
Introduction to Combinatorial Testing presents a complete self-
contained tutorial on advanced combinatorial testing methods for real-
world software. The book introduces key concepts and procedures
of combinatorial testing, explains how to use software tools for
generating combinatorial tests, and shows how this approach can be
integrated with existing practice. Detailed explanations and examples
clarify how and why to use various techniques. Sections on cost and
practical considerations describe tradeoffs and limitations that may
impact resources or funding. While the authors introduce some of the
theory and mathematics of combinatorial methods, you can use the
methods without in-depth knowledge of the underlying mathematics.

Features
• Represents the first in-depth book on practical combinatorial

testing
• Focuses on real-world software testing, including cost

considerations
• Presents step-by-step procedures for applying advanced

combinatorial test methods
• Requires no detailed knowledge of the underlying mathematics
• Includes review questions and exercises in most chapters
• Contains an extensive set of references that offer more detail on

each topic

This book illustrates the practical application of combinatorial
methods in software testing. Giving pointers to freely available tools
and offering resources on a supplementary website, it encourages
you to apply these methods in your own testing projects.

K15208

CHAPMAN & HALL/CRC INNOVATIONS IN
SOFTWARE ENGINEERING AND SOFTWARE DEVELOPMENT

Introduction to

Combinatorial
Testing

Introduction to C
om

binatorial Testing

Introduction to Combinatorial Testing

D. Richard Kuhn
Raghu N. Kacker

Yu Lei

K
uhn

K
acker
Lei

Computer Science/Computer Engineering/Computing

K15208_Cover.indd 1 4/26/13 2:27 PM

Introduction to

Combinatorial
Testing

Chapman & Hall/CRC Innovations in Software Engineering
and Software Development

Series Editor
Richard LeBlanc

Chair, Department of Computer Science and Software Engineering, Seattle University

AIMS AND SCOPE

This series covers all aspects of software engineering and software development. Books
in the series will be innovative reference books, research monographs, and textbooks at
the undergraduate and graduate level. Coverage will include traditional subject matter,
cutting-edge research, and current industry practice, such as agile software development
methods and service-oriented architectures. We also welcome proposals for books that
capture the latest results on the domains and conditions in which practices are most ef-
fective.

PUBLISHED TITLES

Software Development: An Open Source Approach
Allen Tucker, Ralph Morelli, and Chamindra de Silva

Building Enterprise Systems with ODP: An Introduction to Open
Distributed Processing
Peter F. Linington, Zoran Milosevic, Akira Tanaka, and Antonio Vallecillo

Software Engineering: The Current Practice
Václav Rajlich

Fundamentals of Dependable Computing for Software Engineers
John Knight

Introduction to Combinatorial Testing
D. Richard Kuhn, Raghu N. Kacker, and Yu Lei

CHAPMAN & HALL/CRC INNOVATIONS IN
SOFTWARE ENGINEERING AND SOFTWARE DEVELOPMENT

Introduction to

Combinatorial
Testing

D. Richard Kuhn
Raghu N. Kacker

Yu Lei

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2013 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20130426

International Standard Book Number-13: 978-1-4665-5230-2 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

v

© 2010 Taylor & Francis Group, LLC

Contents

Preface,  xiii

Authors,  xvii

Note of Appreciation,  xix

Nomenclature,  xxi

Chapter 1  ■ � Combinatorial Methods in Testing	 1
1.1	 SOFTWARE FAILURES AND THE INTERACTION RULE	 1

1.2	 TWO FORMS OF COMBINATORIAL TESTING	 8

1.2.1	 Configuration Testing	 9
1.2.2	 Input Testing	 10

1.3	 COVERING ARRAYS	 11

1.3.1	 Covering Array Definition	 12
1.3.2	 Size of Covering Arrays	 13

1.4	 THE TEST ORACLE PROBLEM	 15

1.5	 QUICK START: HOW TO USE THE BASICS OF
COMBINATORIAL METHODS RIGHT AWAY	 16

1.6	 CHAPTER SUMMARY	 17

REVIEW	 18

Chapter 2  ■ � Combinatorial Testing Applied	 21
2.1	 DOCUMENT OBJECT MODEL	 21

Carmelo Montanez-Rivera, D. Richard Kuhn, Mary Brady,
Rick Rivello, Jenise Reyes Rodriguez, and Michael Powers

2.1.1	 Constructing Tests for DOM Events	 22

vi    ◾    Contents

© 2010 Taylor & Francis Group, LLC

2.1.2	 Combinatorial Testing Approach	 25
2.1.3	 Test Results	 25
2.1.4	 Cost and Practical Considerations	 29

2.2	 RICH WEB APPLICATIONS	 30
Chad M. Maughan

2.2.1	 Systematic Variable Detection in Semantic URLs	 31
2.2.2	 JavaScript Fault Classification and Identification	 31
2.2.3	 Empirical Study	 33

2.3	 CHAPTER SUMMARY	 35

Chapter 3  ■ � Configuration Testing	 37
3.1	 RUNTIME ENVIRONMENT CONFIGURATIONS	 37

