter 1

processes this data and formats it into an image. In this scheme, digital signal pro-
cessing can take place as the image data is sensed by the instrument and tempo-
rarily stored on board the satellite, or when the raw data received by the Earth
station is converted into an image that can be manipulated, viewed, stored, or
re-processed.

Analog-to-Digital

Conversion from analog-to-digital form and vice versa are not formally operations of a
DSP. However, these conversions are so often required during signal processing that
most DSP devices include the analog-to-digital and digital-to-analog conversion hard-
ware.

Analog-to-digital conversion is usually performed by sampling the signal at uni-
form time intervals and using the sampled value as representative of the region be-
tween the intervals. Figure 1.5 shows an example of analog-to-digital conversion by
sampling.

sampling periods

1 2 3 4 5 6 7 8 9 10 11 12 13
80 |._._1J
70 |-
60 | _._|
50 f.-._|
40 |._._.|
30 f.-.-

N analog signal

10 | f- oo

20 |-

voltage of analog signal

15 20 28 37 12 14 35 78 69 63 85 57 28
sampled digital values

Figure 1.5 Analog-to-digital conversion by sampling.

In Figure 1.5 we see that the sampled values are actually an approximation of the
analog curve, as the variations between each interval are lost in the conversion pro-
cess. Therefore, the more sampling periods, the more accurate the approximation.
On the other hand, too small a sampling rate tends to reduce the significance of the
data by producing repeated values in the digital record.

Chapter 2

PIC18 Architecture

2.1 PIC18 Family Overview

The PIC18 family was designed to provide ease of use (programmable in C), high per-
formance, and effortless integration with previous 8-bit families. In addition to the
standard modules found in the PIC16 and previous families, the PIC18 includes sev-
eral advanced peripherals, such as CAN, USB, Ethernet, LCD and CTMU. Its principal

features are
¢ Nanowatt technology ensures low power consumption
¢ 83 instructions (16-bit wide)
¢ C language optimized
¢ Up to 2 MB addressable program memory
¢ 4KB maximum RAM
¢ 32-level hardware stack
¢ 8-bit file select register
¢ Integrated 8x8 hardware multiplier

The performance of the PIC18 series is the highest in the Microchip 8-bit archi-
tecture. Figure 2.1 is a block diagram of the PIC18 architecture.

(——————

Internal oscillator
(up to 64 MHz)

cPU
16-bit instructions
83 instructions
12-bit file select registers
Interrupt context saving

Program Memory
(up to 2 MB)

Data memory
(up to 4 KB)
Enhanced indirect
addressing
Peripheral expansion
support

16-level stack
Program counter
Reset capability

1/0 and PERIPHERAL MODULES
ADC, CAN, EUSART, LCD, EEPROM, CCPWM, etc.

Figure 2.1 Block diagram of PIC18 architecture.

13

14 Chapter 2

Although the PIC16 series has been very successful in the microcontroller mar-
ketplace, it also suffers from limitations and constraints. Perhaps the most signifi-
cant limitation is that the devices of the PIC16 family can only be programmed in
Assembly language. Other limitations result from the device's RISC design. For ex-
ample, the absence of certain types of opcodes, such as the Branch instruction,
make it necessary to combine a skip opcode followed by a goto operation in order
to provide a conditional, targeted jump. Other limitations relate to the hardware it-
self: small stack and a single interrupt vector. As the complexity, memory size, and
the number of peripheral modules increased, the limitations of the PIC16 series
became more evident.

In the PIC18 series, Microchip reconsidered its PIC16 design rules and produced
a completely new style microcontroller, with a much more complex core, while lim-
iting the changes to the peripheral modules. The degree of change can be deduced
from the expansion of the instruction set from 35 14-bit to 83 16-bit operation codes.
Memory has gone from 14 to 128 KB; the stack from 8 levels to 32 levels. These
changes made it possible to optimize the PIC18 series for C language programming.

2.1.1 PIC18FXX2 Group

Atthe present time, Microchip lists 193 different devices in the PIC18 family. These de-
vices are available with pin counts from 28 to 100 and in the SOIC, DIP, PLCC, SPDIP,
QFN, SSOP, TQFP, QFN, and LQFP packages. For consistency with the tutorial nature
of this book, we have selected the PIC18F4X2 group with identical DIP and SOIC
pinouts. Figure 2.2 shows the pin diagram for the PIC18F4X2 devices.

MCLRVPP —p == =4 —» RB7/PGD
2 39
RAO/ANO € = =4 <« RB6/PGC
38
RA1/ANT €4—» = T, > ReSPGM
,
RA2/AN2A/REF- <€—p = 4+ <« RrB4
36
RA3/AN3AREF+ €—p =+ 4+ <« RB3/CCP2*
35
RA4TOCKI €4 = 4+ <4 RB2INT2
34
RA5/AN4/SS/LVDIN €4 ' <4~ <4—» RB1INTI
<>l =4 <4 RBO/NT
REO/RD/ANS : 18F442 - O/INTO
RE1/WR/AN6 —t T 4— vdd
31
RE2/CS/AN7 € L 4= 44— Vss
11 30
vdd —p =+ 18F452 T <4—» RD7/PSP7
Vss —p L + <> RD6PSPG
28
OSC1/CLKI —p =+ - <« RD5/PSP5
27
OSC2/CLKO/RAG 4P = - <4—» RD4/PSP4
26
RCO/T10SO/MICK1 4 == -+ <« RC7RXDT
16 25
i £ RCB/TX/CK
RCIT10SIICCP2 4> - - >
RC2/CCP1 4—p —+ <« RCHSDO
18
B £ RC4/SDI/SDA
RCY/SCKISCL 4> - - >
RDO/PSPO 4P ' - <> RDIPSP3
RD1/PSP1 € " ' <« RD2PsP2

40-PIN DIP FORMAT

Figure 2.2 Pin diagram for PIC18F4X2 devices.

PIC18 Architecture 15

For learning and experimentation the devices in DIP packages are more conve-
nient because they can be easily inserted in the ZIF (zero insertion force) sockets
found in most programming devices, development boards, and breadboards. The de-
vices in Figure 1.1 and Figure 1.2 are so equipped. A PLCC (plastic leaded chip car-
rier) package with 44 pins is also available for 18F442 and 18F452 devices. We do
not cover this option.

2.1.2 PIC18FXX2 Device Group Overview

These devices come in 28-pin and 40-pin packages, as well as in a 44-pin PLCC package
previously mentioned. The 28-pin devices do not have a Parallel Slave Port (PSP).
Also, the number of analog-to-digital (A/D) converter input channels is reduced to 5.
An overview of features is shown in Table 2.1

Table 2.1
Principal Features of Devices in the PIC18FXX2 Family

FEATURES PIC18F242 PIC18F252 PIC18F442 PIC18F452
Operating Frequency DC - 40 MHz DC - 40 MHz DC - 40 MHz DC - 40 MHz
Program Memory
(Bytes) 16K 32K 16K 32K
Program Memory
(Instructions) 8192 16384 8192 16384
Data Memory
(Bytes) 768 1536 768 1536
Data EEPROM
Memory (Bytes) 256 256 256 256
Interrupt Sources 17 17 18 18
1/0 Ports A, B C A, B C A,B,C D E A,B,CDE
Timers 4 4 4 4
Capture/Cornpare
/PWM Modules 2 2 2 2
Serial Communications

------------------------- MSSP
Addressable
USART

Parallel Communications
- - PSP PSP
10-bit Analog-to-
Digital Module 5 channels 5 channels 8 channels 8 channels
RESETS (and Delays)

POR, BOR, Reset
Instruction, Stack Full,
Stack Underflow,

(PWRT, OST)

Programmable Low
Voltage Detect Yes Yes Yes Yes
Programmable
Brown-out Reset Yes Yes Yes Yes
Instruction Set 75 Instructions 75 Instructions 75 Instructions 75 Instructions
Packages 28-pin DIP 28-pin DIP 40-pin DIP 40-pin DIP QFP

28-pin SOIC 28-pin SOIC PLCC 44-pin PLCC 44-pin

SOIC SOIC SOIC SOIC

16 Chapter 2

From Table 2.1 the following general features of the PIC18FXX2 devices can be
deduced:

1. Operating frequency is 40 MHz for all devices. They all have a 75 opcode instruc-
tion set.

2. Program memory ranges from 16K (8,192 instructions) in the PIC18F2X2 devices
to 32K (16,384 instructions) in the PIC18F4X2 devices.

3. Data memory ranges for 768 to 1,536 bytes.
4. Data EEPROM is 256 bytes in all devices.

5. The PIC18F2X2 devices have three I/O poerts (A, B, and C) and the PIC18F4X2 de-
vices have five ports (A, B, C, D, and E).

6. All devices have four timers, two Capture/Compare/PWM modules, MSSP and
adressable USART for serial communications and 10-bit analog-to-digital mod-
ules.

7. Only PIC18F4X2 devices have a parallel port.

2.1.3 PIC18F4X2 Block Diagram

The block diagram of the 18F4X2 microcontrollers, which correspond to the 40-pin
devices of Figure 2.2, is shown in Figure 2.3.

Nate 1

Figure 2.3 PIC18F4X2 block diagram.

PIC18 Architecture

2.1.4 Central Processing Unit

In Figure 2.3 the dashed rectangle labeled CPU (central processing unit) contains the
8-bit Arithmetic Logic Unit, the Working register labeled WREG, and the 8-bit-by-8-bit
hardware multiplier, described later in this chapter. The CPU receives the instruction
from program memory according to the value in the Instruction register and the action
in the Instruction Decode and Control block. An interrupt mechanism with several

sources (not shown in Figure 2.3) is also part of the PIC18FXX2 hardware.

