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	 Jason Kurtz, David Pardo, Maciej Paszyński, Waldemar Rachowicz, and Adam Zdunek
CRC Standard Curves and Surfaces with Mathematica®: Second Edition, 
	 David H. von Seggern
Discovering Evolution Equations with Applications: Volume 1-Deterministic Equations, 
	 Mark A. McKibben
Discovering Evolution Equations with Applications: Volume 2-Stochastic Equations, 
	 Mark A. McKibben
Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in
	 Mechanics and Physics, Victor A. Galaktionov and Sergey R. Svirshchevskii
Fourier Series in Several Variables with Applications to Partial Differential Equations, 		
	 Victor L. Shapiro
Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications, 
	 Victor A. Galaktionov 
Green’s Functions and Linear Differential Equations: Theory, Applications,  
	 and Computation, Prem K. Kythe 
Introduction to Fuzzy Systems, Guanrong Chen and Trung Tat Pham
Introduction to non-Kerr Law Optical Solitons, Anjan Biswas and Swapan Konar
Introduction to Partial Differential Equations with MATLAB®, Matthew P. Coleman
Introduction to Quantum Control and Dynamics, Domenico D’Alessandro
Mathematical Methods in Physics and Engineering with Mathematica, Ferdinand F. Cap
Mathematical Theory of Quantum Computation, Goong Chen and Zijian Diao
Mathematics of Quantum Computation and Quantum Technology, Goong Chen, 	
	 Louis Kauffman, and Samuel J. Lomonaco
Mixed Boundary Value Problems, Dean G. Duffy
Modeling and Control in Vibrational and Structural Dynamics, Peng-Fei Yao
Multi-Resolution Methods for Modeling and Control of Dynamical Systems, 
	 Puneet Singla and John L. Junkins 
Nonlinear Optimal Control Theory, Leonard D. Berkovitz and Negash G. Medhin 
Optimal Estimation of Dynamic Systems, Second Edition, John L. Crassidis and John L. Junkins
Quantum Computing Devices: Principles, Designs, and Analysis, Goong Chen, 
	 David A. Church, Berthold-Georg Englert, Carsten Henkel, Bernd Rohwedder, 
	 Marlan O. Scully, and M. Suhail Zubairy
A Shock-Fitting Primer, Manuel D. Salas 
Stochastic Partial Differential Equations, Pao-Liu Chow



CHAPMAN & HALL/CRC APPLIED MATHEMATICS

AND NONLINEAR SCIENCE SERIES 

Nonlinear Optimal 
Control Theory

Leonard D. Berkovitz 
Purdue University

Negash G. Medhin
North Carolina State University



CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2013 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20120716

International Standard Book Number-13: 978-1-4665-6027-7 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable 
efforts have been made to publish reliable data and information, but the author and publisher cannot 
assume responsibility for the validity of all materials or the consequences of their use. The authors and 
publishers have attempted to trace the copyright holders of all material reproduced in this publication 
and apologize to copyright holders if permission to publish in this form has not been obtained. If any 
copyright material has not been acknowledged please write and let us know so we may rectify in any 
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, 
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or 
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are 
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com



Contents

Foreword ix

Preface xi

1 Examples of Control Problems 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 A Problem of Production Planning . . . . . . . . . . . . . . 1
1.3 Chemical Engineering . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Flight Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Electrical Engineering . . . . . . . . . . . . . . . . . . . . . . 7
1.6 The Brachistochrone Problem . . . . . . . . . . . . . . . . . 9
1.7 An Optimal Harvesting Problem . . . . . . . . . . . . . . . . 12
1.8 Vibration of a Nonlinear Beam . . . . . . . . . . . . . . . . . 13

2 Formulation of Control Problems 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Formulation of Problems Governed by Ordinary Differential

Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Mathematical Formulation . . . . . . . . . . . . . . . . . . . 18
2.4 Equivalent Formulations . . . . . . . . . . . . . . . . . . . . 22
2.5 Isoperimetric Problems and Parameter Optimization . . . . . 26
2.6 Relationship with the Calculus of Variations . . . . . . . . . 27
2.7 Hereditary Problems . . . . . . . . . . . . . . . . . . . . . . . 32

3 Relaxed Controls 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 The Relaxed Problem; Compact Constraints . . . . . . . . . 38
3.3 Weak Compactness of Relaxed Controls . . . . . . . . . . . . 43
3.4 Filippov’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5 The Relaxed Problem; Non-Compact Constraints . . . . . . 63
3.6 The Chattering Lemma; Approximation to Relaxed Controls 66

v



vi

4 Existence Theorems; Compact Constraints 79

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Non-Existence and Non-Uniqueness of Optimal Controls . . 80
4.3 Existence of Relaxed Optimal Controls . . . . . . . . . . . . 83
4.4 Existence of Ordinary Optimal Controls . . . . . . . . . . . . 92
4.5 Classes of Ordinary Problems Having Solutions . . . . . . . . 98
4.6 Inertial Controllers . . . . . . . . . . . . . . . . . . . . . . . 101
4.7 Systems Linear in the State Variable . . . . . . . . . . . . . 103

5 Existence Theorems; Non-Compact Constraints 113

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2 Properties of Set Valued Maps . . . . . . . . . . . . . . . . . 114
5.3 Facts from Analysis . . . . . . . . . . . . . . . . . . . . . . . 117
5.4 Existence via the Cesari Property . . . . . . . . . . . . . . . 122
5.5 Existence Without the Cesari Property . . . . . . . . . . . . 139
5.6 Compact Constraints Revisited . . . . . . . . . . . . . . . . . 145

6 The Maximum Principle and Some of Its Applications 149

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.2 A Dynamic Programming Derivation of the

Maximum Principle . . . . . . . . . . . . . . . . . . . . . . . 150
6.3 Statement of Maximum Principle . . . . . . . . . . . . . . . 159
6.4 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.5 Relationship with the Calculus of Variations . . . . . . . . . 177
6.6 Systems Linear in the State Variable . . . . . . . . . . . . . 182
6.7 Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 186
6.8 The Linear Time Optimal Problem . . . . . . . . . . . . . . 192
6.9 Linear Plant-Quadratic Criterion Problem . . . . . . . . . . 193

7 Proof of the Maximum Principle 205

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
7.2 Penalty Proof of Necessary Conditions in Finite

Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
7.3 The Norm of a Relaxed Control; Compact Constraints . . . 210
7.4 Necessary Conditions for an Unconstrained Problem . . . . . 212
7.5 The ε-Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 218
7.6 The ε-Maximum Principle . . . . . . . . . . . . . . . . . . . 223
7.7 The Maximum Principle; Compact Constraints . . . . . . . . 228
7.8 Proof of Theorem 6.3.9 . . . . . . . . . . . . . . . . . . . . . 234
7.9 Proof of Theorem 6.3.12 . . . . . . . . . . . . . . . . . . . . 238
7.10 Proof of Theorem 6.3.17 and Corollary 6.3.19 . . . . . . . . . 240



vii

7.11 Proof of Theorem 6.3.22 . . . . . . . . . . . . . . . . . . . . 244

8 Examples 249

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
8.2 The Rocket Car . . . . . . . . . . . . . . . . . . . . . . . . . 249
8.3 A Non-Linear Quadratic Example . . . . . . . . . . . . . . . 255
8.4 A Linear Problem with Non-Convex Constraints . . . . . . . 257
8.5 A Relaxed Problem . . . . . . . . . . . . . . . . . . . . . . . 259
8.6 The Brachistochrone Problem . . . . . . . . . . . . . . . . . 262
8.7 Flight Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 267
8.8 An Optimal Harvesting Problem . . . . . . . . . . . . . . . . 273
8.9 Rotating Antenna Example . . . . . . . . . . . . . . . . . . . 276

9 Systems Governed by Integrodifferential Systems 283

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
9.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 283
9.3 Systems Linear in the State Variable . . . . . . . . . . . . . 285
9.4 Linear Systems/The Bang-Bang Principle . . . . . . . . . . . 287
9.5 Systems Governed by Integrodifferential Systems . . . . . . . 287
9.6 Linear Plant Quadratic Cost Criterion . . . . . . . . . . . . . 288
9.7 A Minimum Principle . . . . . . . . . . . . . . . . . . . . . . 289

10 Hereditary Systems 295

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
10.2 Problem Statement and Assumptions . . . . . . . . . . . . . 295
10.3 Minimum Principle . . . . . . . . . . . . . . . . . . . . . . . 296
10.4 Some Linear Systems . . . . . . . . . . . . . . . . . . . . . . 298
10.5 Linear Plant-Quadratic Cost . . . . . . . . . . . . . . . . . . 300
10.6 Infinite Dimensional Setting . . . . . . . . . . . . . . . . . . 300

10.6.1 Approximate Optimality Conditions . . . . . . . . . . 302
10.6.2 Optimality Conditions . . . . . . . . . . . . . . . . . . 304

