## TEXTBOOKS in MATHEMATICS

# Differential Equations with MATLAB ${ }^{\circledR}$ 

Exploration, Applications, and Theory


Mark A. McKibben
Micah D. Webster

# Differential Equations with MATLAB ${ }^{\circledR}$ <br> Exploration, Applications, and Theory 

## TEXTBOOKS in MATHEMATICS

## Series Editors: Ken Rosen and Al Boggess

```
PUBLISHED TITLES
RIIK ANALYSIS IN ENGINEERING AND ECONOMICS, SECOND EDITION
Bilal M. Ayyub
INTRODUCTION TO THE CALCULUS OF VARIATIONS AND CONTROL WITH MODERN APPLICATIONS
John T. Burns
MIMETIC DISCRETILATION METHODS
Jose E. Castillo
AN INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS WITH MATLAB®, SECOND EDITION
Mathew Coleman
RISK MANAGEMENT AND SIMULATION
Aparna Gupta
ABSTRACT ALGEBRA: AN INQUIRYBASED APPROACH
Jonathan K. Hodge, Steven Schlicker, and Ted Sundstrom
QUADRACTIC IRRATIONALS: AN INTRODUCTION TO CLASSICAL NUMBER THEORY
Franz Holter-Koch
group INvERSES OF M-MATRICES AND THEIR APPLICATIONS
Stephen J. Kirkland
AN INTRODUCTION TO NUMBER THEORY WITH CRYPTOGRAPHY
James Kraft and Larry Washington
REAL ANALYSIS AND FOUNDATIONS, THIRD EDITION
Steven G. Krantz
ELEMENTS OF ADVANCED MATHEMATICS, THIRD EDITION
Steven G. Krantz
APPLYING ANALYTICS: A PRACTICAL APPROACH
Evan S. Levine
advanced linear algebra
Nicholas Loehr
DIFFERENTIAL EQUATIONS WITH MATLAB®: EXPLORATION, APPLICAIONS, AND THEORY
Mark A. Mckibben and Micah D.Webster
```


## PUBLISHED TITLES CONTINUED

APPLICATIONS OF COMBINATORIAL MATRIX THEORY TO LAPLACIAN MATRICES OF GRAPHS Jason J. Molitierno

ABSTRACT ALGEBRA: AN INTERACTIVE APPROACH
William Paulsen
ADVANCED CALCULUS: THEORY AND PRACTICE
John Srdjan Petrovic
COMPUTATIONS OF IMPROPER REIMANN INTEGRALS
loannis Roussos

This page intentionally left blank

# Differential Equations with MATLAB ${ }^{\circledR}$ 

Exploration, Applications, and Theory

Mark A. McKibben<br>West Chester University<br>West Chester, Pennsylvania, USA

Micah D. Webster<br>Goucher College<br>Baltimore, Maryland, USA

MATLAB ${ }^{\circ}$, Simulink ${ }^{\circ}$, and Stateflow ${ }^{\circ}$ are trademarks of The MathWorks, Inc. and are used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book's use or discussion of MATLAB ${ }^{\circ}$, Simulink ${ }^{\circ}$, and Stateflow ${ }^{\circ}$ software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB ${ }^{\circ}$, Simulink ${ }^{\circ}$, and Stateflow ${ }^{\circ}$ software.

CRC Press
Taylor \& Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2015 by Taylor \& Francis Group, LLC
CRC Press is an imprint of Taylor \& Francis Group, an Informa business
No claim to original U.S. Government works
Version Date: 20140724
International Standard Book Number-13: 978-1-4665-5708-6 (eBook - PDF)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor \& Francis Web site at http://www.taylorandfrancis.com<br>and the CRC Press Web site at http://www.crcpress.com

To our mentors...
Sergiu Aizicovici, Sam "Cal" Calavitta, Patrick Guidotti, and David Keck.

This page intentionally left blank

## Contents

List of Figures ..... xv
List of Tables ..... xxiii
Preface ..... xxv
Author Bios ..... xxix
I Ordinary Differential Equations ..... 1
1 Welcome! ..... 3
1.1 Introduction ..... 3
1.2 This Book Is a Field Guide. What Does That Mean For YOU? ..... 4
1.3 Mired in Jargon-A Quick Language Lesson! ..... 5
1.4 Introducing MATLAB ..... 6
1.5 A First Look at Some Elementary Mathematical Models ..... 7
2 A Basic Analysis Toolbox ..... 13
2.1 Some Basic Mathematical Shorthand ..... 14
2.2 Set Algebra ..... 15
2.3 Functions ..... 16
2.4 The Space $(\mathbb{R},|\cdot|)$ ..... 18
2.4.1 Order Properties ..... 18
2.4.2 Absolute Value ..... 19
2.4.3 Completeness Property of $(\mathbb{R},|\cdot|)$ ..... 20
2.5 A Closer Look at Sequences in $(\mathbb{R},|\cdot|)$ ..... 21
2.5.1 Sequences and Subsequences ..... 21
2.5.2 Convergence ..... 22
2.5.3 Properties of Convergent Sequences ..... 25
2.5.4 Cauchy Sequences ..... 26
2.5.5 A Brief Look at Infinite Series ..... 27
2.5.6 Power Series ..... 29
2.6 The Spaces $\left(\mathbb{R}^{N},\|\cdot\|_{\mathbb{R}^{N}}\right)$ and $\left(\mathbb{M}^{N}(\mathbb{R}),\|\cdot\|_{\mathbb{M}^{N}(\mathbb{R})}\right)$ ..... 30
2.6.1 The Space $\left(\mathbb{R}^{N},\|\cdot\|_{\mathbb{R}^{N}}\right)$ ..... 30
2.6.2 The Space $\left(\mathbb{M}^{N}(\mathbb{R}),\|\cdot\|_{\mathbb{M}^{N}(\mathbb{R})}\right)$ ..... 33
2.7 Calculus of $\mathbb{R}^{N}$-valued and $\mathbb{M}^{N}(\mathbb{R})$-valued Functions ..... 35
2.7.1 Notation and Interpretation ..... 36
2.7.2 Limits and Continuity ..... 38
2.7.3 The Derivative ..... 39
2.7.4 The Integral ..... 40
2.7.5 Sequences in $\mathbb{R}^{N}$ and $\mathbb{M}^{N}(\mathbb{R})$ ..... 42
2.7.6 Continuity—Revisited ..... 45
2.8 Some Elementary ODEs ..... 46
2.8.1 Separation of Variables ..... 46
2.8.2 First-Order Linear ODEs ..... 47
2.8.3 Higher-Order Linear ODEs ..... 48
2.9 Looking Ahead ..... 49
3 A First Wave of Mathematical Models ..... 51
3.1 Newton's Law of Heating and Cooling-Revisited ..... 51
3.2 Pharmocokinetics ..... 54
3.3 Uniform Mixing Models ..... 57
3.4 Combat! Nation in Balance ..... 60
3.5 Springs and Electrical Circuits-The Same, But Different ..... 61
3.5.1 Spring-Mass System ..... 62
3.5.2 Simple Electrical Circuits ..... 66
3.5.2.1 The Same, But Different! ..... 68
3.6 Boom!-Chemical Kinetics ..... 71
3.6.1 Reaction Models ..... 72
3.7 Going, Going, Gone! A Look at Projectile Motion ..... 75
3.7.1 Projectile Motion Models ..... 75
3.8 Shake, Rattle, Roll! ..... 78
3.8.1 Floor Displacement Model ..... 78
3.9 My Brain Hurts! A Look at Neural Networks ..... 80
3.10 Breathe In, Breathe Out-A Respiratory Regulation Model ..... 85
3.11 Looking Ahead! ..... 88
4 Finite-Dimensional Theory-Ground Zero: The Homogenous Case ..... 93
4.1 Introducing the Homogenous Cauchy Problem (HCP) ..... 93
4.2 Lessons Learned from a Special Case ..... 95
4.3 Defining the Matrix Exponential $e^{\mathbf{A} t}$ ..... 96
4.3.1 One Approach-Taylor Series ..... 96
4.3.2 Another Approach ..... 99
4.4 Putzer's Algorithm ..... 102
4.5 Properties of $e^{\mathbf{A} t}$ ..... 106
4.6 The Homogenous Cauchy Problem: Well-posedness ..... 112
4.7 Higher-Order Linear ODEs ..... 113
4.8 A Perturbed (HCP) ..... 117
4.9 What Happens to Solutions of (HCP) as Time Goes On and On and On...? ..... 123
4.10 Looking Ahead ..... 126
5 Finite-Dimensional Theory-Next Step: The Non-Homogenous Case ..... 129
5.1 Introducing...The Non-Homogenous Cauchy Problem (Non-CP) ..... 129
5.2 Carefully Examining the One-Dimensional Version of (Non-CP) ..... 131
5.2.1 Solving (Non-CP) - Calculus Based ..... 131
5.2.2 Solving (Non-CP)-Numerics Based ..... 131
5.2.3 Building an Existence Theory for One-Dimensional (Non-CP) ..... 134
5.2.4 Defining What is Meant By a Solution of (Non-CP) ..... 136
5.3 Existence Theory for General (Non-CP) ..... 136
5.3.1 Constructing a Solution of (Non-CP) ..... 136
5.3.2 Computing with the Variation of Parameters Formula ..... 137
5.3.3 An Existence-Uniqueness Theorem for (Non-CP) ..... 142
5.4 Dealing with a Perturbed (Non-CP) ..... 144
5.5 What Happens to Solutions of (Non-CP) as Time Goes On and On and On..? ..... 150
6 A Second Wave of Mathematical Models-Now, with Nonlinear Interactions ..... 153
6.1 Newton's Law of Heating and Cooling Subjected to Polynomial Effects ..... 153
6.2 Pharmocokinetics with Concentration-Dependent Dosing ..... 155
6.3 Springs with Nonlinear Restoring Forces ..... 156
6.4 Circuits with Quadratic Resistors ..... 157
6.5 Enyzme Catalysts ..... 158
6.6 Projectile Motion-Revisited ..... 162
6.7 Floor Displacement Model with Nonlinear Shock Absorbers ..... 163
7 Finite-Dimensional Theory-Last Step: The Semi-Linear Case ..... 165
7.1 Introducing the Even-More General Semi-Linear Cauchy Problem (Semi-CP) ..... 165
7.2 New Challenges ..... 167
7.3 Behind the Scenes: Issues and Resolutions Arising in the Study of (Semi-CP) ..... 168
7.4 Lipschitz to the Rescue! ..... 172
7.5 Gronwall's Lemma ..... 175
7.6 The Existence and Uniqueness of a Mild Solution for (Semi-CP) ..... 176
7.7 Dealing with a Perturbed (Semi-CP) ..... 176
II Abstract Ordinary Differential Equations ..... 183
8 Getting the Lay of a New Land ..... 185
8.1 A Hot Example ..... 185
8.2 The Hunt for a New Abstract Paradigm ..... 191
8.3 A Small Dose of Functional Analysis ..... 195
8.3.1 Moving Beyond Just $\mathbb{R}^{N}$ and $\mathbb{M}^{N}$ : Introducing the Notions of Banach Space and Hilbert Space ..... 195
8.3.1.1 The Notion of Convergence Revisited ..... 197
8.3.1.2 An Important Topological Notion-Closed Sets ..... 198
8.3.2 Hilbert Spaces ..... 199
8.3.3 Linear Operators ..... 203
8.3.4 Calculus in Abstract Spaces ..... 207
8.3.4.1 Limits ..... 207
8.3.4.2 Continuity ..... 207
8.3.4.3 The Derivative ..... 208
8.3.4.4 The Integral ..... 209
8.4 Looking Ahead ..... 210
9 Three New Mathematical Models ..... 211
9.1 Turning Up the Heat-Variants of the Heat Equation ..... 211
9.1.1 One-Dimensional Diffusion Equation ..... 212
9.1.2 Two-Dimensional Diffusion Equation ..... 223
9.1.3 Abstraction Formulation ..... 229
9.2 Clay Consolidation and Seepage of Fluid Through Fissured Rocks ..... 230
9.2.1 Seepage of Fluid Through Fissured Rocks ..... 230
9.2.2 Two-Dimensional Seepage of Fluid Through Fissured Rocks ..... 239
9.2.3 Hypoplasticity ..... 245
9.2.4 Two-Dimensional Hypoplasticity ..... 252
9.2.5 Abstract Formulation ..... 258
9.3 The Classical Wave Equation and its Variants ..... 258
9.3.1 One-Dimensional Wave Equation ..... 258
9.3.2 Two-Dimensional Wave Equations ..... 271
9.3.3 Abstract Formulation ..... 276
9.4 An Informal Recap: A First Step Toward Unification ..... 278
10 Formulating a Theory for (A-HCP) ..... 283
10.1 Introducing (A-HCP) ..... 283
10.2 Defining $e^{A t}$ ..... 284
10.3 Properties of $e^{A t}$ ..... 293
10.4 The Abstract Homogeneous Cauchy Problem: Well-posedness ..... 294
10.5 A Brief Glimpse of Long-Term Behavior ..... 298
10.6 Looking Ahead ..... 299
11 The Next Wave of Mathematical Models-With Forcing ..... 303
11.1 Turning Up the Heat-Variants of the Heat Equation ..... 304
11.1.1 One-Dimensional Diffusion with Forcing ..... 304
11.1.2 Two-Dimensional Diffusion with Forcing ..... 320
11.1.3 Abstract Formulation ..... 331
11.2 Seepage of Fluid Through Fissured Rocks ..... 332
11.2.1 One-Dimensional Fissured Rock Model with Forcing ..... 332
11.2.2 Higher-Dimensional Fissured Rock Model with Forcing ..... 342
11.2.3 Abstract Formulation ..... 352
11.3 The Classical Wave Equation and its Variants ..... 352
11.3.1 One-Dimensional Wave Equation with Source Effects ..... 352
11.3.2 Two-Dimensional Wave Equation with Source Effects ..... 373
11.3.3 Abstract Formulation ..... 384
12 Remaining Mathematical Models ..... 385
12.1 Population Growth-Fisher's Equation ..... 385
12.1.1 Two-Dimensional Fisher's Equation ..... 387
12.2 Zombie Apocalypse! Epidemiological Models ..... 387
12.3 How Did That Zebra Gets Its Stripes? A First Look at Spatial Pattern For- mation ..... 389
12.4 Autocatalysis Combustion! ..... 390
12.5 Money, Money, Money - A Simple Financial Model ..... 391
12.5.1 Black and Scholes Equation and the Heat Equation ..... 394
13 Formulating a Theory for (A-NonCP) ..... 397
13.1 Introducing (A-NonCP) ..... 397
13.2 Existence and Uniqueness of Solutions of (A-NonCP) ..... 400
13.3 Dealing with a Perturbed (A-NonCP) ..... 401
13.4 Long-Term Behavior ..... 404
13.5 Looking Ahead ..... 405
14 A Final Wave of Models-Accounting for Semilinear Effects ..... 409
14.1 Turning Up the Heat-Semi-Linear Variants of the Heat Equation ..... 409
14.2 The Classical Wave Equation with Semilinear Forcing ..... 412
14.3 Population Growth-Fisher's Equation ..... 416
14.3.1 Two-Dimensional Fisher's Equation ..... 422
14.4 Zombie Apocalypse! Epidemiological Models ..... 428
14.5 How Did That Zebra Get Its Stripes? A First Look at Spatial Pattern For- mation ..... 436
14.5.1 Two-Dimensional Gray-Scott Equation ..... 441
14.6 Autocatalysis-Combustion! ..... 446
Epilogue ..... 453
Appendix ..... 455
Bibliography ..... 459
Index ..... 463