The Status Register

The Status register, not shown in Figure 2.3, is part of the CPU and holds the individual
status bits that reflect the operating condition of the individual elements of the device.

Figure 2.4 shows the bit structure of the Status register.

bits: 7 6 5 4 3 2 1 0
L -1 -1 -] o |z [o |c |

bit 4 N: Negative bit
1 = Arithmetic result is negative
0 = Arithmetic result is positive

bit 3 OV: Overflow bit
1 = Overflow in signed arithmetic
0 = No overflow occurred

bit2 Z: Zero bit
1 = The result of an operation is zero
0 = The result of an operation is not zero

bit 1 DC: Digit carry/borrow bit for ADDWF, ADDLW, SUBLW,
and SUBWF instructions. For borrow the polarity
is reversed.
1 = A carry-out from the 4th bit of the result
0 = No carry-out from the 4th bit of the result
For rotate instructions (RRF and RLF) this bit
is loaded with either bit 4 or bit 3 of the
source register.

bit 0 C: Carry/borrow bit for ADDWF, ADDLW, SUBLW, and

SUBWF instructions. For borrow the polarity

is reversed.

1 = A carry-out from the most significant bit
0 = No carry-out from the most significant bit
For rotate instructions (RRF and RLF) this bit
is loaded with either bit 4 or bit 3 of the
source register.

Figure 2.4 Status register bitmap.

Program Counter Register

The 21-bit wide Program Counter register specifies the address of the next instruction
to be executed. The register mapping of the Program Counter register is shown in Fig-

ure 2.5.

18 Chapter 2

L—— Always O

Figure 2.5 Register map of the Program Counter.

As shown in Figure 2.5, the low byte of the address is stored in the PCL register,
which is readable and writeable. The high byte is stored in the PCH register. The up-
per byte is in the PCU register, which contains bits <20:16>. The PCH and PCU regis-
ters are not directly readable or writeable. Updates to the PCH register are
performed through the PCLATH register. Updates to the PCU register are performed
through the PCLATU register.

The Program Counter addresses byte units in program memory. In order to pre-
vent the Program Counter from becoming misaligned with word instructions, the
LSB of PCL is fixed to a value of '0' (see Figure 2.5). The Program Counter incre-
ments by 2 to the address of the next sequential instructions in the program
memory.

The CALL, RCALL, GOTO, and program branch instructions write to the Program
Counter directly. In these instructions, the contents of PCLATH and PCLATU are not
transferred to the program counter. The contents of PCLATH and PCLATU are trans-
ferred to the Program Counter by an operation that writes PCL. Similarly, the upper
2 bytes of the Program Counter will be transferred to PCLATH and PCLATU by an
operation that reads PCL.

Hardware Multiplier

All PIC18FXX2 devices contain an 8 x 8 hardware multiplier in the CPU. Because mul-
tiplication is a hardware operation it completes in a single instruction cycle. Hard-
ware multiplication is unsigned and produces a 16-bit result that is stored in a 16-bit
product register pair labeled PRODH (high byte) and PRODL (low byte).

Hardware multiplication has the following advantages:
¢ Higher computational performance
¢ Smaller code size of multiplication algorithms
The performance increase allows the device to be used in applications previously re-
served for Digital Signal Processors.
Interrupts

PIC18FXX2 devices support multiple interrupt sources and an interrupt priority
mechanism that allows each interrupt source to be assigned a high or low priority
level. The high-priority interrupt vector is at OOOOOSH and the low-priority interrupt
vectoris at 000018H. High-priority interrupts override any low-priority interrupts that
may be in progress. Ten registers are related to interrupt operation:

PIC18 Architecture 19

e RCON
e INTCON
e INTCON2
e INTCON3
e PIR1, PIR2
e PIE1, PIE2
e PRI, IPR2
Each interrupt source (except INTO) has three control bits:
¢ A Flag bit indicates that an interrupt event has occurred.

¢ An Enable bit allows program execution to branch to the interrupt vector address
when the flag bit is set.

¢ A Priority bit to select high-priority or low priority for an interrupt source.

Interrupt priority is enabled by setting the IPEN bit {mapped to the RCON<7>
bit}. When interrupt priority is enabled, there are 2 bits that enable interrupts glob-
ally. Setting the GIEH bit (1INTCON<7>) enables all interrupts that have the priority
bit set. Setting the GIEL bit (INTCON<6>) enables all interrupts that have the prior-
ity bit cleared. When the interrupt flag, the enable bit, and the appropriate global in-
terrupt enable bit are set, the interrupt will vector to address OOOOOS8h or
000018H, depending on the priority level. Individual interrupts can be disabled
through their corresponding enable bits.

When the IPEN bit is cleared (default state), the interrupt priority feature is dis-
abled and the interrupt mechanism is compatible with PIC mid-range devices. In
this compatibility mode, the interrupt priority bits for each source have no effect
and all interrupts branch to address OOOOOS8H.

When an interrupt is handled, the Global Interrupt Enable bit is cleared to disable
further interrupts. The return address is pushed onto the stack and the Program
Counter is loaded with the interrupt vector address, which can be OOOOOS8H or
000018H. In the Interrupt Service Routine, the source or sources of the interrupt can
be determined by testing the interrupt flag bits. To avoid recursive interrupts, these
bits must be cleared in software before re-enabling interrupts. The “return from in-
terrupt” instruction, RETFIE, exits the interrupt routine and sets the GIE bit { GIEH
or GIEL if priority levels are used), which re-enables interrupts.

Several external interrupts are also supported, such as the INT pins or the
PORTB input change interrupt. In these cases, the interrupt latency will be three to
four instruction cycles. Interrupts and interrupt programming are the subject of
Chapter 8.

2.1.5 Special CPU Features

Several CPU features are intended for the following purposes:

20 Chapter 2

¢ Mmaximize system reliability
e Minimize cost through the elimination of external components
¢ Provide power-saving operating modes
¢ Offer code protection
These special features are related to the following functions and components:
e SLEEP mode
¢ Code protection
¢ ID locations
¢ In-circuit serial programming
¢ SLEEP mode

SLEEP mode is designed to offer a very low current mode during which the de-
vice is in a power-down state. The application can wakeup from SLEEP through the
following mechanisms:

1. External RESET
2. Watchdog Timer Wake-up
3. An interrupt

The Watchdog Timer is a free running on-chip RC oscillator, that does not require
any external components. This RC oscillator is separate from the RC oscillator of
the OSC1/CLKI pin. That means that the WDT will run, even if the clock on the
OSC1/CLKI and OSC2/CLKO/ RAG6 pins of the device has been stopped, for example,
by execution of a SLEEP instruction.

Watchdog Timer

A Watchdog Timer time-out (WDT) generates a device RESET. If the device is in
SLEEP mode, a WDT causes the device to wakeup and continue in normal operation
(Watchdog Timer Wake-up). If the WDT is enabled, software execution may not dis-
able this function. When the WDTEN configuration bit is cleared, the SWDTEN bit en-
ables/disables the operation of the WDT. Values for the WDT postscaler may be
assigned using the configuration bits.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler (if as-
signed to the WDT) and prevent it from timing out and generating a device RESET
condition. When a CLRWDT instruction is executed and the postscaler is assigned
to the WDT, the postscaler count will be cleared, but the postscaler assignment is
not changed.

The WDT has a postscaler field that can extend the WDT Reset period. The
postscaler is selected by the value written to 3 bits in the CONFIG2H register during
device programming.

PIC18 Architecture 21

Wake-Up by Interrupt

When global interrupts are disabled (the GIE bit cleared) and any interrupt source has
both its interrupt enable bit and interrupt flag bit set, then one of the following will oc-
cur:

When an interrupt occurs before the execution of a SLEEP instruction, then the
SLEEP instruction becomes a NOP. In this case, the WDT and WDT postscaler will
not be cleared, the TO bit will not be set, and PD bits will not be cleared.

If the interrupt condition occurs during or after the execution of a SLEEP instruc-
tion, then the device will immediately wakeup from SLEEP. In this case, the SLEEP
instruction will be completely executed before the wake-up. Therefore, the WDT
and WDT postscaler will be cleared, the TO bit will be set, and the PD bit will be
cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may
be possible for these bits to set before the SLEEP instruction completes. Code can
test the PD bit in order to determine whether a SLEEP instruction executed. If the
PD bit is set, the SLEEP instruction was executed as a NOP. To ensure that the WDT
is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

Low Voltage Detection

Formany applicationsitis desirable to be able to detect adrop in device voltage below
a certain limit. In this case, the application can define alow voltage window in which it
can perform housekeeping tasks before the voltage drops below its defined operating
range. The Low Voltage Detect feature of the PIC18FXX2 devices can be used for this
purpose. For example, a voltage trip point for the device can be specified so that when
this pointisreached, an interrupt flag is set. The program will then branch to the inter-
rupt's vector address and the interrupt handler software can take the corresponding
action. Because the Low Voltage Detect circuitry is completely under software con-
trol, it can be “turned off” at any time, thus saving power.

Implementing Low Voltage Detect requires setting up a comparator that reads the
reference voltage and compares it against the preset trip-point. This trip-point volt-
age is software programmable to any one of sixteen values by means of the 4 bits la-
beled LVDL3:LVDLO. When the device voltage becomes lower than the preselected
trip-point, the LVDIF bit is set and an interrupt is generated.