11 Bounded State Problems 305

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
11.2 Statement of the Problem . . . . . . . . . . . . . . . . . . . . 305
11.3 ǫ-Optimality Conditions . . . . . . . . . . . . . . . . . . . . . 306
11.4 Limiting Operations . . . . . . . . . . . . . . . . . . . . . . . 316
11.5 The Bounded State Problem for Integrodifferential Systems . 320
11.6 The Bounded State Problem for Ordinary

Differential Systems . . . . . . . . . . . . . . . . . . . . . . . 322
11.7 Further Discussion of the Bounded State Problem . . . . . . 326
11.8 Sufficiency Conditions . . . . . . . . . . . . . . . . . . . . . . 329



viii

11.9 Nonlinear Beam Problem . . . . . . . . . . . . . . . . . . . . 332

12 Hamilton-Jacobi Theory 337

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
12.2 Problem Formulation and Assumptions . . . . . . . . . . . . 338
12.3 Continuity of the Value Function . . . . . . . . . . . . . . . . 340
12.4 The Lower Dini Derivate Necessary Condition . . . . . . . . 344
12.5 The Value as Viscosity Solution . . . . . . . . . . . . . . . . 349
12.6 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
12.7 The Value Function as Verification Function . . . . . . . . . 359
12.8 Optimal Synthesis . . . . . . . . . . . . . . . . . . . . . . . . 360
12.9 The Maximum Principle . . . . . . . . . . . . . . . . . . . . 366

Bibliography 371

Index 379



Foreword

This book provides a thorough introduction to optimal control theory for non-
linear systems. It is a sequel to Berkovitz’s 1974 book entitled Optimal Con-
trol Theory. In optimal control theory, the Pontryagin principle, Bellman’s
dynamic programming method, and theorems about existence of optimal con-
trols are central topics. Each of these topics is treated carefully. The book
is enhanced by the inclusion of many examples, which are analyzed in de-
tail using Pontryagin’s principle. These examples are diverse. Some arise in
such applications as flight mechanics, and chemical and electrical engineer-
ing. Other examples come from production planning models and the classical
calculus of variations.

An important feature of the book is its systematic use of a relaxed control
formulation of optimal control problems. The concept of relaxed control is
an extension of L. C. Young’s notion of generalized curves, and the related
concept of Young measures. Young’s pioneering work in the 1930s provided a
kind of “generalized solution” to calculus of variations problems with noncon-
vex integrands. Such problems may have no solution among ordinary curves.
A relaxed control, as defined in Chapter 3, assigns at each time a probability
measure on the space of possible control actions. The approach to existence
theorems taken in Chapters 4 and 5 is to prove first that optimal relaxed
controls exist. Under certain Cesari-type convexity assumptions, optimal con-
trols in the ordinary sense are then shown to exist. The Pontryagin maximum
principle (Chapters 6 and 7) provides necessary conditions that a relaxed or
ordinary control must satisfy. In the relaxed formulation, it turns out to be
sufficient to consider discrete relaxed controls (see Section 6.3). This is a note-
worthy feature of the authors’ approach.

In the control system models considered in Chapters 2 through 8, the
state evolves according to ordinary differential equations. These models ne-
glect possible time delays in state and control actions. Chapters 10, 11, and
12 consider models that allow time delays. For “hereditary systems” as de-
fined in Chapter 10, Pontryagin’s principle takes the form in Theorem 10.3.1.
Hereditary control problems are effectively infinite dimensional. As explained
in Section 10.6, the true state is a function on a time interval [−r, 0] where
r represents the maximum time delay in the control system. Chapter 11 con-
siders hereditary system models, with the additional feature that states are
constrained by given bounds. For readers interested only in control systems

ix



x Nonlinear Optimal Control Theory

without time delays, necessary conditions for optimality in bounded state
problems are described in Section 11.6.

The dynamic programming method leads to first order nonlinear partial
differential equations, which are called Hamilton-Jacobi-Bellman equations
(or sometimes Bellman equations). Typically, the value function of an optimal
control problem is not smooth. Hence, it satisfies the Hamilton-Jacobi-Bellman
equation only in a suitable “generalized sense.” The Crandall-Lions Theory
of viscosity solutions provides one such notion of generalized solutions for
Hamilton-Jacobi-Bellman equations. Work of A. I. Subbotin and co-authors
provides another interesting concept of generalized solutions. Chapter 12 pro-
vides an introduction to Hamilton-Jacobi Theory. The results described there
tie together in an elegant way the viscosity solution and Subbotin approaches.
A crucial part of the analysis involves a lower Dini derivate necessary condition
derived in Section 12.4.

The manuscript for this book was not quite in final form when Leonard
Berkovitz passed away unexpectedly. He is remembered for his many original
contributions to optimal control theory and differential games, as well as for
his dedicated service to the mathematics profession and to the control com-
munity in particular. During his long career at Purdue University, he was a
highly esteemed teacher and mentor for his PhD students. Colleagues warmly
remember his wisdom and good humor. During his six years as Purdue Math-
ematics Department head, he was resolute in advocating the department’s
interests. An obituary article about Len Berkovitz, written by W. J. Brown-
ing and myself, appeared in the January/February 2010 issue of SIAM News.

Wendell Fleming



Preface

This book is an introduction to the mathematical theory of optimal control
of processes governed by ordinary differential and certain types of differential
equations with memory and integral equations. The book is intended for stu-
dents, mathematicians, and those who apply the techniques of optimal control
in their research. Our intention is to give a broad, yet relatively deep, concise
and coherent introduction to the subject. We have dedicated an entire chapter
to examples. We have dealt with the examples pointing out the mathematical
issues that one needs to address.

The first six chapters can provide enough material for an introductory
course in optimal control theory governed by differential equations. Chap-
ters 3, 4, and 5 could be covered with more or less details in the mathematical
issues depending on the mathematical background of the students. For stu-
dents with background in functional analysis and measure theory, Chapter 7
can be added. Chapter 7 is a more mathematically rigorous version of the
material in Chapter 6.

We have included material dealing with problems governed by integrodif-
ferential and delay equations. We have given a unified treatment of bounded
state problems governed by ordinary, integrodifferential, and delay systems.
We have also added material dealing with the Hamilton-Jacobi Theory. This
material sheds light on the mathematical details that accompany the material
in Chapter 6.

The material in the text gives a sufficient and rigorous treatment of finite
dimensional control problems. The reader should be equipped to deal with
other types of control problems such as problems governed by stochastic dif-
ferential equations and partial differential equations, and differential games.

I am very grateful to Mrs. Betty Gick of Purdue University and Mrs. An-
nette Rohrs of Georgia Institute of Technology for typing the early and final
versions of the book. I am very grateful to Professor Wendell Fleming for
reading the manuscript and making valuable suggestions and additions that
improved and enhanced the quality of the book as well as avoided and re-
moved errors. I also wish to thank Professor Boris Mordukovich for reading
the manuscript and making valuable suggestions. All or parts of the mate-
rial up to the first seven chapters have been used for optimal control theory
courses in Purdue University and North Carolina State University.

This book is a sequel to the book Optimal Control Theory by Leonard

xi
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D. Berkovitz. I learned control theory from this book taught by him. We de-
cided to write the current book in 1994 and we went through various versions.

L. D. Berkovitz was my teacher and a second father. He passed away on
October 13, 2009 unexpectedly. He was caring, humble, and loved mathemat-
ics. He is missed greatly by all who were fortunate enough to have known him.
This book was completed before his death.

Negash G. Medhin
North Carolina State University



Chapter 1

Examples of Control Problems

1.1 Introduction

Control theory is a mathematical study of how to influence the behavior
of a dynamical system to achieve a desired goal. In optimal control, the goal
is to maximize or minimize the numerical value of a specified quantity that is
a function of the behavior of the system. Optimal control theory developed in
the latter half of the 20th century in response to diverse applied problems. In
this chapter we present examples of optimal control problems to illustrate the
diversity of applications, to raise some of the mathematical issues involved, and
to motivate the mathematical formulation in subsequent chapters. It should
not be construed that this set of examples is complete, or that we chose the
most significant problem in each area. Rather, we chose fairly simple problems
in an effort to illustrate without excessive complication.

Mathematically, optimal control problems are variants of problems in the
calculus of variations, which has a 300+ year history. Although optimal control
theory developed without explicit reference to the calculus of variations, each
impacted the other in various ways.

