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Preface

It fills me with a sense of joy and humility to present this book on the eve
of the centenary year of the publication of Albert Einstein’s General Theory
of Relativity. When general relativity arrived, it had an aura of mystery due
to its sophisticated view of space, time and gravitational phenomena. From
the early phase when primary elaboration of the theory was mathematical in
nature, it has evolved into a phase where it is being confronted by increasingly
sophisticated experiments that have been successful so far. Students are often
attracted to the theory and want to know what yet can be done with it.
The book is envisaged as an attempt to familiarize students and prospective
researchers with the basic features of the theory and offer a perspective on its
more advance features.

There are many excellent textbooks from the classics by Misner–Thorne–
Wheeler, Weinberg and Wald to the more recent ones by Sean Carroll, James
Hartle and Thanu Padmanabhan, with differing styles and emphasis and there
are excellent review articles on frontline topics. The idea here is to combine
the ‘textbook’ and ‘the review’. Thus, I have tried to adopt the pedagogical
style of a textbook while avoiding an emphasis on detailed treatments, and at
the same time, tried to present the essential ideas and just enough background
material needed for students to appreciate the issues and current research.

There was also a conscious effort to emphasize the physical ideas and
motivations, contrasting the mathematical idealizations which are important
in appreciating the scope and limitations of the theory. Consequently, requisite
mathematical background of differential geometry is summarized in the last
chapter while the main text emphasizes the physical aspects.

The first five chapters usually form the core of an introductory course
on General Relativity (GR) and constitute the “Basics” part of the book.
The first chapter traces Einstein’s arguments and informally motivates the
mathematical model for space-time. In the second chapter, we first discuss
the basic physical quantities related to space-time measurements and their
relation to a metric in an arbitrary coordinate system. This is followed by
examples of space-times corresponding to different types of gravitational fields.
Some of these are revisited subsequently for further elaboration. Chapter 3
discusses adaptation of dynamics in a Riemannian geometry framework while
the next chapter presents the Einstein equation together with its elementary
properties. The fifth chapter discusses different phenomena either predicted

ix



x Preface

by GR or influenced by GR. This also contains the classic tests of general
relativity.

The “Beyond” part of the book, takes a look at some of the more sophis-
ticated features of GR. Chapter 6 discusses the physical requirements of a
well-defined deterministic framework for non-gravitational dynamics and the
constraints it puts on the global structure of space-times. Surprisingly, the
singular features seen in physically motivated examples turn out to have more
general presence. The structure of the physically acceptable space-times is
such that if certain conditions—such as complete gravitational collapse or an
everywhere expanding universe—are realized in nature, then space-time will
necessarily have regions where GR will cease to be applicable.

Not all physical situations are as grim. There are physical bodies of finite
extent and it becomes necessary to look at the space-time geometry far away
from them. This is especially relevant in the context of energy being carried
away in the form of gravitational waves. Chapter 7 discusses the characteri-
zation of the appropriate asymptotic space-times.

In the next three chapters, we revisit black holes, gravitational waves and
cosmological space-times. Apart from considering the general definition of
black holes, we examine and discuss their quasi-local generalization in terms
of the trapping, isolated and dynamical horizons. In the second look at grav-
itational waves, we trace the issues that were involved in settling the ‘reality’
of gravitational waves and briefly discuss the basic features of the challenge
involved in their direct detection. The cosmological space-times are discussed
primarily to get a glimpse of the possible nature of the space-like singularities.

Chapter 11 discusses the evolutionary interpretation for the class of glob-
ally hyperbolic space-times and reviews the initial value formulation. This
forms a basis for numerical relativity presented in the next chapter. The
Hamiltonian formulation paves a way for canonical quantization of grav-
ity. While the book is focused on classical general relativity, introductory
summaries of the main approaches to a quantum theory of gravity are in-
cluded in Chapter 13. An alternative view of emergent gravity is also briefly
mentioned.

There were many topics I wanted to include in this book, but could not.
These are listed in the fourteenth chapter together with some concluding re-
marks. The Epilogue contains a summary of the requisite differential geometry
and some of the results used in the main text.

