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Preface

The mathematical modeling of complex phenomena that evolve over time relies heavily on
the analysis of a variety of systems of ordinary and partial differential equations. Such mod-
els are developed in very disparate areas of study, ranging from the physical and biological
sciences, engineering, and population ecology to economics and financial markets. The fact
that the use of differential equations is so widespread ensures that students, scholars, and
professionals across disciplines, at one time or another, will encounter a differential equa-
tion that describes a scenario of particular interest to them. Yet, a traditional course in
differential equations focuses on basic techniques of solving certain types of equations and
analyzing some very basic mathematical models. Even more innovative differential equa-
tions courses only scratch the surface of analyzing differential equations from a qualitative
viewpoint. Such first courses simply do not provide the tools necessary to analyze differential
equations and their utility in mathematical modeling is not imparted onto the student.

The mathematical community has responded to this apparent gap by developing math-
ematical modeling courses and second courses in differential equations. There are vast dif-
ferences in the approaches and topic choice used in these courses. Many such books tend to
focus primarily on discrete dynamical systems, while others provide a vast collection of top-
ics (including discrete dynamical systems, optimization methods, probabilistic models, and
graph theory) that cover different types of models. The few books that fall into this latter
category are thorough, but tend to be encyclopedic compendia of ideas designed for those
already familiar with the subject. They would be daunting to a beginning-level student who
had only completed a course in multivariable calculus.

This book is an attempt to fill the apparent gap in the existing literature on books
related to mathematical modeling and differential equations, and is unique in many ways.
Our primary goal is to instill in the reader a sense of intuition and practical and theoretical
“know-how” as it pertains to mathematical models involving ordinary and partial differential
equations. We provide a bigger, unifying picture inherent to the study and analysis of more
than 20 distinct models spanning disciplines, and make this material accessible to a student
who has only completed a course in multivariable calculus by conveying the thought process
of building the surrounding theory from the ground up, and actively involving them in this
mathematical enterprise throughout the text. Pedagogically, the goals of the project are
achieved by engaging the reader by posing questions of all types (from verifying details and
illustrating theorems with examples to posing (and proving) conjectures of actual results and
analyzing broad strokes that occur within the development of the theory itself, and applying
it to specific models) throughout the development of the material. Heuristic commentary
and motivation are also included to provide an intuitive flow through the chapters. As
such, the exposition in the text, at times, may lack the “polished style” of a mathematical
monograph, and the language used will be colloquial English rather than the standard
mathematical language. But, this style has the benefit of encouraging the reader to not
simply passively read the text, but rather work through it, which is essential to obtaining
a meaningful grasp of the material.

The book is divided into two main parts. The first is devoted to the study of systems of
linear ordinary differential equations. We introduce and develop, to various degrees, math-
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ematical models from ten disparate fields of study, including pharmacokinetics, chemistry,
classical mechanics, neural networks, physiology, and electrical circuits. These models play
crucial roles throughout the chapter. For one, their analysis motivates different aspects of
the theory being developed. We use interactive activities extensively to guide the readers
through different processes and sequences of observations that lead to the development of
theoretical results. Once the theory is established, the models then serve a secondary role
of illustrating the applicability of the abstract theory. The theoretical results in Part I are
developed in three distinct cases, each one of which builds upon the previous. These cases
are the homogeneous case, the nonhomogeneous case (with a time-dependent forcing term),
and the semilinear case (where the forcing term depends on time and state). The topics
of existence and uniqueness, continuous dependence on parameters and initial conditions,
long-term behavior, and convergence schemes permeate all theoretical chapters.

Part II mimics Part I in structure almost identically, but this time focuses on linear
partial differential equations. The guiding principle of the approach in Part II is to express
the partial differential equations that arise in the mathematical modeling of phenomena
in ten different fields of study, including heat conduction, wave propagation, fluid flow
through fissured rocks, pattern formation, and financial mathematics, as abstract version of
the linear ordinary differential equations that were studied in Part I. Once this connection
is made, the theoretical results from Part I can be subsumed as a special case of those in
Part II.

The structure of this book is likely to be somewhat different than others through which
you have worked. For one, the text is NOT simply intended to be read passively. Rather,
it is chock full of questions posed to the reader! A passive reading of this text will prove to
be ineffective, whereas carefully working through it will result in a solid understanding of
the material. Everything from computations to underlying assumptions must be carefully
examined in order to fully understand the material. An integral part of this text is the
collective of questions posed throughout. We consciously indicate when the discussion is
intentionally terse by including parenthetical questions and instructions, such as (Why?),
(Do so!), and (Explain how.). Sometimes, we even bring the discussion to a screeching
halt with a STOP! It is imperative that you attempt to answer each of these questions to
ensure you develop a solid background as you work through the text.

While the primary goal of the text is to develop an overarching mathematical theory,
we are doing so under the assumption that your prior exposure to theoretical mathematics
is minimal. We intend to build your intuition and involve you in the enterprise of building
the theory from the ground up. That said, we need to arm you with the essential tools of
analysis, but in a manner that balances intuition, practicality, and mathematical rigor. This
is accomplished with a preliminary chapter in each main part of the book which provides the
essential tools to be used in that part, along with some hands-on EXPLORE! activities.
Certainly, the completion of these portions of the text is by no means a substitute for a
formal study of analysis. But, they do provide you with just enough knowledge to proceed
through the next step of the development of the theory.