1.2 A Problem of Production Planning

The first problem, taken from economics, is a resource allocation problem;
the Ramsey model of economic growth. Let Q(t) denote the rate of production
of a commodity, say steel, at time t. Let I(t) denote the rate of investment
of the commodity at time t to produce capital; that is, productive capacity.
In the case of steel, investment can be thought of as using steel to build new
steel mills, transport equipment, infrastructure, etc. Let C(t) denote the rate
of consumption of the commodity at time t. In the case of steel, consumption
can be thought of as the production of consumer goods such as automobiles.
We assume that all of the commodity produced at time t must be allocated

1



2 Nonlinear Optimal Control Theory

to either investment or consumption. Then

Q(t) = I(t) + C(t) I(t) ≥ 0 C(t) ≥ 0.

We assume that the rate of production is a known function F of the capital
at time t. Thus, if K(t) denotes the capital at time t, then

Q(t) = F (K(t)),

where F is a given function. The rate of change of capital is given by the
capital accumulation equation

dK

dt
= αI(t)− δK(t) K(0) = K0, K(t) ≥ 0,

where the positive constant α is the growth rate of capital and the positive
constant δ is the depreciation rate of capital. Let 0 ≤ u(t) ≤ 1 denote the
fraction of production allocated to investment at time t. The number u(t) is
called the savings rate at time t. We can therefore write

I(t) = u(t)Q(t) = u(t)F (K(t))

C(t) = (1− u(t))Q(t) = (1− u(t))F (K(t)),

and

dK

dt
= αu(t)F (K(t)) − δK(t)

K(t) ≥ 0 K(0) = K0.
(1.2.1)

Let T > 0 be given and let a “social utility function” U , which depends on
C, be given. At each time t, U(C(t)) is a measure of the satisfaction society
receives from consuming the given commodity. Let

J =

∫ T

0

U(C(t))e−γt dt,

where γ is a positive constant. Our objective is to maximize J , which is a
measure of the total societal satisfaction over time. The discount factor e−γt

is a reflection of the phenomenon that the promise of future reward is usually
less satisfactory than current reward.

We may rewrite the last integral as

J =

∫ T

0

U((1 − u(t))F (K(t)))e−γtdt. (1.2.2)

Note that by virtue of (1.2.1), the choice of a function u : [0, T ] → u(t), where
u is subject to the constraint 0 ≤ u(t) ≤ 1 determines the value of J . We have
here an example of a functional; that is, an assignment of a real number to
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every function in a class of functions. If we relabel K as x, then the problem
of maximizing J can be stated as follows:

Choose a savings program u over the time period [0, T ], that is, a function
u defined on [0, T ], such that 0 ≤ u(t) ≤ 1 and such that

J(u) = −
∫ T

0

U((1− u(t))F (ϕ(t)))e−γtdt (1.2.3)

is minimized, where ϕ is a solution of the differential equation

dx

dt
= αu(t)F (x) − δx ϕ(0) = x0,

and ϕ satisfies ϕ(t) ≥ 0 for all t in [0, T ]. The problem is sometimes stated as
Minimize:

J(u) = −
∫ T

0

U((1− u(t))F (x))e−γtdt

Subject to:

dx

dt
= αu(t)F (x) − δx, x(0) = x0, x ≥ 0, 0 ≤ u(t) ≤ 1

1.3 Chemical Engineering

Let x1(t), . . . , xn(t) denote the concentrations at time t of n substances in
a reactor in which n simultaneous chemical reactions are taking place. Let the
rates of the reactions be governed by a system of differential equations

dxi

dt
= Gi

(
x1, . . . , xn, θ(t), p(t)

)
xi(0) = xi0 i = 1, . . . , n. (1.3.1)

where θ(t) is the temperature in the reactor at time t and p(t) is the pressure
in the reactor at time t. We control the temperature and pressure at each
instance of time, subject to the constraints

θb ≤ θ(t) ≤ θa (1.3.2)

pb ≤ p(t) ≤ pa

where θa, θb, pa, and pb are constants. These represent the minimum and
maximum attainable temperature and pressure.

We let the reaction proceed for a predetermined time T . The concentra-
tions at this time are x1(T ), . . . , xn(T ). Associated with each product is an
economic value, or price ci, i = 1, . . . , n. The price may be negative, as in the
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case of hazardous wastes that must be disposed of at some expense. The value
of the end product is

V (p, θ) =

n∑

i=1

cixi(T ). (1.3.3)

Given a set of initial concentrations xi0, the value of the end product is com-
pletely determined by the choice of functions p and θ if the functions Gi have
certain nice properties. Hence the notation V (p, θ). This is another example
of a functional; in this case, we have an assignment of a real number to each
pair of functions in a certain collection.

The problem here is to choose piecewise continuous functions p and θ on
the interval [0, T ] so that (1.3.2) is satisfied and so that V (p, θ) is maximized.

A variant of the preceding problem is the following. Instead of allowing the
reaction to proceed for a fixed time T , we stop the reaction when one of the
reactants, say x1, reaches a preassigned concentration x1f . Now the final time
tf is not fixed beforehand, but is the smallest positive root of the equation
x1(t) = x1f . The problem now is to maximize

V (p, θ) =
n∑

i=2

cixi(tf )− k2tf .

The term k2tf represents the cost of running the reactor.
Still another variant of the problem is to stop the reaction when sev-

eral of the reactants reach preassigned concentrations, say x1 = x1f , x
2 =

x2f , . . . , x
j = xjf . The value of the end product is now

n∑

i=j+1

cixi(tf )− k2tf .

We remark that in the last two variants of the problem there is another
question that must be considered before one takes up the problem of maxi-
mization. Namely, can one achieve the desired final concentrations using pres-
sure and temperature functions p and θ in the class of functions permitted?

1.4 Flight Mechanics

In this problem a rocket is taken to be a point of variable mass whose
moments of inertia are neglected. The motion of the rocket is assumed to take
place in a plane relative to a fixed frame. Let y = (y1, y2) denote the position
vector of the rocket and let v = (v1, v2) denote the velocity vector of the
rocket. Then

dyi

dt
= vi yi(0) = yi0 i = 1, 2, (1.4.1)
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where y0 = (y10 , y
2
0) denotes the initial position of the rocket.

Let β(t) denote the rate at which the rocket burns fuel at time t and let
m(t) denote the mass of the rocket at time t. Thus,

dm

dt
= −β. (1.4.2)

If a > 0 denotes the mass of the vehicle, then m(t) ≥ a.
Let ω(t) denote the angle that the thrust vector makes with the positive

y1-axis at time t. The burning rate and the thrust angle will be at our disposal
subject to the constraints

0 ≤ β0 ≤ β(t) ≤ β1 ω0 ≤ ω(t) ≤ ω1, (1.4.3)

where β0, β1, ω0, and ω1 are fixed.
To complete the equations of motion of the rocket we analyze the momen-

tum transfer in rectilinear rocket motion. At time t a rocket of mass m and
velocity v has momentummv. During an interval of time δt let the rocket burn
an amount of fuel δµ > 0. At time t+ δt let the ejected combustion products
have velocity v′; their mass is clearly δµ. At time t+ δt let the velocity of the
rocket be v+ δv; its mass is clearly m− δµ. Let us consider the system which
at time t consisted of the rocket of mass m and velocity v. At time t + δt
this system consists of the rocket and the ejected combustion products. The
change in momentum of the system in the time interval δt is therefore

(δµ)v′ + (m− δµ)(v + δv)−mv.

If we divide the last expression by δt > 0 and then let δt → 0, we obtain
the rate of change of momentum of the system, which must equal the sum
of the external forces acting upon the system. Hence, if F is the resultant
external force per unit mass acting upon the system we have

Fm− (v′ − v)
dµ

dt
= m

dv

dt
.

If we assume that (v′ − v), the velocity of the combustion products relative to
the rocket is a constant c, and if we use dµ/dt = β, we get

F − cβ/m = dv/dt.

If we apply the preceding analysis to each component of the planar motion
we get the following equations, which together with (1.4.1), (1.4.2), and (1.4.3)
govern the planar rocket motion

dv1

dt
= F 1 − cβ

m
cosω (1.4.4)

dv2

dt
= F 2 − cβ

m
sinω vi(0) = vi0, i = 1, 2.
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Here, the components of the force F can be functions of y and v. This would
be the case if the motion takes place in a non-constant gravitational field and
if drag forces act on the rocket.

The control problems associated with the motion of the rocket are of the
following type. The burning rate control β and the thrust direction control
ω are to be chosen from the class of piecewise continuous functions (or some
other appropriate class) in such a way that certain of the variables t, y, v, m
attain specific terminal values. From among the controls that achieve these
values, the control that maximizes (or minimizes) a given function of the
remaining terminal values is to be determined. In other problems, an integral
evaluated along the trajectory in the state space is to be extremized.