There are many people to whom I owe a debt of gratitude. My under-
standing and appreciation of GR have been shaped by many influences over
several years which are hard to demarcate. I must mention Naresh Dadhich
and thank him for the numerous discussions and his generous encouragement.
Within the context of this book, I would like to acknowledge critical feedback
from my former teacher, Arvind Kumar on an earlier draft of Chapter 2 and
my former student Alok Laddha for his comments on Chapter 7. I would also
like to thank Thanu Padmanabhan for his help on the emergent gravity view
and Sudipta Sarkar for a discussion on Jacobson’s work. I must not forget the
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students of my institute who had taken my courses on GR and those from
places other than India who took short-term courses on various occasions un-
der the SERC Schools in Theoretical High Energy Physics (India). The book
has grown out of various lecture notes. I thank all of these students. I thank
my friend and colleague, Gautam Menon, for help proofreading and for his
helpful suggestions. There are times of meeting deadlines where responsibil-
ities get shuffled and prioritized. This cannot be done without support from
the family. I thank Nisha, Aditya, and my parents for it.

Ghanashyam Date
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The Basics
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Chapter 1

From Newton to Einstein: Synthesis of
General Relativity

1.1 Space, Time, Observers

We all have an intuitive sense of what space is and what time is. Space is
something in which ‘bodies move’ and time is something that sequences these
movements. To make these notions quantitative we need to adopt a procedure
to assign numbers to ‘locations’ and put time stamps on events. It is in terms
of these assignments or coordinates that we make the space time explicit and
it is this explicit model that is used in physics. All the tourist maps we use
and the scheduling we struggle to achieve are based on precisely such ‘made
explicit’ space and time. There is no unique way to assign coordinates and
time stamps. Herein enters an observer (= adopted procedure).

With such a procedure at hand, it is possible to formulate the phenomenon
of motion of bodies in terms of kinematics - description of motion and dynam-
ics - laws of motion. The key point to note is that there is always an observer
implicit directly in kinematics and indirectly in dynamics.

Einstein now observes several examples of relationships between classes
of observers and the phenomena being described. Consider the problem of
determining the distance between two points say by laying down meter sticks.
The answer will evidently depend on how the meter sticks are laid. Drawing on
the experience of measuring distances along short straight lines and using the
procedure of assigning the Cartesian coordinates an observer can determine
the distance between two points with Cartesian coordinates (x1, y1, z1) and
(x2, y2, z2) to be given by

Distance2 = (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 .

Now the interesting observation is that all observers assigning Cartesian coor-
dinates will verify that the distance between two given points is numerically
the same (assuming the same units are used!). Hence, as far as the prob-
lem of determining distance between points is concerned, any of this class of
observers will do fine. Mathematically, the coordinates assigned by any two
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4 General Relativity: Basics and Beyond

observers are related by the transformation law:

(x′)i =

3∑
j=1

Aijx
j +Bi, where Aij is a 3-by-3 orthogonal matrix.

These leave the Cartesian nature of coordinates unchanged as well as the
expression for distance invariant. For Bi = 0, Einstein calls this relativity of
orientation.

The next example he considers is the phenomenon of motion of parti-
cles, governed by Newton’s laws formulated in the so-called inertial frames.
The class of observers whose descriptions are equivalent are those who are
in uniform relative motion, possibly differing in the orientation of the axes
of the Cartesian frames and possibly with difference in the ‘zero’ of their
clocks. This is of course Galilean relativity. What is left invariant is the
mass× acceleration.

When phenomenon of motion is extended to include electromagnetic field
and the motion of charges under their influence, a contradiction arises. Analy-
sis of the famous moving magnet and conductor problem in the magnet’s rest
frame and the conductor’s rest frame presents two alternatives. Either have
Galilean transformations among the electric and magnetic fields so as to get
the same force in both the frames or, allow a new transformation law for the
force so as to be consistent with the Lorentz transformations which leave the
Maxwell’s equation invariant. Which one of these is ‘correct’?

On the one hand, confirmation of constancy of speed of light puts Lorentz
transformations on a firmer ground and on the other hand Galilean trans-
formations contain an unwarranted assumption of observer independence of
simultaneity. Einstein chooses Lorentz transformations and we have the theory
of special theory. What two observers in uniform relative motion must agree
on is the same value of the speed of light in vacuum.

This affects the kinematics in a profound manner. We will discuss the
derivations a little later but let us note at this stage that length of a stick
measured by a moving observer is a little less than that measured by an
observer at rest with respect to the stick. Likewise when an observer compares
the successive ticks of a moving clock with a stationary clock, the moving
clock always ticks slower. These consequences of the demand of invariance
of the speed of light go by the names length contraction and time dilation
respectively.

The new kinematics does not leave invariant the other Newtonian law,
namely the law of gravitational force. Once again we face a similar dilemma
as before: Do we limit the applicability of the new kinematics or do we modify
the law of gravitational force?

There is a peculiarity with the law of gravitation. The ‘charge’ that enters
in the force law, the gravitational mass, happens to be numerically equal to the
measure of the inertia of a body, its inertial mass. This makes different bodies
of varied compositions, weights fall to the ground with the same acceleration.
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There is no ‘reason’ for such conceptually widely different quantities to be
numerically equal, except perhaps it is a clue to the nature of gravitational
interaction.

All bodies fall at the same rate also means that an observer does so too
and therefore, relative to the observer, the bodies continue to maintain their
state of uniform motion. In the absence of any force of any other origin, this
just means that the freely falling observer is the Newtonian inertial observer!
The clue of equality of the two masses provides us with a definition of inertial
frames as precisely those in which gravitational field cannot be detected. Fur-
thermore, an observer who detects gravitational field, is accelerated relative
to an inertial frame. Thus we can trade-off a gravitational field, for an ob-
server accelerated relative to an inertial observer. Since relatively accelerated
observers are involved, Lorentzian kinematics is not immediately applicable.
Rotating platforms provide a convenient ‘laboratory’ for a thought experi-
ment.

Imagine determining the circumference and the radius of a rotating plat-
form. The measuring sticks tangential to the circumference will undergo
Lorentz contraction while those along the radial direction will not be con-
tracted. Thus the ratio of the circumference to radius of the rotating plat-
form, obtained by taking the ratio of the number of measuring sticks along
the circumference and the number along the radius, will be greater than 2π [1]
while that of a non-rotating platform will be 2π. Hence, the geometry on a
rotating platform will be non-Euclidean. But by equivalence principle, accel-
eration is equivalent to a gravitational field (locally) and therefore one must
infer that gravity affects the geometry. This gravitational field is of course
inferred by the observer who is co-rotating with the platform. We will return
to the rotating platform later again.

Thus the response (motion) of bodies to a gravitational field is independent
of their masses and the gravitational field also changes the geometry of space.
Since a gravitational field is produced by masses, the spatial geometry is also
influenced by the masses. Thus, geometry of space is changeable. This is quite
a novel inference! Does space-time geometry also change with distribution of
masses?

This could be so if clocks tick at different rates in a gravitational field.
Consider an observer stationed at a height of h from the ground and another
observer freely falling. The freely falling observer will have a speed v = gt
relative to the stationary observer after a time t and will have a fallen through
a distance of s = 1

2gt
2. As per Lorentzian kinematics, the rate of freely falling

clock will be,

∆τfalling = ∆τfixed

√
1− g2t2 = ∆τfixed

√
1− 2gs = ∆τfixed

√
1− 2∆Φgrav

The final expression is depends only on the gravitational potential difference
between the stationary observer and instantaneous position of the freely falling
observer.
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It is clear from this argument that the gravitational potential affects the
rates of clocks and since gravitational potential changes with the distribution
of masses, so does the clock rates and hence the space-time geometry too is
affected by distribution of masses.

Thus, replacing gravitational field by an accelerated observer and the
Lorentzian kinematics leads us to a space-time geometry which is affected
by presence of gravitational field which in turn depends on distribution of
masses. One puzzle still remains. If gravitational field can be ‘gotten rid off’
as in a freely falling lift, is gravity ‘fictitious’? It can’t be. After all Earth is
freely falling in the gravitational field of the Sun and real tides - which are
effects of Newtonian gravity - do exist! So, while metrical property within a
freely falling lift will be that in the absence of gravitational field, something
else must remain encoded in the geometry that will account for the tides.