3.2	 HIGHLY CONFIGURABLE SYSTEMS AND SOFTWARE
PRODUCT LINES	 39

3.3	 INVALID COMBINATIONS AND CONSTRAINTS	 44

3.3.1	 Constraints among Parameter Values	 44
3.3.2	 Constraints among Parameters	 46

3.4	 COST AND PRACTICAL CONSIDERATIONS	 48

3.5	 CHAPTER SUMMARY	 49

REVIEW	 50

Chapter 4  ■ � Input Testing	 51
4.1	 PARTITIONING THE INPUT SPACE	 51

4.2	 INPUT VARIABLES VERSUS TEST PARAMETERS	 55

4.3	 FAULT TYPE AND DETECTABILITY	 57

4.4	 BUILDING TESTS TO MATCH AN OPERATIONAL
PROFILE	 61

4.5	 SCALING CONSIDERATIONS	 64

4.6	 COST AND PRACTICAL CONSIDERATIONS	 66

4.7	 CHAPTER SUMMARY	 67

REVIEW	 68

Contents    ◾    vii

© 2010 Taylor & Francis Group, LLC

Chapter 5  ■ � Test Parameter Analysis	 71
Eduardo Miranda

5.1	 WHAT SHOULD BE INCLUDED AS A TEST

	 PARAMETER	 72

5.2	 COMBINATION ANOMALIES	 74

5.3	 CLASSIFICATION TREE METHOD	 76

5.4	 MODELING METHODOLOGY	 81

5.4.1	 Flexible Manufacturing System Example	 81
5.4.2	 Audio Amplifier	 89
5.4.3	 Password Diagnoser	 94

5.5	 SELECTING THE SYSTEM UNDER TEST	 103

5.6	 COMBINATORIAL TESTING AND BOUNDARY
VALUE ANALYSIS	 106

5.7	 CHAPTER SUMMARY	 111

REVIEW	 111

Chapter 6  ■ � Managing System State	 113
George Sherwood

6.1	 TEST FACTOR PARTITIONS WITH STATE	 114

6.1.1	 Partitions for Expected Results	 115
6.1.2	 Partitions with Constraints	 116
6.1.3	 Direct Product Block Notation	 116

6.2	 TEST FACTOR SIMPLIFICATIONS	 119

6.2.1	 All the Same Factor Value	 119
6.2.2	 All Different Factor Values	 119
6.2.3	 Functionally Dependent Factor Values	 119
6.2.4	 Hybrid Factor Values	 121

6.3	 SEQUENCE UNIT REPLAY MODEL	 122

6.4	 SINGLE REGION STATE MODELS	 126

6.5	 MULTIPLE REGION STATE MODELS	 133

6.6	 CHAPTER SUMMARY	 137

REVIEW	 140

viii    ◾    Contents

© 2010 Taylor & Francis Group, LLC

Chapter 7  ■ � Measuring Combinatorial Coverage	 143
7.1	 SOFTWARE TEST COVERAGE	 144

7.2	 COMBINATORIAL COVERAGE	 145

7.2.1	 Simple t-Way Combination Coverage	 146
7.2.2	 Simple (t + k)-Way	 147
7.2.3	 Tuple Density	 148
7.2.4	 Variable-Value Configuration Coverage	 149

7.3	 USING COMBINATORIAL COVERAGE	 152

7.4	 COST AND PRACTICAL CONSIDERATIONS	 156

7.5	 ANALYSIS OF (t + 1)-WAY COVERAGE	 160

7.6	 CHAPTER SUMMARY	 161

REVIEW	 161

Chapter 8  ■ � Test Suite Prioritization by Combinatorial
Coverage	 163
Renee Bryce and Sreedevi Sampath

8.1	 COMBINATORIAL COVERAGE FOR TEST SUITE
PRIORITIZATION	 163

8.2	 ALGORITHM	 166

8.3	 PRIORITIZATION CRITERIA	 167

8.4	 REVIEW OF EMPIRICAL STUDIES	 169

8.4.1	 Subject Applications	 169
8.4.2	 Prioritization Criteria	 169

8.4.2.1	 Test Cases	 170
8.4.2.2	 Faults	 170
8.4.2.3	 Evaluation Metric	 171
8.4.2.4	 Results	 171

8.5	 TOOL: COMBINATORIAL-BASED PRIORITIZATION
FOR USER-SESSION-BASED TESTING	 173

8.5.1	 Apache Logging Module	 173
8.5.2	 Creating a User Session–Based Test Suite from

Usage Logs Using CPUT	 173
8.5.3	 Prioritizing and Reducing Test Cases	 173

Contents    ◾    ix

© 2010 Taylor & Francis Group, LLC

8.6	 OTHER APPROACHES TO TEST SUITE
PRIORITIZATION USING COMBINATORIAL
INTERACTIONS	 174

8.7	 COST AND PRACTICAL CONSIDERATIONS	 175

8.8	 CHAPTER SUMMARY	 176

REVIEW	 176

Chapter 9  ■ � Combinatorial Testing and Random Test
Generation	 179

9.1	 COVERAGE OF RANDOM TESTS	 180

9.2	 ADAPTIVE RANDOM TESTING	 184

9.3	 TRADEOFFS: COVERING ARRAYS AND RANDOM
GENERATION	 186

9.4	 COST AND PRACTICAL CONSIDERATIONS	 189

9.5	 CHAPTER SUMMARY	 190

REVIEW	 191

Chapter 10  ■ � Sequence-Covering Arrays	 193
10.1	 SEQUENCE-COVERING ARRAY DEFINITION	 193

10.2	 SIZE AND CONSTRUCTION OF SEQUENCE-
COVERING ARRAYS	 195

10.2.1	 Generalized t-Way Sequence Covering	 197
10.2.2	 Algorithm Analysis	 197

10.3	 USING SEQUENCE-COVERING ARRAYS	 198

10.4	 COST AND PRACTICAL CONSIDERATIONS	 199

10.5	 CHAPTER SUMMARY	 199

REVIEW	 202

Chapter 11  ■ � Assertion-Based Testing	 203
11.1	 BASIC ASSERTIONS FOR TESTING	 204

11.2	 STRONGER ASSERTION-BASED TESTING	 208

11.3	 COST AND PRACTICAL CONSIDERATIONS	 209

11.4	 CHAPTER SUMMARY	 210

REVIEW	 210

x    ◾    Contents

© 2010 Taylor & Francis Group, LLC

Chapter 12  ■ � Model-Based Testing	 213
12.1	 OVERVIEW	 214

12.2	 ACCESS CONTROL SYSTEM EXAMPLE	 215

12.3	 SMV MODEL	 216

12.4	 INTEGRATING COMBINATORIAL TESTS
INTO THE MODEL	 218

12.5	 GENERATING TESTS FROM COUNTEREXAMPLES	 222

12.6	 COST AND PRACTICAL CONSIDERATIONS	 224

12.7	 CHAPTER SUMMARY	 225

REVIEW	 225

Chapter 13  ■ � Fault Localization	 227
13.1	 FAULT LOCALIZATION PROCESS	 228

13.1.1	 Analyzing Combinations	 229
13.1.2	 New Test Generation	 230

13.1.2.1	 Alternate Value	 230
13.1.2.2	 Base Choice	 230

13.2	 LOCATING FAULTS: EXAMPLE	 231

13.2.1	 Generating New Tests	 234
13.3	 COST AND PRACTICAL CONSIDERATIONS	 235

13.4	 CHAPTER SUMMARY	 236

REVIEW	 236

Chapter 14  ■ � Evolution from Design of Experiments	 237
14.1	 BACKGROUND	 237

14.2	 PAIRWISE (TWO-WAY) TESTING OF SOFTWARE
SYSTEMS	 239

14.3	 COMBINATORIAL t-WAY TESTING OF SOFTWARE
SYSTEMS	 245

14.4	 CHAPTER SUMMARY	 246

Contents    ◾    xi

© 2010 Taylor & Francis Group, LLC

Chapter 15  ■ � Algorithms for Covering Array Construction	 247
Linbin Yu and Yu Lei

15.1	 OVERVIEW	 247

15.1.1	 Computational Approaches	 247
15.1.2	 Algebraic Approaches	 248

15.2	 ALGORITHM AETG	 249

15.3	 ALGORITHM IPOG	 252

15.4	 COST AND PRACTICAL CONSIDERATIONS	 255

15.4.1	 Constraint Handling	 255
15.4.2	 Mixed-Strength Covering Arrays	 256
15.4.3	 Extension of an Existing Test Set	 257

15.5	 CHAPTER SUMMARY	 258

REVIEW	 258

APPENDIX A: MATHEMATICS REVIEW, 261

A.1	 COMBINATORICS	 261

A.1.1	 Permutations and Combinations	 261
A.1.2	 Orthogonal Arrays	 262
A.1.3	 Covering Arrays	 263
A.1.4	 Number of Tests Required	 264

A.2	 REGULAR EXPRESSIONS	 265

A.2.1	 Expression Operators	 265
A.2.2	 Combining Operators	 266

APPENDIX B: EMPIRICAL DATA ON SOFTWARE FAILURES,  267

APPENDIX C: RESOURCES FOR COMBINATORIAL TESTING,  273

APPENDIX D: TEST TOOLS, 277

D.1  ACTS USER GUIDE	 278

xii    ◾    Contents

© 2010 Taylor & Francis Group, LLC

D.1.1	 Core Features	 278
D.1.1.1	 t-Way Test Set Generation	 278
D.1.1.2	 Mixed Strength	 278
D.1.1.3	 Constraint Support	 279
D.1.1.4	 Coverage Verification	 279

D.1.2	 Command Line Interface	 279
D.1.3	 The GUI	 282

D.1.3.1	 Create New System	 284
D.1.3.2	 Build Test Set	 288
D.1.3.3	 Modify System	 289
D.1.3.4	 Save/Save as/Open System	 291
D.1.3.5	 Import/Export Test Set	 291
D.1.3.6  Verify t-Way Coverage	 292

REFERENCES,  293

xiii

© 2010 Taylor & Francis Group, LLC

Preface

Software testing has always faced a seemingly intractable prob-
lem: for real-world programs, the number of possible input combi-

nations can exceed the number of atoms in the ocean, so as a practical
matter it is impossible to show through testing that the program works
correctly for all inputs. Combinatorial testing offers a (partial) solution.
Empirical data show that the number of variables involved in failures
is small. Most failures are triggered by only one or two inputs, and the
number of variables interacting tails off rapidly, a relationship called the
interaction rule. Therefore, if we test input combinations for even small
numbers of variables, we can provide very strong testing at low cost. As
always, there is no “silver bullet” answer to the problem of software assur-
ance, but combinatorial testing has grown rapidly because it works in the
real world.

This book introduces the reader to the practical application of combina-
torial methods in software testing. Our goal is to provide sufficient depth
that readers will be able to apply these methods in their own testing proj-
ects, with pointers to freely available tools. Included are detailed explana-
tions of how and why to use various techniques, with examples that help
clarify concepts in all chapters. Sets of exercises or questions and answers
are also included with most chapters. The text is designed to be acces-
sible to an undergraduate student of computer science or engineering, and
includes an extensive set of references to papers that provide more depth
on each topic. Many chapters introduce some of the theory and mathemat-
ics of combinatorial methods. While this material is needed for thorough
knowledge of the subject, testers can apply the methods using tools (many
freely available and linked in the chapters) that encapsulate the theory,
even without in-depth knowledge of the underlying mathematics.

We have endeavored to be as prescriptive as possible, but experienced
testers know that standardized procedures only go so far. Engineering

xiv    ◾    Preface

© 2010 Taylor & Francis Group, LLC

judgment is as essential in testing as in development. Because analysis of
the input space is usually the most critical step in testing, we have devoted
roughly a third of the book to it, in Chapters 3 through 6. It is in this
phase that experience and judgment have the most bearing on the success
of a testing project. Analyzing and modeling the input space is also a task
that is easy to do poorly, because it is so much more complex than it first
appears. Chapters 5 and 6 introduce systematic methods for dealing with
this problem, with examples to illustrate the subtleties that make the task
so challenging to do right.

Chapters 7 through 9 are central to another important theme of this
book—combinatorial methods can be applied in many ways during
the testing process, and can improve conventional test procedures not
designed with these methods in mind. That is, we do not have to com-
pletely re-design our testing practices to benefit from combinatorial meth-
ods. Any test suite, regardless of how it is derived, provides some level of
combinatorial coverage, so one way to use the methods introduced in this
book is to create test suites using an organization’s conventional proce-
dures, measure their combinatorial coverage, and then supplement them
with additional tests to detect complex interaction faults.

The oracle problem—determining the correct output for a given test—is
covered in Chapters 10 and 11. In addition to showing how formal models
can be used as test oracles, Chapter 11 introduces an approach to integrat-
ing testing with formal specifications and proofs of properties by model
checkers. Chapters 12 through 15 introduce advanced topics that can be
useful in a wide array of problems. Except for the first four chapters, which
introduce core terms and techniques, the chapters are designed to be rea-
sonably independent of each other, and pointers to other sections for addi-
tional information are provided throughout.

The project that led to this book developed from joint research with
Dolores Wallace, and we are grateful for that work and happy to recog-
nize her contributions to the field of software engineering. Special thanks
are due to Tim Grance for early and constant support of the combinato-
rial testing project. Thanks also go to Jim Higdon, Jon Hagar, Eduardo
Miranda, and Tom Wissink for early support and evangelism of this work.
Donna Dodson, Ron Boisvert, Geoffrey McFadden, David Ferraiolo, and
Lee Badger at NIST (U.S. National Institute of Standards and Technology)
have been strong advocates for this work. Jon Hagar provided many rec-
ommendations for improving the text. Mehra Borazjany, Michael Forbes,
Itzel Dominguez Mendoza, Tony Opara, Linbin Yu, Wenhua Wang, and

Preface    ◾    xv

© 2010 Taylor & Francis Group, LLC

Laleh SH. Ghandehari made major contributions to the software tools
developed in this project. We have benefitted tremendously from inter-
actions with researchers and practitioners, including Bob Binder, Paul
Black, Renee Bryce, Myra Cohen, Charles Colbourn, Howard Deiner,
Elfriede Dustin, Mike Ellims, Al Gallo, Vincent Hu, Justin Hunter, Greg
Hutto, Aditya Mathur, Josh Maximoff, Carmelo Montanez-Rivera, Jeff
Offutt, Vadim Okun, Michael Reilly, Jenise Reyes Rodriguez, Rick Rivello,
Sreedevi Sampath, Itai Segall, Mike Trela, Sergiy Vilkomir, and Tao Xie.
We also gratefully acknowledge NIST SURF (Summer Undergraduate
Research Fellowships) students Kevin Dela Rosa, William Goh, Evan
Hartig, Menal Modha, Kimberley O’Brien-Applegate, Michael Reilly,
Malcolm Taylor, and Bryan Wilkinson who contributed to the software
and methods described in this document. We are especially grateful to
Randi Cohen, editor at Taylor & Francis, for making this book possible
and for timely guidance throughout the process. Certain software prod-
ucts are identified in this document, but such identification does not
imply recommendation by the U.S. National Institute for Standards and
Technology, nor does it imply that the products identified are necessarily
the best available for the purpose.

xvii

© 2010 Taylor & Francis Group, LLC

Authors

D. Richard Kuhn is a computer scientist in the Computer Security
Division of the National Institute of Standards and Technology (NIST).
He has authored or coauthored more than 100 publications on informa-
tion security, empirical studies of software failure, and software assur-
ance, and is a senior member of the IEEE. He co-developed the role-based
access control model (RBAC) used throughout the industry and led the
effort establishing RBAC as an ANSI (American National Standards
Institute) standard. Before joining NIST, he worked as a systems analyst
with NCR Corporation and the Johns Hopkins University Applied Physics
Laboratory. He earned an MS in computer science from the University of
Maryland College Park, and an MBA from the College of William & Mary.

Raghu N. Kacker is a senior researcher in the Applied and Computational
Mathematics Division (ACMD) of the Information Technology Laboratory
(ITL) of the U.S. National Institute of Standards and Technology (NIST).
His current interests include software testing and evaluation of the uncer-
tainty in outputs of computational models and physical measurements.
He has a PhD in statistics and has coauthored over 100 refereed papers.
Dr. Kacker has been elected Fellow of the American Statistical Association
and a Fellow of the American Society for Quality.

Yu Lei is an associate professor in Department of Computer Science and
Engineering at the University of Texas, Arlington. He earned his PhD
from North Carolina State University. He was a member of the Technical
Staff in Fujitsu Network Communications, Inc. from 1998 to 2002. His
current research interests include automated software analysis and test-
ing, with a special focus on combinatorial testing, concurrency testing,
and security testing.

xix

© 2010 Taylor & Francis Group, LLC

Note of Appreciation

Two people who have made major contributions to the methods intro-
duced in this book are James Lawrence of George Mason University, and
James Higdon of Jacobs Technology, Eglin AFB. Jim Lawrence has been
an integral part of the team since the beginning, providing mathematical
advice and support for the project. Jim Higdon was co-developer of the
sequence covering array concept described in Chapter 10, and has been a
leader in practical applications of combinatorial testing.

xxi

© 2010 Taylor & Francis Group, LLC

Nomenclature

n = number of variables or parameters in tests

t = interaction strength; number of variables in a combination

N = number of tests

vi = number of values for variable i

CA(N, n, v, t) = t-way covering array of N rows for n variables with v
values each

CAN(t, n, v) = number of rows in a t-way covering array of n variables
with v values each

OA(N, vk, t) = t-way orthogonal array of entries from the set {0, 1, . . .,
(v – 1)}

C(,) !
!()!

,n t
n
t

n
t n t=







= − the number of t-way combinations of n

parameters

SCA(N, S, t) = an N × S sequence covering array where entries are from
a finite set S of symbols, such that every t-way permutation of sym-
bols from S occurs in at least one row

(p, t)-completeness = proportion of the C(n, t) combinations in a test
array of n rows that have configuration coverage of at least p

Φt = proportion of combinations with full t-way variable-value con-
figuration coverage

Mt = minimum t-way variable value configuration coverage for a test
set

xxii    ◾    Nomenclature

© 2010 Taylor & Francis Group, LLC

St = proportion of t-way variable value configuration coverage for a test
set

F = set of t-way combinations in failing tests

P = set of t-way combinations in passing tests

F + = augmented set of combinations in failing tests

P + = augmented set of combinations in passing tests

1

© 2010 Taylor & Francis Group, LLC

C h a p t e r 1

Combinatorial Methods
in Testing

Developers of large software systems often notice an interesting
phenomenon: usage of an application suddenly increases, and com-

ponents that worked correctly for years develop previously undetected
failures. For example, the application may have been installed with a dif-
ferent operating system (OS) or database management system (DBMS)
than used previously, or newly added customers may have account records
with combinations of values that have not occurred before. Some of these
rare combinations trigger failures that have escaped previous testing and
extensive use. Such failures are known as interaction failures, because they
are only exposed when two or more input values interact to cause the pro-
gram to reach an incorrect result.

1.1  SOFTWARE FAILURES AND THE INTERACTION RULE
Interaction failures are one of the primary reasons why software testing is
so difficult. If failures only depended on one variable value at a time, we
could simply test each value once, or for continuous-valued variables, one
value from each representative range or equivalence class. If our applica-
tion had inputs with v values each, this would only require a total of v
tests—one value from each input per test. Unfortunately, the real world is
much more complicated than this.

Combinatorial testing can help detect problems like those described
above early in the testing life cycle. The key insight underlying t-way

2    ◾    Introduction to Combinatorial Testing

© 2010 Taylor & Francis Group, LLC

combinatorial testing is that not every parameter contributes to every fail-
ure and most failures are triggered by a single parameter value or inter-
actions between a relatively small number of parameters. For example, a
router may be observed to fail only for a particular protocol when packet
volume exceeds a certain rate, a 2-way interaction between protocol type
and packet rate. Figure 1.1 illustrates how such a 2-way interaction may
happen in code. Note that the failure will only be triggered when both
pressure < 10 and volume > 300 are true. To detect such interaction fail-
ures, software developers often use “pairwise testing,” in which all possible
pairs of parameter values are covered by at least one test. Its effectiveness
results from the fact that most software failures involve only one or two
parameters.

Pairwise testing can be highly effective and good tools are available to
generate arrays with all pairs of parameter value combinations. But until
recently only a handful of tools could generate combinations beyond
2-way, and most that did could require impractically long times to gener-
ate 3-way, 4-way, or 5-way arrays because the generation process is math-
ematically complex. Pairwise testing, that is, 2-way combinations, is a
common approach to combinatorial testing because it is computationally
tractable and reasonably effective.

But what if some failure is triggered only by a very unusual combina-
tion of 3, 4, or more values? It is unlikely that pairwise tests would detect
this unusual case; we would need to test 3- and 4-way combinations of
values. But is testing all 4-way combinations enough to detect all errors?
It is important to understand the way in which interaction failures occur
in real systems, and the number of variables involved in these failure trig-
gering interactions.

FIGURE 1.1  2-Way interaction failures are triggered when two conditions are
true.

Combinatorial Methods in Testing    ◾    3  

© 2010 Taylor & Francis Group, LLC

What degree of interaction occurs in real failures in real systems?
Surprisingly, this question had not been studied when the National Institute
of Standards and Technology (NIST) began investigating interaction fail-
ures in 1999. An analysis of 15 years of medical device recall data [212]
included an evaluation of fault-triggering combinations and the testing that
could have detected the faults. For example, one problem report said that
“if device is used with old electrodes, an error message will display, instead
of an equipment alert.” In this case, testing the device with old electrodes
would have detected the problem. Another indicated that “upper limit
CO2 alarm can be manually set above upper limit without alarm sound-
ing.” Again, a single test input that exceeded the upper limit would have
detected the fault. Other problems were more complex. One noted that “if a
bolus delivery is made while pumps are operating in the body weight mode,
the middle LCD fails to display a continual update.” In this case, detection
would have required a test with the particular pair of conditions that caused
the failure: bolus delivery while in body weight mode. One description of
a failure manifested on a particular pair of conditions was “the ventilator
could fail when the altitude adjustment feature was set on 0 meters and the
total flow volume was set at a delivery rate of less than 2.2 liters per min-
ute.” The most complex failure involved four conditions and was presented
as “the error can occur when demand dose has been given, 31 days have
elapsed, pump time hasn’t been changed, and battery is charged.”

Reviews of failure reports across a variety of domains indicated that
all failures could be triggered by a maximum of 4-way to 6-way interac-
tions [103–105,212] for the applications studied. As shown in Figure 1.2, the
detection rate increased rapidly with interaction strength (the interaction
level t in t-way combinations is often referred to as strength). With the NASA
application, for example, 67% of the failures were triggered by only a single
parameter value, 93% by 2-way combinations, and 98% by 3-way combina-
tions. The detection rate curves for the other applications studied are simi-
lar, reaching 100% detection with 4-way to 6-way interactions. Studies by
other researchers [14,15,74,222] have been consistent with these results.

Failures appear to be caused by interactions of only a few variables, so tests
that cover all such few-variable interactions can be very effective.

These results are interesting because they suggest that, while pairwise
testing is not sufficient, the degree of interaction involved in failures is

4    ◾    Introduction to Combinatorial Testing

© 2010 Taylor & Francis Group, LLC

relatively low. We summarize this result in what we call the interaction
rule, an empirically derived [103–105] rule that characterizes the distribu-
tion of interaction faults:

Interaction Rule: Most failures are induced by single factor faults
or by the joint combinatorial effect (interaction) of two factors,
with progressively fewer failures induced by interactions between
three or more factors.

The maximum degree of interaction in actual real-world faults so
far observed is six. This is not to say that there are no failures involving
more than six variables, only that the available evidence suggests they are
rare (more on this point below). Why is the interaction rule important?
Suppose we somehow know that for a particular application, any failures
can be triggered by 1-way, 2-way, or 3-way interactions. That is, there are
some failures that occur when certain sets of two or three parameters have
particular values, but no failure that is only triggered by a 4-way interac-
tion. In this case, we would want a test suite that covers all 3-way combina-
tions of parameter values (which automatically guarantees 2-way coverage
as well). If there are some 4-way interactions that are not covered, it will

Number of parameters involved in faults
1

0

10

20

30

40

Cu
m

ul
at

iv
e p

er
ce

nt
 o

f f
au

lts

50

60

70

80

90

100

NW sec
NASA
Server

Med dev
Browser

2 3 4 5 6

FIGURE 1.2  (See color insert.) The Interaction Rule: Most failures are triggered
by one or two parameters interacting, with progressively fewer by 3, 4, or more.

Combinatorial Methods in Testing    ◾    5  

© 2010 Taylor & Francis Group, LLC

not matter from a fault detection standpoint, because none of the failures
involve 4-way interactions. Therefore in this example, covering all 3-way
combinations is in a certain sense equivalent to exhaustive testing. It will
not test all possible inputs, but those inputs that are not tested would not
make any difference in finding faults in the software. For this reason, we
sometimes refer to this approach as “pseudo-exhaustive” [103], analogous
to the digital circuit testing method of the same name [131,200]. The obvi-
ous flaw in this scenario is our assumption that we “somehow know” the
maximum number of parameters involved in failures. In the real world,
there may be 4-way, 5-way, or even more parameters involved in failures,
so our test suite covering 3-way combinations might not detect them. But if
we can identify a practical limit for the number of parameters in combina-
tions that must be tested, and this limit is not too large, we may actually be
able to achieve the “pseudo-exhaustive” property. This is why it is essential
to understand interaction faults that occur in typical applications.

Some examples of such interactions were described previously for med-
ical device software. To get a better sense of interaction problems in real-
world software, let us consider some examples from an analysis of over
3000 vulnerabilities from the National Vulnerability Database, which is a
collection of all publicly reported security issues maintained by NIST and
the Department of Homeland Security:

•	 Single variable (1-way interaction): Heap-based buffer_overflow in
the SFTP protocol handler for Panic Transmit . . . allows remote
attackers to execute arbitrary code via a long ftps:// URL.

•	 2-Way interaction: Single character search string in conjunction with
a single character replacement string, which causes an “off by one
overflow.”

•	 3-Way interaction: Directory traversal vulnerability when register_
globals is enabled and magic_quotes is disabled and.. (dot dot) in the
page parameter.

The single-variable case is a common problem: someone forgot to check
the length of an input string, allowing an overflow in the input buffer. A test
set that included any test with a sufficiently long input string would have
detected this fault. The second case is more complex, and would not neces-
sarily have been caught by many test suites. For example, a requirements-
based test suite may have included tests to ensure that the software was

6    ◾    Introduction to Combinatorial Testing

© 2010 Taylor & Francis Group, LLC

capable of accepting search strings of 1 to N characters, and others to check
the requirement that 1 to N character replacement strings could be entered.
But unless there was a single test that included both a one-character search
string and a one-character replacement string, the application could have
passed the test suite without detecting the problem. The 3-way interaction
example is even more complex, and it is easy to see that an ad hoc require-
ments-based test suite might be constructed without including a test for
which all three of the italicized conditions were true. One of the key features
of combinatorial testing is that it is designed specifically to find this type of
complex problem, despite requiring a relatively small number of tests.

As discussed above, an extensive body of empirical research suggests
that testing 2-way (pairwise) combinations is not sufficient, and a signifi-
cant proportion of failures result from 3-way and higher strength interac-
tions. This is an important point, since the only combinatorial method
many testers are familiar with is pairwise/2-way testing, mostly because
good algorithms to produce 3-way and higher strength tests were not avail-
able. Fortunately, better algorithms and tools now make high strength
t-way tests possible, and one of the key research questions in this field
is thus: What t-way combination strength interaction is needed to detect
all interaction failures? (Keep in mind that not all failures are interaction
failures—many result from timing considerations, concurrency problems,
and other factors that are not addressed by conventional combinatorial
testing.) As we have discussed, failures seen thus far in real-world systems
seem to involve six or fewer parameters interacting. However, it is not safe
to assume that there are no software failures involving 7-way or higher
interactions. It is likely that there are some that simply have not been rec-
ognized. One can easily construct an example that could escape detection
by t-way testing for any arbitrary value of t, by creating a complex condi-
tional with t + 1 variables:

	 if (v1 && ... && vt && vt+1) {/* bad code */}.

In addition, analysis of the branching conditions in avionics software
shows up to 19 variables in some cases [42]. Experiments on using com-
binatorial testing to achieve code coverage goals such as line, block, edge,
and condition coverage have found that the best coverage was obtained
with 7-way combinations [163,188], but code coverage is not the same as
fault detection. Our colleague Linbin Yu has found up to 9-way interac-
tions in some conditional statements in the Traffic Collision Avoidance
System software [216] that is often used in testing research, although 5-way

Combinatorial Methods in Testing    ◾    7  

© 2010 Taylor & Francis Group, LLC

combinations were sufficient to detect all faults in this set of programs
[103] (t-way tests always include some higher strength combinations, or
the 9-way faults may also have been triggered by <9 variables). Because
the number of branching conditions involving t variables decreases rap-
idly as t increases, it is perhaps not surprising that the number of failures
decreases as well. The available empirical research on this issue is covered
in more detail in a web page that we maintain [143], and summarized in
Appendix B. Because failures involving more than six parameters have
not been observed in fielded software, most combinatorial testing tools
generate up to 6-way arrays.

Because of the interaction rule, ensuring coverage of all 3-way, possi-
bly up to 6-way combinations may provide high assurance. As with most
issues in software, however, the situation is not that simple. Efficient gen-
eration of test suites to cover all t-way combinations is a difficult math-
ematical problem that has been studied for nearly a century, although
recent advances in algorithms have made this practical for most testing.
An additional complication is that most parameters are continuous vari-
ables which have possible values in a very large range (±231 or more). These
values must be discretized to a few distinct values. Most glaring of all is
the problem of determining the correct result that should be expected
from the system under test (SUT) for each set of test inputs. Generating
1000 test data inputs is of little help if we cannot determine what SUT
should produce as output for each of the 1000 tests.

With the exception of covering combinations, these challenges are
common to all types of software testing, and a variety of good techniques
have been developed for dealing with them. What has made combinatorial
testing practical today is the development of efficient algorithms to gener-
ate tests covering t-way combinations, and effective methods of integrat-
ing the tests produced into the testing process. A variety of approaches
introduced in this book can be used to make combinatorial testing a prac-
tical and effective addition to the software tester’s toolbox.

Advances in algorithms have made combinatorial testing beyond pairwise
finally practical.

Notes on terminology: we use the definitions below, following the
Institute of Electrical and Electronics Engineers (IEEE) Glossary of Terms
[97]. The term “bug” may also be used where its meaning is clear.

8    ◾    Introduction to Combinatorial Testing

© 2010 Taylor & Francis Group, LLC

Error: A mistake made by a developer. This could be a coding error or a
misunderstanding of requirements or specification.

Fault: A difference between an incorrect program and one that correctly
implements a specification. An error may result in one or more faults.

Failure: A result that differs from the correct result as specified. A fault
in code may result in zero or more failures, depending on inputs and
execution path.

The acronym SUT (system under test) refers to the target of testing. It
can be a function, a method, a complete class, an application, or a full sys-
tem including hardware and software. Sometimes, a SUT is also referred
as a test object (TO) or artifact under test (AUT). That is, SUT is not meant
to imply only the system testing phase.

1.2  TWO FORMS OF COMBINATORIAL TESTING
There are basically two approaches to combinatorial testing—use com-
binations of configuration parameter values, or combinations of input
parameter values. In the first case, we select combinations of values of
configurable parameters. For example, a server might be tested by setting
up all 4-way combinations of configuration parameters such as number
of simultaneous connections allowed, memory, OS, database size, DBMS
type, and others, with the same test suite run against each configuration.
The tests may have been constructed using any methodology, not neces-
sarily combinatorial coverage. The combinatorial aspect of this approach
is in achieving combinatorial coverage of all possible t-way configuration
parameter values. (Note that the terms variable and factor are often used
interchangeably with parameter to refer to inputs to a function or a soft-
ware program.)

Combinatorial testing can be applied to configurations, input data, or both.

In the second approach, we select combinations of input data values,
which then become part of complete test cases, creating a test suite for
the application. In this case, combinatorial coverage of input data values
is required for tests constructed. A typical ad hoc approach to testing
involves subject matter experts setting up use case scenarios, then select-
ing input values to exercise the application in each scenario, possibly

Combinatorial Methods in Testing    ◾    9  

© 2010 Taylor & Francis Group, LLC

supplementing these tests with unusual or suspected problem cases. In
the combinatorial approach to input data selection, a test data generation
tool is used to cover all combinations of input values up to some speci-
fied limit. One such tool is automated combinatorial testing for software
(ACTS) (described in Appendix C), which is available freely from NIST.

Aspects of both configuration testing and input parameter testing may
appear in a great deal of practical testing. Both types may be applied for
thorough testing, with combinations of input parameters applied to each
configuration combination. In state machine approaches (Chapter 6),
other variations appear—parameters are inputs that may determine the
presence or absence of other parameters, or both program variables and
states may be treated as test parameters. But a wide range of testing prob-
lems can be categorized as either configuration or input testing, and these
approaches are analyzed in more detail in later chapters.

1.2.1  Configuration Testing

Many, if not most, software systems have a large number of configura-
tion parameters. Many of the earliest applications of combinatorial testing
were in testing all pairs of system configurations. For example, telecom-
munications software may be configured to work with different types of
call (local, long distance, international), billing (caller, phone card, 800),
access (ISDN, VOIP, PBX), and server for billing (Windows Server, Linux/
MySQL, Oracle). The software must work correctly with all combinations
of these, so a single test suite could be applied to all pairwise combinations
of these four major configuration items. Any system with a variety of con-
figuration options is a suitable candidate for this type of testing.

For example, suppose we had an application that is intended to run on
a variety of platforms comprised of five components: an operating system
(Windows XP, Apple OS X, Red Hat Enterprise Linux), a browser (Internet
Explorer, Firefox), protocol stack (IPv4, IPv6), a processor (Intel, AMD),
and a database (MySQL, Sybase, Oracle), a total of 3 × 2 × 2 × 2 × 3 = 72
possible platforms. With only 10 tests, shown in Table 1.1, it is possible
to test every component interacting with every other component at least
once, that is, all possible pairs of platform components are covered. While
this gain in efficiency—10 tests instead of 72—is respectable, the improve-
ment for larger test problems can be spectacular, with 2- and 3-way tests
often requiring <1% of the tests needed for exhaustive testing. In general,
the larger the problem, the greater the efficiency gain from combinatorial
testing.

10    ◾    Introduction to Combinatorial Testing

© 2010 Taylor & Francis Group, LLC

1.2.2  Input Testing

Even if an application has no configuration options, some form of input
will be processed. For example, a word-processing application may allow
the user to select 10 ways to modify some highlighted text: subscript,
superscript, underline, bold, italic, strikethrough, emboss, shadow, small
caps, or all caps. The font-processing function within the application
that receives these settings as input must process the input and modify
the text on the screen correctly. Most options can be combined, such as
bold and small caps, but some are incompatible, such as subscript and
superscript.

Thorough testing requires that the font-processing function work cor-
rectly for all valid combinations of these input settings. But with 10 binary
inputs, there are 210 = 1024 possible combinations. Fortunately, the empir-
ical analysis reported above shows that failures appear to involve a small
number of parameters, and that testing all 3-way combinations can often
detect 90% or more of bugs. For a word-processing application, testing
that detects better than 90% of bugs may be a cost-effective choice, but
we need to ensure that all 3-way combinations of values are tested. To do
this, or to construct the configuration tests shown in Table 1.1, we cre-
ate a matrix that covers all t-way combinations of variable values, where
t = 2 for the configuration problem described previously and t = 3 for the
10 binary inputs in this section. This matrix is known as a covering array
[27,31,51,53,58,97,116,205].

How many t-way combinations must be covered in the array? Consider
the example of 10 binary variables. There are C(10, 2) = 45 pairs of variables
(ab, ac, ad,. . .). For each pair, the two binary variables can be assigned 22 = 4

TABLE 1.1  Pairwise Test Configurations

Test OS Browser Protocol CPU DBMS
1 XP IE IPv4 Intel MySQL
2 XP Firefox IPv6 AMD Sybase
3 XP IE IPv6 Intel Oracle
4 OS X Firefox IPv4 AMD MySQL
5 OS X IE IPv4 Intel Sybase
6 OS X Firefox IPv4 Intel Oracle
7 RHEL IE IPv6 AMD MySQL
8 RHEL Firefox IPv4 Intel Sybase
9 RHEL Firefox IPv4 AMD Oracle
10 OS X Firefox IPv6 AMD Oracle