To be more specific, consider the “minimum fuel problem.” It is required
that the rocket go from a specified initial point y0 to a specified terminal
point yf in such a way that the fuel consumed is minimized. This problem is
important for the following reason. Since the total weight of rocket plus fuel
plus payload that can be constructed and lifted is constrained by the state of
the technology, it follows that the less fuel consumed, the larger the payload
that can be carried by the rocket. From (1.4.2) we have

mf = m0 −
∫ tf

t0

β(t)dt,

where t0 is the initial time, tf is the terminal time (time at which yf is
reached), mf is the final mass, and m0 is the initial mass. The fuel consumed
is therefore m0 −mf . Thus, the problem of minimizing the fuel consumed is
the problem of minimizing

P (β, ω) =

∫ tf

t0

β(t)dt (1.4.5)

subject to (1.4.1) to (1.4.4). This problem is equivalent to the problem of
maximizing mf . In the minimum fuel problem the terminal velocity vector vf
will be unspecified if a “hard landing” is permitted; it will be specified if a
“soft landing” is required. The terminal time tf may or may not be specified.

Another example is the problem of rendezvous with a moving object whose
position vector at time t is z(t) = (z1(t), z2(t)) and whose velocity vector at
time t is w(t) = (w1(t), w2(t)), where z1, z2, w1, and w2 are continuous func-
tions. Let us suppose that there exist thrust programs β and ω satisfying
(1.4.3) and such that rendezvous can be effected. Mathematically this is ex-
pressed by the assumption that the solutions y, v of the equations of motion
corresponding to the given choice of β and ω have the property that the
equations

y(t) = z(t) (1.4.6)

v(t) = w(t)

have positive solutions. Such controls (β, ω) will be called admissible. Since for
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each admissible β and ω the corresponding solutions y and v are continuous,
and since the functions z and w are continuous by hypothesis, it follows that
for each admissible pair (β, ω) there is a smallest positive solution tf (β, ω)
for which (1.4.6) holds. The number tf (β, ω) is the rendezvous time. Two
problems are possible here. The first is to determine from among the admis-
sible controls one that delivers the maximum payload; that is, to maximize
mf = mf (tf (β, ω)). The second is to minimize the rendezvous time tf (β, ω).

1.5 Electrical Engineering

Example 1.5.1. A control surface on an airplane is to be kept at some arbi-
trary position by means of a servo-mechanism. Outside disturbances such as
wind gusts occur infrequently and are short with respect to the time constant
of the servo-mechanism. A direct-current electric motor is used to apply a
torque to bring the control surface to its desired position. Only the armature
voltage v into the motor can be controlled. For simplicity we take the desired
position to be the zero angle and we measure deviations in the angle θ from
this desired position. Without the application of a torque the control surface
would vibrate as a damped harmonic oscillator. Therefore, with a suitable
normalization the differential equation for θ can be written as

d2θ

dt2
+ a

dθ

dt
+ ω2θ = u θ(0) = θ0 θ′(0) = θ′0. (1.5.1)

Here u represents the restoring torque applied to the control surface, the term
adθ/dt represents the damping effect, and ω2 is the spring constant. If no
damping occurs, then a = 0. Since the source of voltage cannot deliver a
voltage larger in absolute value than some value v0, the restoring torque must
be bounded in absolute value. Hence it follows that we must have

|u(t)| ≤ A, (1.5.2)

where A is some positive constant.
If we set

x1 = θ x2 =
dθ

dt

we can rewrite Eq. (1.5.1) as follows:

dx1

dt
= x2 x1(0) = θ0 (1.5.3)

dx2

dt
= −ax2 − ω2x1 + u x2(0) = θ′0.
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FIGURE 1.1 [From: G. Stephens Jones and Aaron Strauss, An example of
optimal control, SIAM Review, Vol. 10, 25–55 (1968).]

The problem is the following. A short disturbance has resulted in a de-
viation θ = θ0 from the desired position and a deviation dθ/dt = θ′0 from
rest. How should the voltage be applied over time so that the control surface
is brought back to the set position θ = 0, dθ/dt = 0 in the shortest possi-
ble time? In terms of (1.5.3), the problem is to choose a function u from an
appropriate class of functions, say piecewise continuous functions, such that
u satisfies (1.5.2) at each instant of time and such that the solution (x1, x2)
of (1.5.3) corresponding to u reaches the origin in (x1, x2)-space in minimum
time.

Example 1.5.2. Figure 1.1 depicts an antenna free to rotate from any angular
position θ0 to any other angle θ1. The equation of motion under an applied
torque T is given by

I
d2θ

dt2
+ β

dθ

dt
= T θ(0) = θ0 θ′(0) = θ′0, (1.5.4)

where β is a damping factor and I is the moment of inertia of the system
about the vertical axis.

The objective here is to move from the position and velocity (θ0, θ
′
0) at an

initial time t0 to the state and velocity (θ1, 0) at some later time t1 in a way
that the following criteria are met.

(a) The transfer of position must take place within a reasonable (but not
specified) period of time.

(b) The energy expended in making rotations must be kept within reason-
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able (but not specified) bounds in order to avoid excessive wear on com-
ponents.

(c) The fuel or power expended in carrying out the transfer must be kept
within reasonable (but not specified) limits.

Since the energy expended is proportional to (dθ/dt)2 and the fuel or
power expended is proportional to the magnitude of the torque, a reasonable
performance criterion would be

J =

∫ t1

t0

(γ1 + γ2

(
dθ

dt

)2

+ γ3|T |)dt,

where γ1 > 0, γ2 ≥ 0, γ3 ≥ 0, and t1 is free.
The control torque T is constrained in magnitude by a quantity k > 0, that

is, |T | ≤ k, and (dθ/dt) is constrained in magnitude by 1, that is, |dθ/dt| ≤ 1.
If as in Example 1.5.1 we set

x1 = θ x2 =
dθ

dt
,

we can write (1.5.4) as the system

dx1

dt
= x2 x1(0) = θ0 (1.5.5)

dx2

dt
= −β

I
x1 +

T

I
x2(0) = θ′0.

The problem then is to choose a torque program (function) T that minimizes

J(T ) =

∫ t1

t0

(γ1 + γ2(x
2)2 + γ3|T |)dt

subject to (1.5.5), the terminal conditions x1(t1) = θ1, x
2(t1) = 0, t1 free and

the constraints
|T (t)| ≤ k |x2(t)| ≤ 1.

This example differs from the preceding examples in that we have a constraint
|x2(t)| ≤ 1 on the state as well as a constraint on the control.

1.6 The Brachistochrone Problem

We now present a problem from the calculus of variations; the brachis-
tochrone problem, posed by John Bernoulli in 1696. This problem can be re-
garded as the starting point of the theory of the calculus of variations. Galileo
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FIGURE 1.2

also seems to have considered this problem in 1630 and 1638, but was not as
explicit in his formulation.

Two points P0 and P1 that do not lie on the same vertical line are given in
a vertical plane with P0 higher than P1. A particle, or point mass, acted upon
solely by gravity is to move along a curve C joining P0 and P1. Furthermore,
at P0 the particle is to have an initial speed v0 along the curve C. The problem
is to choose the curve C so that the time required for the particle to go from
P0 to P1 is a minimum.

To formulate the problem analytically, we set up a coordinate system in
the plane as shown in Fig. 1.2.

Let P0 have coordinates (x0, y0) with y0 > 0, let P1 have coordinates
(x1, y1) with y1 > 0, and let C have y = y(x) as its equation. At time t, let
(x(t), y(t)) denote the coordinates of the particle as it moves along the curve
C, let v(t) denote the speed, and let s(t) denote the distance traveled. We
shall determine the time required to traverse C from P0 to P1.

From the principle of conservation of energy, we have that

1

2
m(v2 − v20) = mg(y − y0). (1.6.1)

Also,

v =
ds

dt
=
ds

dx

dx

dt
= [1 + (y′)2]1/2

dx

dt
. (1.6.2)

Hence, using (1.6.1) and (1.6.2), we get that

dt =
[1 + (y′)2]1/2

v
dx =

[
1 + (y′)2

2g(y − α)

]1/2
dx,

where
α = y0 − v20/2g.
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Thus, the time of traverse T along C is given by

T =
1

(2g)1/2

∫ x1

x0

[
1 + (y′)2

y − α

]1/2
dx.

The problem of finding a curve C that minimizes the time of traverse is
that of finding a function y = y(x) that minimizes the integral

∫ x1

x0

[
1 + (y′)2

y − α

]1/2
dx. (1.6.3)

Note that if v0 = 0, then the integral is improper.
We put this problem in a format similar to the previous ones as follows.

Change the notation for the independent variable from x to t. Then set

y′ = u y(t0) = y0. (1.6.4)

A continuous function u will be called admissible if it is defined on [t0, t1],
if the solution of (1.6.4) corresponding to u satisfies y(t1) = y1, if y(t) > y0
on [t0, t1], and if the mapping t → [(1 + u2(t))/(y(t)− α)]1/2 is integrable on
[t0, t1]. Our problem is to determine the admissible function u that minimizes

J(u) =

∫ t1

t0

(
1 + u2

y − α

)1/2

dt (1.6.5)

in the class of all admissible u.
The brachistochrone problem can be formulated as a control problem in

a different fashion. By (1.6.1) and (1.6.2), the speed of the particle along the
curve C is given by (2g(y − α))1/2. Hence, if θ is the angle that the tangent
to C makes with the positive x-axis, then

dx

dt
= (2g(y − α))1/2 cos θ

dy

dt
= (2g(y − α))1/2 sin θ.

