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Preface

The goal of this textbook is to present the topics of asymptotic analysis and
perturbation theory to a level obtainable to students who have only completed
the standard calculus sequence. Even though the most common application of
asymptotics is in analyzing differential equations, students need not have prior
knowledge of differential equations for this text. Rather, the book begins by
immediately introducing the asymptotic notation, and applying this new tool
to problems that the students will already be familiar with: limits, inverse
functions, and integrals. In fact, only the simplest differential equations, such
as first order linear or separable equations, will the students need to learn
how to solve exactly. Hence, there is very little overlap between this text and
a standard differential equation textbook.

The text follows the traditional organization, with plenty of exercises at the
end of each section, and the answers to the odd numbered problems in the
back. However, it also includes an abundance of computerized graphs and
tables that will illustrate how well the asymptotic approximations approach
the actual solutions. These graphs and charts enhance the student’s learning
of the material, giving them visual evidence that these approximation methods
can be applied to the many types of problems that the student will encounter
in his or her field.

This book will benefit instructors in that it will allow them to offer a course
in Applied Mathematics that does not require a differential equations prereq-
uisite. It will benefit students by bringing this difficult subject material to an
easy to comprehend level. The book will benefit the mathematics department
by making a course which is attractive to both majors and non-majors alike.
The fields of engineering, physics, and even computer science utilize the study
of asymptotic analysis and perturbation theory.

Although the emphasis of this book is problem-solving, there are some
proofs scattered throughout the book. The purpose of these proofs is to give
the students a justification for the methods that they will be using. Just
as there are some proofs in a freshman level calculus book which are not as
rigorous as the corresponding proofs in an advanced calculus text, these proofs
are more informal, and often will refer the students to other sources for the
details. These proofs enrich the students understanding of the material.

Another focus of this textbook is flexibility. Knowing that the readership
will be extremely diverse, the aim was to include material that would be
beneficial to both beginning students and researchers. Also, the book was
designed to be completely self-contained, requiring only a calculus sequence

xv



xvi Preface

background. There is a section giving the necessary background material for
complex variables, since this knowledge tends to be lacking in the undergradu-
ate curriculum. References to differential equations is deferred until chapter 4,
where the small amount of background is covered, with minimal duplication
of a standard differential equations course. Since the goal is to only approx-
imate the solutions to such equations, it is not necessary for the students to
know how to solve differential equations exactly, except for first order linear or
separable equations. Hence, an undergraduate course can easily be designed
using this text.

There is also more than enough material needed for a semester course.
Professors may choose to skip chapter 3, (or even chapter 4, if differential
equations is a prerequisite,) in order to reach the latter chapters. On the
other hand, the first 6 chapters will make a good undergraduate course on
asymptotics. There are a myriad of possibilities between these two extremes.

Finally, there are plenty of homework problems of various levels of diffi-
culty. Most sections have between 20 to 30 problems, giving professors enough
choices for assignments. Also, the answers to the odd numbered problems ap-
pear in the back of the book.
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Chapter 1

Introduction to Asymptotics

Asymptotics has been called the “calculus of approximations.” It provides
a powerful tool for approximating the solutions to wide classes of problems,
including limits, integrals, differential equations, and difference equations.
Although the basic definitions are easy to understand, it requires skill to use
asymptotics effectively and accurately. The goal of this chapter is to teach the
necessary skills for a basic understanding of asymptotics. In later chapters we
will apply the techniques to more difficult problems that cannot be solved any
other way. In the process, we will learn the properties of some very important
functions in applied mathematics.

1.1 Basic Definitions

Since the foundation of standard calculus is the concept of a limit, it is
not surprising that the “calculus of approximations” will also hinge on limits.
Usually we will consider a finite limit lim

x→a
f(x), but we can also have infinite

limits, so a can be ∞ or −∞.

1.1.1 Definition of ∼ and �

We begin with the two fundamental definitions of asymptotics.

DEFINITION 1.1 Given two functions, f(x) and g(x), we say that f(x)
is similar to g(x) as x approaches a, written

f(x) ∼ g(x) as x→ a,

if

lim
x→a

f(x)

g(x)
= 1.

For example, sinx ∼ x as x → 0, since lim
x→0

sin x
x = 1. Also, x + 1 ∼ x as

x→∞, since lim
x→∞

x+1
x = lim

x→∞
1 + 1

x = 1.