Device Configuration

Several device configurations can be selected by programming the configuration bits.
These bits are mapped, starting at program memory address 300000H. Note that this
addressis located in the configuration memory space (300000H to 3F0000H), which is
only accessed using table read and table write operations. When the configuration bits
are programmed, they willread as '0; when left unprogrammed they willread as '1".

22 Chapter 2

MPLAB development tools provide an __ CONFIG directive, together with a set of
device-specific operands, that simplify selecting and setting the desired configura-
tion bits. This topic is explored in the book's chapters related to programming.

2.2 Memory Organization

Devices of the PIC18FXX2 family contain three independent memory blocks:
e Program Memory
¢ Data Memory
e Data EEPROM

Because the device uses a separate buss, the CPU can concurrently access the
data and program memory blocks.

2.2.1 Program Memory

The Program Counter register is 21 bit wide and therefore capable of addressing a
maximum of 2-Mbyte program memory space. Accessing a location between the phys-
ically implemented memory and the 2-Mbyte maximum address will read all zeroes.
The PIC18F242 and PIC18F442 devices can store up to 8K of single-word instructions.
The PIC18F252 and PIC18F452 devices can store up to 16K of single-word instruc-
tions. The RESET vector address is at OOOOH and the interrupt vector addresses are
at 0008H and 0018H. Figure 2.6 shows the memory map for the PIC18FXX2 family.

[PC bits <20:0> | [PC bits <20:0> |
Stack Level 1 Stack Level 1
Stack Level 31 Stack Level 31
RESET Vector 0000H RESET Vector 0000H
High Priority Interrupt Vector | ooosu High Priority Interrupt Vector | 0008H
Low Priority Interrupt Vector | 0018H Low Priority Interrupt Vector | 0018H
On-Chip On-Chip
Program Memory Program Memory
3FFFH
4000H
TFFFH
8000H
Read ‘0
Read ‘0
1FFFFFH 1FFFFFH
200000H 200000H

Figure 2.6 Program memory map for the PIC18FXX2 family.

PIC18 Architecture 23

2.2.2 18FXX2 Stack

The PICI8FXX2 stack is 31 address deep and allows as many combinations of
back-to-back calls and interrupts to occur. When a CALL or RCALL instruction is exe-
cuted, the Program Counter is pushed onto the stack. When a CALL or RCALL instruc-
tion is executed, or an interrupt is acknowledged, the Program Counter is pulled off
the stack. This also takes place on a RETURN, RETLW, or RETFIE instruction.
PCLATU and PCLATH registers are not affected by any of the RETURN or CALL in-
structions.

The stack consists of a 31-word deep and 21-bit wide RAM structure. The current
stack position is stored in a 5-bit Stack Pointer register labeled STKPTR. This regis-
ter is initialized to OOOOOB after all RESETS. There is no RAM memory cell associ-
ated with Stack Pointer value of OOOOOB. When a CALL type instruction executes
(PUSH operation), the stack pointer is first incremented and the RAM location
pointed to by STKPTR is written with the contents of the PC. During a RETURN type
instruction (POP operation), the contents of the RAM location pointed to by
STKPTR are transferred to the PC and then the stack pointer is decremented.

The stack space is a unique memory structure and is not part of either the pro-
gram or the data space in the PIC18FXX2 devices. The STKPTR register is readable
and writeable, and the address on the top of the stack is also readable and writeable
through SFR registers. Data can also be pushed to or popped from the stack using
the top-of-stack SFRs. Status bits indicate if the stack pointer is at, or beyond the 31
levels provided.

Stack Operations

Figure 2.7 shows the bit structure of the STKPTR register. The STKPTR register con-
tains the stack pointer value, as well as a stack full and stack underflow) status bits.
The STKPTR register can be read and written by the user. This feature allows operat-
ing system software to perform stack maintenance operations. The 5-bit value in the
stack pointer register ranges from 0 through 31, which correspond to the available
stack locations. The stack pointer is incremented by push operations and decrement-
ed whenvalues are popped off the stack. At RESET, the stack pointer value is set to 0.

bits: 7 6 5 4 3 2 1 0
STKOVF | STKUNF SP4 SP3 SpP2 SP1 SPO
bit 7 STKOVF:
1 = Stack became full or overflowed
0 = Stack has not overflowed
bit 6 STKUNF:
1 = Stack underflow occurred
0 = No stack underflow occurred
bit 5 Unimplemented: Read as 0
bit 4-0 SP4:SP0: Stack Pointer location

Figure 2.7 STKPTR register bit map.

24 Chapter 2

The STKOVF bit is set after the program counter is pushed onto the stack 31
times without popping any value off the stack. Notice that some Microchip docu-
mentation refers to a STKFUL bit, which appears to be a synonym for the STKOVF
bit. To avoid confusion, we only use the STKOVF designation in this book.

The STKOVF bit can only be cleared in software or by a Power-On Reset (POR)
operation. The action that takes place when the stack becomes full depends on the
state of the STVREN (Stack Overflow Reset Enable) configuration bit. The STVREN
bit is bit 0 of the CONFIGA4L register. If the STVREN bit is set, a stack full or stack
overflow condition will cause a device RESET. Otherwise, the RESET action will
not take place. When the stack pointer has a value of 0 and the stack is popped, a
value of zero is entered to the Program Counter and the STKUNF bit is set. In this
case, the stack pointer remains at 0. The STKUNF bit will remain set until cleared in
software or a POR occurs. Returning a value of zero to the Program Counter on an
underflow condition has the effect of vectoring the program to the RESET vector.
User code can provide logic at the RESET vector to verify the stack condition and
take the appropriate actions.

Three registers, labeled TOSU, TOSH and TOSL, hold the contents of the stack lo-
cation pointed to by the STKPTR register. The address mapping of these registers is
shown in Figure 2.8.

Bits 20 15 7 0

TOSU TOSH TOSL

Figure 2.8 Address mapping of the stack contents registers.

Users can implement a software stack by manipulating the contents of the TOSU,
TOSH, and TOSL registers. After a CALL, RCALL, or interrupt, user software can
read the value in the stack by reading the TOSU, TOSH, and TOSL. These values can
then be placed on a user-defined software stack. At return time, user software can
replace the TOSU, TOSH, and TOSL with the stored values. At this time, global inter-
rupts should have been disabled in order to prevent inadvertent stack changes.

Fast Register Stack

A fast return from interrupts is available in the PIC18FXX2 devices. This action is
based on a Fast Register Stack that saves the STATUS, WREG, and BSR registers. The
fast version of the stack is not readable or writable and is loaded with the current
value of the three registers when an interrupt takes place. The FAST RETURN instruc-
tion is then used to restore the working registers and terminate the interrupt.

PIC18 Architecture 25

The fast register stack option can also be used to store and restore the STATUS,
WREG, and BSR registers during a subroutine call. In this case, a fast call and fast
return instruction are executed. This is only possible if no interrupts are used.

Instructions in Memory

Program memory is structured in byte-size units but instructions are stored as two
bytes or four bytes. The Least Significant Byte of an instruction word is always stored
in a program memory location with an even address, as shown in Figure 2.5. Figure 2.9
shows three low-level instructions as they are encoded and stored in program memory

LOCATIONS IN PROGRAM MEMORY:

Word
LSB =1 LSB=0 Address
00000H
00002H
00004H
INSTRUCTIONS: 00006H
MOVLW 055H OFH 55H 00008H
GOTO 000006H EFH 03H 0000AH
00H 00H 0000CH
MOVFF 12H, 456H ClH 23H 0000EH
04H 56H 00010H
00012H
00014H

Figure 2.9 Instruction encoding.

The CALL and GOTO instructions have an absolute program memory address em-
bedded in the instruction. Because instructions are always stored on word bound-
aries, the data contained in the instruction is a word address. This word address is
written to Program Counter bits <20:1>, which accesses the desired byte address.
Notice in Figure 2.9 that the instruction

GOTO 000006H

is encoded by storing the number of single-word instructions that must be added to
the Program Counter (03H). All program branch instructions are encoded in this man-
ner.

2.2.3 Data Memory

Data memory is implemented as static RAM. Each register in the data memory has a
12-bit address, allowing up to 4096 bytes of data memory in the PIC18FXX2 devices.
Data memory consists of Special Function Registers (SFRs) and General Purpose
Registers (GPRs). The SFRs are used for control and status operations and for imple-
menting the peripheral functions. The GPRs are for user data storage. Figure 2.10 isa
map of data memory in the PIC18FXX2 devices.

26 Chapter 2

000H 00H 000H 00H
Access RAM Access RAM
O7FH Bank0 O7FH L ...l Bank 0
GPR FFH GPR FFH
GPR Bank 1 GPR Bank 1
GPR Bank 2 GPR Bank 2
GPR Bank 3
GPR Bank 4
GPR Bank 5
Unused tBoank 3
(read 00H) Bank 14
Bank 6
Unused to
(read 00H) Bank 14
Unused Bank 15 Unused Bank 15
ogom| T oLt T an 080H["7 T LI ST TTTT an
FFFH SFR FFFH SFR
PIC18F442/242 PIC18F452/252

Figure 2.10 Data memory map in PIC18FXX2.

In Figure 2.10, GPRs start at the first location of Bank 0 and grow to higher mem-
ory addresses. Memory is divided into 255-byte units called banks. Seven banks are
implemented in the PIC18F452/252 devices and four banks in the PIC18F442/242 de-
vices. A read operation to a location in an unimplemented memory bank always
returns zeros.

The entire data memory may be accessed directly or indirectly. Direct addressing
requires the use of the BSR register. Indirect addressing requires the use of a File
Select Register (FSRn) and a corresponding Indirect File Operand (INDFn). Ad-
dressing operations are discussed in Chapter 11 in the context of LCD
programming.