Let u = cos θ. Then the equations of motion become

dx

dt
= (2g(y − α))1/2u x(t0) = x0 (1.6.6)

dy

dt
= (2g(y − α))1/2(1− u2)1/2 y(t0) = y0.

The problem is to choose a control u satisfying |u| ≤ 1 such that the point
(x, y), which at initial time t0 is at (x0, y0), reaches the prescribed point
(x1, y1) in minimum time. If t1 is the time at which P1 is reached, then this
is equivalent to minimizing t1 − t0. This in turn is equivalent to minimizing

∫ t1

t0

dt (1.6.7)
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subject to (1.6.6), the terminal condition (x1, y1), and the constraint |u(t)| ≤
1.

The brachistochrone problem can be modified in the following fashion. One
can replace the fixed point P1 by a curve Γ1 defined by y = y1(x) and seek
the curve C joining P0 to Γ1 along which the mass particle must travel if it is
to go from P0 to Γ1 in minimum time. We can also replace P0 by a curve Γ0

where Γ0 is at positive distance from Γ1 and ask for the curve C joining Γ0

and Γ1 along which the particle must travel in order to minimize the time of
transit.

1.7 An Optimal Harvesting Problem

We present here a population model of McKendric type with crowding
effect. The reformulation of the control problem coincides with the reformu-
lation by Gurtin and Murphy [40], [68]. The age-dependent population model
is given by

∂p(r, t)

∂t
+
∂p(r, t)

∂t
= −µ(r)p(r, t) − f(N(t))p(r, t) − u(t)p(r, t) (1.7.1)

p(r, 0) = p0(r)

p(0, t) = β

∫ ∞

0

k(r)p(r, t)dr, k(r) = k̃(r)h(r)

N(t) =

∫ ∞

0

p(r, t)dr

where p(r, t) denotes the age density distribution at time t and age r, µ(r) is
the mortality rate, k(r) is the female sex ratio at age r, h(r) is the fertility
pattern, and β is the specific fertility rate of females. The function f(N(·))
indicates decline in the population due to environmental factors such as crowd-
ing. The function u(·) ≥ 0 is the control or harvesting strategy.

We consider the problem of maximizing the harvest

J(u) =

∫ T

0

u(t)N(t)dt (1.7.2)

where 0 ≤ u(·) ≤M is piecewise continuous and (1.7.1) is satisfied. The upper
bound M on u(·) is the maximum effort.
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FIGURE 1.3 [From: H. Maurer and H. D. Mittelmann, Optimal Control
Applications and Methods, 12, 19–31 (1991).]

1.8 Vibration of a Nonlinear Beam

Consider the classical nonlinear Euler beam [56] with deflection limited by
an obstacle parallel to the plane of the beam. The beam is axially compressed
by a force P , which acts as a branching parameter α.

We assume that the energy of a beam that is compressed by a force P is
given by

Iα =
1

2

∫ 1

0

θ̇2dt+ α

∫ 1

0

cos θ(t)dt.

Here α = P/EJ , where EJ is the bending stiffness, t denotes the arc length,
θ(t) is the angle between the tangential direction of the beam at t and the
reference line (see Fig. 1.3), and the length of the beam is ℓ = 1.

For the deflection of the beam away from the reference line we have

ẋ = sin θ, θ̇ =
ẍ√

1− ẋ2
.

Hence, the energy can also be written as

Iα =
1

2

∫ 1

0

ẍ2

1− ẋ2
dt+ α

∫ 1

0

√
1− ẋ2 dt.

We assume that |ẋ(t)| < 1, that is, −π/2 < θ(t) < π/2 holds on [0, 1].
The variational problem for the simply supported beam consists of mini-

mizing the energy subject to the boundary conditions

x(0) = x(1) = 0

and the state constraints

−d ≤ x(t) ≤ d, 0 ≤ t ≤ 1, d > 0.
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In the case of a clamped beam, one replaces the boundary conditions by

x(0) = 0, θ(0) = 0, x(1) = θ(1) = 0.



Chapter 2

Formulation of Control Problems

2.1 Introduction

In this chapter we discuss the mathematical structures of the examples in
the previous chapter.

We first discuss problems whose dynamics are given by ordinary differ-
ential equations. We motivate and give precise mathematical formulations
and equivalent mathematical formulations of apparently different problems.
We then point out the relationship between optimal control problems and
the calculus of variations. Last, we present various formulations of hereditary
problems. These problems are also called delay or lag problems.

2.2 Formulation of Problems Governed by Ordinary
Differential Equations

Many of the examples in the preceding chapter have the following form.
The state of a system at time t is described by a point or vector

x(t) = (x1(t), . . . , xn(t))

in n-dimensional euclidean space, n ≥ 1. Initially, at time t0, the state of the
system is

x(t0) = x0 = (x10, . . . , x
n
0 ).

More generally, we can require that at the initial time t0 the initial state x0 is
such that the point (t0, x0) belongs to some pre-assigned set T0 in (t, x)-space.
The state of the system varies with time according to the system of differential
equations

dxi

dt
= f i(t, x, z) xi(t0) = xi0 i = 1, . . . , n, (2.2.1)

where z = (z1, . . . , zm) is a vector in real euclidean space Rm and the functions
f i are real valued continuous functions of the variables (t, x, z).

15
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By the “system varying according to (2.2.1)” we mean the following. A
function u with values in m-dimensional euclidean space is chosen from some
prescribed class of functions. In this section we shall take this class to be a
subclass C of the class of piecewise continuous functions. When the substitu-
tion z = u(t) is made in the right-hand side of (2.2.1), we obtain a system of
ordinary differential equations:

dxi

dt
= f i(t, x, u(t)) = F i

u(t, x) i = 1, . . . , n. (2.2.2)

The subscript u on the F i
u emphasizes that the right-hand side of (2.2.2)

depends on the choice of function u. For each u in C it is assumed that there
exists a point (t0, x0) in T0 and a function φ = (φ1, . . . , φn) defined on an
interval [t0, t2] with values in R

n such that (2.2.2) is satisfied. That is, we
require that for every t in [t0, t2]

φ
′i(t) =

dφi

dt
= f i(t, φ(t), u(t)) φi(t0) = xi0 i = 1, . . . , n.

At points of discontinuity of u this equation is interpreted as holding for the
one-sided limits. The function φ describes the evolution of the system with
time and will sometimes be called a trajectory.

The function u is further required to be such that at some time t1, where
t0 < t1, the point (t1, φ(t1)) belongs to a pre-assigned set T1 and for t0 ≤ t < t1
the points (t, φ(t)) do not belong to T1. The set T1 is called the terminal set
for the problem. Examples of terminal sets, taken from Chapter 1, are given
in the next paragraph.

In the production planning problem, T1 is the line t = T in the (t, x)
plane. In the first version of the chemical engineering problem, the set T1 is
the hyperplane t = T ; that is, those points in (t, x)-space with x = (x1, . . . , xn)
free and t fixed at T . In the last version of the chemical engineering problem,
T1 is the set of points in (t, x)-space whose coordinates xi are fixed at xif for
i = 1, . . . , j and whose remaining coordinates are free. In some problems it is
required that the solution hit a moving target set G(t). That is, at each time t
of some interval [τ0, τ1] there is a setG(t) of points in x-space, and it is required
that the solution φ hit G(t) at some time t. Stated analytically, we require the
existence of a point t1 in [τ0, τ1] such that φ(t1) belongs to G(t1). An example
of this type of problem is the rendezvous problem in Section 1.4. The set T1 in
the moving target set problem is the set of all points (t, x) = (t, z(t), w(t),m)
with τ0 ≤ t ≤ τ1 and m > 0.

The discussion in the preceding paragraphs is sometimes summarized in
less precise but somewhat more graphic language by the statement that the
functions u are required to transfer the system from an initial state x0 at time
t0 to a terminal state x1 at time t1, where (t0, x0) ∈ T0 and (t1, x1) ∈ T1.
Note that to a given u in C there will generally correspond more than one
trajectory φ. This results from different choices of initial points (t0, x0) in T0
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or from non-uniqueness of solutions of (2.2.2) if no assumptions are made to
guarantee the uniqueness of solutions of (2.2.2) with given initial data (t0, x0).

