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Preface

This book is devoted to the “other” kinds of dependent variables than those for which

linear regression is appropriate. These include binary, polytomous nominal, categor-

ical ordinal, counted, interval-valued, bounded continuous, censored, and truncated

variables. We argue that these dependent variables are, if anything, more common

throughout the human sciences than the kind that suit linear regression. Readers ac-

quainted with the literature on such variables will have noticed the similarity between

the titles of this book and of the pioneering textbook by Long (1997). Long’s book

was eagerly acquired by the first author when it came out and proved an excellent

source and guide over the years for both students and colleagues. Our book updates

his book on topics they have in common, primarily regarding advances in special

cases or extensions of models, estimation methods, model diagnostics, and of course

software. Although the past two decades have seen many excellent books published

on these topics, most of them are devoted to one or another specific subset of the

topics. Ours is a broader but unified coverage in which we attempt to integrate the

concepts and ideas shared across models and types of data, especially regarding con-

ceptual links between discrete and continuous limited dependent variables.

At several points we bring together material that heretofore has been scattered

across the literature in journal articles, book chapters, conference proceedings, soft-

ware package documentation files, and blogs. Topics in our book not covered in

Long’s include bounded continuous variables, a greater variety of boundary-inflated

models, and methods for modeling heteroscedasticity. All of the dependent variables

we consider have boundaries of some kind, be they due to categorical distinctions

or bounds on a continuum. The distinctions among different kinds of bounds and

how to incorporate them into statistical models are fairly challenging issues, and not

much guidance is available in the literature. For example, we have observed that re-

searchers can become confused about whether boundary observations on a variable

should be regarded as accurate scores or censored values. Throughout the book we

guide the reader to appropriate models on the basis of whether the bounds are inher-

ent in a construct or variable, or imposed (e.g., by censoring or truncation). Likewise,

although both the concepts and software are available for dealing with heteroscedas-

ticity, it remains a relatively neglected topic in the applied statistical literature despite

its considerable importance. Heteroscedasticity is especially relevant for the kinds of

dependent variables we deal with here, both because it can frequently arise in the

data and because some models for these variables are inherently heteroscedastic. We

therefore treat both kinds of heteroscedasticity: Unconditional in the sense that it is

xiii
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due to the bounded nature of the construct or variable, and conditional on values or

states of independent variables.

Wherever possible, we have illustrated concepts, models, and techniques with

real or realistic datasets and demonstrations in R (R Development Core Team, 2013)

and Stata. Each substantive chapter also has several exercises at the end. Both illus-

trations and exercises are intended to help readers to build conceptual understanding

and fluency in using these techniques.

Data and Software

We illustrate the models and methods in this book using both R (R Development Core

Team, 2013) and Stata software. We elected to use these pieces of software through a

combination of personal preference, popularity, and access. The data files used in this

book are all freely available; to obtain them, R users can install the smdata package

that is freely available on CRAN. The installation, followed by loading the package

and loading datasets, can be completed with the following R commands.

## Install package

install.packages("smdata")

## Load package

library("smdata")

## Load, e.g., the email dataset within smdata

data("email")

On the topic of R, we also note that Thompson (2009) has written a valuable manual

that describes the use of R for categorical data analysis; it can be freely obtained at

https://home.comcast.net/~lthompson221/Splusdiscrete2.pdf.

Stata users and others can obtain the data from https://dl.dropbox.com/

u/1857674/SmiMerBook/SmiMerDoc.html, which includes the data in both Stata

format and csv format. The page also includes details about each data file and some

extra code. Finally, Stata users will find the book on categorical and limited depen-

dent variables by Long and Freese (2006) very useful.
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Notation

Symbol Definition

∼ is distributed as (e.g., X ∼ N(0,1))
≈ is approximately equal to (e.g., π ≈ 3.14)

α j the intercept/cutpoint associated with the jth logit of an ordinal

regression model

Be(ω,υ) a Beta distribution with parameters ω and υ
B(·) Beta function

βββ a vector of regression coefficients

βββ j a vector of regression coefficients associated with the jth logit of

an ordinal regression

βk the regression coefficient associated with xk

χ2
df a chi-squared-distributed variate with df degrees of freedom

D(M) The deviance associated with Model M

exp(x) or ex The exponential of x

f (·) usually a probability density function (pdf)