Each FSR holds a 12-bit address value that can be used to access any location in
the Data Memory map without banking. The SFRs start at address FS8OH in Bank 15
and extend to address OFFFH in either device. This means that 128 bytes are as-
signed to the SFR area although not all locations are implemented. The individual
SFRs are discussed in the context of their specific functionality. Figure 2.11 shows
the names and addresses of the Special Function Registers.

PIC18 Architecture

Address
FFFh

FFER |
FFDh

FFCh

FFBh |

FFAR
FF9h

FFah |

FF7h

FFsh
FF4h

FFah |

FF2h

FFih |
FFOh

FEFh

FEEh |

FEDh
FECh

FE7h
FEBh
FE5h
FE4h

FE1h

FEOh |

Name
TOsU
TOSH
TOSL
STKPTR
PCLATU
PCLATH
PCL
TBLPTRU

TBLPTRH |
FF6h

TBLPTRL
TABLAT
PRODH
PRODL
INTCON
INTCON2
INTCON3
INDFo?)

POSTINCO® |
POSTDECOR) |
PREINCO!®)
FEBh |
FEAR |
FEoh |
FEsh |

PLUSWO®)
FSRoH
FSRoL
WREG

INDF13) |
POSTINC1® |
POSTDEC1®) |
PREINC1®) |

FE3h |
FE2h |

PLUSW1®
FSR1H
FSR1L

BSR

Address
FDFh
FDEh
FDDh
FDCh
FDBh
FDAR
FD9h
FD8h
FD7h
FD6h
FD5h
FD4h
FD3h
FD2h
FD1h
FDOh
FCFh
FCEh
FCDh
FCCh
FCBh
FCAh
FC9h
FC8h
FC7h
FC8h
FC5h
FC4ah
FC3h
FC2h
FC1h
FCOh

Name

INDF2(3)
POSTINC2(3)
POSTDEC23)

PREINC2!®
PLUSW2(3)

FSR2H

FSR2L
STATUS

TMROH
TMROL

TOCON

OSCCON

LVDCON
WDTCON
RCON

TMR1H
TMR1L

T1CON

TMR2
PR2
T2CON
SSPBUF
SSPADD

SSPSTAT

SSPCON1

SSPCON2

ADRESH
ADRESL
ADCONO

ADCON1

Note 1: Unimplemented registers are read as '0".

2: This register is not available on PIC18F2X2 devices.

3: This is not a physical register.

Address
FBFh
FBEh
FBDh
FBCh
FBEBh
FBAh
FB9h
FB8h
FB7h
FB&h
FB5h
FB4h
FB3h
FB2h
FB1h
FBOh
FAFh
FAEh
FADh
FACh
FABh
FAAR
FASh
FA8h
FA7h
FABh
FASh
FA4h
FA3h
FA2h
FA1h
FAOh

Name Address Name
CCPR1H FoFh IPR1
CCPRIL F9Eh PIR1

CCP1CON FaDh PIE1
CCPR2H Fach —
CCPR2L F9Bh =

CCP2CON F9Ah ==

— F99h -
— Fash B
— Fo7h =
— Fosh | TRISE®
— Fosh | TRISD@)
- Fadh TRISC
TMR3H Fa3h TRISB
TMR3L Fo2h TRISA
T3CON Fo1h =
— F90h —
SPBRG FsFh -
RCREG F8Eh =
TXREG F8Dh | LATE®
TXSTA FaCh | LATD®
RCSTA F8Bh LATC
— F8Ah LATB
EEADR Faoh LATA
EEDATA Fash —
EECON2 F&7h S
EECON1 Fa6h —
- Fash —
— Fg4h | PORTE®
— Fash | PORTD®

IPR2 F82h | PORTC

PIR2 F81h | PORTB

PIE2 F8oh | PORTA

Figure 2.11 PIC18FXX2 Special Function Registers map.

2.2.4 Data EEPROM Memory

EEPROM stands for Electrically Erasable Programmable Read-Only Memory. This
type of memory is used in computers and embedded systems as a nonvolatile storage.
You find EEPROM in flash drives, BIOS chips, and in memory facilities such flash
memory and EEPROM data storage memory found in PICs and other
microcontrollers.

27

EEPROM memory can be erased and programmed electrically without removing
the chip. The predecessor technology, called EPROM, required that the chip be re-
moved from the circuit and placed under ultraviolet light in order to erase it. In em-
bedded systems, the typical use of serial EEPROM on-board memory, and EEPROM
ICs, is in the storage of passwords, codes, configuration settings, and other informa-

tion to be remembered after the system is turned off.

28 Chapter 2

Data EEPROM is readable and writable during normal operation. EEPROM data
memory is not directly mapped in the register file space. Instead, it is indirectly ad-
dressed through the SFRs. Four SFRs used to read and write the program and data
EEPROM memory. These registers are

e EECON1
e EECON2
e EEDATA
e EEADR

In operation, EEDATA holds the 8-bit data for read/write and EEADR holds the
address of the EEPROM location being accessed.

All devices of the PIC18FXX2 family 256 bytes of data EEPROM with an address
range from Oh to FFh. EEPROM access and programming are discussed in Chapter
10.

2.2.5 Indirect Addressing

The instruction set of most processors, including the PICs, provide a mechanism for
accessing memory operands indirectly. Indirect addressing is based on the following
capabilities:

1. The address of a memory operand is loaded into a register. This register is called
the pointer.

2. The pointer register is then used to indirectly access the memory location at the
address it “points to.”

3. The value in the pointer register can be modified (usually incremented or decre-
mented) so as to allow access to other memory operands.

Indirect addressing is useful in accessing data tables in manipulating software
stacks.

In the PIC18FXX2 architecture, indirect addressing is implemented using one of
three Indirect File Registers (labeled INDFx) and the corresponding File Select Reg-
ister (labeled FSRx). Any instruction using an INDFx register actually accesses the
register pointed to by the FSRx. Reading an INDF register indirectly (FSR = 0) will
read OOH. Writing to the INDF register indirectly, results in a no operation.

The INDFx registers are not physical registers in the sense that they cannot be di-
rectly accessed by code. The FSR register is the pointer register that is initialized to
the address of a memory operand. Once a memory address is placed in FSRx, any
action on the corresponding INDFx register takes place at the memory location
pointed at by FSR. For example, if the FSRO register is initialized to memory ad-
dress 0x20, then clearing an INDFO register has the effect of clearing the memory lo-
cation at address 0x20. In this case, the action on the INDFO register actually takes
place at the address contained in the FSRO register. Now if FSR (the pointer regis-
ter) is incremented and INDF is again cleared, the memory location at address 0x21
will be cleared. Indirect addressing is covered in detail in the programming chapters
later in the book.

PIC18 Architecture 29

2.3 PIC18FXX2 Oscillator

In the operation of any microprocessor or microcontroller, it is necessary to provide a
“clock” signal in the form of a continuously running, fixed-frequency, square wave.
The operation and speed of the device are entirely dependent on this clock frequency.
In addition to the fetch/execute cycle of the CPU, other essential timing functions are
also derived from this clock signal ranging from timing and counting operations
pulses required in communications. In many PIC microcontrollers, the internal or ex-
ternal component that generates this clock signal is called the oscillator.

Every microcontroller or microprocessor must operate with a clock signal of a
specified frequency. The principal clock signal is divided internally by a fixed value,
thus creating a lower-frequency signal. Each cycle of this slower signal is called an
instruction cycle by Microchip. The instruction cycle can be considered the primary
unit of time in the action of the CPU because it determines how long an instruction
takes to execute. The original clock signal is also used to create phases or time
stages within the instruction cycle or in other microcontroller operations. In
PIC18FXX2 devices, the main oscillator signal is divided by four. For example, a
clock signal frequency of 40 MHz produces an instruction cycle frequency of 10
MHz. Many microcontrollers, including PICs, provide an internal oscillator signal,
however, this is not the case with the PIC18FXX2 devices, which require an external
device to provide the clock signal. The pins labeled OSC1 and OSC2 (see Figure 2.2)
are used with the oscillator function.

2.3.1 Oscillator Options

The PIC18FXX2 can be operated in eight different oscillator modes. The configuration
bits labeled FOSC2, FOSC1, and FOSCO allow selecting one of these eight modes dur-
ing start-up. Table 2.2 shows the designations and description of the eight oscillator
modes.

Table 2.2

Oscillator Types
CODE TYPE
LP Low-Power Crystal
XT Crystal/Resonator
HS High-Speed Crystal/Resonator
HS + PLL High-Speed Crystal/Resonator with PLL enabled
RC External Resistor/Capacitor
RCIO External Resistor/Capacitor withl/O pin enabled
EC External Clock
ECIO External Clock with I/O pin enabled

Crystal Oscillator and Ceramic Resonator

The designations XT, LP, HS or HS+PLLin Table 2.2 refer to modes in which a crystal or
ceramic resonator os connected to the OSC1 and OSC2 pins to establish a clock signal
for the device. The PIC18FXX22 requires that crystals be parallel cut because serial
cut crystals can give frequencies outside the manufacturer's specifications. Figure
2.12 shows the wiring and components required for oscillator modes LP, XT, and HS.