It is often further required that a function u in C and a corresponding
solution φ satisfy a system of inequality constraints

Ri(t, φ(t), u(t)) ≥ 0 i = 1, 2, . . . , r, (2.2.3)

for all t0 ≤ t ≤ t1, where the functions R1, . . . , Rr are given functions
of (t, x, z). For example, in the production planning problem discussed in
Section 1.2 the constraints can be written as Ri ≥ 0, i = 1, 2, 3, where
R1(t, x, z) = x, R2(t, x, z) = z, and R3(t, x, z) = 1 − z. In Example 1.5.1,
the constraints can be written as Ri ≥ 0, i = 1, 2, where R1(t, x, z) = z + A
and R2(t, x, z) = A− z.

In the examples of Chapter 1, the control u is to be chosen so that certain
functionals are minimized or maximized. These functionals have the following
form. Let f0 be a real valued continuous function of (t, x, z), let g0 be a real
valued function defined on T0, and let g1 be a real valued function defined on
T1. For each u in C and each corresponding solution φ of (2.2.2), define a cost
or payoff or performance index as follows:

J(φ, u) = g0(t0, φ(t0)) + g1(t1, φ(t1)) +

∫ t1

t0

f0(s, φ(s), u(s))ds.

If the function J is to be minimized, then a u∗ in C and a corresponding
solution φ∗ of (2.2.2) are to be found such that J(φ∗, u∗) ≤ J(φ, u) for all u in
C and corresponding φ. In other problems, the functional J is to be maximized.
Examples of J taken from Chapter 1 are given in the next paragraph.

In the examples of Chapter 1, the set T0 is always a point (t0, x0). The
differential equations in the examples, except in Section 1.3, are such that the
solutions are unique. In Section 1.3 let us assume that the functionsGi are such
that the solutions are unique. Thus, in these examples the choice of u com-
pletely determines the function φ. In the economics example, J(φ, u) is the to-
tal cost J(u) given by (1.2.3). The function f0 is given by −U((1−z)F (x))e−γt

and the functions g0 and g1 are identically zero. In the first chemical engineer-
ing example of Section 1.3, J(φ, u) = V (p, θ), where V (p, θ) is given by (1.3.3).
The functions f0 and g0 are identically zero. In the minimum fuel problem of
Section 1.4, J(φ, u) = P (β, ω), where P is given by (1.4.5). Here f0 = β and
g0 and g1 are identically zero. An equivalent formulation is obtained if one
takes J(φ, u) = −mf . Now f0 = 0, g0 = 0, and g1 = −mf .

We conclude this section with a discussion of two generalizations that
will appear in the mathematical formulation to be given in the next section.
The first deals with the initial and terminal data. The initial set T0 and the
terminal set T1 determine a set B of points (t0, x0, t1, x1) in R

2n+2 as follows:

B = {(t0, x0, t1, x1) : (t0, x0) ∈ T0, (t1, x1) ∈ T1}. (2.2.4)

Thus, a simple generalization of the requirement that (t0, φ(t0)) ∈ T0 and
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(t1, φ(t1)) ∈ T1 is the following. Let there be given a set B of points in R
2n+2.

It is required of a trajectory φ that (t0, φ(t0), t1, φ(t1)) belong to B. That is,
we now permit possible relationships between initial and terminal data. We
shall show later that in some sense this situation is really no more general
than the situation in which the initial and terminal data are assumed to be
unrelated.

The second generalization deals with the description of the constraints
on u. For each (t, x), a system of inequalities Ri(t, x, z) ≥ 0, i = 1, . . . , r
determines a set U(t, x) in the m-dimensional z-space; namely

U(t, x) = {z : Ri(t, x, z) ≥ 0, i = 1, . . . , r}.

The requirement that a function u and a corresponding trajectory satisfy
constraints of the form (2.2.3) can therefore be written as follows:

u(t) ∈ U(t, φ(t)) t0 ≤ t ≤ t1.

Thus, the constraint (2.2.3) is a special case of the following more general
constraint condition.

Let Ω be a function that assigns to each point (t, x) of some suitable subset
of Rn+1 a subset of the z-space R

m. Thus,

Ω : (t, x) → Ω(t, x),

where Ω(t, x) is a subset of Rm. The constraint (2.2.3) is replaced by the more
general constraint

u(t) ∈ Ω(t, φ(t)).

2.3 Mathematical Formulation

The formulation will involve the Lebesgue integral. This is essential in
the study of solutions to the problem. The reader who wishes to keep the
formulation on a more elementary level can replace “measurable controls” by
“piecewise continuous controls,” replace “absolutely continuous functions” by
“piecewise C(1) functions,” and interpret the solution of Eq. (2.3.1) as we
interpreted the solution of Eq. (2.2.2).

We establish some notation and terminology. Let t denote a real number,
which will sometimes be called time. Let x denote a vector in real euclidean
space R

n, n ≥ 1; thus, x = (x1, . . . , xn). The vector x will be called the state
variable. We shall use superscripts to denote components of vectors and we
shall use subscripts to distinguish among vectors. Let z denote a vector in
euclidean m-space R

m, m ≥ 1; thus, z = (z1, . . . , zm). The vector z will be
called the control variable. Let R be a region of (t, x)-space and let U be
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a region of z-space, whereby a region we mean an open connected set. Let
G = R × U , the cartesian product of R and U . Let f0, f1, . . . , fn be real
valued functions defined on G. We shall write

f = (f1, . . . , fn) f̂ = (f0, f1, . . . , fn).

Let B be a set of points

(t0, x0, t1, x1) = (t0, x
1
0, . . . , x

n
0 , t1, x

1
1, . . . , x

n
1 )

in R
2n+2 such that (ti, xi), i = 0, 1 are in R and t1 ≥ t0 + δ, for some fixed

δ > 0. The set B will be said to define the end conditions for the problem.
Let Ω be a mapping that assigns to each point (t, x) in R a subset Ω(t, x)

of the region U in z-space. The mapping Ω will be said to define the control
constraints. If U(t, x) = U for all (t, x) in R, then we say that there are no
control constraints.

Henceforth we shall usually use vector-matrix notation. The system of
differential equations (2.2.2) will be written simply as

dx

dt
= f(t, x, u(t)),

where we follow the usual convention in the theory of differential equations
and take dx/dt and f(t, x, u(t)) to be column vectors. We shall not distinguish
between a vector and its transpose if it is clear whether a vector is a row vector
or a column vector or if it is immaterial whether the vector is a row vector or
a column vector. The inner product of two vectors u and v will be written as
〈u, v〉. We shall use the symbol |x| to denote the ordinary euclidean norm of
a vector. Thus,

|x| =
(

n∑

i=1

|xi|2
)1/2

= 〈x, x〉1/2.

If A and B are matrices, then we write their product as AB.
If f = (f1, . . . , fn) is a vector valued function from a set ∆ in some

euclidean space to the euclidean space R
n such that each of the real value

functions f1, . . . , fn is continuous (or C(k), or measurable, etc.) then we shall
say that f is continuous (or C(k), or measurable, etc.) on the set ∆. Similarly,
if a matrix A has entries that are continuous functions (or C(k), or measurable
functions, etc.) defined on a set ∆ in some euclidean space, then we shall say
that A is continuous (or C(k), or measurable, etc.) on ∆.

Definition 2.3.1. A control is measurable function u defined on an interval
[t0, t1] with range in U.

Definition 2.3.2. A trajectory corresponding to a control u is an absolutely
continuous function φ defined on [t0, t1] with range in R

n such that:

(i) (t, φ(t)) ∈ R for all t in [t0, t1]
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(ii) φ is a solution of the system of differential equations

dx

dt
= f(t, x, u(t)); (2.3.1)

that is,
φ′(t) = f(t, φ(t), u(t)) a.e. on [t0, t1].

The point (t0, φ(t0)) will be called the initial point of the trajectory
and the point (t1, φ(t1)) will be called the terminal point of the trajec-
tory. The point (t0, φ(t0), t1, φ(t1)) will be called the end point of the
trajectory.

Note that since φ is absolutely continuous, it is the integral of its derivative.
Hence (ii) contains the statement that the function t → f(t, φ(t), u(t)) is
Lebesgue integrable on [t0, t1].

The system of differential equations (2.3.1) will be called the state equa-
tions.

We emphasize the following about our notation. We are using the letter
z to denote a point of U; we are using the letter u to denote a function with
range in U.

Definition 2.3.3. A control u is said to be an admissible control if there
exists a trajectory φ corresponding to u such that

(i) t→ f0(t, φ(t), u(t)) is in L1[t0, t1].

(ii) u(t) ∈ Ω(t, φ(t)) a.e. on [t0, t1].

(iii) (t0, φ(t0), t1, φ(t1)) ∈ B.

A trajectory corresponding to an admissible control as in Definition 2.3.3
will be called an admissible trajectory.

Definition 2.3.4. A pair of functions (φ, u) such that u is an admissible
control and φ is an admissible trajectory corresponding to u will be called an
admissible pair.