Applying the theory is, to many readers, arguably the most important and satisfying part
of the journey. Our dual emphasis on the analysis of mathematical models is not typical
in textbooks. We feel that this connection to concrete applications helps build intuition,
provides motivation for why someone would want to develop such a theory, and post fortiori
arms having developed the theory by examining the plentiful collection of applications.
There are APPLY IT! activities sprinkled throughout the text, asking you to reexamine
models previously mentioned in light of newly-formed theoretical results.

Finally, the glue that binds all aspects of our journey is our extensive use of MATLAB R©

Graphical User Interfaces (GUIs). As you will see, this feature of the text will enable you
to discover patterns and make conjectures that otherwise would be solely reachable using
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real analysis and, for all practical purposes, be out of reach. Although not a goal of this
text, the numerical algorithms used in GUIs to construct solutions to differential equations
mimic the theoretical approach outlined in the text. For more details, an interested reader
is directed to [44, 35, 8, 23, 29, 28].

It is our hope that this book will be useful not only in the classroom, but also as a book
that anyone with an interest can pick up and develop a sense of mastery of the subject.
We welcome you and hope that you find your journey through this text as enjoyable and
fulfilling as it was for us to write it.

The MATLAB GUIs for use with this textbook can be downloaded from the
following webpage. http://www.wcupa.edu/ACADEMICS/SCH CAS.MAT/
mmckibben/DEwithMATLAB.asp

Please direct any inquiries via email to either Dr. Micah Webster
(micah.webster@goucher.edu) or Dr. Mark McKibben (mmckibben@wcupa.edu).
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Chapter 1

Welcome!

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 This Book Is a Field Guide. What Does That Mean For YOU? . . . . . . . . . . . . . . 4
1.3 Mired in Jargon—A Quick Language Lesson! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Introducing MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 A First Look at Some Elementary Mathematical Models . . . . . . . . . . . . . . . . . . . . . 7

Welcome to the rich world that is differential equations. What prompted you to embark on
this journey? Are you hunting for answers to questions about the Universe? Are you, as the
result of allergies, contemplating taking two tablets instead of one to alleviate symptoms,
but seek mathematical affirmation of the effectiveness of this decision? Have you wondered
why it is that while you are standing atop the Empire State Building - swaying back and
forth, back and forth, ... - the building doesn’t simply concede defeat and snap in half?
Are you curious as to how quickly the avian flu virus can spread throughout the world,
infecting unsuspecting passerbyes? Or, how about those airplane wings - why don’t they
simply break apart in the middle of flight?

Whatever your reason for opening this book, your study of this material can shed some
light on the answers to such questions. Many interesting, often surprising and sometimes
downright unbelievable adventures await you. Again, welcome, hang on, and enjoy the ride.

1.1 Introduction

What are differential equations? No succinct definition truly captures the essence of
this sprawling area of study. Researchers study phenomena occurring in nature guided by
the goal of predicting the behavior of a solution of a system of equations governed by
a set of discipline-specific laws. Relying on experimental observation at the onset of an
investigation can be costly, subject to error, and can prove to be futile if the imposed
assumptions turn out to be incorrect or infeasible. An often more pragmatic first step is
to formulate a mathematical model of the situation and study its properties. Assuming
success in this regard, a natural second step is to test the validity of the model using
actual experimentation. The equations and/or assumptions are reexamined and tweaked,
the abstract theory is modified, and then the system is again tested experimentally.

The phenomena with which we shall concern ourselves in Part I can all be characterized
by quantities that change with time and can be formally described using a system of ordinary
differential equations. The birth of differential equations as an area of study goes back to
1687 when they first appeared in Sir Isaac Newton’s book Philosophiae Naturalis Principia
Mathematics. The equations he posed were consequences of his observation that one should
study forces to which a system responds in order to describe the laws of nature. Since

3



4 Differential Equations with MATLAB R© : Exploration, Application and Theory

then, many researchers have made significant contributions, creating a massive continually-
growing literature.

Many situations in physics, chemistry, economics, etc. that you have likely encoun-
tered are described by differential equations. Among the common examples of these phe-
nomena are bacteria and population growth and decay, elementary financial models, and
predator-prey systems. As you will discover along your journey through this text, differ-
ential equations play a crucial role in the modeling and analysis of numerous complicated
scenarios.

1.2 This Book Is a Field Guide. What Does That Mean For YOU?

A perusal of the Table of Contents will reveal that your journey through differential
equations will be split into two main parts. The first part is devoted to a discussion of
certain classes of linear ordinary differential equations. Various theoretical concepts nec-
essary to understand mathematical models whose mathematical description falls into this
category will be introduced and developed, and subsequently addressed and generalized
several times as the complexity of the models increases. All told, eleven distinct models
spanning disciplines will be investigated in Part I, and an encompassing abstract theory
will be developed.

Part II focuses on linear partial differential equations. Here, we will study another ten
distinct mathematical models, and develop an encompassing abstract theory analogous to
the one formulated in Part I. The theoretical results established in Part I can effectively be
interpreted as special cases of the theory developed here.

The structure of this book may be somewhat different than others through which you
have worked. For one, the text is NOT simply intended to be read passively. Rather, it is
chock full of questions posed to you. If this journey were envisioned as a trek through a
densely-vegetated rain forest, then our approach is akin to arming each and every reader
with a machete intended to be used to help forge the path to an elusive Mayan ruins that
legend suggests is home to riches beyond belief. Hyperbole aside, YOU are asked to work
through many of the details. A passive reading of this text will prove to be ineffective,
whereas carefully working through it will result in a solid understanding of the material.
Everything from computations to assessing the validity of underlying assumptions must be
carefully examined in order to fully understand the material. We consciously indicate when
the discussion is intentionally terse by including parenthetical questions and instructions,
such as (Why?), (Do so!), and (Explain how.). Sometimes, we even bring the discussion
to a screeching halt with a STOP! It is imperative that you not leave any stone unturned
and attempt to answer each of these questions. Failing to do so could start as a seemingly
minor drop of confusion and then, snowball into a thunderous sea of misunderstanding as
you proceed through the book.