30 Chapter 2

C1
0scC1
| ——— XTAL
E— [Jor PIC18FXX2
— ——— RESONATOR
Cc2 0sC2
CAPACITOR SELECTION (C1 and C2) CAPACITOR SELECTION (C1 and C2)
FOR CERAMIC RESONATORS FOR CRYSTAL OSCILLATOR
Mode Freq Cl and C2 Mode Freq Cl and C2
XT 455 kHz 68 - 100 pF LP 32.0 kHz 33 pF
2.0 MHz 15 - 68 pF 200 kHz 15 pF
4.0 MHz 15 - 68 pF
XT 200 kHz 22 - 68 PpF
HS 8.0 MHz 10 - 68 pF 1.0 MHz 15 pF
16.0 MHz 10 - 22 pF 4.0 MHz 15 pF
HS 4.0 MHz 15 pF
8.0 Mhz 15 - 33 pF
20.0 MHz 15 - 33 pF
25.0 Mhz 15 - 33 pF

Figure 2.12 Oscillator schematics for LP, XT, and HS modes.

An external clock may also be used in the HS, XT, and LP oscillator modes. In this
case, the clock is connected to the device's OSC1 pin while the OSC2 pin is left
open.

RC Oscillator

The simplest and least expensive way of providing a clocked impulse to the PIC is with
an external circuit consisting of a single resistor and capacitor. This circuit is usually
called an RC oscillator. The major drawback of the RC option is that the frequency of
the pulse depends on the supply voltage, the normal variations in the actual values of
the resistor and capacitor, and the operating temperature. This makes the RC oscilla-
tor option only suitable for applications that are timing insensitive. Figure 2.13 shows
the circuit required for the RC and RCIO oscillator modes.

vdd
% 3 kN, < Rext =100 kN,
osc1
— Cext >20pF
PIC18FXX2
—— FOSC/4
0sc2

Figure 2.13 RC and RCIO oscillator modes.

PIC18 Architecture 31

The two variations of the RC option are designated RC and RCIO. In the RC op-
tion, the OSC2 pin is left open. In the RCIO variation, the OSC2 pin provides a signal
with the oscillator frequency divided by 4 (FOSC/4 in Figure 2.13). This signal can
be used for testing or to synchronize other circuit components.

External Clock Input

The EC and ECIO Oscillator modes are used with an external clock source connected
to the OSC1 pin. Figure 2.14 shows the circuit for the EC oscillator mode.
Exterior

Clock
Pulse

0scC1

PIC18FXX2

FOSC/4

Figure 2.14 External clock oscillator mode.

In the EC mode (Figure 2.14), the oscillator frequency divided by 4 is available on
the OSC2 pin. This signal may be used for test purposes or to synchronize other cir-
cuit components.

The ECIO oscillator is similar to the EC mode except that the OSC2 pin becomes
an additional general-purpose I/O source; specifically, the OSC2 pin becomes bit 6
of PORTA (RAG).

Phase Locked Loop Oscillator Mode

With the Phase Locked Loop (PLL) a circuit is provided as a programmable option.
This is convenient for users who want to multiply the frequency of the incoming crys-
tal oscillator signal by 4, as in Figure 2.12. For example, if the input clock frequency is
10 MHz and the PLL oscillator mode is selected, the internal clock frequency will be 40
MHz. The PLL mode is selected by means of the FOSC<2:0> bits. This requires that the
oscillator configuration bits are programmed for the HS mode. Otherwise, the system
clock will come directly from OSCI1.

2.4 System Reset
The PIC18FXX2 documentation refers to the following eight possible types of RESET.
1. Power-On Reset (POR)
. Master Clear Reset during normal operation (MCLR)
. Reset during SLEEP (MCLR)
. Watchdog Timer Reset

. Action of the RESET Instruction
. Stack Full Reset

2
3
4
5. Programmable Brown-Out Reset
6
7
8. Stack Underflow Reset

32 Chapter 2

The status of most registers is unknown after Power-on Reset (POR) and un-
changed by all other RESETS. The remaining registers are forced to a “RESET state”
on Power-on Reset, MCLR, WDT Reset, Brownout Reset, MCLR Reset during SLEEP,
and by the RESET instruction.

2.4.1 Reset Action

Most registers are not affected by a WDT wake-up, as this is viewed as the resumption
of normal operation. Status bits from the RCON register, Rl, TO, PD, POR, and BOR,
are set or cleared differently in the various RESET actions. Software can read these
bits to determine the type of RESET. Table 2.3 shows the RESET condition for some
Special Function Registers.

Table 2.3
RESET State for some SFRs

Program RCON =il =1l [k~

Condition ; Rl | TO | PD | POR | BOR | STKFUL | STKUNF
Counter Register

' Power-On Reset 0000h 0--1 1100 | 1 1 ol 0 o | u u
MCLR Reset during normal 0000h 0--u uuuu | u u u u u u u
operation

Software Reset during normal 0000h 0--0 uuuu | 0 u u u u u u
operation

Stack Full Reset during normal 0000h O0--u uull | u u u u u | u 1
operation |

Stack Underflow Reset during 0000h 0--u uull | u u u u u 1 u
normal operation |

MCLR Reset during SLEEP 0000h 0--u 10uu | u 1 0 u u u u
WDT Reset 0000h O0--u Oluu | 1 0 1 u u u u
WDT Wake-up PC+2 u--u 00uu | u 0 1] u u u u
Brown-out Reset 0000h 0--1 11luo| 1 1 1 1 u u
Interrupt wake-up from SLEEP PC+2M | u-—u oouu | u 1 0 u u u u

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the
interrupt vector (0x000008h or 0x000018h).

Some circuits include a hardware reset mechanism that allows the user to force a
RESET action, usually by activating a switch that brings low the MCLR line. The
same circuit holds high the MCLR line during device operation by tying it to the Vdd
source. Figure 2.15 shows a possible schematic for a pushbutton reset switch on the
MCLR line.

+5V

(G »
PB SW ;‘
i
=1 PIC18FXX2
. _

MCLR

Figure 2.15 RESET switch on the MCLR line.

PIC18 Architecture 33

Power-On Reset (POR)

A Power-on Reset pulse is generated on-chip when a Vdd rise is detected. Users can
take advantage of the POR circuitry by tying the MCLR pin to Vdd either directly or
through a resistor, as shown in Figure 2.15. This circuit eliminates external RC com-
ponents usually needed to create a Power-on Reset delay.

Power-Up Timer (PWRT)

The Power-up Timer (PWRT) provides a fixed nominal time-out from POR. The PWRT
operates on an internal RC oscillator. The chip is keptin RESET aslong as the PWRT is
active. This action allows the Vdd signal to rise to an acceptable level. A configuration
bit is provided to enable/disable the PWRT.

Oscillator Start-Up Timer (OST)

The Oscillator Start-up Timer (OST) provides a delay of 1024 oscillator cycles from
the time of OSC1 input until after the PWRT delay is over. This ensures that the proces-
sor fetch/execute cycle does not start until the crystal oscillator or resonator has
started and stabilized. The OST time-out is invoked only for XT, LP, and HS modes and
only on Power-on Reset or wake-up from SLEEP.

PLL Lock Time-Out

When the Phase Locked Loop Oscillator Mode is selected, the time-out sequence fol-
lowing a Power-on Reset is different from the other oscillator modes. In this case, a
portion of the Power-up Timer is used to provide a fixed time-out that is sufficient for
the PLL to lock to the main oscillator frequency. This PLL lock time-out (TPLL) is typi-
cally 2 ms and follows the oscillator start-up time-out (OST),

Brown-Out Reset (BOR)

A temporary reduction in electrical power (brown-out condition) can activate the
chip'sbrown-outreset mechanism. A configuration bit (BOREN) can be cleared to dis-
able or set to enable the Brown-out Reset circuitry. If Vdd falls below a predefined
value for a predetermined period, the brown-out situation will reset the chip. The chip
will remain in Brown-out Reset until Vdd rises above the predefined value.

Time-Out Sequence
On power-up, the time-out sequence follows this order:

1. After the Power-on Reset (POR) time delay has expired, the Power-up Time
(PWRT) time-out is invoked

2. The Oscillator Start-up Time (OST) is activated

The total time-out will vary based on the particular oscillator configuration and
the status of the PWRT. In RC mode with the PWRT disabled, there will be no
time-out at all. Because the time-outs occur from the POR pulse, if MCLR is kept low
long enough, the time-outs will expire. Bringing MCLR high will begin execution im-
mediately. This is useful for testing purposes or to synchronize more than one
PIC18FXXX device operating in parallel.

34 Chapter 2

2.5 1/0 Ports

PIC18FXX2 devices come equipped with either five or three ports. PIC18F4X2 devices
have five ports and PIC18F2X2 devices have three ports. Ports provide access to the
outside world and are mapped to physical pins on the device. Some port pins are multi-
plexed with alternate functions of peripheral modules. When a peripheral module is
enabled, that pin ceases to be a general-purpose I/O.

Ports are labeled with letters of the alphabet and are designated as port A
(PORTA) to port E (PORTE). Port pins are bi-directional, that is, each pin can be
configured to serve either as input or output. Each port has three registers for its
operation. These are

¢ A TRIS register that determines data direction

¢ APORTregister used to read the value stored in each port pin or to write values to
the port's data latch

¢ A LAT register that serves as a data latch and is useful in read-modify-write opera-
tions on the pin values

The status of each line in the port's TRIS register determines if the port's line is
designated as input or output. Storing a value of 1 in the port's line TRIS register
makes the port line an input line, while storing a value of 0 makes it an output line.
Input port lines are used in communicating with input devices, such as switches,
keypads, and input data lines from hardware devices. Output port lines are used in
communicating with output devices, such as LEDs, seven-segment displays, lig-
uid-crystal displays (LCDs), and data output line to hardware devices.

Port pins are bit mapped, however, they are read and written as a unit. For exam-
ple, the PORTA register holds the status of the eight pins possibly mapped to port A,
while writing to PORTA will write to the port latches. Write operations to ports are
actually read-modify-write operations. Therefore, the port pins are first read, then
the value is modified, and then written to the port's data latch.