1
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PROPOSITION 1.1
The relation ∼ as x→ a is an equivalence relation on the set of all functions
that are non-zero near a. That is, ∼ obeys the reflexive property:

f(x) ∼ f(x) as x→ a, (1.1)

the symmetric property :

if f(x) ∼ g(x) as x→ a, then g(x) ∼ f(x) as x→ a, (1.2)

and the transitive property :

if f(x) ∼ g(x) and g(x) ∼ h(x) as x→ a, then f(x) ∼ h(x) as x→ a. (1.3)

PROOF: Since f(x) is non-zero near a, we have

lim
x→a

f(x)

f(x)
= 1,

so f(x) ∼ f(x) as x→ a. To prove the symmetric property, note that

lim
x→a

g(x)

f(x)
=

1

lim
x→a

(f(x)/g(x))
= 1.

Finally, the transitive property follows from the fact that

lim
x→a

f(x)

h(x)
= lim
x→a

f(x)

g(x)
· g(x)

h(x)
= lim
x→a

f(x)

g(x)
· lim
x→a

g(x)

h(x)
= 1.

Note that the reflective property only applies to functions that are non-zero
near a. Unfortunately, we cannot say that 0 ∼ 0. We will stress this point by
highlighting the following statement.

There is no function f(x) such that f(x) ∼ 0 as x→ a. (1.4)

Otherwise, we would have

lim
x→a

0

f(x)
= 1,

which is impossible. This marks a stark difference between asymptotics and
standard limit notations. We can say that

sin(x) ∼ 1 as x→ π/2,

but we cannot say that

sin(x) ∼ 0 as x→ π.
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FIGURE 1.1: The two graphs reveal that sin(x) ∼ π − x as x → π. Note
that the ratio of the two functions approaches 1 as x approaches π.

In fact, there is a linear function that is similar to sin(x) as x → π, namely,
the tangent to the curve at that point

sin(x) ∼ π − x as x→ π.

Figure 1.1 gives a visualization of this asymptotic relationship.

The second main notation is also defined in terms of limits:

DEFINITION 1.2 We say that f(x) is much less than g(x) as x ap-
proaches a, written

f(x)� g(x) as x→ a,

if

lim
x→a

f(x)

g(x)
= 0.

We can think of this as “f(x) is a drop in the bucket compared to g(x),
when x is close enough to a.” Likewise, if a is ∞, we can say that “f(x)
is a drop in the bucket compared to g(x), for sufficiently large x.” We can
similarly define f(x)� g(x) as x→ a.

For example, x2 � x as x → 0, since lim
x→0

x2/x = 0. However, x2 � x as

x→∞, since lim
x→∞

x/x2 = 0.

The � notation also has a special property:

PROPOSITION 1.2
If f(x)� g(x) and g(x)� h(x) as x→ a, then f(x)� h(x) as x→ a. This
property is called the partial ordering property of � as x→ a.
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PROOF: If f(x)� g(x) and g(x)� h(x) as x→ a, then

lim
x→a

f(x)

h(x)
= lim
x→a

f(x)

g(x)
· g(x)

h(x)
= lim
x→∞

f(x)

g(x)
· lim
x→a

g(x)

h(x)
= 0 · 0 = 0.

The two fundamental notations of asymptotics are in fact related.

PROPOSITION 1.3
If f(x) ∼ g(x) as x→ a, then the relative error between the functions is going
to zero, that is,

f(x)− g(x)� g(x) as x→ a.

Likewise, if h(x)� f(x) as x→ a, then adding (or subtracting) h(x) to f(x)
will produce a function similar to f(x). That is,

f(x)± h(x) ∼ f(x) as x→ a.

PROOF: If f(x) ∼ g(x) as x→ a, then

lim
x→a

f(x)− g(x)

g(x)
= lim
x→a

f(x)

g(x)
− g(x)

g(x)
= 1− 1 = 0.

So f(x)−g(x)� g(x) as x→ a. On the other hand, if h(x)� f(x) as x→ a,
then

lim
x→a

f(x)± h(x)

f(x)
= lim
x→a

f(x)

f(x)
± h(x)

f(x)
= 1± 0 = 1.

So f(x)± h(x) ∼ f(x) as x→ a.

Comparing algebraic functions such as polynomials is particularly easy. If
a > b then as x → ∞, xa � xb. However, if we consider the limit as x → 0,
this reverses the direction: xa � xb. Thus x3 +3x2−2x ∼ x3 as x→∞ since
3x2− 2x� x3. In fact, any polynomial is similar to its highest order term as
x→∞. However, as x→ 0, x3 + 3x2 − 2x ∼ −2x, the lowest order term.

1.1.2 Hierarchy of Functions

It will be important to understand how fast different functions grow, par-
ticularly as x→∞. Given two functions, we could ask whether one function
grows more rapidly than another. This gives us a type of hierarchy to the
different functions. We have already seen that given two polynomials of dif-
ferent degrees, the one with the larger degree will be much greater than the
other as x → ∞. However, functions which increase exponentially will grow
faster than any polynomial.
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FIGURE 1.2: The graphs of y = e−x and y = x−3. Although both con-
verge to 0 as x → ∞, the e−x approaches zero faster as x increases, showing
that e−x � x−3 as x→∞.

PROPOSITION 1.4

If a > 0 and b is a real constant, then eax � xb as x →∞. Also, e−ax � xb

as x→∞.

PROOF: Pick a positive integer n bigger than b. We can apply L’Hôpital’s
rule n times to the limit

lim
x→∞

xn

eax
= lim
x→∞

nxn−1

aeax
= lim
x→∞

n(n− 1)xn−2

a2eax
= · · · = lim

x→∞

n!

aneax
= 0.

Thus, eax � xn as x → ∞, and since xn � xb, eax � xb as x → ∞. Also
note that

lim
x→∞

e−ax

xb
= lim
x→∞

x−b

eax
= 0,

so e−ax � xb as x→∞.

Figure 1.2 is a graphical illustration that e−x � x−3 as x→∞. Note that
this does not mean that e−x < x−3 for all x. In fact, the curves cross each
other in two places. Only what happens for large values of x counts towards
deciding which function is much smaller as x→∞.
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Finally, we can compare two exponential functions by determining which
has the larger exponent.

If a > b, then eax � ebx as x→∞. (1.5)

The proof is left as an exercise. See problem 31.
To compare two exponential functions with different bases, we can convert

all of the bases to e. Thus, to compare e2x and 8x we observe that 8x =
(eln 8)x = e(ln 8)x. Since ln 8 ≈ 2.079, we have e2x � 8x as x→∞.

We can determine how the logarithm function fits into the ranking by using
L’Hôpital’s Rule. It is easy to see that ln(x) � 1 as x → ∞, and we can

observe that, for any a > 0, lim
x→∞

ln(x)
xa = 0. (See problem 32.) Therefore,

If a > 0, then 1� lnx� xa as x→∞. (1.6)

Thus, as x → ∞, x1/1000 � ln(x) � 1 = x0. The logarithm function
squeezes in between the tight gap between x0 and xε as x → ∞, where ε
is an extremely small positive number. This fact is helpful for computing
limits involving logarithms. For example, limx→∞

ln x√
x

= 0, since lnx �
√
x

as x→∞.
When x → 0, ln(x) approaches −∞, and we can use the property that

ln(x) = − ln(1/x) to derive the following result.

If a > 0, then 1� lnx� x−a as x→ 0. (1.7)

See problem 33. For example, limx→0
3
√
x ln(x) = 0, since lnx � x−1/3 as

x→ 0.

1.1.3 Big O and Little o Notation

Two more useful notations that are sometimes used are referred to as the
“big O” and “little o” notation.

DEFINITION 1.3 We say that a function f(x) is of order g(x) as x
approaches a, denoted by f(x) = O(g(x)) as x → a, if the ratio f(x)/g(x) is
bounded for x near a. If a is finite, we can say this by saying that there are
M and ε such that

|f(x)| ≤M |g(x)| whenever 0 < |x− a| < ε. (1.8)

Likewise, we say that f(x) = O(g(x)) as x → ∞ if there are M and N such
that

|f(x)| ≤M |g(x)| whenever x > N. (1.9)
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It is clear that if f(x) ∼ g(x) or f(x)� g(x) as x→ a, then f(x) = O(g(x))
as x → a. In fact, if f(x) ∼ kg(x) for some constant k, then f(x) = O(g(x))
as x → a. However, the big O notation is useful when there is no clear
asymptotic behavior of f(x).

For example, sinx = O(1) as x→∞, since we can pick M = 1 and N = 0.
Then of course, | sinx| ≤ 1 for all x > 0. Note in this example that there
is no function f(x) for which f(x) ∼ sin(x) as x → ∞, because sinx is not
non-zero near ∞. The ratio f(x)/ sin(x) would be undefined whenever x is
a multiple of π, so technically, the limit as x → ∞ does not exist. We will
later see in subsection 2.4.4 how we can asymptotically analyze periodic and
near-periodic functions.

The big O notation is often used with series to show the order of the first
term left out. For example, the familiar Maclaurin series for cos(x) can be
written

cosx = 1− x2

2
+
x4

24
+O(x6) as x→ 0.

The O(x6) in this equation replaces some function that is of order x6 as x→ 0.
In other words, the function

cosx− 1 +
x2

2
− x4

24

must be of order x6. In fact,

cosx− 1 +
x2

2
− x4

24
∼ x6

720
as x→ 0,

as indicated by the next term in the Maclaurin series.
The little o notation is similar, except that the function must be strictly

smaller than the function inside the o.

DEFINITION 1.4 We say that a function f(x) is less than order g(x) as
x approaches a, denoted by f(x) = o(g(x)) as x → a, if the ratio f(x)/g(x)
approaches 0 as x approaches a.

To say that f(x) = o(g(x)) as x → a is equivalent to saying that f(x) �
g(x), but the little o notation can also be used for series to indicate the
accuracy of the series. For example, one can write

cosx = 1− x2

2
+
x4

24
+ o(x5) as x→ 0,

which emphasizes that there is no x5 term.

Problems for §1.1

For problems 1 through 12: State whether the following statements are true
or false.
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1 x2 − 2 ∼ 2 as x→ 2
2 x2 − 4 ∼ 0 as x→ 2
3 x2 ∼ x as x→ 0
4 x2 + x ∼ x as x→ 0
5 x2 + x ∼ x2 as x→∞
6 x2 + x ∼ 2x as x→ 1

7 x2 � x as x→ 0
8 x

1000 � x as x→∞
9 x� −2 as x→ 0
10
√
x+ 1 ∼

√
x as x→∞

11 ex+1 ∼ ex as x→∞
12 sin(x+ 1) ∼ sin(x) as x→∞

For problems 13 through 20: Find the polynomial of lowest degree that is
similar to the following functions as x→ a.

13 x2 a = 2
14 sinx a = π/2
15 cosx a = π/2
16 sinx a = 0

17 2x3 − 3x2 + 1 a = 1
18 sinx− 1 a = π/2
19 1 + cosx a = π
20 0 a = 0

For problems 21 through 26: Find the polynomial p(x) of lowest degree so
that the equation is a true statement.

21 ex = p(x) +O(x3) as x→ 0
22 ex = p(x) + o(x3) as x→ 0
23 sin(x) = p(x) + o(x5) as x→ 0
24 sin(x) = p(x) +O(x5) as x→ 0
25 cos(x) = p(x) + o(x5) as x→ 0
26
√
x = p(x) +O((x− 1)3) as x→ 1

27 Is there a function f(x) for which no other function can be much greater
than f(x) as x→∞? Why or why not?

28 Is there a function f(x) for which no other function can be much smaller
than f(x) as x→∞? Why or why not?

29 Is it possible for a function to be O(0) as x→∞? Why or why not?

30 Is it possible for a function to be o(0) as x→∞? Why or why not?

31 Prove equation 1.5. That is, show that if a > b, then eax � ebx as
x→∞.

32 Prove equation 1.6. That is, use L’Hôpital’s rule to show that lnx� xa

as x→∞, where a is a positive constant.

33 Prove equation 1.7. That is, use L’Hôpital’s rule to show that lnx� x−a

as x→ 0, where a is a positive constant.

1.2 Limits via Asymptotics

One of the basic applications of asymptotics is as an alternative to L’Hôp-
ital’s rule for finding limits. The basic principal is to replace parts of a limit,
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such as the numerator or denominator, with another function that is similar as
x→ a. This usually will not affect the limit, and we will cover the exceptions
as we encounter them.