Note that to a given admissible control there may correspond more than
one admissible trajectory as a result of different choices of permissible end
points. Also, even if we fix the endpoint, there may be several trajectories
corresponding to a given control because we do not require uniqueness of
solutions of (2.3.1) for given initial conditions.

We now state the control problem.

Problem 2.3.1. Let A denote the set of all admissible pairs (φ, u) and let A
be non-empty. Let

J(φ, u) = g(t0, φ(t0), t1, φ(t1)) +

∫ t1

t0

f0(t, φ(t), u(t))dt, (2.3.2)
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where (φ, u) is an admissible pair and g is a given real valued function defined
on B. Let A1 be a non-empty subset of A. Find a pair (φ∗, u∗) in A1 that
minimizes (2.3.2) in the class A1. That is, find an element (φ∗, u∗) in A1 such
that

J(φ∗, u∗) ≤ J(φ, u) for all (φ, u) in A1.

The precise formulation of Problem 2.3.1 is rather lengthy. Therefore, the
following statement, which gives the essential data of the problem, is often
used to mean that we are considering Problem 2.3.1.

Minimize (2.3.2) in the class A1 subject to the state equation (2.3.1), the end
conditions B, and the control constraints Ω.

We have stated Problem 2.3.1 as a minimization problem. In some appli-
cations it is required that the functional J be maximized. There is, however,
no need to consider maximum problems separately because the problem of
maximizing J is equivalent to the problem of minimizing −J . Hence we shall
confine our attention to minimum problems.

Definition 2.3.5. A pair (φ∗, u∗) that solves Problem 2.3.1 is called an opti-
mal pair. The trajectory φ∗ is called an optimal trajectory and the control u∗

is called an optimal control.

The first term on the right in (2.3.2) is the function g evaluated at the
end points of an admissible trajectory. Thus, it assigns a real number to every
admissible trajectory and so is a functional G1 defined on the admissible
trajectories. The functional G1 is defined by the formula

G1(φ) = g(t0, φ(t0), t1, φ(t1)).

Other examples of functionals defined on admissible trajectories are

G2(φ) = max{|φ(t)| : t0 ≤ t ≤ t1}
and

G3(φ) = max{|φ(t)− h(t)| : t0 ≤ t ≤ t1},
where h is a given continuous function defined on an interval I containing all
the intervals [t0, t1] of definition of admissible trajectories. The functionals G2

and G3 arise in problems in which in addition to minimizing (2.3.2) it is also
desired to keep the state of the system close to some preassigned state.

The preceding discussion justifies the consideration of the following gener-
alization of Problem 2.3.1.

Problem 2.3.2. Let everything be as in Problem 2.3.1, except that (2.3.2)
is replaced by

Ĵ(φ, u) = G(φ) +

∫ t1

t0

f0(t, φ(t), u(t))dt, (2.3.3)

where G is a functional defined on the admissible trajectories. Find a pair
(φ∗, u∗) in A1 that minimizes (2.3.3) in the class A1.
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2.4 Equivalent Formulations

Certain special cases of Problem 2.3.1 are actually equivalent to Prob-
lem 2.3.1 in the sense that Problem 2.3.1 can be formally transformed into
the special case in question. This information is useful in certain investigations
where it is more convenient to study one of the special cases than to study
Problem 2.3.1. The reader is warned that in making the transformation to the
special case some of the properties of the original problem, such as linearity,
continuity, convexity, etc. may be altered. In any particular investigation one
must check that the pertinent hypotheses made for the original problem are
valid for the transformed problem.

Special cases of Problem 2.3.1 are obtained by taking f0 = 0 or g = 0. In
keeping with the terminology for related problems in the calculus of variations,
we shall call a problem in which f0 = 0 a Mayer problem and we shall call
a problem in which g = 0 a Lagrange problem. Problem 2.3.1 of Section 2.3
is sometimes called a Bolza problem, also as in the calculus of variations. We
shall show that the Mayer formulation and the Lagrange formulation are as
general as the Bolza formulation by showing that Problem 2.3.1 can be written
either as a Mayer problem or as a Lagrange problem.

We formulate Problem 2.3.1 as a Mayer problem in a higher dimensional
euclidean space. Let x̂ = (x0, x) = (x0, x1, . . . , xn). Let R̂ = R

1 × R and

let Ĝ = R̂ × U . The functions f0, f1, . . . , fn are defined on Ĝ since they are
defined on G and they are independent of x0. Let the mapping Ω̂ be defined
on R̂ by the equation Ω̂(t, x̂) = Ω(t, x). Let

B̂ = {(t0, x̂0, t1, x̂1) : (t0, x0, t1, x1) ∈ B, x00 = 0}.

Let (φ, u) be an admissible pair for Problem 2.3.1. Let φ̂ = (φ0, φ), where φ0

is an absolutely continuous function such that

φ0
′

(t) = f0(t, φ(t), u(t)) φ0(t0) = 0

for almost every t in [t0, t1]. By virtue of (i) of Definition 2.3.3 such a function
φ0 exists and is given by

φ0(t) =

∫ t

t0

f0(s, φ(s), u(s))ds.

Then (φ̂, u) is an admissible pair for a problem in which R,G,Ω,B, replaced
by R̂, Ĝ, Ω̂, B̂, respectively, and in which the system of state equations (2.3.1)
is replaced by

dx0

dt
= f0(t, x, u(t)) (2.4.1)

dx

dt
= f(t, x, u, (t)).
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If we set f̂ = (f0, f), then Eq. (2.4.1) can be written as

dx̂

dt
= f̂(t, x, u(t)).

Conversely, to every admissible pair (φ̂, u) for a problem involving R̂, Ĝ, Ω̂, B̂
and (2.4.1) there corresponds the admissible pair (φ, u) for Problem 2.3.1,

where φ consists of the last n-components of φ̂. Let

ĝ(t0, x̂0, t1, x̂1) = g(t0, x0, t1, x1) + x01

and let
Ĵ(φ̂, u) = ĝ(t0, φ̂(t0), t1, φ̂(t1)).

Then Ĵ(φ̂, u) = J(φ, u), where φ̂ = (φ0, φ). Hence the Mayer problem of

minimizing Ĵ subject to state equations (2.4.1), control constraints Ω̂, and

end conditions B̂ is equivalent to Problem 2.3.1.
We now show that Problem 2.3.1 can be formulated as a Lagrange problem.

Let x̂, R̂, Ĝ, Ω̂ be as in the previous paragraph. Let

B̂ = {(t0, x̂0, t1, x̂1) : (t0, x0, t1, x1) ∈ B, x00 = g(t0, x0, t1, x1)/(t1 − t0)}.
(2.4.2)

(Recall that for all points in B we have t1 > t0.) Let (φ, u) be an admissible pair

for Problem 2.3.1 and let φ̂ = (φ0, φ) where φ0(t) ≡ g(t0, x0, t1, x1)/(t1 − t0).

Then (φ̂, u) is an admissible pair for a problem in whichR,G,Ω,B are replaced

by roofed quantities with B̂ as in (2.4.2) and with state equations

dx0

dt
= 0 (2.4.3)

dx

dt
= f(t, x, u(t)).

Conversely, to every admissible pair (φ̂, u) for the problem with roofed quan-
tities there corresponds the admissible pair (φ, u) for Problem 2.3.1, where φ

consists of the last n components of φ̂. If we replace f0 of Problem 2.3.1 by
f0 + x0 and let

Ĵ(φ̂, u) =

∫ t1

t0

(f0(t, φ(t), u(t)) + φ0(t))dt (2.4.4)

then Ĵ(φ̂, u) = J(φ, u). Hence the Lagrange problem of minimizing (2.4.4)

subject to state equations (2.4.3), control constraints Ω̂, and end conditions

B̂ is equivalent to Problem 2.3.1.
In Problem 2.3.1 the initial time t0 and the terminal time t1 need not be

fixed. We now show that Problem 2.3.1 can be written as a problem with fixed
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initial time and fixed terminal time. We do so by changing the time parameter
to s via the equation

t = t0 + s(t1 − t0) 0 ≤ s ≤ 1

and by introducing new state variables as follows.
Let w be a scalar and consider the problem with state variables (t, x, w),

where x is an n-vector and t is a scalar. Let s denote the time variable. Let
the state equations be

dt

ds
= w

dw

ds
= 0 (2.4.5)

dx

ds
= f(t, x, ū(s))w

where ū is the control and f is as in Problem 2.3.1. Let

B̄ = {(s0, t0, x0, w0, s1, t1, x1, w1) : s0 = 0, s1 = 1, (2.4.6)

(t0, x0, t1, x1) ∈ B, w0 = t1 − t0}.