While the primary goal of the text is to develop an overarching mathematical theory,
we are doing so under the assumption that your prior exposure to theoretical mathematics
is minimal. We intend to build your intution and involve you in the enterprise of building
the theory from the ground up. That said, we need to arm you with the essential tools
of analysis, but in a manner that balances intuition, practicality, and mathematical rigor.
This is accomplished with a preliminary chapter in both main parts of the book which
provides the essential tools to be used in that part, along with the inclusion of hands-on
EXPLORE! activities. The purpose of the EXPLORE! activities is just that, to explore.
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We provide questions to guide you and point you in some direction. All we ask is that you
walk, or even run, in some direction, even if you do not know the final destination. Please,
do not feel that you should know the correct answer in the traditional math book sense.
The correct answer to an EXPLORE! question is more of a thought process followed by
articulating what you have considered and your conclusion. Certainly, the completion of
these portions of the text is by no means a substitute for a formal study of analysis. But,
they do provide you with just enough knowledge to proceed through the next step of the
development of the theory.

Applying the theory is, to many readers, arguably analogous to finding the lost trea-
sure as the culmination of a long, tiresome journey. Our dual emphasis on the analysis of
mathematical models is not typical in textbooks. We feel that this connection to concrete
applications helps build intuition, provides motivation for why such a theory should be de-
veloped, and post fortiori affirms having developed the theory by examining the plentiful
collection of applications. There are APPLY IT! activities sprinkled throughout the text,
asking you to reexamine models in light of new theoretical results.

Finally, the glue that binds all aspects of our journey is our extensive use of MATLAB
Graphical User Interfaces (GUIs). As you will see, this feature of the text enables you to
discover patterns and make conjectures that otherwise would be solely reachable using real
analysis making them intractible.

1.3 Mired in Jargon—A Quick Language Lesson!

Superficially, a differential equation (DE) is an equation involving derivatives. If an equa-
tion contains derivatives of functions dependent only on a single variable, then it is called
an ordinary differential equation (ODE), while an equation containing partial derivatives
(which arise when the functions of interest depend on more than one variable) is appropri-
ately called a partial differential equation (PDE). Some examples of such equations are

u′(x) = f(x, u(x)) (1.1)

d2u(x)

dx2
+ 3

du(x)

dx
= sinx (1.2)

∂2u(t, x)

∂t2
+ c2

∂2u(t, x)

∂x2
= 0. (1.3)

Equations (1.1) and (1.2) are ODEs while (1.3) is a PDE. The variables upon which the
functions depend, namely x (and also t in the case of (1.3)) are called independent variables.
Often, the independent variables in an equation are clearly understood and in such cases we
suppress the dependence on them and write a cleaner, more succinct equation. For instance,
the following equations are often written in place of (1.1) - (1.3), respectively:

u′ = f(x, u) (1.4)

d2u

dx2
+ 3

du

dx
= sinx (1.5)

∂2u

∂t2
+ c2

∂2u

∂x2
= 0. (1.6)

The order of a differential equation is the order of the highest derivative appearing in the
equation. The order of (1.1) is 1, while the order of both (1.2) and (1.3) is 2.
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With the basic terminology in place, we loosely define what is meant by solving a
differential equation. The notion is intuitive enough. Indeed, when asked to “solve (1.1),”
you are to determine a real-valued function u = u(x) that satisfies the equation (1.1). Unlike
algebraic equations, the unknown quantity of interest is an actual function, rather than a
real-number. Defining what precisely is meant by saying “a function satisfies a differential
equation” can be very tricky, and we will need to pay more careful attention to various
nuances as we proceed through the text. Momentarily, though, it is reasonable to think of
this obtaining a true statement as the result of plugging the function into the equation.
Consider the following example.

Example 1.3.1. Verify that the function u(x) = e−x is a solution of the ODE u′ = −u.
Solution: Observe that u′(x) = −e−x and that −u(x) = −e−x, for any real number x.
Substituting these into the given ODE results in a true statement, for any real number x.
So, u(x) is a solution to the given ODE.

We make two remarks regarding Example 1.3.1. One, let C be an arbitrary real number
and consider the function uC defined by uC(x) = Ce−x. Clearly, uC is also a solution of the
given ODE. (Why?) The presence of the arbitrary constant C prompts us to refer to this
as a general solution of the DE. This demonstrates that without additional information, a
DE can have more than one solution; in fact, it can have infinitely many. Two, the solution
of the DE is a function and as such, comes equipped with its own domain which indicates
when the DE is solvable. A complete understanding of the behavior of a solution of a DE
requires that we know its domain. It is customary to include this domain when describing
the solution of a DE.

Exercise 1.3.1. Verify that for any real constant C, uC(t) = Ce−3t is a general solution
of the ODE u′′(t) + 2u′(t)− 3u(t) = 0. What is the domain of the solution?

Exercise 1.3.2. Verify that z(x) = C1 cos (lnx) + C2 sin (lnx) is a general solution of
the Cauchy-Euler ODE x2z′′(x) + xz′(x) + z(x) = 0, where C1 and C2 are arbitrary real
constants. What is the domain of the solution?

1.4 Introducing MATLAB

MATLAB R© is a software package produced by Mathworks, Inc. (mathworks.com) and
is available on a systems ranging from personal computers to supercomputers. The name
MATLAB stems from “Matrix Laboratory,” which alludes to the software package’s foun-
dation in linear algebra. MATLAB has evolved into an interactive development tool for
scientific and engineering programs, or in fact any setting for which numeric computation
is required.