F(·) usually a cumulative density function (cdf)

g(·) usually a link function in the location submodel of a GLM

G2 Likelihood ratio statistic

Γ(·) Gamma function

h(·) usually a link function in the dispersion submodel of a GLM

I number of unique combinations of values that may be assumed by

a vector of predictors xxx

J number of categories in a categorical or ordinal variable

L(θθθ |yyy,XXX) A model likelihood function

ℓ(θθθ |yi,xxxi) Individual i’s contribution to the likelihood

µ population mean

N(µ ,σ) a normal distribution with mean µ and standard deviation σ
n number of observations

ϕ population precision in Beta and Negative Binomial Models

φ(·), Φ(·) the pdf and cdf for the standard normal distribution N(0,1)
π mixture probability in zero-inflated models

P(·) Probability of an event or a proposition

p Usually a probability in the role of a dependent variable in a GLM

q the number of estimated model parameters

r a model residual

xxi



xxii NOTATION

σ population standard deviation

ΣΣΣ a population variance–covariance matrix

t exposure variable

τ censoring or truncation threshold in probit, logit, and Tobit models

θθθ a model parameter vector

ω,υ parameters of a beta distribution

X2 Pearson goodness-of-fit statistic

XXX a matrix of predictor variables

xxxi a vector of predictor variables for observation i

xk the kth predictor variable

y a response variable

y∗ a latent, continuous variable underlying y

W Wald statistic
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Chapter 1

Introduction and Overview

1.1 The Nature of Limited Dependent Variables

Many variables in the social sciences are “limited” in the sense that their supports

have boundaries. In fact, we claim that the vast majority of these variables are

bounded. These bounds consist of two related kinds: Categorical boundaries and

bounds on a continuum. The key distinction between these is that cases contained

within categorical bounds are treated as identical in value or state, whereas cases

falling in a bounded continuum may take different values within that range.

The primary rationale for this book and related books, including Long (1997),

Agresti (2012), Powers and Xie (2008), and Bishop, Fienberg, and Holland (1975),

is that the most popular distributions for model error (the normal and t distributions)

assume that the dependent variables to which they are applied are unbounded (i.e.,

their support encompasses the entire real line). In contrast, bounded data require

distributions that take their bounds into account.

Categorical bounds imply discreteness, and so categorical random variables re-

quire discrete distributions. These occupy the first part of this book. Bounds on con-

tinuous variables raise important measurement issues, primarily regarding cases at

or near the boundaries. Are such cases accurately recorded or do their true scores lie

“beyond the bounds?” Often the bounds are artifacts insofar as they are imposed by

such considerations as constraints on the number of items comprising a scale or a

test, a practical need to identify scale endpoints, or a decision to record only cases

that exceed or lie below some threshold.

We distinguish three situations regarding bounds. First, the dependent variable

data are completely known for all cases, so that cases on a boundary have been accu-

rately measured and, in this sense, the boundary is “real.” Second, some of the cases

are censored because they are only partially known (e.g., we know that a particular

debtor owes less than $1,000 but we do not know exactly how much she owes). Third,

some cases are truncated because they have been excluded from the sample on the

basis of some characteristic (e.g., a bank records only losses exceeding $1,000). We

will examine censoring and truncation in Chapters 5 and 7.

Chapter 6 deals with doubly bounded continuous dependent variables, i.e., those

that have both a lower and an upper bound, where the boundary cases are real. The

most obvious examples are proportions and percentages, but other examples are read-

ily found such as borrowings on credit cards with upper limits, rating scales used by

1
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judges in performance sports such as diving or gymnastics, prototypicality or degree

of membership rating scales, and happiness or satisfaction ratings.

Bounds may be “unreal” in two ways. First, they may be imposed arbitrarily,

such as the endpoints in the popular agree–disagree rating scales. If the endpoints

are “strongly disagree” and “strongly agree” then all we know about cases occu-

pying those endpoints is that they are that strong or stronger in their degree of

(dis)agreement. Another influence on the veridicality of scale endpoints is the gran-

ularity of the scale. A confidence rating scale will have more accurate endpoints if it

uses 20 bins than if it uses 4.

Second, the bounds may be real (e.g., a score of 0% or 100% on an exam) but the

boundary cases may or may not be censored depending on the measurement purpose.

A score of 0% or 100% on an exam is a true score if the exam includes all relevant test

items, but not if it is considered to include only a sample of relevant items. Likewise,

if a survey asking respondents to report the amount of time they spent eating during

the last 24 hours turns up cases reporting 0, those cases may be taken as true scores if

the purpose is simply to measure how much time people from the relevant population

spent on eating during the past 24 hours, but not if it is to measure the proportion of

24 hours that people typically devote to eating.

Finally, limited dependent variables may be “boundary inflated” in the sense that

the proportion of boundary cases exceeds that presupposed by the distribution model.

A count variable such as number of cigarettes smoked in the past month might

produce a large number of zeros in a population where most people do not smoke

cigarettes. Chapters 5 and 6 include treatments of boundary-inflated models.

1.2 Overview of GLMs

Generalized linear models (GLMs), as originally described by Nelder and Wedder-

burn (1972) and expanded upon by McCullagh and Nelder (1989), form the founda-

tion of this book. In this section, we define GLMs, relate them to simpler models,

and discuss extensions.

1.2.1 Definition

GLMs are extensions of the standard linear regression model to situations where the

dependent variable (or response variable) is limited. A linear predictor is common to

all models, but the way in which the linear predictor relates to the data is different.

To begin, consider the standard linear regression model, which we will generally call

the Gaussian GLM for reasons that will become clear:

y = xxxβββ + e = β0 +β1x1 + . . .+βKxK + e, (1.1)

where we assume a 1 in the first entry of xxx and that e ∼ N(0,σ2). With K+2 or more

observations, we can fit this model to the data and obtain estimates of βββ and σ2.

Given estimates of βββ and some value of xxx, we can then predict the mean of y. The

regression weights βββ provide insight about the extent to which the predicted mean of

y is impacted by each of the x j. Thus, we typically wish to interpret the β s and test
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whether they differ from zero. These tests and interpretations help us to summarize

the general impact of the x j on y.

To “generalize” the model in Equation (1.1), we must think about it in an alterna-

tive manner. We consider three features of the model: (i) the distribution associated

with y, (ii) the parameter of the distribution on which we wish to focus, and (iii) the

way in which we model the parameter via a linear predictor. For the Gaussian GLM,

we have (i) a normal distribution for y, (ii) focus on µ , the normal distribution’s mean

parameter, and (iii) a linear predictor placed directly on µ . The third feature is ad-

mittedly confusing for this model, because it is not clear why it is needed. However,

it will help us soon.

In the spirit of the three features that we just noted, we could rewrite the model

from (1.1) as

y|xxx,βββ ∼ N(µ ,σ2) (1.2)

µ = xxxβββ . (1.3)

These equations no longer contain an error term that is added to a linear predictor.

Instead, we assume a distribution for y and then place a linear predictor on the con-

ditional mean of the distribution of the response variable. The distribution on y, the

normal (also known as the Gaussian), leads us to call this model a Gaussian GLM.

The parameter that we model, µ , is unbounded and can therefore be directly modeled

via the linear predictor. In general, however, model parameters are not unbounded, so

that a linear predictor may make nonsensical predictions. For example, we will see

many situations where a model parameter can only assume values between 0 and 1.

In this case, placing a linear predictor directly on the parameter may result in predic-

tions that are less than zero or greater than 1. We need a function that “unbounds” the

model parameter, making it sensible to use a linear predictor. This function is termed

a link function, because it “links” a model parameter to a linear predictor. Given a

distribution for y, there exists a special link function that implies some good statis-

tical properties (involving the fact that the sufficient statistics for the model are of a

simple form). This special link function is termed a canonical link function. How-

ever, choice of link function is more often guided by precedent than by whether or

not it is canonical.

We will describe a variety of link functions throughout this book, though we il-

lustrate only one here. In Chapter 2 and elsewhere, we model a probability parameter

p that can only assume values in (0,1). To use a linear predictor in this model, the

link function must transform values in (0,1) to values in (−∞,∞). A common choice

(which also happens to be the canonical choice) is the logit link, also known as the

log-odds link. This is given as

logit(p) = log

(
p

1− p

)
. (1.4)

This function is described in much more detail in Chapter 2. In a GLM context, we

would place a linear predictor on logit(p) to obtain

logit(p) = xxxβββ , (1.5)
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so that the regression weights lead to predictions on the transformed, logit scale. We

typically wish to have predictions on the probability scale, and we can obtain these

via an inverse link function. The inverse link transforms unbounded predictions back

to the bounded scale, with the inverse logit given as

logit−1(xxxβββ ) =
1

1+ exp(−xxxβββ )
. (1.6)

The main point that the reader should take from this discussion is the fact that, for

many distributions, we must unbound a parameter before using a linear predictor.

This is accomplished via a link function. Throughout this book, we typically describe

GLMs via the three features above: the assumed distribution for y, the focal model pa-

rameter (which is usually the conditional mean of the distribution), and the link func-

tion that associates the focal parameter with a linear predictor. The near-exclusive

focus on linear predictors largely follows the tradition of model developments; how-

ever, at least for unbounded data, a linear predictor generally approximates a function

of interest via a first-order Taylor-series expansion (see, e.g., Venables, 2000). The

accuracy of this approximation obviously varies.

1.2.2 Extensions

As defined by McCullagh and Nelder (1989), GLMs include only models whose

distributions arise from the exponential family (see, e.g., Casella & Berger, 2002

for a formal definition of the exponential family). While this family includes many

common distributions (including the normal, binomial, Poisson, beta, and gamma),

many of the models that we describe in this book do not fall in the family. This makes

the title of the book inaccurate in some respects, although the models not included in

the exponential family still use many of the same concepts. We describe here some

extensions of “plain” GLMs, some of which still fall in the GLM family and some

of which do not. While we recognize the inaccuracy in terminology, we generally

ignore the “GLM family or not” distinction because it does not have a major impact

on the applied researcher.

We will often distinguish between location and dispersion parameters through-

out the book. Informally, location parameters are those that influence the central ten-

dency of a distribution. Dispersion parameters, on the other hand, influence only the

variability of a distribution. When a parameter influences both central tendency and

variability, it is generally regarded as a location parameter (the mean of the Poisson

distribution is one example).

Applied researchers are quite familiar with modeling location: most popular sta-

tistical tests employ null hypotheses associated with mean parameters. Further, many

of the models in this book will allow us to assess the impact of predictor variables

on the mean of a distribution. Dispersion parameters, on the other hand, are often

regarded as error parameters or nuisance parameters, and less attention is typically

devoted to them. As we will see in this book, however, these parameters are often

very important both for estimation and interpretation. Dispersion parameters can af-

fect the interpretations that we make about location parameters, and they can also
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be interesting to study in isolation. Expanding on the latter issue, there are some

situations in which we would expect the predictor variables to directly influence the

variability of a response variable. For bounded variables, this variability can addition-

ally be interpreted as polarization. The associated statistical tests of polarization can

inform many theories in the social sciences. Additionally, the mean and variance of

a bounded variable are not independent of one another. Thus, dispersion parameters

generally play an important role in models for bounded dependent variables.

For both location and dispersion parameters, there exist a few common scenarios

where the attributes of y are not a good match with the associated model. In these

scenarios, there are often relatively simple modifications that can be employed to

salvage the original model. We describe the location scenarios separately from dis-

persion scenarios below.

Location. Focusing on location parameters, the scenarios primarily include situa-

tions where y is censored or truncated. Truncation occurs when we exclude some

values of y above or below a certain point. For example, if we ask current smok-

ers about the number of cigarettes that they smoke each month, we have excluded

responses of “zero.” This situation may be called “truncation from below at 1” or,

alternatively, “left truncation at 1.” In contrast, we would observe truncation from

“above” (or from the “right”) if we excluded values above a certain point of the

response variable y.

Censoring is similar to truncation, except that all values of y above or below a

point τ have simply been relabeled as τ . For example, imagine a bathroom scale

with a maximum weight of 400 lbs. While this will not be an issue for many people,

anyone who weighs more than 400 lbs will be assigned a weight of 400. This is a case

of “right-censoring at 400.” Censored observations are observed (e.g., a 450-lb indi-

vidual is recorded as weighing 400 lbs), while truncated observations are unobserved

(e.g., people who smoke zero cigarettes are not included in the sample).

Censoring and truncation are often observed in the context of count regression

(Chapter 5), though we also encounter these issues in other situations. Chapter 7 de-

scribes the general handling of censoring and truncation, including situations where

the associated threshold is unknown (for example, where we do not know the maxi-

mum weight that a scale can record).

Dispersion. Focusing on dispersion parameters, major scenarios are overdispersion

and heteroscedasticity. When we have overdispersion, the model-predicted variance

systematically underestimates the variance observed in y. That is, the model simply

cannot account for the variance observed in y while simultaneously accounting for

the mean (i.e., for the location) of y. The overdispersion issue is important because,

when it occurs, the standard errors associated with the location estimates are too

small. This can often lead the researcher to erroneously infer statistically significant

effects of a predictor variable on y (i.e., Type I errors). To correct for overdispersion,

it is possible to add an extra parameter that accounts for the variance that the original

model could not. It is also sometimes possible to use a different distribution for y

that better handles dispersion. The overdispersion issue is most relevant to the count