Note that the initial and terminal times are now fixed. Let Ω̄(s, t, x, w) =
Ω(t, x). Let φ̄ = (τ, ξ, ω) be a solution of (2.4.5) corresponding to a control ū,
where the Greek-Latin correspondence between (τ, ξ, ω) and (t, x, w) indicates
the correspondence between components of φ̄ and the system (2.4.5). Let

J̄(φ̄, ū) = g(τ(0), ξ(0), τ(1), ξ(1)) +

∫ 1

0

f0(τ(s), ξ(s), ū(s))ω(s)ds. (2.4.7)

Consider the fixed end-time problem of minimizing (2.4.7) subject to the state
equations (2.4.5), the control constraints Ω̄, and the end conditions B̄.

Since t1−t0 > 0, it follows that for any solution of (2.4.5) satisfying (2.4.6)
we have ω(s) = t1 − t0, a positive constant, for 0 ≤ s ≤ 1. Let (φ, u) be an
admissible pair for Problem 2.3.1. It is readily verified that if

τ(s) = t0 + s(t1 − t0) ξ(s) = φ(t0 + s(t1 − t0))

ū(s) = u(t0 + s(t1 − t0)) ω(s) = t1 − t0,

then (φ̄, ū) = (τ, ξ, ω, ū) is an admissible pair for the fixed end-time problem
and J̄(φ̄, ū) = J(φ, u). Conversely, let (φ̄, ū) be an admissible pair for the fixed
end-time problem. If we set

φ(t) = ξ

(
t− t0
t1 − t0

)
u(t) = ū (t− t0t1 − t0) , t0 ≤ t ≤ t1,

then since τ(s) = t0 + s(t1 − t0), we have t = τ(s) for 0 ≤ s ≤ 1. It is readily
verified that (φ, u) is admissible for Problem 2.3.1 and that J(φ, u) = J̄(φ̄, ū).
Hence Problem 2.3.1 is equivalent to a fixed end-time problem.
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The following observation will be useful in the sequel. Since for any admis-
sible solution of the fixed time problem we have ω(s) = t1 − t0 > 0, we can
take the set R̄ for the fixed end-time problem to be [0, 1] × R × R

+, where
R

+ = {w : w > 0}.
A special case of the end conditions occurs if the initial and terminal data

are separated. In this event, a set T0 of points (t0, x0) in R
n+1 and a set T1 of

points (t1, x1) in R
n+1 are given and an admissible trajectory is required to

satisfy the conditions

(ti, φ(ti)) ∈ Ti, i = 0, 1. (2.4.8)

The set B in this case is given by (2.2.4). We shall show that the apparently
more general requirement (iii) of Definition 2.3.3 can be reduced to the form
(2.4.8) by embedding the problem in a space of higher dimension as follows.

Let y = (y1, . . . , yn) and let y0 be a scalar. Let ŷ = (y0, y). Let the sets R
and G of Problem 2.3.1 be replaced by sets R̃ = R × R

n+1 and G̃ = R̃ × U .
Then the vector function f̂ = (f0, f) is defined on G̃ since it is independent

of ŷ. Let Ω̃(t, x, ŷ) = Ω(t, x). Let the state equations be

dx

dt
= f(t, x, u(t)) (2.4.9)

dŷ

dt
= 0.

Let

T̃0 = {(t0, x0, y00 , y0) : (t0, x0, y00 , y0) ∈ B}
T̃1 = {(t1, x1, y01 , y1) : y01 = t1, y

i
1 = xi1, i = 1, . . . , n}.

Replace condition (iii) of Definition 2.3.2 by the condition

(ti, φ̃(ti)) ∈ T̃i i = 0, 1, (2.4.10)

where φ̃ is a solution of (2.4.9). Then it is easily seen that a function u is an
admissible control for Problem 2.3.1 if and only if it is an admissible control for
the system (2.4.9) subject to control constraints Ω̃ and end-condition (2.4.10).

Moreover, the admissible trajectories φ̃ are of the form φ̃ = (φ, t1, x1). Hence

if we take the cost functional to be J̃ , where

J̃(φ̃, u) = J(φ, u),

then Problem 2.3.1 is equivalent to a problem with end conditions of the form
(2.4.8).
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2.5 Isoperimetric Problems and Parameter
Optimization

In some control problems, in addition to the usual constraints there exists
constraints of the form

∫ t1

t0

hi(t, φ(t), u(t))dt ≤ ci i = 1, . . . , q (2.5.1)

∫ t1

t0

hi(t, φ(t), u(t))dt = ci i = q + 1, . . . , p,

where the functions hi are defined on G and the constants ci are prescribed.
Constraints of the form (2.5.1) are called isoperimetric constraints. A problem
with isoperimetric constraints can be reduced to a problem without isoperi-
metric constraints as follows.

Introduce additional state variables xn+1, . . . , xn+p and let x̃ = (x, x̄),
where x̄ = (xn+1, · · · , xn+p). Let the state equations be

dxi

dt
= f i(t, x, u(t)) i = 1, . . . , n (2.5.2)

dxn+i

dt
= hi(t, x, u(t)), i = 1, . . . , p

or
dx̃

dt
= f̃(t, x, u, (t)),

where f̃ = (f, h). Let the control constraints be given by the mapping Ω̃

defined by the equation Ω̃(t, x̃) = Ω(t, x). Let the end conditions be given by

the set B̃ consisting of all points (t0, x̃0, t1, x̃1) such that: (i) (t0, x0, t1, x1) ∈ B;
(ii) xi0 = 0, i = n + 1, . . . , n + p; (iii) xi1 ≤ ci, i = n + 1, . . . , n + q; and (iv)
xi1 = ci, i = n+ q + 1, . . . , n+ p. For the system with state variable x̃, let R
be replaced by R̃ = R× R

p and let G be replaced by G̃ = R̃ × U .
Let (φ, u) be an admissible pair for Problem 2.3.1 such that the constraints

(2.5.1) are satisfied. Let φ̃ = (φ, φ̄), where

φ̄(t) =

∫ t

0

h(s, φ(s), u(s))ds φ̄(0) = 0.

Then (φ̃, u) is an admissible pair for the system with state variable x̃. Con-

versely, if (φ̃, u) is admissible for the x̃ system then (φ, u), where φ consists of

the first n components of φ̃, is admissible for Problem 2.3.1 and satisfies the
isoperimetric constraints. Hence by taking the cost functional for the problem
in x̃-space to be J̃ , where J̃(φ̃, u) = J(φ, u), we can write the problem with
constraints (2.5.1) as an equivalent problem in the format of Problem 2.3.1.
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In Problem 2.3.1, the functions f0, f1, . . . , fn defining the cost functional
and the system of differential equations (2.3.1) are regarded as being fixed.
In some applications these functions are dependent upon a parameter vector
w = (w1, . . . , wk), which is at our disposal. For example, in the rocket problem
of Section 1.4 we may be able to vary the effective exhaust velocity over some
range c0 ≤ c ≤ c1 by proper design changes. The system differential equations
(2.3.1) will now read

dx

dt
= f(t, x, w, u(t)) w ∈W,

where W is some preassigned set in R
k. For a given choice of control u a

corresponding trajectory φ will in general now depend on the choice of pa-
rameter value w. Hence, so will the value J(φ, u, w) of the cost functional. The
problem now is to choose a parameter value w∗ in W for which there exists
an admissible pair (φ∗, u∗) such that J(φ∗, u∗, w∗) ≤ J(φ, u, w) for all w in W
and corresponding admissible pairs (φ, u).

The problem just posed can be reformulated in the format of Problem 2.3.1
in (n + k + 1)-dimensional space as follows. Introduce new state variables
w = (w1, . . . , wk) and consider the system

dxi

dt
= f i(t, x, w, u(t)) i = 1, . . . , n (2.5.3)

dwi

dt
= 0 i = 1, . . . , k.

Let x̃ = (x,w), let R̃ = R× R
k, let G̃ = R̃ × U , and let Ω̃(t, x, w) = Ω(t, x).

Let the end conditions be given by

B̃ = {(t0, x0, w0, t1, x1, w1) : (t0, x0, t1, x1) ∈ B, w0 ∈W}.

Let J̃(φ̃, u) = J(φ,w, u). It is readily verified that the problem of minimizing J

subject to (2.5.3), the control constraints Ω̃, and end conditions B̃ is equivalent
to the problem involving the optimization of parameters.

2.6 Relationship with the Calculus of Variations

The brachistochrone problem in Section 1.6 is an example of the simple
problem in the calculus of variations, which can be stated as follows. Let t
be a scalar, let x be a vector in R

n, and let x′ be a vector in R
n. Let G be

a region in (t, x, x′)-space. Let f0 be a real valued function defined on G. Let
B be a given set of points (t0, x0, t1, x1) in R

2n+2 and let g be a real valued
function defined in B. An admissible trajectory is defined to be an absolutely
continuous function φ defined on an interval [t0, t1] such that:


