
Introduction to Combinatorial Testing presents a complete self-
contained tutorial on advanced combinatorial testing methods for real-
world software. The book introduces key concepts and procedures 
of combinatorial testing, explains how to use software tools for 
generating combinatorial tests, and shows how this approach can be 
integrated with existing practice. Detailed explanations and examples 
clarify how and why to use various techniques. Sections on cost and 
practical considerations describe tradeoffs and limitations that may 
impact resources or funding. While the authors introduce some of the 
theory and mathematics of combinatorial methods, you can use the 
methods without in-depth knowledge of the underlying mathematics.

Features
• Represents the first in-depth book on practical combinatorial 

testing
• Focuses on real-world software testing, including cost 

considerations 
• Presents step-by-step procedures for applying advanced 

combinatorial test methods 
• Requires no detailed knowledge of the underlying mathematics
• Includes review questions and exercises in most chapters
• Contains an extensive set of references that offer more detail on 

each topic

This book illustrates the practical application of combinatorial 
methods in software testing. Giving pointers to freely available tools 
and offering resources on a supplementary website, it encourages 
you to apply these methods in your own testing projects.
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Preface

Software testing has always faced a seemingly intractable prob-
lem: for real-world programs, the number of possible input combi-

nations can exceed the number of atoms in the ocean, so as a practical 
matter it is impossible to show through testing that the program works 
correctly for all inputs. Combinatorial testing offers a (partial) solution. 
Empirical data show that the number of variables involved in failures 
is small. Most failures are triggered by only one or two inputs, and the 
number of variables interacting tails off rapidly, a relationship called the 
interaction rule. Therefore, if we test input combinations for even small 
numbers of variables, we can provide very strong testing at low cost. As 
always, there is no “silver bullet” answer to the problem of software assur-
ance, but combinatorial testing has grown rapidly because it works in the 
real world.

This book introduces the reader to the practical application of combina-
torial methods in software testing. Our goal is to provide sufficient depth 
that readers will be able to apply these methods in their own testing proj-
ects, with pointers to freely available tools. Included are detailed explana-
tions of how and why to use various techniques, with examples that help 
clarify concepts in all chapters. Sets of exercises or questions and answers 
are also included with most chapters. The text is designed to be acces-
sible to an undergraduate student of computer science or engineering, and 
includes an extensive set of references to papers that provide more depth 
on each topic. Many chapters introduce some of the theory and mathemat-
ics of combinatorial methods. While this material is needed for thorough 
knowledge of the subject, testers can apply the methods using tools (many 
freely available and linked in the chapters) that encapsulate the theory, 
even without in-depth knowledge of the underlying mathematics.

We have endeavored to be as prescriptive as possible, but experienced 
testers know that standardized procedures only go so far. Engineering 
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judgment is as essential in testing as in development. Because analysis of 
the input space is usually the most critical step in testing, we have devoted 
roughly a third of the book to it, in Chapters 3 through 6. It is in this 
phase that experience and judgment have the most bearing on the success 
of a testing project. Analyzing and modeling the input space is also a task 
that is easy to do poorly, because it is so much more complex than it first 
appears. Chapters 5 and 6 introduce systematic methods for dealing with 
this problem, with examples to illustrate the subtleties that make the task 
so challenging to do right.

Chapters 7 through 9 are central to another important theme of this 
book—combinatorial methods can be applied in many ways during 
the testing process, and can improve conventional test procedures not 
designed with these methods in mind. That is, we do not have to com-
pletely re-design our testing practices to benefit from combinatorial meth-
ods. Any test suite, regardless of how it is derived, provides some level of 
combinatorial coverage, so one way to use the methods introduced in this 
book is to create test suites using an organization’s conventional proce-
dures, measure their combinatorial coverage, and then supplement them 
with additional tests to detect complex interaction faults.

The oracle problem—determining the correct output for a given test—is 
covered in Chapters 10 and 11. In addition to showing how formal models 
can be used as test oracles, Chapter 11 introduces an approach to integrat-
ing testing with formal specifications and proofs of properties by model 
checkers. Chapters 12 through 15 introduce advanced topics that can be 
useful in a wide array of problems. Except for the first four chapters, which 
introduce core terms and techniques, the chapters are designed to be rea-
sonably independent of each other, and pointers to other sections for addi-
tional information are provided throughout.