This textbook takes advantage of MATLAB’s Graphical User Interface (GUI) environ-
ment to minimize the use of MATLAB syntax. To obtain all the GUIs for the textbook go
to http://www.wcupa.edu/ academics/sch cas.mat/mmcKibben/book3.asp and download
the files to your computer. Place the files in a folder and record the name of the folder for
later use. In order to execute the text’s GUIs one only needs to identify the current folder
and the command window in MATLAB.

If necessary, change the current folder to the one that contains this text’s GUI files.
This can be done by manually typing the location of the folder or by using the browse for
folder button (the button with three dots located in the top right of screen in Figure 1.1).
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FIGURE 1.1: MATLAB Command Window

For example, in Figure 1.1 the current folder is titled DEwithMATLAB eAt, so in order
for the GUIs to work all the files need to be placed in that folder. When prompted by an
exercise to use a specific GUI you will be directed to the command window. The command
window is the large panel in the middle of the screen in Figure 1.1. A defining feature of
the command window is the prompt >>. To open a GUI, type the name as provided in the
exercise instructions after the >> prompt and hit return. For example,

>> MATLAB_Elementary_Population_Growth

will open the MATLAB GUI of the same name and output an interface for which one can
visualize solutions, learn new concepts, and answer questions posed in exercises, MATLAB-
Exercises, EXPLORE!s, and APPLY IT!s. The vast majority of GUIs that accompany
this text are self-contained in the sense that all the information you need can be found
within the panel of the interface. However, in a few cases additional information can be
found in the command window. In these situations the GUI’s Instructions and Help but-
ton will direct you to the command window and explain how to retrieve any additional
information.

The GUIs in this book have been tested under MATLAB release, version 7.14.0.739
(R2012a). For a detailed description of MATLAB, its features, and syntax refer to the
MATLAB manual along with the Mathworks website,

http://www.mathworks.com/help/matlab/index.html.

1.5 A First Look at Some Elementary Mathematical Models

A differential equation has an entire family of solutions associated with it until addi-
tional restrictions are imposed on the behavior of the solution. A natural question is, “How
do we isolate a particular solution of a DE?” To explore this issue, we shall examine some
familiar elementary models.
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Model I.1. Freely-Falling Bodies
The height, at any time t ≥ 0, of a moving body falling freely along a linear vertical

path due to gravity (neglecting air resistance) is governed by the following mathematical
model : 

d2y

dt2
(t)︸ ︷︷ ︸

Acceleration

= −g︸︷︷︸
Gravity

,

y(0) = s0 (Initial Height),

y′(0) = v0 (Initial Velocity),

(1.7)

where t denotes time and y = y(t) the vertical position of the body above the ground.
Our goal is to determine the actual function y satisfying all parts of (1.7). In addition

to the ODE, we have imposed two extra conditions (called initial conditions) that will
enable us to isolate a particular solution of the differential equation that we seek and, as
such, further enable us to provide a more precise description of the quantity of interest.
Whenever we consider a DE, together with conditions of this type, we refer to the entire
problem as an initial-value problem (IVP) .

Let us momentarily disregard the initial conditions and attempt to solve the ODE. Upon
inspection, it seems reasonable that solving this differential equation for y simply requires
us to consecutively integrate both sides with respect to t twice. (Why is this justified?)
Doing so yields

d2y

dt2
(t) = −g =⇒

∫
d2y

dt2
(t)dt =

∫
−g dt

=⇒dy

dt
(t) + C?1 =− gt+ C??1 ,

where C?1 and C??1 are arbitrary real constants (called parameters). We can combine
these constants into a single arbitrary constant C1 (Why?) to obtain the cleaner
equation

dy

dt
(t) = −gt+ C1.

This equation is meaningful for all t ≥ 0 and so, we can integrate once again to
obtain

y(t) = −g
2
t2 + C1t+ C2, (1.8)

where C1 and C2 are arbitrary real constants. Equation (1.8) is the general solution of
IVP (1.7) and is sometimes referred to as a two-parameter family of solutions of (1.7). If
we stop here, we have infinitely many solutions to the differential equation portion of IVP
(1.7). However, demanding that this solution satisfy the two initial conditions enables us
to isolate a unique function that satisfies all three conditions. Using these two conditions
enables us to uniquely determine C1 and C2 as follows:

y(0) =s0 =⇒s0 = 0 + 0 + C2 = C2

y′(0) =v0 =⇒v0 = 0 + C1 = C1

Hence, the particular solution of (1.7) is given by y(t) = − g2 t
2 + v0t + s0, which is the

familiar formula developed in an elementary physics course.
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Model I.2 Elementary Population Growth
A very elementary model of population growth that ignores limitation of resources,

among other factors, can be formed under the assumption that the substance/population
grows simply at a rate that is proportional to its size. This immediately yields the IVP{

dx(t)
dt = kx(t), t > t0,

x (t0) = x0,
(1.9)

where k is the constant of proportionality, x(t) is the size of the population at time t, dxdt is
the rate of growth or decay, and x0 is the initial size of the population.

It is easy to see that the solution of (1.9) is x(t) = ektx0. If k > 0, then the population
is growing exponentially, while if k < 0, it decreases exponentially (Why?). Such a model
is useful when determining the half-life of a radioactive substance.

Exercise 1.5.1. The population of bacteria in a culture grows at a rate proportional to
the number of bacteria present at any time. After 3 hours, it is observed that there are
400 bacteria present. After 10 hours, there are 2,000 bacteria present. What was the initial
number of bacteria present?