As previously mentioned, some port pins are multiplexed; for example, pin RA4 is
multiplexed with the TimerO module clock input, labeled TOCKI. In Figure 2.2 the
port pin is shown as RA4/TOCKI. Other port pins are multiplexed with analog inputs
and with other peripheral functions. The device data sheets contain information re-
garding the functions assigned to each device pin.

2.5.1 Port Registers

In PIC18FXX2 devices, ports are labeled PORTA, PORTB, PORTC, PORTD, and
PORTE. PORTD and PORTE are only available in PIC18F4X2 devices. The character-
istics of each port are detailed in the device's data sheet. For example, PORTA is a 7-bit
wide, bi-directional port. The corresponding Data Direction register is TRISA. If soft-
ware sets a TRISA bit to 1, the corresponding PORTA pin will serve as an input pin.
Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output. It is easy
toremember the function of the TRIS registers because the number 1is reminiscent of
the letter I and the number 0 of the letter O.

PIC18 Architecture 35

Reading the PORTA register reads the status of the pins, whereas writing to it
will write to the port latch. The Data Latch register (LATA) is also memory mapped.
Read-modify-write operations on the LATA register read and write the latched out-
put value for PORTA. The RA4 pin is multiplexed with the Timer0 module clock in-
put to become the RA4/TOCKI pin. This pin is a Schmitt Trigger input and an open
drain output. All other RA port pins have TTL input levels and full CMOS output
drivers.

All other PORTA pins are multiplexed with analog inputs and the analog VREF+
and VREF- inputs. The operation of each pin is selected by clearing/setting the con-
trol bits in the ADCONI1 register (A/D Control Register). The TRISA register controls
the direction of the PORTA pins. This is so even when the port pins are being used
as analog inputs.

2.5.2 Parallel Slave Port

The Parallel Slave Port is implemented on the 40-pin devices only, that is, those with
the PIC18F4X2 designation. In these devices, PORTD serves as an 8-bit wide Parallel
Slave Port when the control bit labled PSPMODE (at TRISE<4>) is set. It is
asynchronously readable and writable through the RD control input pin (REO/RD)
and WR control input pin (RE1/WR).

The Parallel Slave Port can directly interface to an 8-bit microprocessor data bus.
In this case, the microprocessor can read or write the PORTD latch as an 8-bit latch.
Programming and operation of the Parallel Slave Port is discussed later in this book.

2.6 Internal Modules

In electronics a module can be loosely defined as an assembly of electronic circuits or
components that performs as a unit. All PIC microcontrollers contain internal mod-
ules to perform specific functions or operations. In this sense we can refer to the
Timer module, the Capture/Compare/PWM module, or the Analog-to-Digital Con-
verter module. By definition, a module is an internal component.

A peripheral or peripheral device, on the other hand, is an external component,
such as a printer, a modem, or a Liquid Crystal Display (LCD). Microcontrollers of-
ten communicate with peripheral devices through their I/O ports or through their in-
ternal modules. We make this clarification because sometimes in the literature we
can find references to the “peripheral components” or the “peripherals” of a
microcontroller when actually referring to modules.

2.6.1 PIC18FXX2 Modules

Most PIC microcontrollers contain at least one internal module, and many devices
contain ten or more different modules. The following are the standard modules of the
PIC18FXX2 family of devices:

¢ Timer(O module: 8-bit/16-bit timer/counter with 8-bit programmable prescaler
¢ Timerl module: 16-bit timer/counter

e Timer2 module: 8-bit timer/counter with 8-bit period register

36

Chapter 2

Timer3 module: 16-bit timer/counter

Two Capture/Compare/PWM (CCP) modules

Master Synchronous Serial Port (MSSP) module with two modes of operation
Universal Receiver and Transmitter (USART)

10-bit Analog-to-Digital Converter (A/D)

Controller Area Network (CAN)

Comparator Module

Parallel Slave Port (PSP) module

The structure and details of the internal modules are discussed in the program-
ming chapters later in this book.

Chapter 3

Programming Tools and Software

3.1 Environment

In order to learn and practice programming microcontrollers in embedded systems,
you will require a development and testing environment. This environment will usu-
ally include the following elements:

1. A software development environment in which to create the program's source
file and generate an executable program that can later be loaded into the hard-
ware device. This environment often includes debuggers, library managers, and
other auxiliary tools.

2. A hardware device called a “programmer” that transfers the executable program
to the microcontroller itself. In the present context, this process is usually called
“burning” or “blowing” the PIC.

3. A circuit or demonstration board in which the program (already loaded onto a
PIC microcontroller) can be tested in order to locate defects or confirm its func-
tionality.

In the present chapter, we discuss some of the possible variations in these ele-
ments for PIC18F programming and system development.

3.1.1 Embedded Systems

An embedded system is designed for a specific purpose, in contrast to a computer sys-
tem, which is a general-purpose machine. The embedded system is intended for exe-
cuting specific and predefined tasks, for example, to control a microwave oven, a TV
receiver, or to operate a model railroad. In a general-purpose computer, on the other
hand, the user may select among many software applications. For example, the user
may run a word processor, a Web browser, or a database management system on the
desktop. Because the software in an embedded system is usually fixed and cannot be
easily changed, it is called “firmware.”

37

38 Chapter 3

At the heart of an embedded system is a microcontroller (such as a PIC), some-
times several of them. These devices are programmed to perform one, or, at most, a
few tasks. In the most typical case an embedded system also includes one or more
“peripheral” circuits that are operated by dedicated ICs or by functionality con-
tained in the microcontroller itself. The term “embedded system” refers to the fact
that the programmable device is often found inside another one; for instance, the
control circuit is embedded in a microwave oven. Furthermore, embedded systems
do not have (in most cases) general-purpose devices such as hard disk drives, video
controllers, printers, and network cards.

The control for a microwave oven is a typical embedded system. The controller
includes a timer (so that various operations can be clocked), a temperature sensor
(to provide information regarding the oven's condition), perhaps a motor (to option-
ally rotate the oven's tray), a sensor (to detect when the oven door is open), and a
set of pushbutton switches to select the various options. A program running on the
embedded microcontroller reads the commands and data input through the key-
board, sets the timer and the rotating table, detects the state of the door, and turns
the heating element on and off as required by the user's selection. Many other daily
devices, including automobiles, digital cameras, cell phones, and home appliances,
use embedded systems and many of them are PIC-based.

3.1.2 High- and Low-Level Languages

All microcontrollers can be programmed in their native machine language. The term
“machine language” refers to the primitive codes, internal to the CPU, that execute the
fundamental operations that can be performed by a particular processor. The proces-
sor's fetch/execute cycle retrieves the machine code from program memory and per-
forms the necessary manipulations and calculations. For example, the instruction
represented by the binary opcode

00000000 00000100

clears the watchdog timer register in the PIC18FXX devices.

Programming, loosely defined, refers to selecting, configuring, and storing in pro-
gram memory a sequence of primitive opcodes so as to perform a specific function
or task. The machine language programmer has to manually determine the opera-
tion code for each instruction in the program and places these codes, in a specific
order, in the designated area of program memory.

Assembly language is based on a software program that recognizes a symbolic
language where each machine code is represented by a mnemonic instruction and a
possible operand. A program, called an “assembler,” reads these instructions and
operands from a text file and generates the corresponding machine codes. For ex-
ample, in order to encode the instruction that clears the watchdog (00000000
00000100 binary in the previous example), the assembly language programmer in-
serts in the text file the keyword

CLRWDT

The assembler program reads the programmer's text file, parses these mnemonic
keywords and their possible operands, and stores the binary opcodes in a file for later

Programming Tools and Software 39

execution. Because assembly language references the processor opcodes, it is a ma-
chine-specific language. An assembler program operates only on devices that have a
common machine language, although some minor processor-specific variations can,
in some cases, be selectively enabled. Because of their association with the hardware,
machine language and assembly language are usually referred to as “low-level lan-
guages.”

High-level programming languages, such as C, Pascal, and Fortran, provide a
stronger level of abstraction from the hardaware device. It is generally accepted
that compared to low-level languages, high-level programming is more natural, eas-
ier to learn, and simplifies the process of developing program languages. The result
is a simpler and more understandable development environment that comes at
some penalties regarding performance, hardware control, and program size.

Rather than dealing with registers, memory addresses, and call stacks, a
high-level language deals with variables, arrays, arithmetic or Boolean expressions,
subroutines and functions, loops, threads, locks, and other abstract concepts. In a
high-level language, the design focuses on usability rather than optimal program ef-
ficiency. Unlike low-level assembly languages, high-level languages have few, if any,
elements that translate directly into the machine's native opcodes.

The term “abstraction penalty” is sometimes used in the context of high-level lan-
guages in reference to limitations that are evident when computational resources
are limited, maximum performance is required, or hardware control is mandated. In
some cases, the best of both worlds can be achieved by coding the noncritical por-
tions of a program mostly in a high-level language while the critical portions are de-
veloped in assembly language. This results in mixed-language programs, which are
discussed later in this book.

It should be noted that many argue that modern developments in high-level lan-
guages, based on well-designed compilers, produce code comparable in efficiency
and control to that of low-level languages. Another advantage of high-level lan-
guages is that their design is independent of machine structures, and the hardware
features of a specific device result in code that can be easily ported to different sys-
tems. Finally we should observe that the terms “low-level” and “high-level” lan-
guages are not cast in stone: to some, assembly language with the use of macros and
other tools becomes a high-level language, while C is sometimes categorized as
low-level due to its compact size, direct memory addressing, and low-level
operands.