The project that led to this book developed from joint research with 
Dolores Wallace, and we are grateful for that work and happy to recog-
nize her contributions to the field of software engineering. Special thanks 
are due to Tim Grance for early and constant support of the combinato-
rial testing project. Thanks also go to Jim Higdon, Jon Hagar, Eduardo 
Miranda, and Tom Wissink for early support and evangelism of this work. 
Donna Dodson, Ron Boisvert, Geoffrey McFadden, David Ferraiolo, and 
Lee Badger at NIST (U.S. National Institute of Standards and Technology) 
have been strong advocates for this work. Jon Hagar provided many rec-
ommendations for improving the text. Mehra Borazjany, Michael Forbes, 
Itzel Dominguez Mendoza, Tony Opara, Linbin Yu, Wenhua Wang, and 
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Laleh SH. Ghandehari made major contributions to the software tools 
developed in this project. We have benefitted tremendously from inter-
actions with researchers and practitioners, including Bob Binder, Paul 
Black, Renee Bryce, Myra Cohen, Charles Colbourn, Howard Deiner, 
Elfriede Dustin, Mike Ellims, Al Gallo, Vincent Hu, Justin Hunter, Greg 
Hutto, Aditya Mathur, Josh Maximoff, Carmelo Montanez-Rivera, Jeff 
Offutt, Vadim Okun, Michael Reilly, Jenise Reyes Rodriguez, Rick Rivello, 
Sreedevi Sampath, Itai Segall, Mike Trela, Sergiy Vilkomir, and Tao Xie. 
We also gratefully acknowledge NIST SURF (Summer Undergraduate 
Research Fellowships) students Kevin Dela Rosa, William Goh, Evan 
Hartig, Menal Modha, Kimberley O’Brien-Applegate, Michael Reilly, 
Malcolm Taylor, and Bryan Wilkinson who contributed to the software 
and methods described in this document. We are especially grateful to 
Randi Cohen, editor at Taylor & Francis, for making this book possible 
and for timely guidance throughout the process. Certain software prod-
ucts are identified in this document, but such identification does not 
imply recommendation by the U.S. National Institute for Standards and 
Technology, nor does it imply that the products identified are necessarily 
the best available for the purpose.





xvii

© 2010 Taylor & Francis Group, LLC

Authors

D. Richard Kuhn is a computer scientist in the Computer Security 
Division of the National Institute of Standards and Technology (NIST). 
He has authored or coauthored more than 100 publications on informa-
tion security, empirical studies of software failure, and software assur-
ance, and is a senior member of the IEEE. He co-developed the role-based 
access control model (RBAC) used throughout the industry and led the 
effort establishing RBAC as an ANSI (American National Standards 
Institute) standard. Before joining NIST, he worked as a systems analyst 
with NCR Corporation and the Johns Hopkins University Applied Physics 
Laboratory. He earned an MS in computer science from the University of 
Maryland College Park, and an MBA from the College of William & Mary.

Raghu N. Kacker is a senior researcher in the Applied and Computational 
Mathematics Division (ACMD) of the Information Technology Laboratory 
(ITL) of the U.S. National Institute of Standards and Technology (NIST). 
His current interests include software testing and evaluation of the uncer-
tainty in outputs of computational models and physical measurements. 
He has a PhD in statistics and has coauthored over 100 refereed papers. 
Dr. Kacker has been elected Fellow of the American Statistical Association 
and a Fellow of the American Society for Quality.