MATLAB-Exercise 1.5.1. We will use MATLAB to investigate the population model
given by (1.9), the population model posed in Exercise 1.5.1. Open MATLAB and in the
command line, type:

MATLAB Elementary Population Growth

Use the GUI to answer the following questions. Make certain to click on the ‘Description
of System’ button for a description of the GUI and instructions on how to use the GUI. A
typical screenshot can be found in Figure 1.2.

i.) Use your answers in Exercise 1.5.1 as parameters for the GUI to find the population
after 5 hours.

ii.) Suppose there were measurement errors caused by misaligned lab equipment and,
in actuality, there were 405 bacteria after 3 hours and 2100 bacteria after 10 hours.
Compute the new initial population and proportionality constant.
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FIGURE 1.2: MATLAB Elementary Population Growth GUI

iii.) Let us refer to the situation described in Exercise 1.5.1 as Population 1, and the one
in ii) as Population 2. Use the GUI to plot both populations on the same axis over a
5 hour time span. Comment on the shapes of the graphs. For example, do they look
the same? Are they getting further apart? Closer together?

�

Model I.3 Newton’s Law of Heating and Cooling
Did you ever wonder why it seems that within a very short time of taking an ice-cold

soda out of the refrigerator to drink outside on a scorching summer day, the soda becomes
warm or, why does a Thanksgiving turkey cool so quickly once it is taken out of an oven
and set onto the dining room table? These phenomena can be modeled using Newton’s Law
of Heating and Cooling , which says that the rate at which a body cools is proportional to
the difference between the temperature of the body and the temperature of the surrounding
medium (called the ambient temperature).

Let T (t) represent the temperature of the body at time t, Tm the constant temperature
of the surrounding medium, and dT

dt the rate at which the body cools. Then, Newton’s Law
of Heating and Cooling can be expressed mathematically as the following IVP:{

dT (t)
dt = k (T (t)− Tm) , t > t0,

T (t0) = T0,
(1.10)

where k is the constant of proportionality and T0 is the temperature of the body at time
t = t0. If the body is cooling, then it makes sense that T (t) ≥ Tm. Likewise, if the body
is warming, the reverse inequality is true. (Why?) The solution of IVP (1.10) is given
by

T (t) = Tm + (T0 − Tm) ek(t−t0). (1.11)

STOP! Verifty this.

Exercise 1.5.2. A thermometer is taken from inside a house to the outdoors, where the
air temperature is 5 degrees Fahrenheit. After 1 minute the thermometer reads 55 degrees
Fahrenheit and after 5 minutes the reading is 30 degrees Fahrenheit. What was the initial
temperature of the room?
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MATLAB-Exercise 1.5.2. We will use MATLAB to investigate the temperature model
given by (1.11), the situation described in Exercise 1.5.2. Open MATLAB and in the
command line, type:

MATLAB Heating Cooling

Use the GUI to answer the following questions. Make certain to click on the ‘Description
of System’ button for a description of the GUI and instructions on how to use the GUI. A
typical screenshot can be found in Figure 1.3.

FIGURE 1.3: MATLAB Heating Cooling GUI

i.) Use your answers in Exercise 1.5.2 as parameters for the GUI to find the temperature
reading on the thermometer after 8 minutes.

ii.) All measurement devices, including thermometers, are imperfect, meaning they do not
necessarily output the actual measurement, but rather a value within some tolerance
of the true value. Repeat Exercise 1.5.2 assuming the thermometer was reporting
temperatures 1% warmer than the true values and that the outdoor temperature is
truly 5 degrees Fahrenheit.

iii.) Let us refer to the situation described in Exercise 1.5.2 as Temperature 1 and the
one in ii) as Temperature 2. Use the GUI to plot both temperatures on the same set
of axes over an eight minute time span. Comment on the shapes of the graphs. For
example, do they look the same? Are they getting further apart? Closer together?

iv.) Make a conjecture for solutions to (1.11) when the parameters are a “little off.”

�

A Basic Philosophy of Mathematical Modeling

Before studying more complicated models, we provide a crude outline of the underlying
philosophy used when forming so-called mathematical models. Below is a list of key steps
to keep in mind when embarking on a journey whose goals are to form, analyze, solve, and
refine mathematical models :

1. Clearly state all assumptions.
This step constitutes the foundation of the modeling process. You must describe all
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relationships that exist among the quantities being studied, as accurately as possible. Try
to avoid hidden assumptions, and realize that the quality of the assumptions you impose
determines the validity of the model.

2. Clearly identify variables and parameters.
The most frequently used independent variable is time, though other commonly occur-

ring ones include position and angle. The dependent variables (that is, the quantities of
interest that change with respect to change in the independent variable) are much wider in
scope. Parameters include other measurable quantites that must be incorporated into the
equations of the model, such as properties of material whose temperature is being studied,
rate of decay, and density of a population.

3. Formulate equations relating the quantities identified in Step 2.
This step requires the use of underlying laws (geometric, physical, and economic) that

govern the setting in which the model arises. The process of formulating these equations
becomes more natural as you gain experience.

4. Study the equations formulated in Step 3 in an effort to understand the
behavior of the quantities of interest.

The actual solution of an ODE or system of ODEs is often not attainable. But, there
are other ways to extract information about the behavior of the phenomena that do not
require an actual solution.

5. Test the model using actual data.
When working in the sciences, for instance, one formulates a model and then performs

a few “test cases” in which the outcome is known a priori in order to test the accuracy of
the model. We will not actually do this in the present text, as our main goal is the analysis
of existing models.

6. Modify assumptions and formulate an enhanced, improved model.
No model is perfect. There is no single model that accounts for every possible variable

that arises. And, even if such a model did exist, the complexity of the equations would
render extracting useful information about the phenomena impossible. However, a typical
approach is to start simple and move forward taking small steps towards a sufficiently re-
alistic model.

We will examine a large collection of models in this text, but will rarely focus on going
back to first principles when formulating them. Doing so thoroughly would require extensive
knowledge of each area. Rather, our approach can be better described as a macro-analysis
in that we establish a single framework in which to study more global features of broad
collections of models.
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If you have taken an elementary differential equations course, you are familiar with various
techniques used to determine solutions of differential equations, as well as possibly some
methods used to describe characteristics of the solutions corresponding to different initial
conditions. Pushing beyond such a rudimentary analysis with an eye toward performing a
more rigorous investigation inevitably requires some mathematical sophistication. Contrary
to the opinion that mathematics is all about performing calculations to solve problems,
discovery of patterns, forming cogent arguments, and performing careful analysis is at the
heart of the discipline. But, how does one do mathematics carefully and properly?

The purpose of this chapter is to provide you with a succinct, hands-on working knowl-
edge of some concepts in elementary analysis focusing on notation, main definitions and

13
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results, and the techniques used throughout the text. Occasionally, other topics will be
introduced when needed.

2.1 Some Basic Mathematical Shorthand

Symbolism is used heftily in mathematical exposition. Careful usage of some basic no-
tation can streamline the verbiage. Some of the common symbols used are as follows.

Let P and Q be statements. (If the statement P changes depending on the value of some
parameter x, we denote this dependence by writing P(x ).)

1.) The statement “not P ,” is called the negation of P.
2.) The statement “If P, then Q” is called an implication, and is denoted by “P =⇒ Q”

(read “P implies Q”). Here, P is called the hypothesis and Q is the conclusion.
3.) The statement “P if, and only if, Q” is denoted by “P iff Q” or “P ⇐⇒ Q.” Precisely,

this means “(P =⇒ Q) and (Q =⇒ P ).”
4.) The statement “Q =⇒ P” is the converse of “P =⇒ Q.”
5.) The statement “not Q =⇒not P” is the contrapositive of “P =⇒ Q.” These two

statements are logically equivalent.
6.) The symbol “∃” is an existential quantifier and is read as “there exists” or “there is

at least one.”
7.) The symbol “∀” is a universal quantifier and is read as “for every” or “for any.”

Exercise 2.1.1. Let P, Q, R, and S be statements.

i.) Form the negation of “∃ x such that P(x ) holds.”

ii.) Form the negation of “∀x, P(x ) holds.”

Example 2.1.1. Form the negation of “P and (Q and R).”

This sort of formal exercise in logic arises when determining if a mathematical result is
applicable to a given situation. For instance, if there are 3 distinct hypothesis, P,Q and
R, that all must be satisfied in order to apply a theorem, all it would take to render the
theorem inapplicable is for at least one of the hypotheses to not hold. That is, the negation
of “P and (Q and R)” is “not P or not Q or not R.”

Remark 2.1.1. Implication is a transitive relation in the sense that

((P =⇒ Q) and (Q =⇒ R)) =⇒ (P =⇒ R) .

For instance, a sequence of algebraic manipulations used to solve an equation is technically
such a string of implications from which we conclude that the values of the variable ob-
tained in the last step are the solutions of the original equation. Mathematical arguments
are comprised of strings of implications, albeit of a somewhat more sophisticated nature.

A theorem is a statement about mathematical objects. It has a special form in that it
consists of a hypothesis and a conclusion. A mathematical proof of a theorem is a logical ar-
gument which guarantees the conclusion holds when the hypotheses are satisfied. You have
encountered many theorems in your study of the calculus, some of which are easily stated
and others whose structure is more complicated because the hypotheses involve multiple
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conditions.

STOP! State the following calculus theorems as precisely as you can. Then, check your
responses using a calculus text.

1. Product Rule for Derivatives
2. Mean Value Theorem for Derivatives
3. Fundamental Theorem of Calculus

Undoubtedly, while “how to use” each of the above theorems likely came to mind,
formally and precisely stating them often poses a challenge to a beginner. It is not uncommon
to overlook stating the conditions that must be satisfied in order to employ the rule suggested
by each theorem, yet these conditions are crucial in the sense that the rules do not necessarily
apply unless they are satisfied. For example, you cannot apply the Fundamental Theorem
of Calculus to compute ∫ 1

−2

1

x
dx

and you cannot apply the Mean Value Theorem to f(x) = |x| on [−2, 3]. (Why?) As you
work through the text, be mindful about the conditions being imposed, what they mean,
and the ramifications of imposing them.

2.2 Set Algebra

Informally, a set can be thought of as a collection of objects (e.g., real numbers, vectors,
matrices, functions, other sets, etc.); the contents of a set are referred to as its elements.
We usually label sets using upper case letters and their elements by lower case letters. Two
sets that arise often and for whom specific notation will be reserved are:

N = {1, 2, 3, ...}
R = the set of all real numbers

If P is a certain property and A is the set of all objects having property P, we write
A = {x : x has P} or A = {x|x has P} . A set with no elements is empty , denoted by ∅.

If A is not empty and a is an element of A, we denote this fact by “a ∈ A.” If a is not
an element of A, a fact denoted by “a /∈ A, ” then where is it located? This prompts us to
prescribe a universal set U that contains all possible objects of interest in our discussion.
The following definition provides an algebra of sets.