If f(x) ∼ g(x) and h(x) ∼ k(x) as x→ a, then lim
x→a

f(x)
h(x)

= lim
x→a

g(x)
k(x)

(1.10)
provided either of these limits exist. The reasoning is simple:

lim
x→a

f(x)

h(x)
= lim
x→∞

f(x)

g(x)
· g(x)

k(x)
·k(x)

h(x)
= lim
x→∞

f(x)

g(x)
·k(x)

h(x)
· lim
x→∞

g(x)

k(x)
= lim
x→∞

g(x)

k(x)
.

Example 1.1
Find

lim
x→∞

x3 + 3x2 − 2x+ 1

3x3 + 2x2 − 5x
.

SOLUTION: Since x3 + 3x2− 2x+ 1 ∼ x3 and 3x3 + 2x2− 5x ∼ 3x3 we have

lim
x→∞

x3 + 3x2 − 2x+ 1

3x3 + 2x2 − 5x
= lim
x→∞

x3

3x3
= 1/3.

Note that L’Hôpital’s Rule would have to be applied 3 times to solve this
problem.

We can also replace a function inside a square root or other radical with a
similar function as x→ a, without affecting the limit.

If f(x) ∼ g(x) as x→ a, and c is real, then [f(x)]c ∼ [g(x)]c as x→ a.

(1.11)
This is easy to verify with limits.

lim
x→∞

[f(x)]c

[g(x)]c
= lim
x→∞

(
f(x)

g(x)

)c
=

(
lim
x→∞

f(x)

g(x)

)c
= 1c = 1.

Example 1.2
Find

lim
x→∞

√
4x2 + 3x− 2

3x+ 1
.

SOLUTION: The plan is to replace the complicated function 4x2 + 3x − 2
inside the square root with the simpler function 4x2. Since 4x2 +3x−2 ∼ 4x2

as x→∞, this substitution will not affect the limit. So

lim
x→∞

√
4x2 + 3x− 2

3x+ 1
= lim
x→∞

√
4x2

3x
= lim
x→∞

2x

3x
= 2/3.
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We can also substitute one factor of the numerator or denominator with a
similar function, without affecting the limit. See problem 25.

Example 1.3
Find

lim
x→∞

(2x+ 3)
√

3ex + cosx

(ex/2 + x100)
√
x2 + 4

.

SOLUTION: Note that | cosx| < 1 for all x, so cosx � ex as x → ∞. Also,
x100 � ex/2 as x→∞, so we have

lim
x→∞

(2x+ 3)
√

3ex + cosx

(ex/2 + x100)
√
x2 + 4

= lim
x→∞

2x
√

3ex

ex/2
√
x2

= 2
√

3.

Can we substitute a similar function inside of a logarithm? That is,

if g(x)� f(x) as x→ a, is ln(f(x) + g(x)) ∼ ln(f(x))?

The answer is usually yes, but not always. As long as f(x) approaches 0 or
∞ as x→ a, then the substitution will produce a similar function. However,
if f(x) approaches 1, there is a complication. To see this, consider the limit

lim
x→0

ln(1 + x)

x
.

It is certainly true that x� 1 as x→ 0, but we cannot say that ln(1 + x) ∼
ln(1), because ln(1) = 0, and we already established that no function is similar
to 0.

So what do we do in this situation? By looking at the Maclaurin series for
ln(1 + x),

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+
x5

5
+O(x6), (1.12)

we see that ln(1 + x) ∼ x as x → 0. From this result, we can establish the
following:

If g(x)� 1 as x→ a, then ln(1 + g(x)) ∼ g(x) as x→ a. (1.13)

Note that this is the exceptional case, not the rule, for dealing with loga-
rithms. If g(x) � f(x) as x → a, and f(x) is approaching 0 or ∞, or even
some constant other than 1, then ln(f(x) + g(x)) ∼ ln(f(x)) as x → a. See
problem 27.
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Example 1.4
Find the limit

lim
x→∞

x ln

(
x+ 3

x+ 1

)
.

SOLUTION: Since x + 3 ∼ x and x + 1 ∼ x as x → ∞, we see that the
expression within the logarithm function is approaching 1. So we must first
decompose the improper rational function, and rewrite the limit as

lim
x→∞

x ln

(
1 +

2

x+ 1

)
.

Now, 2/(x+ 1) is approaching 0 as x→∞, so we can use equation 1.13:

x ln

(
1 +

2

x+ 1

)
∼ x 2

x+ 1
∼ 2x

x
= 2.

Example 1.5
Find the limit

lim
x→∞

ln(3x5 + 2x2 + 10)

ln(5x7 + 3x4 + 10)
.

SOLUTION: Since the argument of the logarithms are going to ∞, we can
substitute 3x5 + 2x2 + 10 ∼ 3x5 and 5x7 + 3x4 + 10 ∼ 5x7 as x→∞ without
affecting the limit. Thus, as x→∞,

ln(3x5 + 2x2 + 10)

ln(5x7 + 3x4 + 10)
∼ ln(3x5)

ln(5x7)
=

ln 3 + 5 lnx

ln 5 + 7 lnx
.

Since lnx� 1 as x→∞, this simplifies further:

ln 3 + 5 lnx

ln 5 + 7 lnx
∼ 5 lnx

7 lnx
=

5

7
.

Is it possible to substitute a similar function in an exponent without affect-
ing the limit? Note that even though x+ 1 ∼ x,

lim
x→∞

ex+1

ex
= lim
x→∞

ex · e
ex

= e 6= 1.

Hence, the answer is a resounding no.

Just because f(x) ∼ g(x) as x→ a does not mean that ef(x) ∼ eg(x).

(1.14)
Even though we cannot make simplifications withing the exponent, we can
instead use the properties of exponentials to simplify a limit involving com-
plicated powers.
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Example 1.6

Find the limit

lim
x→∞

(4x)x−2x3

xx+122x+3
.

SOLUTION: Expanding the exponentials, we obtain

(4x)x−2x3

xx+122x+3
=

(4x)x(4x)−2x3

xxx122x23
=

4xxx4−2x−2x3

xxx(22)x8
=

4−2

8
=

1

128
.

There is also an issue as to whether we can substitute the base of a compli-
cated exponential function with a similar function without affecting the limit.
For example, in the limit

lim
x→0

(1 + x)1/x, (1.15)

can we replace the 1 + x with 1, since these are similar as x → 0? Calculus
students should recognize this as the indeterminate 1∞ form, so the answer
is no.

f(x) ∼ g(x) does not imply that f(x)h(x) ∼ g(x)h(x) if h(x)→∞. (1.16)

The situation where the exponent is going to∞ is best handled by taking the
logarithm of both sides of an equation, so that the properties of logarithms
can be used. In the limit of equation 1.15, we set y = lim

x→0
(1 + x)1/x, so that

ln y = lim
x→0

ln(1 + x)/x. Using equation 1.13 quickly produces ln y = 1, so

y = e is the original limit.

Example 1.7

Find the limit

lim
x→∞

(x+ 3)x+1xx−1

(x+ 1)2x
.

SOLUTION: We can first simplify this expression:

(x+ 3)x+1xx−1

(x+ 1)2x
=

(x+ 3)x(x+ 3)xxx−1

((x+ 1)2)x
=
x+ 3

x

(
x2 + 3x

x2 + 2x+ 1

)x
.

The limit of the first factor is clearly one, so we will set y equal to the second
factor. Then

ln y ∼ x ln

(
x2 + 3x

x2 + 2x+ 1

)
= x ln

(
1 +

x− 1

x2 + 2x+ 1

)
∼ x x− 1

x2 + 2x+ 1
∼ 1.

Since ln y = 1, the original limit is e1 = e.
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Problems for §1.2

For problems 1 through 12: Find the following limits, using asymptotics.
Note that most of these cannot be done with L’Hôpital’s rule alone.

1 lim
x→∞

3x3−5x2+4x−6
2x3+7x2−4x+5

2 lim
x→∞

4x5+3x2+5
5x5−8x4+3x

3 lim
x→∞

ex+x100

ex+cos x

4 lim
x→∞

2x−1+3x−1+x3

x5−3x+1

5 lim
x→∞

√
3x2−3x+4

2x−1

6 lim
x→∞

3x2−4√
x4+3x−1

7 lim
x→∞

√
e2x+x4

ex+2x

8 lim
x→∞

2x−x5
√

4x+ex+x2

9 lim
x→∞

(ex+cos x)
√

4x2−5x+3

(3x+2)
√
e2x+7x

10 lim
x→∞

(x2+sin x)
√
e4x+54x

(e2x+x10)
√

5x4+3x−3

11 lim
x→∞

(3x+3)20(x−2)10

(2x+5)30

12 lim
x→∞

(5x2+4x−3)6(4x2+3x−2)8

(3x+5)18(x−5)10

For problems 13 through 24: Find the following limits involving logarithms.
Some of these require using equation 1.13.