This page intentionally left blank

## List of Figures

1.1 MATLAB Command Window ..... 7
1.2 MATLAB Elementary Population Growth GUI ..... 10
1.3 MATLAB Heating Cooling GUI ..... 11
2.1 MATLAB Convergence GUI ..... 23
2.2 MATLAB Infinite Limits GUI ..... 24
2.3 MATLAB Cauchy Sequences GUI ..... 27
2.4 MATLAB Vector Valued Plot GUI ..... 37
2.5 MATLAB Vector Sequences GUI ..... 43
3.1 MATLAB Heating Cooling-Revisited GUI ..... 53
3.2 MATLAB Pharmocokinetics GUI ..... 55
3.3 MATLAB Beer Blending GUI ..... 60
3.4 MATLAB Vertical Spring GUI ..... 64
3.5 Horizontal Series of Springs ..... 65
3.6 Single Closed Loop ..... 66
3.7 Three Closed Loops ..... 67
3.8 MATLAB Simple Circuit GUI ..... 69
3.9 Circuit with junctions ..... 70
3.10 MATLAB Reactions GUI ..... 74
3.11 MATLAB Projectile Motion GUI ..... 78
3.12 MATLAB Floor Displacement GUI ..... 80
3.13 Multicompartmental Model ..... 83
3.14 Simplified Respiratory Model ..... 86
4.1 MATLAB Diagonalizable GUI ..... 98
4.2 MATLAB Putzer Help GUI ..... 106
4.3 MATLAB Exponential Properties GUI ..... 107
4.4 MATLAB Exponential Properties GUI ..... 110
4.5 MATLAB Linear ACP Solver GUI ..... 119
6.1 MATLAB Pharmocokinetics Semilinear GUI ..... 155
6.2 MATLAB Vertical Spring Semilinear GUI ..... 157
6.3 MATLAB Reactions Semilinear GUI ..... 161
7.1 MATLAB Lipschitz GUI ..... 173
8.1 Examples of partial sums defining (8.14) at a fixed $t$. ..... 188
8.2 MATLAB Unbounded Operator GUI ..... 206
9.1 MATLAB Heat Equation 1D GUI ..... 214
9.2 IBVP (9.11) with $k^{2}=1$, Dirichlet BC, initial profile: $\sin \pi x$ ..... 216
9.3 IBVP (9.11) with $k^{2}=0.25$, Dirichlet BC, initial profile: $\sin \pi x$ ..... 216
9.4 Perturbing Parameters and Initial Conditions with MATLAB Heat Equa- tion 1D GUI ..... 218
9.5 Visualizing Differences in Solutions with Different Norms ..... 221
9.6 MATLAB Heat Equation Nonhomogeneous BC 1D GUI ..... 221
9.7 Solution to (9.21) with $T_{1}=1=T_{2}, k^{2}=1$, and $z_{0}(x)=e^{-100 x^{2}}$ ..... 222
9.8 A Steady-State Temperature with Nonhomogeneous BCs ..... 223
9.9 MATLAB Heat Equation 2D GUI ..... 224
9.10 Two-Dimensional Heat Equation with $k^{2}=1$, periodic BC, initial profile: step function ..... 225
9.11 Two-Dimensional Heat Equation with $k^{2}=.25$, Dirichlet BC, initial profile: $\sin (\pi x) \sin (\pi y)$ ..... 226
9.12 Perturbing Parameters and Initial Conditions with MATLAB Heat Equa- tion 2D GUI ..... 228
9.13 Visualizing Continuous Dependence with Different Norms ..... 228
9.14 MATLAB Fluid Seepage 1D GUI ..... 229
9.15 IBVP (9.43) with $\beta=1, \alpha=1$, initial profile: $\cos 4 \pi x$. ..... 235
9.16 IBVP (9.43) with $\beta=2, \alpha=1$, initial profile: $e^{-40 x^{2}}$ ..... 235
9.17 Perturbing Parameters and Initial Conditions with MATLAB Fluid Seepage 1D GUI ..... 236
9.18 IBVP (9.44) with $\beta=0.001, \alpha=1$, initial profile: step function ..... 237
9.19 Visualizing Continuous Dependence with Different Norms ..... 238
9.20 MATLAB Fluid Seepage 2D GUI ..... 240
9.21 Fluid Seepage Model: periodic BCs, $\alpha=1=\beta$, initial profile: step function. ..... 241
9.22 IBVP (9.47) with $\beta=2, \alpha=1$, initial profile: $\cos \pi x+\cos \pi y+1$ ..... 242
9.23 IBVP (9.47) with $\beta=.001, \alpha=1$, initial profile: step function. ..... 243
9.24 Perturbing Parameters and Initial Conditions with MATLAB Fluid Seepage 2D GUI ..... 243
9.25 Differences Appear Small in Both Norms ..... 244
9.26 MATLAB Soil Mechanics 1D GUI ..... 247
9.27 IBVP (9.51) with $\beta=1, \alpha=3$, initial profile: $\cos 4 \pi x$ ..... 248
9.28 Perturbing Parameters and Initial Conditions with MATLAB Soil Mechan- ics 1D GUI ..... 248
9.29 IBVP (9.51) with $\beta=2, \alpha=1$, initial profile: $e^{-40 x^{2}}$ ..... 249
$9.30 \operatorname{IBVP}(9.51)$ with $\beta=0.001, \alpha=1$, initial profile: step function ..... 250
9.31 Differences in both norms tend to stay small and get even smaller over time. ..... 250
9.32 MATLAB Soil Mechanics 2D GUI ..... 253
9.33 IBVP (9.47) with $\beta=2, \alpha=1$, initial profile: $\cos \pi x+\cos p i y+1$ ..... 254
9.34 IBVP (9.53) with $\beta=.001, \alpha=1$, initial profile: step function. ..... 254
9.35 Perturbing Parameters and Initial Conditions with MATLAB Soil Mechan- ics 2D GUI ..... 256
9.36 Moderate differences in model parameters and initial conditions for IBVP (9.53) ..... 256
9.37 MATLAB Wave Equation 1D GUI ..... 261
9.38 IBVP (9.68) with $c^{2}=1$, initial profile: $e^{-40 x^{2}}$, initial velocity: 0 ..... 262
9.39 IBVP (9.70) with $c^{2}=3$, initial profile: $\sin \pi x$, initial velocity: 0 ..... 264
9.40 Perturbing Parameters and Initial Conditions with MATLAB Wave Equa- tion 1D GUI ..... 264
9.41 Perturbing the Initial Conditions only in (9.67) ..... 265
9.42 Perturbing both the Initial Conditions and the Propagation Constant in (9.67) ..... 265
9.43 MATLAB Wave Equation Damp 1D GUI ..... 267
9.44 A Wave Equation Comparison, $c^{2}=3, \alpha=5$, initial position: $e^{-40 x^{2}}$, initial velocity: 0 ..... 268
9.45 Perturbing Parameters and Initial Conditions with MATLAB Wave Equa- tion Damped 1D GUI ..... 269
9.46 Perturbing Initial Conditions and Parameters ..... 270
9.47 MATLAB Wave Equation 2D GUI ..... 272
9.48 IBVP (9.74) with $c^{2}=3$, initial position: $e^{-40 x^{2}}$, initial velocity: 0 ..... 273
9.49 Two-Dimensional Wave Equation with periodic BCs: $c^{2}=5$; initial position: step function; initial velocity: 0 ..... 273
9.50 Perturbing Parameters and Initial Conditions with MATLAB Wave Equa- tion 2D GUI ..... 275
9.51 Perturbing the Initial Conditions only in (9.74) ..... 275
9.52 Perturbing both the Propagation Constant in (9.75) ..... 276
10.1 MATLAB Emergence eAt GUI ..... 291
11.1 MATLAB Heat Equation Nonhomogeneous 1D GUI ..... 306
11.2 IBVP (11.16) with $k^{2}=1, f(x, t)=1$, initial profile: $\sin \pi x$. ..... 307
11.3 IBVP (11.16) with $k^{2}=1, f(x, t)=0.01$, initial profile: $\sin \pi x$. ..... 307
11.4 IBVP (11.8) with $k^{2}=1$, forcing function and initial condition: step func- tion. ..... 308
11.5 IBVP (11.16) with $k^{2}=1$, forcing function: step function with $A=0.001$, initial condition: $e^{-100 x^{2}}$ ..... 310
11.6 $\operatorname{IBVP}(11.16)$ with $k^{2}=1$, forcing function: step function with $A=2$, initial condition: $e^{-100 x^{2}}$. ..... 310
11.7 IBVP (11.8) with $k^{2}=1$, forcing function: $f(x, t)=\cos (10 t)$ and initial condition: $e^{-100 x^{2}}$. ..... 310
11.8 IBVP (11.8) with Periodic BCs, $k^{2}=1$, forcing function: $f(x, t)=x-t$ and initial condition: $\sin \pi x$. ..... 311
11.9 Perturbing parameters, initial conditions, and forcing function parameters with MATLAB Heat Equation Nonhomogeneous 1D GUI ..... 313
11.10 Perturbing the diffusivity constant in IBVP (11.16). Forcing function, $f_{1}(x, t)=1$. ..... 313
11.11 Perturbing the diffusivity constant in IBVP (11.16). Forcing function, $f_{1}(x, t)=5$. ..... 313
11.12 Perturbing the diffusivity constant and initial condition in IBVP (11.8). Forcing function, $f_{4}(x, t)=e^{-5 t}$. ..... 314
11.13 Perturbing the diffusivity constant and initial condition in IBVP (11.8). Forcing function, $f_{4}(x, t)=e^{-0.5 t}$ ..... 314
11.14 Perturbing the diffusivity constant, the initial condition, and forcing func- tion parameter in IBVP (11.8). Forcing function, $f_{3}(x, t)=\cos 10 t$. ..... 314
11.15 MATLAB Heat Equation Nonhomogeneous 1D-Nonhomg. BCs GUI ..... 318
11.16 Solution to (11.19) with $T_{1}=1=T_{2}, k^{2}=1$, initial condition: $e^{-100 x^{2}}$ and forcing function: $f_{5}(x, t)$ with $A=5$ ..... 318
11.17 Same IBVP as in Figure 9.8 with the addition of the forcing term $f_{1}(x, t)=$ 1. ..... 318
11.18 MATLAB Heat Equation Nonhomogeneous 2D GUI ..... 322
11.19 IBVP (11.29) with $k^{2}=1$, forcing function and initial condition: step func- tion. ..... 322
11.20 IBVP (11.21) with $k^{2}=1$, forcing function: step function with $A=0.001$, initial condition: $e^{-40 x^{2}}$ ..... 325
11.21 IBVP (11.21) with $k^{2}=1$, forcing function: step function with $A=2$, initial condition: $e^{-40 x^{2}}$ ..... 325
11.22 Perturbing parameters, initial conditions, and forcing function parameters with MATLAB Heat Equation Nonhomogeneous 2D GUI ..... 327
11.23 Perturbing the diffusivity constant in IBVP (11.21). Forcing function, $f_{1}(x, t)=1$. ..... 328
11.24 Perturbing the diffusivity constant in IBVP (11.21). Forcing function, $f_{1}(x, t)=5$. ..... 328
11.25 Perturbing the diffusivity constant and initial condition in IBVP (11.29). Forcing function, $f_{4}(x, t)=e^{-5 t}$. ..... 328
11.26 Perturbing the diffusivity constant and initial condition in IBVP (11.29). Forcing function, $f_{4}(x, t)=e^{-0.5 t}$. ..... 329
11.27 Perturbing the diffusivity constant, the initial condition, and forcing func- tion parameter in IBVP (11.29). Forcing function, $f_{3}(x, t)=\cos 10 t$. ..... 329
11.28 MATLAB Fluid Seepage Nonhomogeneous 1D GUI ..... 333
11.29 IBVP (11.36) with $\beta=1, \alpha=3, f(x, t)=5$, initial profile: $\sin \pi x$. ..... 333
11.30 IBVP (9.49) with $\beta=2, \alpha=1$, initial profile: $e^{-40 x^{2}}$, forcing function $f_{1}(x, t)=1$. ..... 336
11.31 IBVP (11.34) with $\beta=.001, \alpha=1$, initial profile: step function, forcing function: $f_{4}(x, t)=e^{-t}$ ..... 336
11.32 Perturbing parameters, initial conditions, and forcing function parameters with MATLAB Fluid Seepage Nonhomogeneous 1D GUI ..... 338
11.33 Perturbing the model parameters in IBVP (11.36). Forcing function, $f_{5}(x, t)$ with $A=1$. ..... 339
11.34 Perturbing the model parameters in IBVP (11.36). Forcing function, $f_{5}(x, t)$ with $A=5$. ..... 339
11.35 Perturbing the model parameters and initial condition in IBVP (11.34). Forcing function, $f_{4}(x, t)=e^{-5 t}$. ..... 339
11.36 Perturbing model parameters and initial condition in IBVP (11.34). Forcing function, $f_{4}(x, t)=e^{-0.5 t}$. ..... 340
11.37 Perturbing the diffusivity constant, the initial condition, and forcing func- tion parameter in IBVP (11.35). Forcing function, $f_{3}(x, t)=\cos t$. ..... 340
11.38 MATLAB Fluid Seepage Nonhomogeneous 2D GUI ..... 343
11.39 IBVP (11.38) with $\beta=2, \alpha=1$, initial profile: step function, forcing function $f_{4}(x, t)=e^{-t}$. Solution appears to become more flat over time, yet continues to translate along the positive $z$-axis. ..... 346
11.40 Perturbing parameters, initial conditions, and forcing function parameters with MATLAB Fluid Seepage Nonhomogeneous 2D GUI ..... 348
11.41 Perturbing the model parameters in IBVP (11.37). Forcing function, $f_{5}(x, t)$ with $A=5$. ..... 349
11.42 Perturbing the model parameters in IBVP (11.37). Forcing function, $f_{5}(x, t)$ with $A=1$. ..... 349
11.43 Perturbing the model parameters and initial condition in IBVP (11.38). Forcing function, $f_{4}(x, t)=e^{-5 t}$. ..... 349
11.44 Perturbing model parameters and initial condition in IBVP (11.38). Forcing function, $f_{4}(x, t)=e^{-0.5 t}$ ..... 350
11.45 MATLAB Wave Equation Nonhomogeneous 1D GUI ..... 353
11.46 IBVP (11.43) with $c^{2}=3, f(x, t)=0.01$, initial position: $e^{-40 x^{2}}$, initial velocity: 0 . ..... 354
11.47 IBVP (11.43) with $c^{2}=3, f(x, t)=1$, initial position: $e^{-40 x^{2}}$, initial veloc- ity: 0 . ..... 354
11.48 IBVP (11.44) with $c^{2}=1, f_{3}(x, t)=\cos t$, initial position: $\sin \pi x$, initial velocity: 0. ..... 354
11.49 $\operatorname{IBVP}(11.44)$ with $c^{2}=1, f_{3}(x, t)=\cos 0.01 t$, initial position: $\sin \pi x$, initial velocity: 0 . ..... 355
11.50 IBVP (11.42) with $c^{2}=3$, forcing function: $f_{1}(x, t)=1$, initial position: $e^{-40 x^{2}}$, initial velocity: 0 . ..... 357
11.51 IBVP (11.42) with $c^{2}=3$, forcing function: $f_{1}(x, t)=5$, initial position: $e^{-40 x^{2}}$, initial velocity: 0 . ..... 358
11.52 Perturbing parameters, initial conditions, and forcing function parameters with MATLAB Wave Equation Nonhomogeneous 1D GUI ..... 360
11.53 Perturbing the propagation constant in IBVP (11.42). Forcing function, $f_{1}(x, t)=1$. ..... 361
11.54 Perturbing the diffusivity constant in IBVP (11.42). Forcing function, $f_{1}(x, t)=5$. ..... 361
11.55 Perturbing the propagation constant and initial conditions in IBVP (11.43). Forcing function, $f_{4}(x, t)=e^{-5 t}$. ..... 361
11.56 Perturbing the propagation constant and initial conditions in IBVP (11.43). Forcing function, $f_{4}(x, t)=e^{-0.5 t}$. ..... 362
11.57 MATLAB Nonhomogeneous Wave Equation Damped 1D GUI ..... 365
11.58 IBVP (11.49) with $c^{2}=2, \alpha=5, f_{4}(x, t)=e^{-t}$, initial position: $e^{-40 x^{2}}$, initial velocity: 0 ..... 365
11.59 IBVP (11.48) with $c^{2}=2, \alpha=5, f(x, t)=1$, initial position: $\sin \pi x$, initial velocity: 0 . ..... 366
11.60 Perturbing parameters, initial conditions, and forcing function parameters with MATLAB Wave Equation Nonhomogeneous 1D GUI ..... 370
11.61 Perturbing the initial conditions in IBVP (11.48). Forcing function, $f_{1}(x, t)=1$. ..... 371
11.62 Perturbing the initial conditions in IBVP (11.48). Forcing function, $f_{1}(x, t)=5$. ..... 371
11.63 Perturbing the propagation constant and initial conditions in IBVP (11.49). Forcing function, $f_{4}(x, t)=e^{-5 t}$. ..... 371
11.64 MATLAB Wave Equation Nonhomogeneous 2D GUI ..... 375
11.65 IBVP (11.52) with $c^{2}=3, f_{1}(x, t)=1$, initial position: $e^{-40 x^{2}}$, initial velocity: 0 . ..... 376
11.66 IBVP (11.53) with $c^{2}=3, f_{2}(x, t)=x-y$, initial position: $e^{-40 x^{2}}$, initial velocity: 0. ..... 376
11.67 Perturbing parameters, initial conditions, and forcing function parameters with MATLAB Wave Equation Nonhomogeneous 2D GUI ..... 380
11.68 Perturbing the propagation constant in IBVP (11.52). Forcing function, $f_{1}(x, t)=1$. ..... 381
11.69 Perturbing the diffusivity constant in IBVP (11.52). Forcing function, $f_{1}(x, t)=5$. ..... 381
11.70 Perturbing the propagation constant and initial conditions in IBVP (11.53). Forcing function, $f_{4}(x, t)=e^{-5 t}$. ..... 381
11.71 Perturbing the propagation constant and initial conditions in IBVP (11.53). Forcing function, $f_{4}(x, t)=e^{-0.5 t}$. ..... 382
14.1 MATLAB Heat Equation Semilinear 2D GUI ..... 410
14.2 Investigating Continuous Dependence for IBVP (14.1) ..... 410
14.3 Investigating Continuous Dependence for IBVP (14.1) ..... 412
14.4 MATLAB Wave Equation Semilinear 2D GUI ..... 413
14.5 Investigating Effect of Parameters in IBVP (14.8) ..... 414
14.6 Investigating Continuous Dependence for IBVP (14.8) ..... 414
14.7 Investigating Continuous Dependence for IBVP (14.8) ..... 414
14.8 MATLAB Fisher's Equation GUI ..... 417
14.9 IBVP (14.9), initial profile: $e^{-0.5 x^{2}}$. ..... 417
14.10 IBVP (14.9), initial profile: $e^{-10 x^{2}}$. ..... 417
14.11 IBVP (14.9), initial profile: $\frac{1}{2 \cosh (0.5 x)}$. ..... 418
14.12 IBVP (14.9), initial profile: $\frac{1}{2 \cosh (10 x)}$. ..... 420
14.13 IBVP (14.9), initial profile: $e^{-5 x^{2}}$. ..... 420
14.14 IBVP (14.9), initial profile: $\frac{1}{2 \cosh (x)}$. ..... 420
14.15 Perturbing $\delta$ in MATLAB Fisher's Equation GUI ..... 421
14.16 Perturbing the initial condition in (14.9) ..... 421
14.17 Perturbing the initial condition in (14.9) ..... 422
14.18 MATLAB Fisher's Equation 2D GUI ..... 423
14.19 IBVP (14.13), initial profile: $e^{-0.5\left(x^{2}+y^{2}\right)}$. ..... 423
14.20 IBVP (14.13), initial profile: $e^{-10\left(x^{2}+y^{2}\right)}$. ..... 423
14.21 IBVP (14.13), initial profile: $\frac{1}{2 \cosh \left(0.5\left(x^{2}+y^{2}\right)\right)}$. ..... 424
14.22 $\operatorname{IBVP}(14.13)$, initial profile: $\frac{1}{2 \cosh \left(10\left(x^{2}+y^{2}\right)\right)}$. ..... 424
14.23 IBVP (14.13), initial profile: $e^{-5\left(x^{2}+y^{2}\right)}$. ..... 426
14.24 $\operatorname{IBVP}$ (14.13), initial profile: $\frac{1}{2 \cosh \left(\left(x^{2}+y^{2}\right)\right)}$. ..... 426
14.25 Perturbing $\delta$ in MATLAB Fisher's Equation GUI ..... 427
14.26 Perturbing the initial condition in (14.13) ..... 427
14.27 Perturbing the initial condition in (14.13) ..... 428
14.28 MATLAB Epidemiology GUI ..... 429
14.29 Surface plot of Infectives in IBVP (14.14) with initial condition (14.16). ..... 430
14.30 Surface plot of Susceptibles in IBVP (14.14) with initial condition (14.17). ..... 430
14.31 Surface plot of Susceptibles in IBVP (14.14) with (14.16). ..... 431
14.32 Surface plot of Infectives in IBVP (14.14) with (14.16). ..... 432
14.33 Possible Susceptibles extinction? ..... 432
14.34 Perturbing parameters in MATLAB Epidemiology GUI ..... 433
14.35 Perturbing the initial condition in (14.14) ..... 434
14.36 Perturbing the initial condition and diffusivity in (14.14) ..... 434
14.37 Perturbing the initial condition and removal rate in (14.14) ..... 434
14.38 MATLAB Gray-Scott Model GUI ..... 437
14.39 Surface plot of $v$ in IBVP (14.18) ..... 437
14.40 Surface Plot of $u$ in IBVP (14.18) ..... 438
14.41 Surface Plot of $v$ in IBVP (14.18). ..... 439
14.42 Perturbing the initial condition in (14.18) ..... 440
14.43 Perturbing the replinishment term in (14.18) ..... 440
14.44 Perturbing the diffusivity constant and initial condition in (14.18) ..... 441
14.45 MATLAB Gray-Scott Equation 2D GUI ..... 442
14.46 Aerial view of $u$ and side view of $v$ in (14.20) at $t=10$ ..... 443
14.47 Aerial view of solutions to IBVP (14.20) at $t=1000$. ..... 444
14.48 Perturbing the initial condition in (14.20) ..... 445
14.49 Perturbing the replinishment term in (14.20) ..... 445
14.50 Perturbing the diffusivity constant and initial condition in (14.20) ..... 446
14.51 MATLAB Autocatalysis GUI ..... 447
14.52 Surface plot of $u$ in IBVP (14.21) with $m=4$ ..... 448
14.53 Surface plot of $u$ in IBVP (14.21) with $m=9$ ..... 449
14.54 Surface plot of $u$ in IBVP (14.21) with $m=11$ ..... 449
14.55 Perturbing parameters in MATLAB Autocatalysis Reaction GUI ..... 450
14.56 Perturbing the initial condition in (14.21) ..... 450
14.57 Perturbing the initial condition and diffusivity in (14.21) ..... 450
14.58 Perturbing the initial condition and reaction coefficient in (14.21) ..... 451

This page intentionally left blank

## List of Tables

3.1 Relationships between (3.22), the spring-mass model (3.17), and the simple circuit model (3.21)68

This page intentionally left blank

## Preface

The mathematical modeling of complex phenomena that evolve over time relies heavily on the analysis of a variety of systems of ordinary and partial differential equations. Such models are developed in very disparate areas of study, ranging from the physical and biological sciences, engineering, and population ecology to economics and financial markets. The fact that the use of differential equations is so widespread ensures that students, scholars, and professionals across disciplines, at one time or another, will encounter a differential equation that describes a scenario of particular interest to them. Yet, a traditional course in differential equations focuses on basic techniques of solving certain types of equations and analyzing some very basic mathematical models. Even more innovative differential equations courses only scratch the surface of analyzing differential equations from a qualitative viewpoint. Such first courses simply do not provide the tools necessary to analyze differential equations and their utility in mathematical modeling is not imparted onto the student.

The mathematical community has responded to this apparent gap by developing mathematical modeling courses and second courses in differential equations. There are vast differences in the approaches and topic choice used in these courses. Many such books tend to focus primarily on discrete dynamical systems, while others provide a vast collection of topics (including discrete dynamical systems, optimization methods, probabilistic models, and graph theory) that cover different types of models. The few books that fall into this latter category are thorough, but tend to be encyclopedic compendia of ideas designed for those already familiar with the subject. They would be daunting to a beginning-level student who had only completed a course in multivariable calculus.

This book is an attempt to fill the apparent gap in the existing literature on books related to mathematical modeling and differential equations, and is unique in many ways. Our primary goal is to instill in the reader a sense of intuition and practical and theoretical "know-how" as it pertains to mathematical models involving ordinary and partial differential equations. We provide a bigger, unifying picture inherent to the study and analysis of more than 20 distinct models spanning disciplines, and make this material accessible to a student who has only completed a course in multivariable calculus by conveying the thought process of building the surrounding theory from the ground up, and actively involving them in this mathematical enterprise throughout the text. Pedagogically, the goals of the project are achieved by engaging the reader by posing questions of all types (from verifying details and illustrating theorems with examples to posing (and proving) conjectures of actual results and analyzing broad strokes that occur within the development of the theory itself, and applying it to specific models) throughout the development of the material. Heuristic commentary and motivation are also included to provide an intuitive flow through the chapters. As such, the exposition in the text, at times, may lack the "polished style" of a mathematical monograph, and the language used will be colloquial English rather than the standard mathematical language. But, this style has the benefit of encouraging the reader to not simply passively read the text, but rather work through it, which is essential to obtaining a meaningful grasp of the material.

The book is divided into two main parts. The first is devoted to the study of systems of linear ordinary differential equations. We introduce and develop, to various degrees, math-
ematical models from ten disparate fields of study, including pharmacokinetics, chemistry, classical mechanics, neural networks, physiology, and electrical circuits. These models play crucial roles throughout the chapter. For one, their analysis motivates different aspects of the theory being developed. We use interactive activities extensively to guide the readers through different processes and sequences of observations that lead to the development of theoretical results. Once the theory is established, the models then serve a secondary role of illustrating the applicability of the abstract theory. The theoretical results in Part I are developed in three distinct cases, each one of which builds upon the previous. These cases are the homogeneous case, the nonhomogeneous case (with a time-dependent forcing term), and the semilinear case (where the forcing term depends on time and state). The topics of existence and uniqueness, continuous dependence on parameters and initial conditions, long-term behavior, and convergence schemes permeate all theoretical chapters.

Part II mimics Part I in structure almost identically, but this time focuses on linear partial differential equations. The guiding principle of the approach in Part II is to express the partial differential equations that arise in the mathematical modeling of phenomena in ten different fields of study, including heat conduction, wave propagation, fluid flow through fissured rocks, pattern formation, and financial mathematics, as abstract version of the linear ordinary differential equations that were studied in Part I. Once this connection is made, the theoretical results from Part I can be subsumed as a special case of those in Part II.

The structure of this book is likely to be somewhat different than others through which you have worked. For one, the text is NOT simply intended to be read passively. Rather, it is chock full of questions posed to the reader! A passive reading of this text will prove to be ineffective, whereas carefully working through it will result in a solid understanding of the material. Everything from computations to underlying assumptions must be carefully examined in order to fully understand the material. An integral part of this text is the collective of questions posed throughout. We consciously indicate when the discussion is intentionally terse by including parenthetical questions and instructions, such as (Why?), (Do so!), and (Explain how.). Sometimes, we even bring the discussion to a screeching halt with a STOP! It is imperative that you attempt to answer each of these questions to ensure you develop a solid background as you work through the text.

While the primary goal of the text is to develop an overarching mathematical theory, we are doing so under the assumption that your prior exposure to theoretical mathematics is minimal. We intend to build your intuition and involve you in the enterprise of building the theory from the ground up. That said, we need to arm you with the essential tools of analysis, but in a manner that balances intuition, practicality, and mathematical rigor. This is accomplished with a preliminary chapter in each main part of the book which provides the essential tools to be used in that part, along with some hands-on EXPLORE! activities. Certainly, the completion of these portions of the text is by no means a substitute for a formal study of analysis. But, they do provide you with just enough knowledge to proceed through the next step of the development of the theory.

Applying the theory is, to many readers, arguably the most important and satisfying part of the journey. Our dual emphasis on the analysis of mathematical models is not typical in textbooks. We feel that this connection to concrete applications helps build intuition, provides motivation for why someone would want to develop such a theory, and post fortiori arms having developed the theory by examining the plentiful collection of applications. There are APPLY IT! activities sprinkled throughout the text, asking you to reexamine models previously mentioned in light of newly-formed theoretical results.

Finally, the glue that binds all aspects of our journey is our extensive use of MATLAB ${ }^{\circledR}$ Graphical User Interfaces (GUIs). As you will see, this feature of the text will enable you to discover patterns and make conjectures that otherwise would be solely reachable using
real analysis and, for all practical purposes, be out of reach. Although not a goal of this text, the numerical algorithms used in GUIs to construct solutions to differential equations mimic the theoretical approach outlined in the text. For more details, an interested reader is directed to $[44,35,8,23,29,28]$.

It is our hope that this book will be useful not only in the classroom, but also as a book that anyone with an interest can pick up and develop a sense of mastery of the subject. We welcome you and hope that you find your journey through this text as enjoyable and fulfilling as it was for us to write it.

The MATLAB GUIs for use with this textbook can be downloaded from the following webpage. http://www.wcupa.edu/_ACADEMICS/SCH_CAS.MAT/ mmckibben/DEwithMATLAB.asp

Please direct any inquiries via email to either Dr. Micah Webster (micah.webster@goucher.edu) or Dr. Mark McKibben (mmckibben@wcupa.edu).

## Acknowledgments

The two-plus years that it took to co-write this text was one of the most rewarding, fulfilling, and dare we say, fun, experiences in each of our professional careers. Various stages of writing this book and developing the MATLAB GUIs were truly energizing and uplifting, while others required us to plumb the very depths of our patience and perseverance; it was all we could do to restrain each other from hurling the computer off the desk during momentary lapses of sanity. That said, this book is truly a labor of love, and we hope that the joy we experienced writing it (evident perhaps most outwardly by our occasional playfulness in the writing) and our love of the subject are infectious to our readers.

There are many people without whom the project would likely not have come to fruition. Our respective spouses, Jodi and Noelle, have been indelible sources of encouragement, energy, and support throughout this project.

Mark's mother, Pat, has been supportive of all his academic endeavors for decades and Micah's young son, Zane, taught him to focus, adapt, and to live in the moment. We both would like to thank Dr. Richard Craster and Dr. Roberto Sassi for their support and permission to alter some of their MATLAB codes for use in several Part II GUIs.

Our respective mentors, Sergui Aizicovici, Sam Calavitta, Patrick Guidotti, and David Keck were instrumental in the development of our academic and professional careers. Their unbridled enthusiasm and love of mathematics continue to be a significant driving force.

Cynthia Young, Dean of the College of Arts and Sciences at UCF; Patrick Guidotti, Professor of Mathematics at UCI; and Geoff Cox, Assistant Professor of Mathematics at VMI all gave valuable feedback on initial stages of the proposal.

Our students have been very helpful throughout the process. At Goucher, we have Alexa Gaines, who beta tested Part I of the text, including all the exercises, EXPLORE! Projects, and GUIs. And, the MA 347 class we co-taught effectively alpha-tested early versions of Part I of the text. More recently two MAT 343 classes at West Chester University beta-tested certain EXPLORE! Projects and GUIs from Part I.

From West Chester University of Pennsylvania, graduate students Gavin Hobbs and Andrew Stump put forth a concerted effort beta-testing the MATLAB GUIs and writing up careful solutions of the corresponding exercises. This is tedious work that would not
have been completed were it not for their assistance. These solutions will be included on the webpage for the book.

We would also like to thank Goucher College for supporting this endeavor through a Junior Faculty Development Grant and a Faculty Development Grant.

We would like to thank the entire Taylor and Francis team. To our editors Bob Stern and Bob Ross, thank you for patiently guiding us through the publication process from beginning to end. To our project coordinator Jessica Vakili, who handled our production, stylistic, and marketing questions in a very helpful and timely manner. And to Pawan Sharma, who professionally produced various diagrams in the text. And finally, to Shashi Kumar, for his efforts in typesetting the final manuscript.

And, last but not least, we would like to thank you, the reader, for embarking on this journey with us through an amazing field of mathematics. We hope your study of it is as fulfilling as ours has been thus far.

MATLAB is a registered trademark of The MathWorks, Inc. For product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 5086477000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

## Author Bios

Mark A. McKibben earned his Ph.D. in mathematics from Ohio University in 1999 in the area of differential equations under the direction of Sergiu Aizicovici. He joined the faculty of the Mathematics and Computer Science Department at Goucher College in 1999. He earned tenure and achieved the rank of full professor during his time at that institution, and in 2013, he joined the Mathematics Department at West Chester University of Pennsylvania as an associate professor. His research interests include abstract evolution equations, stochastic analysis, and control theory. He has published more than two dozen articles on these subjects in peer-reviewed journals, has delivered national and international talks on the results, and has published two graduate-level books on abstract evolution equations. He uses a discovery learning approach in the classroom that prompts the students to engage in the learning process at all stages of the curriculum. He was recognized by the Mathematical Association of America in 2012 for excellence in teaching and received the John M. Smith Teaching Award.

Micah Webster graduated from the University of California, Irvine in 2007 with a Ph.D. in mathematics. There, under the supervision of Patrick Guidotti, his research focused on both theoretical properties of and numerical approximations to solutions of nonlinear diffusion equations. He joined the faculty of the Mathematics and Computer Science Department at Goucher College in 2008. His research interests include abstract evolution equations, numerical analysis, and image processing. His pedagogical interests focus on advancing student engagement and retention by utilizing the inverted classroom, blended learning, and project-based learning. In 2012, he was the first recipient of the Excellence in Teaching Award for a non-tenured faculty member at Goucher College.

This page intentionally left blank

## Part I

## Ordinary Differential Equations

This page intentionally left blank

## Chapter 1

## Welcome!

1.1 Introduction ..... 3
1.2 This Book Is a Field Guide. What Does That Mean For YOU? ..... 4
1.3 Mired in Jargon-A Quick Language Lesson! ..... 5
1.4 Introducing MATLAB ..... 6
1.5 A First Look at Some Elementary Mathematical Models ..... 7

Welcome to the rich world that is differential equations. What prompted you to embark on this journey? Are you hunting for answers to questions about the Universe? Are you, as the result of allergies, contemplating taking two tablets instead of one to alleviate symptoms, but seek mathematical affirmation of the effectiveness of this decision? Have you wondered why it is that while you are standing atop the Empire State Building - swaying back and forth, back and forth, ... - the building doesn't simply concede defeat and snap in half? Are you curious as to how quickly the avian flu virus can spread throughout the world, infecting unsuspecting passerbyes? Or, how about those airplane wings - why don't they simply break apart in the middle of flight?

Whatever your reason for opening this book, your study of this material can shed some light on the answers to such questions. Many interesting, often surprising and sometimes downright unbelievable adventures await you. Again, welcome, hang on, and enjoy the ride.

### 1.1 Introduction

What are differential equations? No succinct definition truly captures the essence of this sprawling area of study. Researchers study phenomena occurring in nature guided by the goal of predicting the behavior of a solution of a system of equations governed by a set of discipline-specific laws. Relying on experimental observation at the onset of an investigation can be costly, subject to error, and can prove to be futile if the imposed assumptions turn out to be incorrect or infeasible. An often more pragmatic first step is to formulate a mathematical model of the situation and study its properties. Assuming success in this regard, a natural second step is to test the validity of the model using actual experimentation. The equations and/or assumptions are reexamined and tweaked, the abstract theory is modified, and then the system is again tested experimentally.

The phenomena with which we shall concern ourselves in Part I can all be characterized by quantities that change with time and can be formally described using a system of ordinary differential equations. The birth of differential equations as an area of study goes back to 1687 when they first appeared in Sir Isaac Newton's book Philosophiae Naturalis Principia Mathematics. The equations he posed were consequences of his observation that one should study forces to which a system responds in order to describe the laws of nature. Since
then, many researchers have made significant contributions, creating a massive continuallygrowing literature.

Many situations in physics, chemistry, economics, etc. that you have likely encountered are described by differential equations. Among the common examples of these phenomena are bacteria and population growth and decay, elementary financial models, and predator-prey systems. As you will discover along your journey through this text, differential equations play a crucial role in the modeling and analysis of numerous complicated scenarios.

### 1.2 This Book Is a Field Guide. What Does That Mean For YOU?

A perusal of the Table of Contents will reveal that your journey through differential equations will be split into two main parts. The first part is devoted to a discussion of certain classes of linear ordinary differential equations. Various theoretical concepts necessary to understand mathematical models whose mathematical description falls into this category will be introduced and developed, and subsequently addressed and generalized several times as the complexity of the models increases. All told, eleven distinct models spanning disciplines will be investigated in Part I, and an encompassing abstract theory will be developed.

Part II focuses on linear partial differential equations. Here, we will study another ten distinct mathematical models, and develop an encompassing abstract theory analogous to the one formulated in Part I. The theoretical results established in Part I can effectively be interpreted as special cases of the theory developed here.

The structure of this book may be somewhat different than others through which you have worked. For one, the text is NOT simply intended to be read passively. Rather, it is chock full of questions posed to you. If this journey were envisioned as a trek through a densely-vegetated rain forest, then our approach is akin to arming each and every reader with a machete intended to be used to help forge the path to an elusive Mayan ruins that legend suggests is home to riches beyond belief. Hyperbole aside, YOU are asked to work through many of the details. A passive reading of this text will prove to be ineffective, whereas carefully working through it will result in a solid understanding of the material. Everything from computations to assessing the validity of underlying assumptions must be carefully examined in order to fully understand the material. We consciously indicate when the discussion is intentionally terse by including parenthetical questions and instructions, such as (Why?), (Do so!), and (Explain how.). Sometimes, we even bring the discussion to a screeching halt with a STOP! It is imperative that you not leave any stone unturned and attempt to answer each of these questions. Failing to do so could start as a seemingly minor drop of confusion and then, snowball into a thunderous sea of misunderstanding as you proceed through the book.

While the primary goal of the text is to develop an overarching mathematical theory, we are doing so under the assumption that your prior exposure to theoretical mathematics is minimal. We intend to build your intution and involve you in the enterprise of building the theory from the ground up. That said, we need to arm you with the essential tools of analysis, but in a manner that balances intuition, practicality, and mathematical rigor. This is accomplished with a preliminary chapter in both main parts of the book which provides the essential tools to be used in that part, along with the inclusion of hands-on EXPLORE! activities. The purpose of the EXPLORE! activities is just that, to explore.

We provide questions to guide you and point you in some direction. All we ask is that you walk, or even run, in some direction, even if you do not know the final destination. Please, do not feel that you should know the correct answer in the traditional math book sense. The correct answer to an EXPLORE! question is more of a thought process followed by articulating what you have considered and your conclusion. Certainly, the completion of these portions of the text is by no means a substitute for a formal study of analysis. But, they do provide you with just enough knowledge to proceed through the next step of the development of the theory.

Applying the theory is, to many readers, arguably analogous to finding the lost treasure as the culmination of a long, tiresome journey. Our dual emphasis on the analysis of mathematical models is not typical in textbooks. We feel that this connection to concrete applications helps build intuition, provides motivation for why such a theory should be developed, and post fortiori affirms having developed the theory by examining the plentiful collection of applications. There are APPLY IT! activities sprinkled throughout the text, asking you to reexamine models in light of new theoretical results.

Finally, the glue that binds all aspects of our journey is our extensive use of MATLAB Graphical User Interfaces (GUIs). As you will see, this feature of the text enables you to discover patterns and make conjectures that otherwise would be solely reachable using real analysis making them intractible.

### 1.3 Mired in Jargon-A Quick Language Lesson!

Superficially, a differential equation (DE) is an equation involving derivatives. If an equation contains derivatives of functions dependent only on a single variable, then it is called an ordinary differential equation (ODE), while an equation containing partial derivatives (which arise when the functions of interest depend on more than one variable) is appropriately called a partial differential equation (PDE). Some examples of such equations are

$$
\begin{align*}
u^{\prime}(x) & =f(x, u(x))  \tag{1.1}\\
\frac{d^{2} u(x)}{d x^{2}}+3 \frac{d u(x)}{d x} & =\sin x  \tag{1.2}\\
\frac{\partial^{2} u(t, x)}{\partial t^{2}}+c^{2} \frac{\partial^{2} u(t, x)}{\partial x^{2}} & =0 \tag{1.3}
\end{align*}
$$

Equations (1.1) and (1.2) are ODEs while (1.3) is a PDE. The variables upon which the functions depend, namely $x$ (and also $t$ in the case of (1.3)) are called independent variables. Often, the independent variables in an equation are clearly understood and in such cases we suppress the dependence on them and write a cleaner, more succinct equation. For instance, the following equations are often written in place of (1.1) - (1.3), respectively:

$$
\begin{align*}
u^{\prime} & =f(x, u)  \tag{1.4}\\
\frac{d^{2} u}{d x^{2}}+3 \frac{d u}{d x} & =\sin x  \tag{1.5}\\
\frac{\partial^{2} u}{\partial t^{2}}+c^{2} \frac{\partial^{2} u}{\partial x^{2}} & =0 . \tag{1.6}
\end{align*}
$$

The order of a differential equation is the order of the highest derivative appearing in the equation. The order of (1.1) is 1 , while the order of both (1.2) and (1.3) is 2.

With the basic terminology in place, we loosely define what is meant by solving a differential equation. The notion is intuitive enough. Indeed, when asked to "solve (1.1)," you are to determine a real-valued function $u=u(x)$ that satisfies the equation (1.1). Unlike algebraic equations, the unknown quantity of interest is an actual function, rather than a real-number. Defining what precisely is meant by saying "a function satisfies a differential equation" can be very tricky, and we will need to pay more careful attention to various nuances as we proceed through the text. Momentarily, though, it is reasonable to think of this obtaining a true statement as the result of plugging the function into the equation. Consider the following example.

Example 1.3.1. Verify that the function $u(x)=e^{-x}$ is a solution of the ODE $u^{\prime}=-u$. Solution: Observe that $u^{\prime}(x)=-e^{-x}$ and that $-u(x)=-e^{-x}$, for any real number $x$. Substituting these into the given ODE results in a true statement, for any real number $x$. So, $u(x)$ is a solution to the given ODE.

We make two remarks regarding Example 1.3.1. One, let $C$ be an arbitrary real number and consider the function $u_{C}$ defined by $u_{C}(x)=C e^{-x}$. Clearly, $u_{C}$ is also a solution of the given ODE. (Why?) The presence of the arbitrary constant $C$ prompts us to refer to this as a general solution of the DE. This demonstrates that without additional information, a DE can have more than one solution; in fact, it can have infinitely many. Two, the solution of the DE is a function and as such, comes equipped with its own domain which indicates when the DE is solvable. A complete understanding of the behavior of a solution of a DE requires that we know its domain. It is customary to include this domain when describing the solution of a DE.

Exercise 1.3.1. Verify that for any real constant C, $u_{C}(t)=C e^{-3 t}$ is a general solution of the ODE $u^{\prime \prime}(t)+2 u^{\prime}(t)-3 u(t)=0$. What is the domain of the solution?

Exercise 1.3.2. Verify that $z(x)=C_{1} \cos (\ln x)+C_{2} \sin (\ln x)$ is a general solution of the Cauchy-Euler ODE $x^{2} z^{\prime \prime}(x)+x z^{\prime}(x)+z(x)=0$, where $C_{1}$ and $C_{2}$ are arbitrary real constants. What is the domain of the solution?

### 1.4 Introducing MATLAB

MATLAB ${ }^{\circledR}$ is a software package produced by Mathworks, Inc. (mathworks.com) and is available on a systems ranging from personal computers to supercomputers. The name MATLAB stems from "Matrix Laboratory," which alludes to the software package's foundation in linear algebra. MATLAB has evolved into an interactive development tool for scientific and engineering programs, or in fact any setting for which numeric computation is required.

This textbook takes advantage of MATLAB's Graphical User Interface (GUI) environment to minimize the use of MATLAB syntax. To obtain all the GUIs for the textbook go to http://www.wcupa.edu/_academics/sch_cas.mat/mmcKibben/book3.asp and download the files to your computer. Place the files in a folder and record the name of the folder for later use. In order to execute the text's GUIs one only needs to identify the current folder and the command window in MATLAB.

If necessary, change the current folder to the one that contains this text's GUI files. This can be done by manually typing the location of the folder or by using the browse for folder button (the button with three dots located in the top right of screen in Figure 1.1).


FIGURE 1.1: MATLAB Command Window

For example, in Figure 1.1 the current folder is titled DEwithMATLAB_eAt, so in order for the GUIs to work all the files need to be placed in that folder. When prompted by an exercise to use a specific GUI you will be directed to the command window. The command window is the large panel in the middle of the screen in Figure 1.1. A defining feature of the command window is the prompt $\gg$. To open a GUI, type the name as provided in the exercise instructions after the $\gg$ prompt and hit return. For example,

```
>> MATLAB_Elementary_Population_Growth
```

will open the MATLAB GUI of the same name and output an interface for which one can visualize solutions, learn new concepts, and answer questions posed in exercises, MATLABExercises, EXPLORE!s, and APPLY IT!s. The vast majority of GUIs that accompany this text are self-contained in the sense that all the information you need can be found within the panel of the interface. However, in a few cases additional information can be found in the command window. In these situations the GUI's Instructions and Help button will direct you to the command window and explain how to retrieve any additional information.

The GUIs in this book have been tested under MATLAB release, version 7.14.0.739 (R2012a). For a detailed description of MATLAB, its features, and syntax refer to the MATLAB manual along with the Mathworks website,
http://www.mathworks.com/help/matlab/index.html.

### 1.5 A First Look at Some Elementary Mathematical Models

A differential equation has an entire family of solutions associated with it until additional restrictions are imposed on the behavior of the solution. A natural question is, "How do we isolate a particular solution of a DE?" To explore this issue, we shall examine some familiar elementary models.

## Model I.1. Freely-Falling Bodies

The height, at any time $t \geq 0$, of a moving body falling freely along a linear vertical path due to gravity (neglecting air resistance) is governed by the following mathematical model :

$$
\left\{\begin{array}{l}
\underbrace{\frac{d^{2} y}{d t^{2}}(t)}_{\text {Acceleration }}=\underbrace{-g}_{\text {Gravity }}  \tag{1.7}\\
y(0)=s_{0} \text { (Initial Height), } \\
y^{\prime}(0)=v_{0} \text { (Initial Velocity) }
\end{array}\right.
$$

where $t$ denotes time and $y=y(t)$ the vertical position of the body above the ground.
Our goal is to determine the actual function $y$ satisfying all parts of (1.7). In addition to the ODE, we have imposed two extra conditions (called initial conditions) that will enable us to isolate a particular solution of the differential equation that we seek and, as such, further enable us to provide a more precise description of the quantity of interest. Whenever we consider a DE, together with conditions of this type, we refer to the entire problem as an initial-value problem (IVP).

Let us momentarily disregard the initial conditions and attempt to solve the ODE. Upon inspection, it seems reasonable that solving this differential equation for $y$ simply requires us to consecutively integrate both sides with respect to $t$ twice. (Why is this justified?) Doing so yields

$$
\begin{aligned}
\frac{d^{2} y}{d t^{2}}(t)=-g & \Longrightarrow \int \frac{d^{2} y}{d t^{2}}(t) d t=\int-g d t \\
& \Longrightarrow \frac{d y}{d t}(t)+C_{1}^{\star}=-g t+C_{1}^{\star \star}
\end{aligned}
$$

where $C_{1}^{\star}$ and $C_{1}^{\star \star}$ are arbitrary real constants (called parameters). We can combine these constants into a single arbitrary constant $C_{1}$ (Why?) to obtain the cleaner equation

$$
\frac{d y}{d t}(t)=-g t+C_{1} .
$$

This equation is meaningful for all $t \geq 0$ and so, we can integrate once again to obtain

$$
\begin{equation*}
y(t)=-\frac{g}{2} t^{2}+C_{1} t+C_{2}, \tag{1.8}
\end{equation*}
$$

where $C_{1}$ and $C_{2}$ are arbitrary real constants. Equation (1.8) is the general solution of IVP (1.7) and is sometimes referred to as a two-parameter family of solutions of (1.7). If we stop here, we have infinitely many solutions to the differential equation portion of IVP (1.7). However, demanding that this solution satisfy the two initial conditions enables us to isolate a unique function that satisfies all three conditions. Using these two conditions enables us to uniquely determine $C_{1}$ and $C_{2}$ as follows:

$$
\begin{aligned}
y(0) & =s_{0} \Longrightarrow s_{0}
\end{aligned}=0+0+C_{2}=C_{2}, ~(0)=v_{0}=0+C_{1}=C_{1} .
$$

Hence, the particular solution of (1.7) is given by $y(t)=-\frac{g}{2} t^{2}+v_{0} t+s_{0}$, which is the familiar formula developed in an elementary physics course.


## Model I. 2 Elementary Population Growth

A very elementary model of population growth that ignores limitation of resources, among other factors, can be formed under the assumption that the substance/population grows simply at a rate that is proportional to its size. This immediately yields the IVP

$$
\left\{\begin{align*}
\frac{d x(t)}{d t} & =k x(t), t>t_{0},  \tag{1.9}\\
x\left(t_{0}\right) & =x_{0},
\end{align*}\right.
$$

where $k$ is the constant of proportionality, $x(t)$ is the size of the population at time $t, \frac{d x}{d t}$ is the rate of growth or decay, and $x_{0}$ is the initial size of the population.

It is easy to see that the solution of $(1.9)$ is $x(t)=e^{k t} x_{0}$. If $k>0$, then the population is growing exponentially, while if $k<0$, it decreases exponentially (Why?). Such a model is useful when determining the half-life of a radioactive substance.

Exercise 1.5.1. The population of bacteria in a culture grows at a rate proportional to the number of bacteria present at any time. After 3 hours, it is observed that there are 400 bacteria present. After 10 hours, there are 2,000 bacteria present. What was the initial number of bacteria present?

MATLAB-Exercise 1.5.1. We will use MATLAB to investigate the population model given by (1.9), the population model posed in Exercise 1.5.1. Open MATLAB and in the command line, type:

## MATLAB_Elementary_Population_Growth

Use the GUI to answer the following questions. Make certain to click on the 'Description of System' button for a description of the GUI and instructions on how to use the GUI. A typical screenshot can be found in Figure 1.2.
i.) Use your answers in Exercise 1.5.1 as parameters for the GUI to find the population after 5 hours.
ii.) Suppose there were measurement errors caused by misaligned lab equipment and, in actuality, there were 405 bacteria after 3 hours and 2100 bacteria after 10 hours. Compute the new initial population and proportionality constant.


FIGURE 1.2: MATLAB Elementary Population Growth GUI
iii.) Let us refer to the situation described in Exercise 1.5.1 as Population 1, and the one in ii) as Population 2. Use the GUI to plot both populations on the same axis over a 5 hour time span. Comment on the shapes of the graphs. For example, do they look the same? Are they getting further apart? Closer together?

## Model I. 3 Newton's Law of Heating and Cooling

Did you ever wonder why it seems that within a very short time of taking an ice-cold soda out of the refrigerator to drink outside on a scorching summer day, the soda becomes warm or, why does a Thanksgiving turkey cool so quickly once it is taken out of an oven and set onto the dining room table? These phenomena can be modeled using Newton's Law of Heating and Cooling, which says that the rate at which a body cools is proportional to the difference between the temperature of the body and the temperature of the surrounding medium (called the ambient temperature).

Let $T(t)$ represent the temperature of the body at time $t, T_{m}$ the constant temperature of the surrounding medium, and $\frac{d T}{d t}$ the rate at which the body cools. Then, Newton's Law of Heating and Cooling can be expressed mathematically as the following IVP:

$$
\left\{\begin{align*}
\frac{d T(t)}{d t} & =k\left(T(t)-T_{m}\right), t>t_{0}  \tag{1.10}\\
T\left(t_{0}\right) & =T_{0},
\end{align*}\right.
$$

where $k$ is the constant of proportionality and $T_{0}$ is the temperature of the body at time $t=t_{0}$. If the body is cooling, then it makes sense that $T(t) \geq T_{m}$. Likewise, if the body is warming, the reverse inequality is true. (Why?) The solution of IVP (1.10) is given by

$$
\begin{equation*}
T(t)=T_{m}+\left(T_{0}-T_{m}\right) e^{k\left(t-t_{0}\right)} \tag{1.11}
\end{equation*}
$$

STOP! Verifty this.

Exercise 1.5.2. A thermometer is taken from inside a house to the outdoors, where the air temperature is 5 degrees Fahrenheit. After 1 minute the thermometer reads 55 degrees Fahrenheit and after 5 minutes the reading is 30 degrees Fahrenheit. What was the initial temperature of the room?

MATLAB-Exercise 1.5.2. We will use MATLAB to investigate the temperature model given by (1.11), the situation described in Exercise 1.5.2. Open MATLAB and in the command line, type:

## MATLAB_Heating_Cooling

Use the GUI to answer the following questions. Make certain to click on the 'Description of System' button for a description of the GUI and instructions on how to use the GUI. A typical screenshot can be found in Figure 1.3.


FIGURE 1.3: MATLAB Heating Cooling GUI
i.) Use your answers in Exercise 1.5.2 as parameters for the GUI to find the temperature reading on the thermometer after 8 minutes.
ii.) All measurement devices, including thermometers, are imperfect, meaning they do not necessarily output the actual measurement, but rather a value within some tolerance of the true value. Repeat Exercise 1.5.2 assuming the thermometer was reporting temperatures $1 \%$ warmer than the true values and that the outdoor temperature is truly 5 degrees Fahrenheit.
iii.) Let us refer to the situation described in Exercise 1.5.2 as Temperature 1 and the one in ii) as Temperature 2. Use the GUI to plot both temperatures on the same set of axes over an eight minute time span. Comment on the shapes of the graphs. For example, do they look the same? Are they getting further apart? Closer together?
iv.) Make a conjecture for solutions to (1.11) when the parameters are a "little off."

## A Basic Philosophy of Mathematical Modeling

Before studying more complicated models, we provide a crude outline of the underlying philosophy used when forming so-called mathematical models. Below is a list of key steps to keep in mind when embarking on a journey whose goals are to form, analyze, solve, and refine mathematical models :

## 1. Clearly state all assumptions.

This step constitutes the foundation of the modeling process. You must describe all
relationships that exist among the quantities being studied, as accurately as possible. Try to avoid hidden assumptions, and realize that the quality of the assumptions you impose determines the validity of the model.

## 2. Clearly identify variables and parameters.

The most frequently used independent variable is time, though other commonly occurring ones include position and angle. The dependent variables (that is, the quantities of interest that change with respect to change in the independent variable) are much wider in scope. Parameters include other measurable quantites that must be incorporated into the equations of the model, such as properties of material whose temperature is being studied, rate of decay, and density of a population.

## 3. Formulate equations relating the quantities identified in Step 2.

This step requires the use of underlying laws (geometric, physical, and economic) that govern the setting in which the model arises. The process of formulating these equations becomes more natural as you gain experience.

## 4. Study the equations formulated in Step 3 in an effort to understand the behavior of the quantities of interest.

The actual solution of an ODE or system of ODEs is often not attainable. But, there are other ways to extract information about the behavior of the phenomena that do not require an actual solution.

## 5. Test the model using actual data.

When working in the sciences, for instance, one formulates a model and then performs a few "test cases" in which the outcome is known a priori in order to test the accuracy of the model. We will not actually do this in the present text, as our main goal is the analysis of existing models.

## 6. Modify assumptions and formulate an enhanced, improved model.

No model is perfect. There is no single model that accounts for every possible variable that arises. And, even if such a model did exist, the complexity of the equations would render extracting useful information about the phenomena impossible. However, a typical approach is to start simple and move forward taking small steps towards a sufficiently realistic model.

We will examine a large collection of models in this text, but will rarely focus on going back to first principles when formulating them. Doing so thoroughly would require extensive knowledge of each area. Rather, our approach can be better described as a macro-analysis in that we establish a single framework in which to study more global features of broad collections of models.

## Chapter 2

## A Basic Analysis Toolbox

2.1 Some Basic Mathematical Shorthand ..... 14
2.2 Set Algebra ..... 15
2.3 Functions ..... 16
2.4 The Space $(\mathbb{R},|\cdot|)$ ..... 18
2.4.1 Order Properties ..... 18
2.4.2 Absolute Value ..... 19
2.4.3 Completeness Property of $(\mathbb{R},|\cdot|)$ ..... 20
2.5 A Closer Look at Sequences in $(\mathbb{R},|\cdot|)$ ..... 21
2.5.1 Sequences and Subsequences ..... 21
2.5.2 Convergence ..... 22
2.5.3 Properties of Convergent Sequences ..... 25
2.5.4 Cauchy Sequences ..... 26
2.5.5 A Brief Look at Infinite Series ..... 27
2.5.6 Power Series ..... 29
$2.6 \quad$ The Spaces $\left(\mathbb{R}^{N},\|\cdot\|_{\mathbb{R}^{N}}\right)$ and $\left(\mathbb{M}^{N}(\mathbb{R}),\|\cdot\|_{\mathbb{M}^{N}(\mathbb{R})}\right)$ ..... 30
2.6.1 The Space $\left(\mathbb{R}^{N},\|\cdot\|_{\mathbb{R}^{N}}\right)$ ..... 30
2.6.2 The Space $\left(\mathbb{M}^{N}(\mathbb{R}),\|\cdot\|_{\mathbb{M}^{N}(\mathbb{R})}\right)$ ..... 33
2.7 Calculus of $\mathbb{R}^{N}$-valued and $\mathbb{M}^{N}(\mathbb{R})$-valued Functions ..... 35
2.7.1 Notation and Interpretation ..... 36
2.7.2 Limits and Continuity ..... 38
2.7.3 The Derivative ..... 39
2.7.4 The Integral ..... 40
2.7.5 $\quad$ Sequences in $\mathbb{R}^{N}$ and $\mathbb{M}^{N}(\mathbb{R})$ ..... 42
2.7.6 Continuity-Revisited ..... 45
2.8 Some Elementary ODEs ..... 46
2.8.1 Separation of Variables ..... 46
2.8.2 First-Order Linear ODEs ..... 47
2.8.3 Higher-Order Linear ODEs ..... 48
2.9 Looking Ahead ..... 49

If you have taken an elementary differential equations course, you are familiar with various techniques used to determine solutions of differential equations, as well as possibly some methods used to describe characteristics of the solutions corresponding to different initial conditions. Pushing beyond such a rudimentary analysis with an eye toward performing a more rigorous investigation inevitably requires some mathematical sophistication. Contrary to the opinion that mathematics is all about performing calculations to solve problems, discovery of patterns, forming cogent arguments, and performing careful analysis is at the heart of the discipline. But, how does one do mathematics carefully and properly?

The purpose of this chapter is to provide you with a succinct, hands-on working knowledge of some concepts in elementary analysis focusing on notation, main definitions and
results, and the techniques used throughout the text. Occasionally, other topics will be introduced when needed.

### 2.1 Some Basic Mathematical Shorthand

Symbolism is used heftily in mathematical exposition. Careful usage of some basic notation can streamline the verbiage. Some of the common symbols used are as follows.

Let $P$ and $Q$ be statements. (If the statement $P$ changes depending on the value of some parameter $x$, we denote this dependence by writing $P(x)$.)
1.) The statement "not $P$," is called the negation of $P$.
2.) The statement "If $P$, then $Q$ " is called an implication, and is denoted by " $P \Longrightarrow Q$ " (read " $P$ implies $Q$ "). Here, $P$ is called the hypothesis and $Q$ is the conclusion.
3.) The statement " $P$ if, and only if, $Q$ " is denoted by " $P$ iff $Q$ " or " $P \Longleftrightarrow Q$." Precisely, this means " $(P \Longrightarrow Q)$ and $(Q \Longrightarrow P)$."
4.) The statement " $Q \Longrightarrow P$ " is the converse of " $P \Longrightarrow Q$."
5.) The statement "not $Q \Longrightarrow$ not $P$ " is the contrapositive of " $P \Longrightarrow Q$." These two statements are logically equivalent.
6.) The symbol " $\exists$ " is an existential quantifier and is read as "there exists" or "there is at least one."
7.) The symbol " $\forall$ " is a universal quantifier and is read as "for every" or "for any."

Exercise 2.1.1. Let $P, Q, R$, and $S$ be statements.
i.) Form the negation of " $\exists x$ such that $P(x)$ holds."
ii.) Form the negation of " $\forall x, P(x)$ holds."

Example 2.1.1. Form the negation of " $P$ and $(Q$ and $R)$."
This sort of formal exercise in logic arises when determining if a mathematical result is applicable to a given situation. For instance, if there are 3 distinct hypothesis, $P, Q$ and $R$, that all must be satisfied in order to apply a theorem, all it would take to render the theorem inapplicable is for at least one of the hypotheses to not hold. That is, the negation of " $P$ and $(Q$ and $R)$ " is "not $P$ or not $Q$ or not $R$."

Remark 2.1.1. Implication is a transitive relation in the sense that

$$
((P \Longrightarrow Q) \text { and }(Q \Longrightarrow R)) \Longrightarrow(P \Longrightarrow R)
$$

For instance, a sequence of algebraic manipulations used to solve an equation is technically such a string of implications from which we conclude that the values of the variable obtained in the last step are the solutions of the original equation. Mathematical arguments are comprised of strings of implications, albeit of a somewhat more sophisticated nature.

A theorem is a statement about mathematical objects. It has a special form in that it consists of a hypothesis and a conclusion. A mathematical proof of a theorem is a logical argument which guarantees the conclusion holds when the hypotheses are satisfied. You have encountered many theorems in your study of the calculus, some of which are easily stated and others whose structure is more complicated because the hypotheses involve multiple
conditions.
STOP! State the following calculus theorems as precisely as you can. Then, check your responses using a calculus text.

1. Product Rule for Derivatives
2. Mean Value Theorem for Derivatives
3. Fundamental Theorem of Calculus

Undoubtedly, while "how to use" each of the above theorems likely came to mind, formally and precisely stating them often poses a challenge to a beginner. It is not uncommon to overlook stating the conditions that must be satisfied in order to employ the rule suggested by each theorem, yet these conditions are crucial in the sense that the rules do not necessarily apply unless they are satisfied. For example, you cannot apply the Fundamental Theorem of Calculus to compute

$$
\int_{-2}^{1} \frac{1}{x} d x
$$

and you cannot apply the Mean Value Theorem to $f(x)=|x|$ on $[-2,3]$. (Why?) As you work through the text, be mindful about the conditions being imposed, what they mean, and the ramifications of imposing them.

### 2.2 Set Algebra

Informally, a set can be thought of as a collection of objects (e.g., real numbers, vectors, matrices, functions, other sets, etc.); the contents of a set are referred to as its elements. We usually label sets using upper case letters and their elements by lower case letters. Two sets that arise often and for whom specific notation will be reserved are:

$$
\begin{aligned}
& \mathbb{N}=\{1,2,3, \ldots\} \\
& \mathbb{R}=\text { the set of all real numbers }
\end{aligned}
$$

If $P$ is a certain property and $A$ is the set of all objects having property $P$, we write $A=\{x: x$ has $P\}$ or $A=\{x \mid x$ has $P\}$. A set with no elements is empty, denoted by $\emptyset$.

If $A$ is not empty and $a$ is an element of $A$, we denote this fact by " $a \in A$." If $a$ is not an element of $A$, a fact denoted by " $a \notin A$," then where is it located? This prompts us to prescribe a universal set $\mathcal{U}$ that contains all possible objects of interest in our discussion. The following definition provides an algebra of sets.

Definition 2.2.1. Let $A$ and $B$ be sets.
i.) $A$ is a subset of $B$, written $A \subset B$, whenever $x \in A \Longrightarrow x \in B$.
ii.) $A$ equals $B$, written $A=B$, whenever $(A \subset B)$ and $(B \subset A)$.
iii.) The complement of $A$ relative to $B$, written $B \backslash A$, is the set $\{x \mid x \in B$ and $x \notin A\}$. The complement relative to $\mathcal{U}$ is denoted by $\widetilde{A}$.
iv.) The union of $A$ and $B$ is the set $A \cup B=\{x \mid x \in A$ or $x \in B\}$.
v.) The intersection of $A$ and $B$ is the set $A \cap B=\{x \mid x \in A$ and $x \in B\}$.
vi.) The Cartesian product of $A$ and $B$ is the set $A \times B=\{(a, b) \mid a \in A$ and $b \in B\}$. More generally, if $A_{1}, \ldots, A_{n}$ are sets, the Cartesian product of $A_{1}, \ldots, A_{n}$ is the set $A_{1} \times \ldots \times A_{n}=\left\{\left(a_{1}, \ldots, a_{n}\right): a_{1} \in A_{1}, \ldots, a_{n} \in A_{n}\right\}$. If $A_{1}=\ldots=A_{n}$, then denoting this common set by $A$, we denote the Cartesian product by simply $A^{n}$.

Verifying that two sets are equal requires that we prove two implications. Use this fact when appropriate to complete the following exercises:

Exercise 2.2.1. Let $A, B$, and $C$ be sets. Illustrate each of the following pictorally and prove each of them:
i.) $A \subset B$ iff $\widetilde{B} \subset \widetilde{A}$.
ii.) $A=(A \cap B) \cup(A \backslash B)$
iii.) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ and $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
iv.) $(\widetilde{A \cap B})=\widetilde{A} \cup \widetilde{B}$ and $(\widetilde{A \cup B})=\widetilde{A} \cap \widetilde{B}$

Exercise 2.2.2. Explain how you would show two sets $A$ and $B$ are NOT equal.

### 2.3 Functions

The functions typically encountered in a calculus course are defined by explicit formulas that assign elements in one set to outputs in another. We will need to think more broadly and carefully about functions in this text and so, we introduce a more formal definition of a function below.