Definition 2.2.1. Let A and B be sets.

i.) A is a subset of B, written A ⊂ B, whenever x ∈ A =⇒ x ∈ B.
ii.) A equals B, written A = B, whenever (A ⊂ B) and (B ⊂ A).
iii.) The complement of A relative to B, written B \ A, is the set {x|x ∈ B and x /∈ A}.

The complement relative to U is denoted by Ã.
iv.) The union of A and B is the set A ∪B = {x|x ∈ A or x ∈ B}.
v.) The intersection of A and B is the set A ∩B = {x|x ∈ A and x ∈ B}.
vi.) The Cartesian product of A and B is the set A × B = {(a, b)|a ∈ A and b ∈ B}.

More generally, if A1, . . . , An are sets, the Cartesian product of A1, . . . , An is the set
A1×. . .×An = {(a1, . . . , an) : a1 ∈ A1, . . . , an ∈ An}. If A1 = . . . = An, then denoting
this common set by A, we denote the Cartesian product by simply An.
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Verifying that two sets are equal requires that we prove two implications. Use this fact
when appropriate to complete the following exercises:

Exercise 2.2.1. Let A,B, and C be sets. Illustrate each of the following pictorally and
prove each of them:

i.) A ⊂ B iff B̃ ⊂ Ã.

ii.) A = (A ∩B)∪ (A \B)

iii.) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)and A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

iv.) ˜(A ∩B) = Ã ∪ B̃ and ˜(A ∪B) = Ã ∩ B̃

Exercise 2.2.2. Explain how you would show two sets A and B are NOT equal.

2.3 Functions

The functions typically encountered in a calculus course are defined by explicit formulas
that assign elements in one set to outputs in another. We will need to think more broadly
and carefully about functions in this text and so, we introduce a more formal definition of
a function below.

Definition 2.3.1. Let A and B be sets.

i.) A function from A to B is a subset f ⊂ A×B satisfying

a) ∀x ∈ A,∃y ∈ B such that (x, y) ∈ f ,
b) (x, y1) ∈ f and (x, y2) ∈ f =⇒ y1 = y2. We say f is B−valued, denoted by

f : A→ B.

ii) The set A is called the domain of f , denoted dom(f).

iii) The range of f , denoted by rng(f), is given by rng(f) = {f(x)|x ∈ A}.

Remark 2.3.1. Notation: When defining a function using an explicit formula, say y = f(x),
the notation x 7→ f(x) is often used to denote the function. Also, we indicate the general
dependence on a variable using a dot, say f (·). If the function depends on two independent
variables, we distinguish between them by using a different number of dots for each, say
f (·, ··). Also, the term mapping is used synonymously with the term function. An immediate
consequence of Definition 2.3.1 is that rng(f) ⊂ B.

Exercise 2.3.1. Precisely define what it means for two functions f and g to be equal.

We sometimes wish to apply functions in succession in the following sense.

Definition 2.3.2. Suppose that f : dom(f) → A and g : dom(g) → B with rng(g) ⊂
dom(f). The composition of f with g, denoted f ◦ g, is the function f ◦ g : dom(g) → A
defined by (f ◦ g) (x) = f(g(x)).

Exercise 2.3.2. Show that, in general, f ◦ g 6= g ◦ f .

Definition 2.3.3. f : A→ B is called
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i.) one-to-one if f (x1) = f (x2) =⇒ x1 = x2, ∀x1, x2 ∈ A;
ii.) onto whenever rng(f) = B.

Exercise 2.3.3. Let f : dom(f) → A and g : dom(g) → B be such that f ◦ g is defined.
Prove the following:

i.) If f and g are onto, then f ◦ g is onto.

ii.) If f and g are one-to-one, then f ◦ g is one-to-one.

Functions that are one-to-one and onto are invertible in the following sense.

Definition 2.3.4. Let f : dom(f)→ rng(f). The function g : rng(f)→ dom(f) such that

g(f(x)) = x, for every x ∈ dom(f),

f(g(y)) = y, for every y ∈ rng(f),

is called the inverse of f and is denoted by f−1. A function f for which such an inverse
function exists is said to be invertible.

At times, we need to compute the functional values for all members of a subset of the
domain, or perhaps determine the subset of the domain whose collection of functional values
is a prescribed subset of the range. These notions are made precise below.

Definition 2.3.5. Let f : A→ B.

i.) For X ⊂ A, the image of X under f is the set f(X) = {f(x)|x ∈ X}.
ii.) For Y ⊂ B, the pre-image of Y under f is the set

f−1(Y ) = {x ∈ A| ∃y ∈ Y such that y = f(x)} .

We often consider functions whose domains and ranges are subsets of R. For such func-
tions, the notion of monotonicity is often a useful characterization.

Definition 2.3.6. Let f : dom(f) ⊂ R → R and suppose that ∅ 6= S ⊂ dom(f). We say
that f is

i.) nondecreasing on S whenever x1, x2 ∈ S with x1 < x2 =⇒ f (x1) ≤ f (x2);
ii.) nonincreasing on S whenever x1, x2 ∈ S with x1 < x2 =⇒ f (x1) ≥ f (x2).

Remark 2.3.2. When the inequality is strict, we replace “nondecreasing” by ”increasing”
and “nonincreasing” by “decreasing.”

The arithmetic operations of real-valued functions are defined in the natural way.