As previously mentioned, the major argument in favor of high-level languages is
their ease of use and their faster learning curve. The advantages of assembly lan-
guage, on the other hand, are better control and greater efficiency. It is true that ar-
guments that favor high-level languages find some justification in the computer
world, but these reasons are not always valid in the world of microcontroller pro-
gramming. In the first place, the microcontroller programmer is not always able to
avoid complications and technical details by resorting to a high-level language be-
cause the programs relate closely to hardware devices and to electronic circuits.
These devices and circuits must be understood at their most essential level if they

40 Chapter 3

are to be controlled and operated by software. For example, consider a
microcontroller program that must provide some sort of control baseded on the ac-
tion of a thermostat. In this case, the programmer must become familiar with tem-
perature sensors, analog-to-digital conversions, motor controls, and so on. This is
true whether the program will be written in a low- or a high-level language. For
these reasons we have considered both high-level and low-level programming of the
microcontrollers is discussed in this book.

3.1.3 Language-Specific Software

Developing programs in a particular programming language requires a set of matching
software tools. These software development tools are either generic, that is, suitable
for any programming language, or multi-language. Fortunately, for PIC programming,
all the necessary software tools are furnished in a single development environment
that includes editors, assemblers, compilers, debuggers, library managers, and other
utilities. This development package, called MPLAB, discussed in the following sec-
tions.

3.2 Microchip's MPLAB

MPLAB is the name of the PIC assembly language development system provided by
Microchip. The package is furnished as an integrated development environment
(IDE) and can be downloaded from the company's website at www.microhip.com.
The MPLAB package is furnished for Windows, Linux, and Mac OS systems. At the
time of this writing, the current MPLAB version is 8.86.

3.2.1 MPLAB X

A new implementation of MPLAB is named MPLAB X. This new package, available
free on the Microchip website, is described by Microchip as “an integrated environ-
ment to develop code for embedded microcontrollers.” This definition matches the
one for the conventional MPLAB; however, the MPLAB X package brings many
changestothe conventional MPLAB environment. In the first place, MPLAB X is based
on the open source NetBeans IDE from Oracle. This has allowed Microchip to add
many features and to be able to quickly update the software in the context of a more
extensible architecture. Microchip also states that MPLAB X provides many new fea-
tures that will be especially beneficial to users of 16- and 32-bit microprocessor fami-
lies, where programs can quickly become extremely complex.

Because MPLAB X is still considered “work in progress,” we have not used it in
developing the programs that are part of this book. Furthermore, the expanded fea-
tures of this new environment have added complications in learning and using this
package. For the processors considered in this book, and the scope of the devel-
oped software, we have considered these new features an unnecessary complica-
tion.

3.2.2 Development Cycle

The development cycle of an embedded system consists of the following steps

Programming Tools and Software 41

. Define system specifications. This step includes listing the functions that the sys-

tem is to perform and determining the tests that will be used to validate their op-
erations.

Select system components according to the specifications. This step includes lo-
cating the microcontroller that best suits the system.

3. Design the system hardware. This step includes drawing the circuit diagrams.

5.
6.

Implement a prototype of the system hardware by means of breadboards, wire
boards, or any other flexible implementation technology.

Develop, load, and test the software.

Implement the final system and test hardware and software.

The commercial development of an embedded system is hardly ever the work of a
single technician. More typically, it requires the participation of computer, electri-
cal, electronic, and software engineers. Note that, in the present context, we con-
sider computer programmers as software engineers. In addition, professional
project managers are usually in charge of the development team.

3.3 An Integrated Development Environment

The MPLAB development system, or integrated development environment, consists
of asystem of programs that run on a PC. This software package is designed to help de-
velop, edit, test, and debug code for the Microchip microcontrollers. Installing the
MPLAB package is usually straightforward and simple. The package includes the fol-
lowing components:

1.

2.

3.

MPLAB editor. This tool allows creating and editing the assembly language
source code. It behaves very much like any Windows™ editor and contains the
standard editor functions, including cut and paste, search and replace, and undo
and redo functions.

MPLAB assembler. The assembler reads the source file produced in the editor
and generates either absolute or relocatable code. Absolute code executes di-
rectly in the PIC. Relocatable code can be linked with other separately assem-
bled modules or with libraries.

MPLAB linker. This component combines modules generated by the assembler
with libraries or other object files, into a single executable file in .hex format.

4. MPLAB debuggers. Several debuggers are compatible with the MPLAB develop-

5.

ment system. Debuggers are used to single-step through the code, breakpoint at
critical places in the program, and watch variables and registers as the program
executes. In addition to being a powerful tool for detecting and fixing program
errors, debuggers provide an internal view of the processor, which is a valuable
learning tool.

MPLAB in-circuit emulators. These are development tools that allow performing
basic debugging functions while the processor is installed in the circuit.

Figure 3.1 is a screen image of the MPLAB program. The application on the editor
window is one of the programs developed later in this book.

42 Chapter 3

a MPLAB IDE v8.86 5

File Edit View Project Debugger Programmer Tools Configure ‘Window Help
|D@d|sma [shwaR P || o sE B e o | Checksum: 0x4514

; Pile name: LedPB_F18.asm
; Date: June 25, 2013

; Author: Julio Sanchez

; PIC 18F452

CPU pinout

18F452

RE7/PGD
39|<==> RB&/PGC
38 |<==> RBS/PGM
37 |«<==> RE4
36|<==> RE3/CCPZ

REZ/INTZ

RE1/INT1

MCLR/Vpp ===>|
RADSAND <==>|
RAL/AM1 <==>|
RAZ/ANZ/REF- <==>|
RA3/AN3/REF+ <==>|
; RAL/TOCRI <==>|
; RAS/ANG/88/LVDIN <==3>|
REOD/RD/ANS <==3>| RED/INTOD
REL/WR/ANG <==>| vdd
REZ/C3/ANT <==>|10 Vss
Vdd ===>|11 ==> RD7/P8ET
Vss <== |11 RDE/PEPE
08CI/CLRI ===>|13 28 |<==> RDS/PEPS5
O8CZ2/CLKD/RAE <==>|14 27 |<==> RD4/P3P4
RCO/T1080/TICKL <==>|15 26| <==> RCT/RX/DT
RC1/T1081/CCPZ <==>|16 25|=<==> RCE/TL/CK
RCZ/CCPl <==>|17 24 |<==> RCS5/300
RC3/BCR/3CL <==>|18 23 |<==> RC4/3DI/SDA
RDO/P3P0 <==>|1%9 22 |<==> RD3,/PSP3
RD1/P3P1 <==>|20 RDZ/P3PZ

W ooy s WM

; Legend:
: Crvs = 32.7AR KHz crvatal DRx = TN data hvte 1-7

Build | Version Cantiel | Findin Files |
Loaded CAEMBEDDED SYSTEMSIADVANCED PICS\DEVELOPMENT\LEDPB_F18.cof, =

Felease build of project "CAEMEEDDED SYSTEMS\WADVANCED PICS\DEVELOPMENT\LEDPE_F18 disposable_mcp' succeeded.
Language tool versions: MPASMWIN exe v5 46, mplink.exe v4.44, mplib.exe w4.44
Mon Jul 02 08:43:05 2012

BUILD SUCCEEDED
4| | »
I | C18F452 I [w:0 hovedee I |banko [R "

Figure 3.1 Screen snapshot of MPLAB IDE version 8.64.

3.3.1 Installing MPLAB
Inthe normalinstallation, the MPLAB executable will be placed in the following path:

C:\Program Files\Microchip\MPASM Suite

Although the installation routine recommends that any previous version of
MPLAB be removed from the system, we have found that it is unnecessary, consider-
ing that several versions of MPLAB can peacefully coexist.

Programming Tools and Software 43

Once the development environment is installed, the software is executed by
clicking the MPLAB IDE icon. It is usually a good idea to drag and drop the icon
onto the desktop so that the program can be easily activated.

With the MPLAB software installed, it may be a good idea to check that the appli-
cations were placed in the correct paths and folders. Failure to do so produces as-
sembly-time failure errors with cryptic messages. To check the correct path for the
software, open the Project menu and select the Set Language Tool Locations com-
mand. Figure 3.2 shows the command screen.

Set Language Tool Locations ﬂ

— Reagistered Tools
[+ 1&R Systems Midrange

[+ Microchip ASM16 Toolsuite
- Microchip ASM30 T oolsuite
Microchip C17 Toolsuite
Microchip C18 Toolsuite
Microchip C30 Toolsuite

=1 Microchip MPASM Toolsuite

B3

&

[=- Executables

embler [mpasmwin. exe]
MPLIB Librarian [mplib.exe)
MPLINK Object Linker (mplink. exe)
[+ Default Search Paths & Directories

~ Location

A

hd

[C.‘\Program Files\MicrochipA\MPASM Suite\MPASMWIN exe Browse... I
Hep | [ok | cance [2oy |

Figure 3.2 MPLAB 8.64 set language tool locations screen.

In the Set Language Tool Locations window, make sure that the file location coin-
cides with the actual installation path for the software. If in doubt, use the
<Browse> button to navigate through the installation directories until the execut-
able program is located. In this case, mpasmwin.exe. Follow the same process for
all the executables in the tool packages that will be used in development. For as-
sembly language programs this is the Microchip MPASM Toolsuite shown in Figure
3.2

3.3.2 Creating the Project

In MPLAB, a project is a group of files generated or recognized by the IDE. Figure 3.3
shows the structure of an assembly language project.