Definition 2.3.1. Let $A$ and $B$ be sets.
i.) A function from $A$ to $B$ is a subset $f \subset A \times B$ satisfying
a) $\forall x \in A, \exists y \in B$ such that $(x, y) \in f$,
b) $\left(x, y_{1}\right) \in f$ and $\left(x, y_{2}\right) \in f \Longrightarrow y_{1}=y_{2}$. We say $f$ is $B$-valued, denoted by $f: A \rightarrow B$.
ii) The set $A$ is called the domain of $f$, denoted $\operatorname{dom}(f)$.
iii) The range of $f$, denoted by $\operatorname{rng}(f)$, is given by $\operatorname{rng}(f)=\{f(x) \mid x \in A\}$.

Remark 2.3.1. Notation: When defining a function using an explicit formula, say $y=f(x)$, the notation $x \mapsto f(x)$ is often used to denote the function. Also, we indicate the general dependence on a variable using a dot, say $f(\cdot)$. If the function depends on two independent variables, we distinguish between them by using a different number of dots for each, say $f(\cdot, \cdot \cdot)$. Also, the term mapping is used synonymously with the term function. An immediate consequence of Definition 2.3.1 is that $\operatorname{rng}(f) \subset B$.

Exercise 2.3.1. Precisely define what it means for two functions $f$ and $g$ to be equal.
We sometimes wish to apply functions in succession in the following sense.
Definition 2.3.2. Suppose that $f: \operatorname{dom}(f) \rightarrow A$ and $g: \operatorname{dom}(g) \rightarrow B$ with $\operatorname{rng}(g) \subset$ $\operatorname{dom}(f)$. The composition of $f$ with $g$, denoted $f \circ g$, is the function $f \circ g: \operatorname{dom}(g) \rightarrow A$ defined by $(f \circ g)(x)=f(g(x))$.

Exercise 2.3.2. Show that, in general, $f \circ g \neq g \circ f$.
Definition 2.3.3. $f: A \rightarrow B$ is called
i.) one-to-one if $f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}, \forall x_{1}, x_{2} \in A$;
ii.) onto whenever $\operatorname{rng}(f)=B$.

Exercise 2.3.3. Let $f: \operatorname{dom}(f) \rightarrow A$ and $g: \operatorname{dom}(g) \rightarrow B$ be such that $f \circ g$ is defined. Prove the following:
i.) If $f$ and $g$ are onto, then $f \circ g$ is onto.
ii.) If $f$ and $g$ are one-to-one, then $f \circ g$ is one-to-one.

Functions that are one-to-one and onto are invertible in the following sense.
Definition 2.3.4. Let $f: \operatorname{dom}(f) \rightarrow \operatorname{rng}(f)$. The function $g: \operatorname{rng}(f) \rightarrow \operatorname{dom}(f)$ such that

$$
\begin{aligned}
& g(f(x))=x, \text { for every } x \in \operatorname{dom}(f), \\
& f(g(y))=y, \text { for every } y \in \operatorname{rng}(f),
\end{aligned}
$$

is called the inverse of $f$ and is denoted by $f^{-1}$. A function $f$ for which such an inverse function exists is said to be invertible.

At times, we need to compute the functional values for all members of a subset of the domain, or perhaps determine the subset of the domain whose collection of functional values is a prescribed subset of the range. These notions are made precise below.

Definition 2.3.5. Let $f: A \rightarrow B$.
i.) For $X \subset A$, the image of $X$ under $f$ is the set $f(X)=\{f(x) \mid x \in X\}$.
ii.) For $Y \subset B$, the pre-image of $Y$ under $f$ is the set

$$
f^{-1}(Y)=\{x \in \mathcal{A} \mid \exists y \in Y \text { such that } y=f(x)\} .
$$

We often consider functions whose domains and ranges are subsets of $\mathbb{R}$. For such functions, the notion of monotonicity is often a useful characterization.

Definition 2.3.6. Let $f: \operatorname{dom}(f) \subset \mathbb{R} \rightarrow \mathbb{R}$ and suppose that $\varnothing \neq S \subset \operatorname{dom}(f)$. We say that $f$ is
i.) nondecreasing on $S$ whenever $x_{1}, x_{2} \in S$ with $x_{1}<x_{2} \Longrightarrow f\left(x_{1}\right) \leq f\left(x_{2}\right)$;
ii.) nonincreasing on $S$ whenever $x_{1}, x_{2} \in S$ with $x_{1}<x_{2} \Longrightarrow f\left(x_{1}\right) \geq f\left(x_{2}\right)$.

Remark 2.3.2. When the inequality is strict, we replace "nondecreasing" by "increasing" and "nonincreasing" by "decreasing."

The arithmetic operations of real-valued functions are defined in the natural way.
Definition 2.3.7. (Arithmetic of Functions)
Suppose that $f: \operatorname{dom}(f) \subset \mathbb{R} \rightarrow \mathbb{R}$ and $g: \operatorname{dom}(g) \subset \mathbb{R} \rightarrow \mathbb{R}$. The functions $f+g, f-g$, and $f \cdot g$ are defined as follows:
i.) $f+g: \operatorname{dom}(f) \cap \operatorname{dom}(g) \subset \mathbb{R} \rightarrow \mathbb{R}$ is defined by $(f+g)(x)=f(x)+g(x)$, for all $x \in \operatorname{dom}(f) \cap \operatorname{dom}(g)$,
ii.) $f-g: \operatorname{dom}(f) \cap \operatorname{dom}(g) \subset \mathbb{R} \rightarrow \mathbb{R}$ is defined by $(f-g)(x)=f(x)-g(x)$, for all $x \in \operatorname{dom}(f) \cap \operatorname{dom}(g)$,
iii.) $f \cdot g: \operatorname{dom}(f) \cap \operatorname{dom}(g) \subset \mathbb{R} \rightarrow \mathbb{R}$ is defined by $(f \cdot g)(x)=f(x) \cdot g(x)$, for all $x \in \operatorname{dom}(f) \cap \operatorname{dom}(g)$.

Exercise 2.3.4. Suppose that $f: \operatorname{dom}(f) \subset \mathbb{R} \rightarrow \mathbb{R}$ and $g: \operatorname{dom}(g) \subset \mathbb{R} \rightarrow \mathbb{R}$ are nondecreasing (resp. nonincreasing) functions on their domains.
i.) Which of the functions $f+g, f-g, f \cdot g$, and $\frac{f}{g}$, if any, are nondecreasing (resp. nonincreasing) on their domains? Explain.
ii.) Assuming that $f \circ g$ is defined, must it be nondecreasing (resp. nonincreasing) on its domain? Explain.

### 2.4 The Space $(\mathbb{R},|\cdot|)$

### 2.4.1 Order Properties

The basic arithmetic and order features of the real number system are likely familiar. For our purposes, we shall begin with a set $\mathbb{R}$ equipped with two operations, addition and multiplication, satisfying these algebraic properties:

1. addition and multiplication are both commutative and associative;
2. multiplication distributes over addition;
3. adding zero to any real number yields the same real number;
4. multiplying a real number by one yields the same real number;
5. every real number has a unique additive inverse; and
6. every nonzero real number has a unique multiplicative inverse.

Moreover, $\mathbb{R}$ equipped with the natural " $<$ " ordering is an ordered field and obeys the following properties:

## Proposition 2.4.1. (Order Features of $\mathbb{R}$ )

For all $x, y, z \in \mathbb{R}$, the following are true:
i.) Exactly one of the relationships $x=y, x<y$, or $y<x$ holds;
ii.) $x<y \Longrightarrow x+z<y+z$;
iii.) $(x<y)$ and $(y<z) \Longrightarrow x<z$;
iv.) $(x<y)$ and $(c>0) \Longrightarrow c x<c y$;
v.) $(x<y)$ and $(c<0) \Longrightarrow c x>c y$;
vi.) $(0<x<y)$ and $(0<w<z) \Longrightarrow 0<x w<y z$.

The following is an immediate consequence of these properties and is often the underlying principle used when verifying an inequality.

Proposition 2.4.2. If $x, y \in \mathbb{R}$ such that $x<y+\epsilon, \forall \epsilon>0$, then $x \leq y$.
Proof. Suppose not; that is, $y<x$. Observe that for $\epsilon=\frac{x-y}{2}>0, y+\epsilon=\frac{x+y}{2}<x$. (Why?) This is a contradiction. Hence, it must be the case that $x \leq y$.

Remark 2.4.1. The above argument is a very simple example of a proof by contradiction. The strategy is to assume that the conclusion is false and then use this additional hypothesis to obtain a false statement or a contradiction of another hypothesis in the claim.

### 2.4.2 Absolute Value

The above is a heuristic description of the familiar algebraic structure of $\mathbb{R}$. When equipped with a distance-measuring artifice, deeper properties of $\mathbb{R}$ can be defined and studied. This is done with the help of the absolute value function.
Definition 2.4.1. For any $x \in \mathbb{R}$, the absolute value of $x$, denoted $|x|$, is defined by

$$
|x|=\left\{\begin{array}{c}
x, x \geq 0 \\
-x, x<0
\end{array}\right.
$$

This can be viewed as a measurement of distance between real numbers within the context of a number line. For instance, the solution set of the equation " $|x-2|=3$ " is the set of real numbers $x$ that are " 3 units away from 2," namely $\{-1,5\}$.
Exercise 2.4.1. Determine the solution set for the following equations.
i.) $|x-3|=0$
ii.) $|x+6|=2$

Proposition 2.4.3. The following properties hold for all $x, y, z \in \mathbb{R}$ and $a \geq 0$ :
i.) $-|x|=\min \{-x, x\} \leq x \leq \max \{-x, x\}=|x|$;
ii.) $|x| \geq 0, \forall x \in \mathbb{R}$;
iii.) $|x|=0$ iff $x=0$;
iv.) $\sqrt{x^{2}}=|x|$;
v.) $|x y|=|x||y|$;
vi.) $|x| \leq a$ iff $-a \leq x \leq a$;
vii.) $|x+y| \leq|x|+|y|$;
viii.) $|x-y| \leq|x-z|+|z-y|$;
ix.) $||x|-|y|| \leq|x-y|$;
x.) $|x-y|<\epsilon, \forall \epsilon>0 \Longrightarrow x=y$.

Remark 2.4.2. The properties listed in Prop. 2.4 .3 will be used heftily throughout the text.
1.) (vii) is called the triangle inequality. Its main utility lies in providing an estimate on a sum in terms of its parts.
2.) (viii) is an immediate consequence of (vii) obtained by "putting in and taking out" $z$ and then applying (vii). Indeed observe

$$
\begin{aligned}
|x-y| & =|(x-z)+(z-y)| \\
& \leq|x-z|+|z-y|
\end{aligned}
$$

This is useful when trying to form an upper bound on $|x-y|$ in terms of quantities different from just $|x|$ and $|y|$.
3.) ( x ) is a useful trick to use when showing two quantities $x$ and $y$ are equal. In words, if the absolute value of the difference of two real numbers is smaller than every positive number, then the two numbers must be equal.
The following inequalities are sometimes useful when establishing estimates.
Proposition 2.4.4. Let $n \in \mathbb{N}$ and $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n} \in \mathbb{R}$.
i.) (Cauchy-Schwarz) $\sum_{i=1}^{n} x_{i} y_{i} \leq\left(\sum_{i=1}^{n} x_{i}^{2}\right)\left(\sum_{i=1}^{n} y_{i}^{2}\right)$,
ii.) (Minkowski) $\left(\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)^{2}\right)^{\frac{1}{2}} \leq\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}+\left(\sum_{i=1}^{n} y_{i}^{2}\right)^{\frac{1}{2}}$,
iii.) $\left|\sum_{i=1}^{n} x_{i}\right|^{M} \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|\right)^{M} \leq n^{M-1} \sum_{i=1}^{n}\left|x_{i}\right|^{M}, \forall M \in \mathbb{N}$.