From the examples of two-dimensional surfaces, we know that the non-
Euclidean geometries have non-zero curvature. This is most easily seen on the
surface of a sphere. Consider a triangle made up of sides which are portions
of great circles on the sphere. If a triangle is ‘large’, with two points on the
equator and the third one the north pole (say), then the sum of angles is
greater than 1800 degrees. Now bring the two equatorial points closer to the
pole. Note that the generic latitude is not a great circle (the longitudes always
are). So the small triangle will look more and more ‘distorted’, but the sum
of its angles will get closer and closer to 1800. In short, non-zero curvature
is detectable as deviation from Euclidean geometry, only for larger triangles.
The same is true for tidal forces in Newtonian gravity. The differential forces
on two extremes of a body are larger when the separation of the two extremes
is larger. Thus we see a parallel between the effects of curvature in geometry
and the tidal forces of gravity.

At a qualitative level then, we see that effects of gravitational field can be
mimicked by a space-time geometry which has curvature which in turn must
depend on the distribution of masses since Newtonian gravitational potential
does. The observed equality of gravitational mass and inertial mass, combined
with Lorentzian kinematics leads to replacing gravitational interaction as re-
vealing a space-time geometry which is curved in general and is changeable.
Space-time is a dynamical entity. In the process, the principle of relativity also
gets extended to all observers regardless of their state of motion. As Einstein
says [1]: “Theory of relativity is intimately connected with a theory of space
and time ...” In the subsequent chapters we will formalize and make these
arguments precise and quantitative.
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1.2 General Relativity and Space-Time Arenas

We will proceed somewhat informally and heuristically to arrive at the
mathematical model for space-time. The precise details are given in chapter
14.

We have already alluded to the assignment of coordinates (and time
stamps) as the a defining character of an observer. We are quite familiar with
assignment of Cartesian coordinates on a plane: choose a point (origin) and a
pair of orthogonal directions at that point (we use a protractor to determine
orthogonality) call them the x-axis and the y-axis; go ‘x’-units along the x-axis
and then ‘y’-units along the y-direction and assign the coordinates (x, y) to the
point reached, ‘P’. Repeat for other points. For the same choice of origin and
the axes, we may reverse the order of traversal from origin to the same point
i.e. first go ‘y-’-units along the y-axis and then ‘x’-units in the direction of the
x-axis. From experience, we know that we will reach the same point and assign
the same coordinates to it. A different observer may choose the same origin but
a different pair of axes, can still reach the same point, ‘P’, but now with dif-
ferent values for its coordinates. Another observer may even choose a different
origin. Nevertheless, each observer is able to follow this procedure for arbitrary
values of (x, y) and thus label the points on a plane in an unambiguous and
on-to-one manner. We even know how to relate the coordinates assigned by
different observers, namely, x′ = O1,1x+O1,2y+C1, y

′ = O2,1x+O2,2y+C2,
where, the matrix Oij is an orthogonal matrix, OTO = 1. We can see readily
that if we follow the same procedure on the surface of a sphere, then even for
the same choice of an origin and the same pair of axes, the point reached de-
pends on the order of traversal! Secondly, the relation between the coordinates
assigned by two observers not a simple linear one as before. We also recognize
this as a feature of the ‘curved’ nature of the sphere. We can attempt a similar
exercise on the surface of a saddle and discover the same features. Clearly, the
plane surface is rather an exception in the class of two-dimensional surfaces
and therefore the ambiguities in the procedure for assigning coordinates is
quite generic. we may have to be content with (i) any arbitrary procedure of
assigning coordinates - but in a one-to-one manner and (ii) allow arbitrary
(invertible) relations among different coordinates.

Of course labeling the points is only a first step an observer has to un-
dertake. An observer has to observe and describe phenomena in terms of the
reference system of coordinates chosen. How can different observers be sure
that they are describing the same phenomena and compare notes to evolve
a consensus on the laws of nature? Is it possible at all? Let us keep in mind
the surface of the Earth as a concrete example. We know that temperatures
at various locations have their specific values, irrespective of the labeling of
the locations. Likewise, the wind patterns or ocean currents are described by
a field of arrows, again independent of the labeling of the locations. Therefore
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there exist quantities on the sphere which have an existence independent of
the labelling of the location. However, when we want to describe the variations
of these quantities with the locations in quantitative terms, each observer can
only do so using his or her reference system. Clearly, for the same quantity, we
will have multiple descriptions in terms of multiple coordinates systems. Using
the relations among the coordinates, we can transform one description into
another one. Consistency requires that the quantities describing the phenom-
ena must transform in a specific manner reflecting the fact that the quantities
exist independent of the coordinates. For example, if a point P has two sets of
coordinates (x, y) and (x′, y′) and the temperature in the vicinity is described
by two functions T (x, y) and T ′(x′, y′), then we must have, T ′(x′, y′) = T (x, y)
at P. Similarly, if we have two descriptions of wind velocities as (dx/dt, dy/dt)
and (dx′/dt, dy′/dt), then we must have the relations,

dx′

dt
=

∂x′

∂x

dx

dt
+
∂x′

∂y

dy

dt
,

dy′

dt
=

∂y′

∂x

dx

dt
+
∂y′

∂y

dy

dt
.

We have only used the chain rule of differentiation and the assumption that
the relation among different coordinates is not only invertible but also differ-
entiable. In a similar manner, we can see that the gradients of the temperature
distribution must be related as,

∂T ′

∂x′
=

∂x

∂x′
∂T

∂x
+
∂y

∂x′
∂T

∂y
,

∂T ′

∂y′
=

∂x

∂y′
∂T

∂x
+
∂y

∂y′
∂T

∂y

Here we have also used the fact that T ′(x′, y′) = T (x, y) in applying the chain
rule. If we use a more compact notation of denoting the coordinates as xi, the
coordinate relations as x

′i(xj) then we can write the equations as,

T ′(x′) = T (x),
dx′i

dt
=
∂x′i

∂xj

dxj

dt
,

∂T ′

∂x′i
=
∂xj

∂x′i
∂T

∂xj

We have also introduced the Einstein summation convention, namely, repeated
indices in an expression imply summation over the values of the indices. What
we see is the beginning of tensors—sets of quantities that transform in a spe-
cific manner which imply that they represent entities that exist independent
of assignments of coordinates. The temperature is a scalar, the velocities are
contravariant tensor of rank 1 and the gradients are covariant tensor of rank 1.
Generalizations to multi-index quantities and details are given in the chapter
14.

This is similar to the case of special relativity’s 4-tensor notation, except
that the implicit transformations are not the Lorentz transformations but the
general coordinate transformations. This also means that the partial deriva-
tives are evaluated at the same point where two sets of quantities are related
and that these vary from point-to-point, the transformations being non-linear
in general. Hence elementary algebraic operations such as addition, multipli-
cations of tensors can only be defined pointwise.
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One of the first casualty of allowing arbitrary assignment of coordinates
is that the relation between coordinate differences and physically measured
length is more remote. From the example of Cartesian coordinates on a plane,
we know that the distance between two points, measured by using meter sticks
(say) is related to the coordinate differences by the square root of the sum
of their squares. If we were to use the polar coordinates, (r, θ), then the ex-
pression is, (∆s)2 = (∆r)2 + r2(∆θ)2 :=

∑
ij gij(r, θ)(∆x)i(∆x)j . For points

on a sphere, the coordinate differences have to be sufficiently small (ideally
infinitesimal) to match with the length obtained by putting small measuring
sticks along the surface of the sphere. The matching would be necessarily ap-
proximate as no finite length measuring stick can be confined to the curved
surface. Even after restricting to small enough coordinate differences, we need
to ensure that the measured length, ∆s2, is numerically the same if com-
puted using differences from a different coordinate system. This can possibly
be true, if the coefficients gij in the second coordinate system are different in
just the right manner:

∑
ij g
′
ij∆x

′i∆x′j =
∑
ij gij∆x

i∆xj . In the light of the

discussion of tensors, this demand just means that (a) ∆xi transform as the
contravariant rank 1 tensor and (b) gij transform as covariant rank two tensor.
This will make the distance an invariant (coordinate independent) quantity.
Since ∆xi ≈ (dxi/dt)∆t and the velocity is a tensor while ∆t is manifestly
independent of the coordinates, the (a) above is satisfied. The requirement
of ∆xi being sufficiently small comes about because for sufficiently small ∆t,
there is a unique ‘straight’ path along which we may lay the measuring sticks.
The point to note is that we must have an quantity such as gij so that mea-
sured lengths can be computed using coordinate differences. This quantity is
called a metric tensor while the expression (∆s)2 is called the line element.
There are infinitely many possible choices for a metric tensor.

An observer cannot be satisfied by just making observations at one point.
We will want to set up differential equations, ordinary and partial, to make
theoretical predictions. So we need to define derivatives of tensors which
should also be tensors. Differentiation involves comparing values at neigh-
boring points and tensors forbid such comparisons. Suppose we are given
a tensor field, Ai(q), for points q in the vicinity of a point p. If we con-

sider the derivatives, ∂Ai(x)
∂xj , in two different coordinate systems, we see im-

mediately that the derivatives do not transform as a tensor, due to an of-

fending term containing double derivatives of the form ∂2x′i

∂xj∂xk
. For linear

transformations such as Lorentz transformations, we don’t encounter this,
but for general coordinates, we cannot escape it. To construct a tensorial
derivative, called a covariant derivative, we need to introduce a quantity Γijk

with appropriate transformations and define: ∇jAi := ∂Ai

∂xj + ΓijkA
k, with

Γ′ijk(x′) := ∂x′i

∂xl
∂xm

∂x′j
∂xn

∂x′k
Γlmn(x) + ∂x′i

∂xm
∂2xm

∂x′j∂x′k
. This quantity is called an

affine connection. Notice that a choice of Γ is constrained only by the trans-
formation rule and there are infinitely many choices possible. For every choice
we can define covariant derivatives for all tensor fields (see chapter 14). Now,
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unlike the usual coordinate derivatives, the covariant derivatives do not com-
mute i.e. ∇i∇jAk −∇j∇iAk := Rklij(Γ) Al 6= 0. The 4 index quantity Rklij
is manifestly a tensor (since the left-hand side is) and depends only on Γ and
its first derivatives. This is the famous Riemann Curvature Tensor. We are
thus naturally lead to a framework involving tensors, an arbitrarily chosen
tensor - the metric tensor gij and an arbitrarily chosen affine connection -
Γijk, with the associated Riemann curvature tensor. It turns out that the
arbitrariness in the choice of the connection can be completely removed by
demanding that Γijk = Γikj and ∇kgij = 0 ∀i, j, k. The connection so re-
stricted is called the Riemann–Christoffel connection which is dependent on
the metric tensor and the corresponding Riemann tensor is also determined
by the metric. We now have a model for a space-time: It is a collection of
‘events’, made explicit by arbitrarily assigned coordinates, an arbitrarily cho-
sen metric with a non-vanishing Riemann tensor in general. All determinable
physical quantities of interest being tensors of appropriate ranks satisfying
differential equations involving covariant derivatives. This model is nothing
but a Riemannian manifold, defined more precisely in chapter 14.

To familiarize ourselves, we will discuss several examples of Riemannian
manifolds in the next chapter.



Chapter 2

Examples of Space-Times

We will take a specification of a space-time as a set of coordinates xµ with
a non-singular metric gµν(x) with Lorentzian signature, given as an infinites-
imal invariant interval, also known as line element, and study some of its
properties1. Specifically, we consider,

Minkowski
(No gravity) ∆s2 = −∆t2 + ∆x2 + ∆y2 + ∆z2

Rindler
(Uniform) ∆s2 = −g2

0z
2∆t2 + ∆x2 + ∆y2 + ∆z2, z > 0

Rotating Disk
(Centrifugal) ∆s2 = −f(ρ)∆t2 + 2h(ρ)∆t∆φ+ g(ρ)∆φ2 + ∆ρ2 + ∆z2

f(ρ) := e−ω
2ρ2 − ρ2ω2e+ρ2ω2

,

h(ρ) := −ωg(ρ) , g(ρ) := ρ2e+ρ2ω2

Schwarzschild

(Spherical) ∆s2 = −
(
1− 2GM

r

)
∆t2 +

(
1− 2GM

r

)−1
∆r2 + r2∆Ω2

FRW

(Cosmological) ∆s2 = −∆t2 + a2(t)
{

∆r2

1−κr2 + r2∆Ω2
}

where, ∆Ω2 :=
(
∆θ2 + sin2θ∆φ2

)
Plane wave ∆s2 = (ηµν + hµν)∆xµ∆xν , where,
(Undulating) hµν(x) = εµν(k)eik·x + ε̄(k)µνe

−ik·x and
ηµν = diag (-1, 1, 1, 1) .

In order to appreciate interpretation of physical consequences of the space-
time model, we will focus on familiar quantities such as physical lengths,
elapsed times measured by clocks, local speed (‘speedometer reading’), local
acceleration (‘acceleration due to gravity’). We take as given, a line element

1Our notation: space-time coordinates are indexed by Greek letters, µ, ν, . . . taking values
0, 1, 2, 3; space coordinates are indexed by Roman letters, i, j, . . . taking values 1, 2, 3. The
invariant interval ∆s2 = gµν∆xµ∆xν . The metric signature is − + ++ and speed of light
c = 1.

11
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and its physical interpretation. We view the given coordinate system as a
‘map’ on the space-time with the metric coefficients as giving the rule to link
coordinate intervals with physical quantities.

On a pseudo–Riemannian manifold, an infinitesimal invariant interval can
be positive (space-like), negative (time-like) or null (light-like). Time-like in-
tervals are given by elapsed time on a physical clock while space-like intervals
are the lengths measured by a physical measuring stick. This could be deduced
from the principle of equivalence applied to a freely falling lift [2], but we
will simply take it as part of the interpretational scheme. We can classify
smooth curves in the manifold into time-like, space-like and light-like accord-
ing as the nature of infinitesimal intervals along the curves. Motion of small
bodies (‘point particles’) in space is represented by time-like curves (or world
lines) while propagation of light, in the geometrical optics approximation, is
represented by light-like curves in the space-time manifold.

Elapsed Times: Any small physical clock is represented by a time-like

curve. Define the clock’s coordinate velocity, V i := ∆xi

∆t . Consider two events
on the clock’s world-line defined by two consecutive ‘ticks’ of the clock. Let
the coordinate intervals for these two events be (∆t,∆xi := V i∆t). The cor-
responding invariant interval is given by,

∆τ2
~V

:= −∆s2 = −g00∆t2
(

1 +
2g0iV

i

g00
+
gijV

iV j

g00

)
(2.1)

By definition, the invariant interval is the elapsed time measured by this clock.
Notice that for a clock ‘at rest’ (V i = 0), ∆τ2 > 0 implies that g00 < 0 and
then for V i 6= 0, the expression in parenthesis must be positive.

For a clock at rest, V i = 0, we get ∆τ~0 =
√
−g00∆t and this provides the

interpretation of the coordinate interval: it is the elapsed time as measured by
a clock at rest, divided by

√
−g00. It has a dependence on the location of the

clock, through the metric coefficient. It follows,

∆τ~V = ∆τ~0

[
1 +

2g0iV
i

g00
+
gijV

iV j

g00

] 1
2

(2.2)

For the Minkowski line element, g00 = −1, g0i = 0, gij = δij , and we infer the
special relativistic time dilation by noting that ∆τ~V is the time measured by
the moving clock while ∆τ~0 is the time measured by the stationary clock.

This appears to be ‘opposite’ to the usual special relativistic time dilation.
It is not. The two events whose invariant interval is given by ∆τ~V are defined
by the two consecutive ticks of the moving clock. This would usually be de-
noted by ‘∆τ0’ (‘proper time’). The same interval as measured by a clock at
rest, would usually be denoted by ∆t and we have denoted it by ∆τ~0. Thus the
time dilation derived above is the same one as obtained in special relativity
when the metric is Minkowskian.

Next, consider two clocks A and B, both with coordinate velocities zero.
Choose two events A and B on their respective world-lines such that the co-
ordinates are (t, xiA) and (t, xiB) respectively. Consider two subsequent points
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A′ and B′ on their world-lines with the same time coordinate t′ = t + ∆t.
The spatial coordinates will remain the same since the coordinate velocities
are zero. The elapsed physical times are then related as,

∆τA =

√
g00|A
g00|B

∆τB (2.3)

Notice that for Minkowski line element (and the FRW line element), g00 = −1
at both locations and hence the two elapsed times are the same. This ratio
gives the gravitational time dilation. Taking the invariant time intervals to
define inverses of frequencies, we get the prediction that frequencies undergo
a change in a gravitational field. This was indeed first measured and verified
by Pound and Rebka in 1959 [3–5]. The quantitative estimate is obtained using
the Schwarzschild line element. The choice of pairs of events with the same
coordinate interval, can be achieved in practice by clock A sending consecutive
pulses to clock B. The coordinate time intervals at both clocks will be the same
when the coordinate velocities are the same and the metric is assumed to be
almost time independent over the flight time interval. This is of course realized
in the near Earth space-time. We discuss the general case of frequency shifts
in section 3.2.

Physical Lengths: Similar considerations apply to spatial invariant inter-
vals (∆s2 > 0) as well, in particular physical length intervals are also ‘observer
dependent’. To see this, recall an argument in the context of special relativity.

Imagine two events A and B defined by a car crossing two ends of a road.
The coordinates assigned by a road observer will be (0,~0), (∆t, Lroad~n). The
coordinates assigned by the car observer will be (0,~0), (∆t′, 0). Let the speed
of the car relative to road be βcar so that Lroad = βcar∆t. Let the speed of
the road relative to the car be βroad (in the opposite direction of course) so
that Lcar = βroad∆t

′. Since the two events are the same, the invariant interval
must be the same i.e.

−∆t2 + L2
road = −∆t′2

L2
road(1− β−2

car) = −L2
carβ

−2
road

∴ Lcar = Lroad
√

1− β2
car

(
βroad
βcar

)
(2.4)

The usual length contraction formula results when we assert that βroad = βcar
i.e. speed of road measured by car observer is the same as the speed of car
measured by the road observer. Had we insisted on the lengths Lcar, Lroad, of
the road as measured by the two observer are same, we would have got the
two speeds to be different, with the βroad being not bounded by 1. Clearly,
we should interpret the above equation (2.4) as implying that the physical
lengths measured by two observers can be different while the two speeds are
the same: βroad = βcar < 1. Notice that this identification makes the velocity
truly relative.
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The necessity of length contraction can also be seen in the explanation
of the observation of muons at the ground level after traversing the atmo-
sphere even though, naively, the rest-frame-life-time of 2.2 µsec would not be
sufficient to travel through the thickness of the atmosphere. The ground ob-
server explains this by invoking time dilation to stretch the half life while the
muon-rest-frame observer gets the simplest explanation by invoking length
contraction to squeeze the thickness of the atmosphere.

We have discussed length contraction using the Minkowski metric. Its gen-
eralization to general space-times is given below by a different argument using
the definition of local speed.

Local Speed: Imagine a spaceship going from a location A to another one
B. The duration of the journey can be measured by an on-board clock and
we can ask for an average speed for the journey. How is this to be determined
in terms of the arbitrary local coordinates (and the metric coefficients)? For
the everyday experience of going in a car the speed shown by speedometer
denotes the physical distance traversed in a time shown by a clock, either on
board or on the ground. The natural definition of speed would thus be the
ratio of a physical distance to a proper time. The problem is to identify, for a
given time-like curve, the spatial distance covered in some physical time - we
need a definition of splitting the space-time into space and time.

Recall that space-time coordinates are just labels and it is only in con-
junction with metric coefficients that physical meanings are ascribed. Thus to
properly identify a split as space and time, we have to specify a form of metric
as well, apart from simply labelling t := x0. This is achieved by taking a form
for the metric as,

∆s2 = −N2∆t2 + ḡij(∆x
i +N i∆t)(∆xj +N j∆t) where, (2.5)

ḡij is positive definite with inverse ḡij . As matrices,

gµν =

(
−N2 + ḡijN

iN j ḡijN
i

ḡijN
j ḡij

)
↔

gµν =

(
−N−2 N−2N j

N−2N i ḡij −N−2N iN j

)
(2.6)

Such a form can always be taken locally and serves to identify time-like direc-
tions.

And now, for a given coordinate system, we define ‘space’ to be the ‘t
= constant’ hypersurface. We had already deduced g00 < 0 just below eq.
(2.1) and g00 is manifestly negative. The unit (time-like) normal to such a
hypersurface is given by nµ = 1√

−g00
(1, 0, 0, 0) and the corresponding nµ =

gµ0/
√
−g00. Define the associated projector, Pµν := δµν+nµnν which projects

any vector to a space-like vector. Consider two points on the world line of the
spaceship, with coordinate interval: ∆xµ := vµ∆τ , v · v := gµνv

µvν = −1.