Yu Lei is an associate professor in Department of Computer Science and 
Engineering at the University of Texas, Arlington. He earned his PhD 
from North Carolina State University. He was a member of the Technical 
Staff in Fujitsu Network Communications, Inc. from 1998 to 2002. His 
current research interests include automated software analysis and test-
ing, with a special focus on combinatorial testing, concurrency testing, 
and security testing.





xix

© 2010 Taylor & Francis Group, LLC

Note of Appreciation

Two people who have made major contributions to the methods intro-
duced in this book are James Lawrence of George Mason University, and 
James Higdon of Jacobs Technology, Eglin AFB. Jim Lawrence has been 
an integral part of the team since the beginning, providing mathematical 
advice and support for the project. Jim Higdon was co-developer of the 
sequence covering array concept described in Chapter 10, and has been a 
leader in practical applications of combinatorial testing.





xxi

© 2010 Taylor & Francis Group, LLC

Nomenclature

n = number of variables or parameters in tests

t = interaction strength; number of variables in a combination

N = number of tests

vi = number of values for variable i

CA(N, n, v, t) = t-way covering array of N rows for n variables with v 
values each

CAN(t, n, v) = number of rows in a t-way covering array of n variables 
with v values each

OA(N, vk, t) = t-way orthogonal array of entries from the set {0, 1, . . ., 
(v – 1)}

C( , ) !
!( )!

,n t
n
t

n
t n t=







= −  the number of t-way combinations of n 

parameters

SCA(N, S, t) = an N × S sequence covering array where entries are from 
a finite set S of symbols, such that every t-way permutation of sym-
bols from S occurs in at least one row

(p, t)-completeness = proportion of the C(n, t) combinations in a test 
array of n rows that have configuration coverage of at least p

Φt = proportion of combinations with full t-way variable-value con-
figuration coverage

Mt = minimum t-way variable value configuration coverage for a test 
set
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St = proportion of t-way variable value configuration coverage for a test 
set

F = set of t-way combinations in failing tests

P = set of t-way combinations in passing tests

F + = augmented set of combinations in failing tests

P + = augmented set of combinations in passing tests
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C h a p t e r   1

Combinatorial Methods 
in Testing

Developers of large software systems often notice an interesting 
phenomenon: usage of an application suddenly increases, and com-

ponents that worked correctly for years develop previously undetected 
failures. For example, the application may have been installed with a dif-
ferent operating system (OS) or database management system (DBMS) 
than used previously, or newly added customers may have account records 
with combinations of values that have not occurred before. Some of these 
rare combinations trigger failures that have escaped previous testing and 
extensive use. Such failures are known as interaction failures, because they 
are only exposed when two or more input values interact to cause the pro-
gram to reach an incorrect result.

1.1  SOFTWARE FAILURES AND THE INTERACTION RULE
Interaction failures are one of the primary reasons why software testing is 
so difficult. If failures only depended on one variable value at a time, we 
could simply test each value once, or for continuous-valued variables, one 
value from each representative range or equivalence class. If our applica-
tion had inputs with v values each, this would only require a total of v 
tests—one value from each input per test. Unfortunately, the real world is 
much more complicated than this.

Combinatorial testing can help detect problems like those described 
above early in the testing life cycle. The key insight underlying t-way 
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combinatorial testing is that not every parameter contributes to every fail-
ure and most failures are triggered by a single parameter value or inter-
actions between a relatively small number of parameters. For example, a 
router may be observed to fail only for a particular protocol when packet 
volume exceeds a certain rate, a 2-way interaction between protocol type 
and packet rate. Figure 1.1 illustrates how such a 2-way interaction may 
happen in code. Note that the failure will only be triggered when both 
pressure < 10 and volume > 300 are true. To detect such interaction fail-
ures, software developers often use “pairwise testing,” in which all possible 
pairs of parameter values are covered by at least one test. Its effectiveness 
results from the fact that most software failures involve only one or two 
parameters.

Pairwise testing can be highly effective and good tools are available to 
generate arrays with all pairs of parameter value combinations. But until 
recently only a handful of tools could generate combinations beyond 
2-way, and most that did could require impractically long times to gener-
ate 3-way, 4-way, or 5-way arrays because the generation process is math-
ematically complex. Pairwise testing, that is, 2-way combinations, is a 
common approach to combinatorial testing because it is computationally 
tractable and reasonably effective.

But what if some failure is triggered only by a very unusual combina-
tion of 3, 4, or more values? It is unlikely that pairwise tests would detect 
this unusual case; we would need to test 3- and 4-way combinations of 
values. But is testing all 4-way combinations enough to detect all errors? 
It is important to understand the way in which interaction failures occur 
in real systems, and the number of variables involved in these failure trig-
gering interactions.

FIGURE 1.1  2-Way interaction failures are triggered when two conditions are 
true.
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What degree of interaction occurs in real failures in real systems? 
Surprisingly, this question had not been studied when the National Institute 
of Standards and Technology (NIST) began investigating interaction fail-
ures in 1999. An analysis of 15 years of medical device recall data [212] 
included an evaluation of fault-triggering combinations and the testing that 
could have detected the faults. For example, one problem report said that 
“if device is used with old electrodes, an error message will display, instead 
of an equipment alert.” In this case, testing the device with old electrodes 
would have detected the problem. Another indicated that “upper limit 
CO2 alarm can be manually set above upper limit without alarm sound-
ing.” Again, a single test input that exceeded the upper limit would have 
detected the fault. Other problems were more complex. One noted that “if a 
bolus delivery is made while pumps are operating in the body weight mode, 
the middle LCD fails to display a continual update.” In this case, detection 
would have required a test with the particular pair of conditions that caused 
the failure: bolus delivery while in body weight mode. One description of 
a failure manifested on a particular pair of conditions was “the ventilator 
could fail when the altitude adjustment feature was set on 0 meters and the 
total flow volume was set at a delivery rate of less than 2.2 liters per min-
ute.” The most complex failure involved four conditions and was presented 
as “the error can occur when demand dose has been given, 31 days have 
elapsed, pump time hasn’t been changed, and battery is charged.”

Reviews of failure reports across a variety of domains indicated that 
all failures could be triggered by a maximum of 4-way to 6-way interac-
tions [103–105,212] for the applications studied. As shown in Figure 1.2, the 
detection rate increased rapidly with interaction strength (the interaction 
level t in t-way combinations is often referred to as strength). With the NASA 
application, for example, 67% of the failures were triggered by only a single 
parameter value, 93% by 2-way combinations, and 98% by 3-way combina-
tions. The detection rate curves for the other applications studied are simi-
lar, reaching 100% detection with 4-way to 6-way interactions. Studies by 
other researchers [14,15,74,222] have been consistent with these results.

Failures appear to be caused by interactions of only a few variables, so tests 
that cover all such few-variable interactions can be very effective.

These results are interesting because they suggest that, while pairwise 
testing is not sufficient, the degree of interaction involved in failures is 
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relatively low. We summarize this result in what we call the interaction 
rule, an empirically derived [103–105] rule that characterizes the distribu-
tion of interaction faults:

Interaction Rule: Most failures are induced by single factor faults 
or by the joint combinatorial effect (interaction) of two factors, 
with progressively fewer failures induced by interactions between 
three or more factors.

The maximum degree of interaction in actual real-world faults so 
far observed is six. This is not to say that there are no failures involving 
more than six variables, only that the available evidence suggests they are 
rare (more on this point below). Why is the interaction rule important? 
Suppose we somehow know that for a particular application, any failures 
can be triggered by 1-way, 2-way, or 3-way interactions. That is, there are 
some failures that occur when certain sets of two or three parameters have 
particular values, but no failure that is only triggered by a 4-way interac-
tion. In this case, we would want a test suite that covers all 3-way combina-
tions of parameter values (which automatically guarantees 2-way coverage 
as well). If there are some 4-way interactions that are not covered, it will 

Number of parameters involved in faults
1

0

10

20

30

40

Cu
m

ul
at

iv
e p

er
ce

nt
 o

f f
au

lts

50

60

70

80

90

100

NW sec
NASA
Server

Med dev
Browser

2 3 4 5 6

FIGURE 1.2  (See color insert.) The Interaction Rule: Most failures are triggered 
by one or two parameters interacting, with progressively fewer by 3, 4, or more.
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not matter from a fault detection standpoint, because none of the failures 
involve 4-way interactions. Therefore in this example, covering all 3-way 
combinations is in a certain sense equivalent to exhaustive testing. It will 
not test all possible inputs, but those inputs that are not tested would not 
make any difference in finding faults in the software. For this reason, we 
sometimes refer to this approach as “pseudo-exhaustive” [103], analogous 
to the digital circuit testing method of the same name [131,200]. The obvi-
ous flaw in this scenario is our assumption that we “somehow know” the 
maximum number of parameters involved in failures. In the real world, 
there may be 4-way, 5-way, or even more parameters involved in failures, 
so our test suite covering 3-way combinations might not detect them. But if 
we can identify a practical limit for the number of parameters in combina-
tions that must be tested, and this limit is not too large, we may actually be 
able to achieve the “pseudo-exhaustive” property. This is why it is essential 
to understand interaction faults that occur in typical applications.

Some examples of such interactions were described previously for med-
ical device software. To get a better sense of interaction problems in real-
world software, let us consider some examples from an analysis of over 
3000 vulnerabilities from the National Vulnerability Database, which is a 
collection of all publicly reported security issues maintained by NIST and 
the Department of Homeland Security:

•	 Single variable (1-way interaction): Heap-based buffer_overflow in 
the SFTP protocol handler for Panic Transmit . . . allows remote 
attackers to execute arbitrary code via a long ftps:// URL.

•	 2-Way interaction: Single character search string in conjunction with 
a single character replacement string, which causes an “off by one 
overflow.”

•	 3-Way interaction: Directory traversal vulnerability when register_
globals is enabled and magic_quotes is disabled and.. (dot dot) in the 
page parameter.

The single-variable case is a common problem: someone forgot to check 
the length of an input string, allowing an overflow in the input buffer. A test 
set that included any test with a sufficiently long input string would have 
detected this fault. The second case is more complex, and would not neces-
sarily have been caught by many test suites. For example, a requirements-
based test suite may have included tests to ensure that the software was 
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capable of accepting search strings of 1 to N characters, and others to check 
the requirement that 1 to N character replacement strings could be entered. 
But unless there was a single test that included both a one-character search 
string and a one-character replacement string, the application could have 
passed the test suite without detecting the problem. The 3-way interaction 
example is even more complex, and it is easy to see that an ad hoc require-
ments-based test suite might be constructed without including a test for 
which all three of the italicized conditions were true. One of the key features 
of combinatorial testing is that it is designed specifically to find this type of 
complex problem, despite requiring a relatively small number of tests.

As discussed above, an extensive body of empirical research suggests 
that testing 2-way (pairwise) combinations is not sufficient, and a signifi-
cant proportion of failures result from 3-way and higher strength interac-
tions. This is an important point, since the only combinatorial method 
many testers are familiar with is pairwise/2-way testing, mostly because 
good algorithms to produce 3-way and higher strength tests were not avail-
able. Fortunately, better algorithms and tools now make high strength 
t-way tests possible, and one of the key research questions in this field 
is thus: What t-way combination strength interaction is needed to detect 
all interaction failures? (Keep in mind that not all failures are interaction 
failures—many result from timing considerations, concurrency problems, 
and other factors that are not addressed by conventional combinatorial 
testing.) As we have discussed, failures seen thus far in real-world systems 
seem to involve six or fewer parameters interacting. However, it is not safe 
to assume that there are no software failures involving 7-way or higher 
interactions. It is likely that there are some that simply have not been rec-
ognized. One can easily construct an example that could escape detection 
by t-way testing for any arbitrary value of t, by creating a complex condi-
tional with t + 1 variables:

	 if (v1 && ... && vt && vt+1) {/* bad code */}.

In addition, analysis of the branching conditions in avionics software 
shows up to 19 variables in some cases [42]. Experiments on using com-
binatorial testing to achieve code coverage goals such as line, block, edge, 
and condition coverage have found that the best coverage was obtained 
with 7-way combinations [163,188], but code coverage is not the same as 
fault detection. Our colleague Linbin Yu has found up to 9-way interac-
tions in some conditional statements in the Traffic Collision Avoidance 
System software [216] that is often used in testing research, although 5-way 
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combinations were sufficient to detect all faults in this set of programs 
[103] (t-way tests always include some higher strength combinations, or 
the 9-way faults may also have been triggered by <9 variables). Because 
the number of branching conditions involving t variables decreases rap-
idly as t increases, it is perhaps not surprising that the number of failures 
decreases as well. The available empirical research on this issue is covered 
in more detail in a web page that we maintain [143], and summarized in 
Appendix B. Because failures involving more than six parameters have 
not been observed in fielded software, most combinatorial testing tools 
generate up to 6-way arrays.

Because of the interaction rule, ensuring coverage of all 3-way, possi-
bly up to 6-way combinations may provide high assurance. As with most 
issues in software, however, the situation is not that simple. Efficient gen-
eration of test suites to cover all t-way combinations is a difficult math-
ematical problem that has been studied for nearly a century, although 
recent advances in algorithms have made this practical for most testing. 
An additional complication is that most parameters are continuous vari-
ables which have possible values in a very large range (±231 or more). These 
values must be discretized to a few distinct values. Most glaring of all is 
the problem of determining the correct result that should be expected 
from the system under test (SUT) for each set of test inputs. Generating 
1000 test data inputs is of little help if we cannot determine what SUT 
should produce as output for each of the 1000 tests.

With the exception of covering combinations, these challenges are 
common to all types of software testing, and a variety of good techniques 
have been developed for dealing with them. What has made combinatorial 
testing practical today is the development of efficient algorithms to gener-
ate tests covering t-way combinations, and effective methods of integrat-
ing the tests produced into the testing process. A variety of approaches 
introduced in this book can be used to make combinatorial testing a prac-
tical and effective addition to the software tester’s toolbox.

Advances in algorithms have made combinatorial testing beyond pairwise 
finally practical.

Notes on terminology: we use the definitions below, following the 
Institute of Electrical and Electronics Engineers (IEEE) Glossary of Terms 
[97]. The term “bug” may also be used where its meaning is clear.
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Error: A mistake made by a developer. This could be a coding error or a 
misunderstanding of requirements or specification.

Fault: A difference between an incorrect program and one that correctly 
implements a specification. An error may result in one or more faults.

Failure: A result that differs from the correct result as specified. A fault 
in code may result in zero or more failures, depending on inputs and 
execution path.

The acronym SUT (system under test) refers to the target of testing. It 
can be a function, a method, a complete class, an application, or a full sys-
tem including hardware and software. Sometimes, a SUT is also referred 
as a test object (TO) or artifact under test (AUT). That is, SUT is not meant 
to imply only the system testing phase.

1.2  TWO FORMS OF COMBINATORIAL TESTING
There are basically two approaches to combinatorial testing—use com-
binations of configuration parameter values, or combinations of input 
parameter values. In the first case, we select combinations of values of 
configurable parameters. For example, a server might be tested by setting 
up all 4-way combinations of configuration parameters such as number 
of simultaneous connections allowed, memory, OS, database size, DBMS 
type, and others, with the same test suite run against each configuration. 
The tests may have been constructed using any methodology, not neces-
sarily combinatorial coverage. The combinatorial aspect of this approach 
is in achieving combinatorial coverage of all possible t-way configuration 
parameter values. (Note that the terms variable and factor are often used 
interchangeably with parameter to refer to inputs to a function or a soft-
ware program.)

Combinatorial testing can be applied to configurations, input data, or both.

In the second approach, we select combinations of input data values, 
which then become part of complete test cases, creating a test suite for 
the application. In this case, combinatorial coverage of input data values 
is required for tests constructed. A typical ad hoc approach to testing 
involves subject matter experts setting up use case scenarios, then select-
ing input values to exercise the application in each scenario, possibly 
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supplementing these tests with unusual or suspected problem cases. In 
the combinatorial approach to input data selection, a test data generation 
tool is used to cover all combinations of input values up to some speci-
fied limit. One such tool is automated combinatorial testing for software 
(ACTS) (described in Appendix C), which is available freely from NIST.

Aspects of both configuration testing and input parameter testing may 
appear in a great deal of practical testing. Both types may be applied for 
thorough testing, with combinations of input parameters applied to each 
configuration combination. In state machine approaches (Chapter 6), 
other variations appear—parameters are inputs that may determine the 
presence or absence of other parameters, or both program variables and 
states may be treated as test parameters. But a wide range of testing prob-
lems can be categorized as either configuration or input testing, and these 
approaches are analyzed in more detail in later chapters.

1.2.1  Configuration Testing

Many, if not most, software systems have a large number of configura-
tion parameters. Many of the earliest applications of combinatorial testing 
were in testing all pairs of system configurations. For example, telecom-
munications software may be configured to work with different types of 
call (local, long distance, international), billing (caller, phone card, 800), 
access (ISDN, VOIP, PBX), and server for billing (Windows Server, Linux/
MySQL, Oracle). The software must work correctly with all combinations 
of these, so a single test suite could be applied to all pairwise combinations 
of these four major configuration items. Any system with a variety of con-
figuration options is a suitable candidate for this type of testing.

For example, suppose we had an application that is intended to run on 
a variety of platforms comprised of five components: an operating system 
(Windows XP, Apple OS X, Red Hat Enterprise Linux), a browser (Internet 
Explorer, Firefox), protocol stack (IPv4, IPv6), a processor (Intel, AMD), 
and a database (MySQL, Sybase, Oracle), a total of 3 × 2 × 2 × 2 × 3 = 72 
possible platforms. With only 10 tests, shown in Table 1.1, it is possible 
to test every component interacting with every other component at least 
once, that is, all possible pairs of platform components are covered. While 
this gain in efficiency—10 tests instead of 72—is respectable, the improve-
ment for larger test problems can be spectacular, with 2- and 3-way tests 
often requiring <1% of the tests needed for exhaustive testing. In general, 
the larger the problem, the greater the efficiency gain from combinatorial 
testing.
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1.2.2  Input Testing

Even if an application has no configuration options, some form of input 
will be processed. For example, a word-processing application may allow 
the user to select 10 ways to modify some highlighted text: subscript, 
superscript, underline, bold, italic, strikethrough, emboss, shadow, small 
caps, or all caps. The font-processing function within the application 
that receives these settings as input must process the input and modify 
the text on the screen correctly. Most options can be combined, such as 
bold and small caps, but some are incompatible, such as subscript and 
superscript.

Thorough testing requires that the font-processing function work cor-
rectly for all valid combinations of these input settings. But with 10 binary 
inputs, there are 210 = 1024 possible combinations. Fortunately, the empir-
ical analysis reported above shows that failures appear to involve a small 
number of parameters, and that testing all 3-way combinations can often 
detect 90% or more of bugs. For a word-processing application, testing 
that detects better than 90% of bugs may be a cost-effective choice, but 
we need to ensure that all 3-way combinations of values are tested. To do 
this, or to construct the configuration tests shown in Table 1.1, we cre-
ate a matrix that covers all t-way combinations of variable values, where 
t = 2 for the configuration problem described previously and t = 3 for the 
10 binary inputs in this section. This matrix is known as a covering array 
[27,31,51,53,58,97,116,205].

How many t-way combinations must be covered in the array? Consider 
the example of 10 binary variables. There are C(10, 2) = 45 pairs of variables 
(ab, ac, ad,. . .). For each pair, the two binary variables can be assigned 22 = 4 

TABLE 1.1  Pairwise Test Configurations

Test OS Browser Protocol CPU DBMS
1 XP IE IPv4 Intel MySQL
2 XP Firefox IPv6 AMD Sybase
3 XP IE IPv6 Intel Oracle
4 OS X Firefox IPv4 AMD MySQL
5 OS X IE IPv4 Intel Sybase
6 OS X Firefox IPv4 Intel Oracle
7 RHEL IE IPv6 AMD MySQL
8 RHEL Firefox IPv4 Intel Sybase
9 RHEL Firefox IPv4 AMD Oracle
10 OS X Firefox IPv6 AMD Oracle