Definition 2.3.7. (Arithmetic of Functions)
Suppose that f : dom(f) ⊂ R → R and g : dom(g) ⊂ R → R. The functions f + g, f − g,
and f · g are defined as follows:

i.) f + g : dom(f) ∩ dom(g) ⊂ R → R is defined by (f + g) (x) = f(x) + g(x), for all
x ∈ dom(f) ∩ dom(g),

ii.) f − g : dom(f) ∩ dom(g) ⊂ R → R is defined by (f − g) (x) = f(x) − g(x), for all
x ∈ dom(f) ∩ dom(g),

iii.) f · g : dom(f) ∩ dom(g) ⊂ R → R is defined by (f · g) (x) = f(x) · g(x), for all
x ∈ dom(f) ∩ dom(g).
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Exercise 2.3.4. Suppose that f : dom(f) ⊂ R → R and g : dom(g) ⊂ R → R are
nondecreasing (resp. nonincreasing) functions on their domains.

i.) Which of the functions f + g, f − g, f · g, and f
g , if any, are nondecreasing (resp.

nonincreasing) on their domains? Explain.

ii.) Assuming that f ◦ g is defined, must it be nondecreasing (resp. nonincreasing) on its
domain? Explain.

2.4 The Space (R, |·|)
2.4.1 Order Properties

The basic arithmetic and order features of the real number system are likely familiar.
For our purposes, we shall begin with a set R equipped with two operations, addition and
multiplication, satisfying these algebraic properties:

1. addition and multiplication are both commutative and associative;
2. multiplication distributes over addition;
3. adding zero to any real number yields the same real number;
4. multiplying a real number by one yields the same real number;
5. every real number has a unique additive inverse; and
6. every nonzero real number has a unique multiplicative inverse.

Moreover, R equipped with the natural “<” ordering is an ordered field and obeys the
following properties:

Proposition 2.4.1. (Order Features of R)
For all x, y, z ∈ R, the following are true:

i.) Exactly one of the relationships x = y, x < y, or y < x holds;
ii.) x < y =⇒ x+ z < y + z;
iii.) (x < y) and (y < z) =⇒ x < z;
iv.) (x < y) and ( c > 0) =⇒ cx < cy;
v.) (x < y) and (c < 0) =⇒ cx > cy;
vi.) (0 < x < y) and (0 < w < z) =⇒ 0 < xw < yz.

The following is an immediate consequence of these properties and is often the underlying
principle used when verifying an inequality.

Proposition 2.4.2. If x, y ∈ R such that x < y + ε, ∀ε > 0, then x ≤ y.

Proof. Suppose not; that is, y < x. Observe that for ε = x−y
2 > 0, y+ε = x+y

2 < x. (Why?)
This is a contradiction. Hence, it must be the case that x ≤ y.

Remark 2.4.1. The above argument is a very simple example of a proof by contradiction.
The strategy is to assume that the conclusion is false and then use this additional hypothesis
to obtain a false statement or a contradiction of another hypothesis in the claim.
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2.4.2 Absolute Value

The above is a heuristic description of the familiar algebraic structure of R. When
equipped with a distance-measuring artifice, deeper properties of R can be defined and
studied. This is done with the help of the absolute value function.

Definition 2.4.1. For any x ∈ R, the absolute value of x, denoted |x|, is defined by

|x| =

{
x, x ≥ 0,

−x, x < 0.

This can be viewed as a measurement of distance between real numbers within the
context of a number line. For instance, the solution set of the equation “|x− 2| = 3” is the
set of real numbers x that are “3 units away from 2,” namely {−1, 5} .
Exercise 2.4.1. Determine the solution set for the following equations.

i.) |x− 3| = 0

ii.) |x+ 6| = 2

Proposition 2.4.3. The following properties hold for all x, y, z ∈ R and a ≥ 0:

i.) −|x| = min{−x, x} ≤ x ≤ max{−x, x} = |x|;
ii.) |x| ≥ 0, ∀x ∈ R;
iii.) |x| = 0 iff x = 0;

iv.)
√
x2 = |x|;

v.) |xy| = |x| |y|;
vi.) |x| ≤ a iff −a ≤ x ≤ a;

vii.) |x+ y| ≤ |x|+ |y|;
viii.) |x− y| ≤ |x− z|+ |z − y|;
ix.) | |x| − |y| | ≤ |x− y|;
x.) |x− y| < ε,∀ε > 0 =⇒ x = y.

Remark 2.4.2. The properties listed in Prop. 2.4.3 will be used heftily throughout the
text.

1.) (vii) is called the triangle inequality . Its main utility lies in providing an estimate on
a sum in terms of its parts.

2.) (viii) is an immediate consequence of (vii) obtained by “putting in and taking out” z
and then applying (vii). Indeed observe

|x− y| = |(x− z) + (z − y)|
≤ |x− z|+ |z − y|

This is useful when trying to form an upper bound on |x − y| in terms of quantities
different from just |x| and |y|.

3.) (x) is a useful trick to use when showing two quantities x and y are equal. In words, if
the absolute value of the difference of two real numbers is smaller than every positive
number, then the two numbers must be equal.

The following inequalities are sometimes useful when establishing estimates.

Proposition 2.4.4. Let n ∈ N and x1, x2, . . . , xn, y1, y2, . . . , yn ∈ R.

i.) (Cauchy-Schwarz)
∑n
i=1 xiyi ≤

(∑n
i=1 x

2
i

) (∑n
i=1 y

2
i

)
,

ii.) (Minkowski)
(∑n

i=1 (xi + yi)
2
) 1

2 ≤
(∑n

i=1 x
2
i

) 1
2 +

(∑n
i=1 y

2
i

) 1
2 ,

iii.) |
∑n
i=1 xi|

M ≤ (
∑n
i=1 |xi|)

M ≤ nM−1
∑n
i=1 |xi|

M
, ∀M ∈ N.