44 Chapter 3

PxxFyy.inc

progl.asm

MPASM
(assembler)

progl.o

Y

MPLIB
(librarian)
y
_ MPLINK]
sup.lib (linker)] device.lkr

Y A A4

progl.lst progl.hex progl.map progl.err

Figure 3-3 MPLAB project files.

Figure 3.3 shows an assembly language source file (progl.asm) and an optional
processor-specific include file that are used by the assembler program (MPASM) to
produce an object file (progl.o). Optionally, other sources and other include files
may form part of the project. The resulting object file, as well as one or more optional
libraries, and a device-specific script file (device.lkr), are then fed to the linker pro-
gram (MPLINK), which generates a machine code file (progl.hex) and several sup-
port files with listings, error reports, and map files. It is the .hex file that is used to
blow the PIC.

Other files, in addition to those in Figure 3.3, may also be produced by the develop-
ment environment. These vary according to the selected tools and options. For exam-
ple, the assembler or the linker can be made to generate a file with the extension
.cod, which contains symbols and references used in debugging.

Projects can be created using the <New> command in the Project menu. The pro-
grammer then proceeds to configure the project manually and add to it the required
files. An alternative option, much to be preferred when learning the environment is
using the <Project Wizard> command in the project menu. The wizard will prompt
you for all the decisions and options that are required, as follows

Programming Tools and Software 45

1. Device selection. Here the programmer selects the PIC hardware for the project,
for example, 18F452.

2. Select a language toolsuite. The purpose of this screen is to make sure that the
proper development tools are selected and their location is correct.

3. Next, the wizard prompts the user for a name and directory. The Browse button
allows for navigating the system. It is also possible to create a new directory at
this time.

4. Inthe next step, the user is given the option of adding existing files to the project
and renaming these files if necessary. Because most projects reuse a template, an
include file, or other prexisting resources, this can be a useful option.

5. Finally the wizard displays a summary of the project parameters. When the user
clicks on the <Finish> button the project is created and programming can begin.

Figure 3.4 is a snapshot of the final wizard screen.

Project Wizard ll

Summary

Click ‘Finish' to create/configure the project with these
parameters.

r~ Project Parameters
Device: PIC18F452
Toolsuite: Micrachip MPASM Toolsuite

File: C:\Embedded Systems\Advanced
PICs\Development\TestProj\T estProject. mcp

A new workspace will be created, and the new project added
to that workspace.

< Back Finish Cancel Help]

Figure 3-4 Final screen of the Project Creation Wizard.

3.3.3 Setting the Project Build Options

The <Build Options: Project> command in the Project menu allows the user to cus-
tomize the development environment. For projects to be coded in assembly language,
the MPASM Assembler Tab on the Build Options for Project screen is one of the the
most used. The screen is shown in Figure 3.5.

46

Chapter 3

Build Options For Project "TestProject.mcp™ 2xl

Directories | Custom Build | Trace |
MPASM/C17/C18 Suite MPASM Assembler | MPLINK Linker
Categories: lEeneraI El
- Generate Command Line

Default Radix

[Disable case sensitivity &+ Hexadecimal
" Decimal

[| [Est mode now on “suite'tab] " Octal

Macro Definitions

Remove |
Remave All I

I Inhernit global settings Restore Defaults I

" Use Altemate Settings

| 0K I Cancel Apply Help

Figure 3-5 MPASM assembler tab in the build options screen.

The MPASM Assembler tab allows performing the following customizations:

1.

Disable/enable case sensitivity. Normally, the assembler is case-sensitive. Dis-
abling case sensitivity turns all variables and labels to uppercase.

Select the default radix. Numbers without formatting codes are assumed to be
hex, decimal, or octal according to the selected option. Assembly language pro-
grammers usually prefer the hexadecimal radix.

The macro definition windows allows adding macro directives. The use of
macros is not discussed in this book.

The Use Alternate Settings textbox is provided for command line commands in
non-GUI environments.

The Restore Defaults box turns off all custom configurations.

Selecting Output in the Categories window provides command line control op-
tions in the output file.

Programming Tools and Software 47

3.3.4 Adding a Source File

The code and structure of an assembly language program is contained in a text file re-
ferred to as the source file. The name of the source file is usually descriptive of its pur-
pose or function. At this point in the project, the programmer will usually import an
existing file or a template that serves as a skeleton for the project's source file, the
name of the project or a variation on this name. Alternatively, the source file can be
coded from scratch, although the use of a template saves considerable effort and
avoids errors.

Click on the Add New File to Project command in the Project menu to create a
new source file from scratch. Make sure that the new file is given the .asm extension
and the development environment will automatically save it in the Source Files
group of the Project Directory. At this time, a blank editor window will be opened
and you can start typing the source code for your program.

Select the Add Files to Project command in the Project menu to import an exist-
ing file or a template into the project. In either case, you may have to rename the im-
ported file and remove the old one from the project. If this precaution is not taken,
an existing file may be overwritten and its contents lost. For example, to use the
template file names PIC18F_Template.asm in creating a source file named
PIC18F_Testl.asm, proceed as follows:

1. Make sure that the Project window is displayed by selecting the Project com-
mand in the View menu.

2. Right-click the Source Files option in the Project window and select the Add
Files...

3. Find the file PIC18F_Template.asm dialog and click on the file name and then the
Open button. At this point, the selected file appears in the Source Files box of the
Project window.

4. Double click the file name (PIC18F_Template.asm) and MPLAB will open the Ed-
itor Window with the file loaded.

5. Rename the template file (PIC18F_Template.asm) by selecting the Editor win-
dow, then the Save As command in the MPLAB File menu. Enter the name under
which the file is to be saved (PIC18F_Testl.asm in this walkthrough). Click on
the Save button.

6. At this point, the file is renamed but not inserted in the Project. Right-click the
Source Files option in the Project window and select the Add Files... Click on the
PIC18F_Testl.asm file name and on the Open button. The file PIC18F_Test1l.asm
now appears in the Source Files option of the Project window.

7. Right-click on the PIC18F_Template.asm filename in the Project window and se-
lect the Remove command. This removes the template file from the project.

In many cases the MPLAB environment contains duplicate commands that pro-
vide alternative ways for achieving the same results, as is the case in the previous
walkthrough and in others listed in this book. When there are several ways to obtain
the same result, we have tried to select the more intuitive, simpler, and faster one.

48 Chapter 3

3.3.5 Building the Project

Once all the options have been selected, the installation checked, and the assembly
language source file written or imported, the development environment can be made
to build the project. Building consists of calling the assembler, the linker, and any
other support program in order to generate the files shown in Figure 3.3 and any oth-
ers that may result from a particular project or IDE configuration. The build process is
initiated by selecting the <Build All> command in the Project menu. Once the building
concludes, ascreenlabeled Outputis displayed showing the results of the build opera-
tion. If the build succeeded, thelastline of the Output screen will show this result. Fig-
ure 3.6 shows the MPLAB program screen after a successful build in the preceding
walkthrough.

a TestProject - MPLAB IDE viLB6

Fie Edt View Project Debugosr Programmer Tooks Configurs Window Help
|DSH| mE 2ASOR ? oo DR Ba® SaE JiEChecksum:iRcise]

=[] Source Fles
1) PICIEF_Tost1.amm

3 Header Fies

13 Cbject Files

120 Libeary Files

I Linker Seri . -
3 cther e =TS
Bubd | Version Control | Find in Files | -

HE&OCBSSDI symbol __DEBUG'is defined =]
Tue Jul 03081004 2012

Clean: Deleting intermediany and output files
(Clean: Deleted file "CAEmbedded 5 Nadvanced PICsD T estProf\PICI1BF _Testl o"

Clean: Deleted file “CAE. Systemsiidh, d PICs\Dy TestProfPICT1BF_Testlen”

Clean: Deleted file "C. Sy such, ed PICs\D! \TestProf\PICIBF _Testl lsf"

Clean: Deleted file "CAE d tamshach d PICs\Daval fTestProf\TestFroject cof®

Clean: Delsted file "C: 8 shadvanced FICs) TestProf\ TestProject hex”

Clean: Done

Executing: *C\Program Files\Microchip\MPASM Sute\MPASMWIN exe” g /p1 §F452 "CAEmbedded Systems\Advan:
Executing: "C\Program Files\Microchip\MPASM Suite\mplink exe” jp18F452 "PIC18F_Test! 0" fu_DEBUG jz__ MPLAE
MFLINK 4 43. Linker

Device Database Versi

= 1.9
Copyright mé 1998-2011 Microchip Technology Inc

TTOrS

MP2HEX 4 .43. COFF to HEX File Converter
Copyright (=) 1998-2011 Microchip Technolegy Inc
Errors [}

Loaded C\Embedded Systemsi\Advanced PICs\Devel fTestFrof\TestFroject cof

Diebug build of project 'C\Embedded temsiAd ed PICs\D \TestProj\TestFroject mep' succeeded
Language tool versions: MPASMWIN exe 5. 45, mplnk exe vi 44, mplib exe w4 44

Freprocessor symbal *__DEBUG' is defined.

Tue Jul 03 0B10.06 2012

BUILD SUCCEEDED
| | |

PICIEF452 Wi novade | | barko | EE Fa

Figure 3-6 MPLAB program screen showing the Build All command result.

3.3.6 .hex File

The build process results in several files, depending on the options selected during
project definition. One of these files is the executable, which contains the machine
codes, addresses, and other parameters that define the program. This is the file that is
“blown” in the PIC. The location of the .hex file depends on the option selected during
project creation (see Figure 3.5). The Directories tab of the Build Options for Project
dialog box contains a group labeled Build Directory Policy, as shown in Figure 3.7.