13 lim
x→∞

ln(x3−3x2+4)
ln(x2−4x+6)

14 lim
x→∞

ln(5x2−4x+3)
ln(3x5+2x3+4x−1)

15 lim
x→∞

ln(e2x+2x+x9)
ln(e3x+(ln x)3+x)

16 lim
x→∞

ln(4x2e3x+x3e2x)
ln(5x5e2x+3xe4x)

17 lim
x→∞

ln(8x3e3x+4x720x)
ln(7x5e2x+2x8x)

18 lim
x→∞

ex ln(1 + e−x)

19 lim
x→0

ln(1+x)
ln(1+2x)

20 lim
x→2

ln(x2+2x−7)
ln(x2−x−1)

21 lim
x→∞

(x+1)2x

(x2+3x)x

22 lim
x→∞

(x2−5x)x

(x+3)2x

23 lim
x→∞

(x2+3x+2)x

(x2+5x−6)x

24 lim
x→∞

(x3+4x2+x ln x)2x

(x2+3x+5)3x

25 Show that if f(x) ∼ g(x) as x→ a, and h(x) is a non-zero function, then
f(x)h(x) ∼ g(x)h(x) as x→ a.

26 If f(x) ∼ g(x) as x→ a, can we always say that f(x)+h(x) ∼ g(x)+h(x)
as x→ a? Why or why not?

27 Show that if f(x) ∼ g(x) with f(x) either approaches 0 or ∞ as x → a,
then ln(f(x)) ∼ ln(g(x)) as x→ a. You can assume that both f(x) and g(x)
have a derivative.

Hint: In these two cases, ln(f(x))
ln(g(x)) is of the form ∞

∞ , so we can use L’Hôpital’s

rule.

1.3 Asymptotic Series

Knowing the asymptotic behavior of a function gives us an idea of what is
happening with the function as x→ a. However, we can get a much sharper
picture of the behavior with an asymptotic series.
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DEFINITION 1.5 We say that

f(x) ∼ g1(x) + g2(x) + g3(x) + · · · as x→ a, (1.17)

or

f(x) ∼
∞∑
n=1

gn(x) as x→ a, (1.18)

provided each term of the series is asymptotic as x→ a to the function created
by subtracting the previous terms of the series from f(x). That is,

lim
x→a

f(x)

g1(x)
= 1, lim

x→a

f(x)− g1(x)

g2(x)
= 1, lim

x→a

f(x)− g1(x)− g2(x)

g3(x)
= 1,

lim
x→a

f(x)− g1(x)− g2(x)− g3(x)

g4(x)
= 1, etc. (1.19)

So an asymptotic series gives us an infinite number of asymptotic relations,
each giving a sharper picture to the behavior of the function f(x) as x→ a.

Example 1.8
Find an asymptotic series for cos(x) as x→ 0.
SOLUTION: Since cos(0) = 1, the first order approximation is cos(x) ∼ 1 as
x→ 0. If we peel away this approximation, what is the behavior of cos(x)−1
near 0? From the Taylor series,

cos(x) = 1− x2

2
+
x4

24
− x6

720
+ · · · ,

we see that cos(x)− 1 ∼ −x2/2, so this is the second term in the asymptotic
series. In a sense, the asymptotic series keeps peeling away approximations
from the function like an onion, except that onions don’t have an infinite
number of layers. It is clear that each time we subtract a term of the Taylor
series, the next term of the series will describe the behavior. Thus,

cos(x) ∼
∞∑
n=0

(−1)nx2n

(2n)!
as x→ 0. (1.20)

In this case, the Taylor series is the same as the asymptotic series. In fact,
if a non-truncating Taylor series centered at a converges to a function f(x),
then the asymptotic series of f(x) as x → a will be the same as the Taylor
series. But there are some important differences between Taylor series and
asymptotic series.

First of all, each term in a Taylor series must be a polynomial, in particular,
one of the form cn(x−a)n. Asymptotic series, on the other hand, have no such
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0.5
y = e−1/x2

◦
x

y

FIGURE 1.3: The graph of e−1/x2

. This function approaches 0 as x →
0 faster than any power of x, so this function will be subdominant to any
Maclaurin series.

restriction. Often the terms involve fractional powers, exponential functions,
or even logarithms. The only restriction is that gn+1(x) � gn(x) as x → a
for all terms in the series.

But more importantly, an asymptotic series is a relative property of a func-
tion, whereas a convergent Taylor series is an absolute property. In order to
prove that a given series is the asymptotic series of f(x), one must consider
both f(x) and the terms of the series. On the other hand, one can determine
whether or not a Taylor series

∞∑
n=0

cn(x− a)n

converges or not without knowing the function that it converges to. Hence,
the convergence is an absolute property intrinsic to the coefficients cn.

Let us clarify this distinction. Suppose we are given a series of functions
with gn+1(x) � gn(x), and ask what function is asymptotic to that series.
The answer is that there are infinitely many functions that have that series as
its asymptotic series! For example, cos(x) + e−1/x2

has the same asymptotic
series as cos(x).

cos(x) + e−1/x2

∼
∞∑
n=0

(−1)nx2n

(2n)!
as x→ 0.

What is happening here? Note that because ex grows faster than any poly-
nomial as x → ∞, e−1/x2 � xn as x → 0 for all n. Figure 1.3 shows the
graph of this function. Hence e−1/x2

will be smaller as x→ 0 than all of the
terms of the cosine series, so no matter how many terms of the cosine series
are subtracted from cos(x), the next largest factor will be the next term in
the cosine series.
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Any function which is smaller than all of the terms of an asymptotic series
is said to be subdominant to the series. Because of subdominance, we cannot
have a unique function associated with an asymptotic series.

Not every function has an asymptotic series as x→ a. Consider, for exam-
ple, the hyperbolic function cosh(x) as x→∞. Since

cosh(x) =
ex + e−x

2
,

the first order approximation as x → ∞ is ex/2. If we subtract off this first
term, we get e−x/2, the second order term. But when this term is subtracted,
we get 0, and by equation 1.4 this cannot be asymptotic to any function.
Hence, cosh(x) does not have an asymptotic series as x → ∞. So unlike
Taylor series, an asymptotic series must contain an infinite number of non-
zero terms.

Another important difference between Taylor series and asymptotic series
is that Taylor series must converge if they are to be useful. For example,
consider the power series

∞∑
n=0

(−1)nn!xn = 1− x+ 2x2 − 6x3 + 24x4 − 120x5 + · · · .

We can use the ratio test to see if this converges, that is, if lim
n→∞

|an+1/an| < 1.

But ∣∣∣∣an+1

an

∣∣∣∣ =
(n+ 1)!xn+1

n!xn
= (n+ 1)x.

Unless x = 0, this will go to ∞ as n → ∞, so the series converges only for
x = 0. As a Taylor series, this is not very useful.

However, there is a function for which this is the asymptotic series! In
chapter 2, we will determine that the function

S(x) =

∫ ∞
0

e−t

1 + xt
dt, (1.21)

which is called the Stieltjes integral function has the asymptotic series∫ ∞
0

e−t

1 + xt
dt ∼

∞∑
n=0

(−1)nn!xn as x→ 0+.

See example 2.7. The reason for the one sided limit is that S(x) is undefined
for negative x. (The integrand is undefined at the point t = −1/x.) In spite
of the fact that the series diverges, the asymptotic series precisely describes
the behavior of S(x) near x = 0, namely, the ratios

S(x)

1
,

S(x)− 1

−x
,

S(x)− 1 + x

2x2
,

S(x)− 1 + x− 2x2

−6x3
, etc.,
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y = S(x)
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y = 1− x

y = 1− x+ 2x2

y = 1− x+ 2x2 − 6x3

y = 1− x+ 2x2 − 6x3 + 24x4

x

y

FIGURE 1.4: The graph shows the successive asymptotic approximations
to the Stieltjes integral function S(x). Note that the more terms of the series
included, the better the approximation near x = 0, yet the approximation
pulls away from S(x) sooner.

all approach 1 as x→ 0+. See figure 1.4 for a graphical illustration.

These limits illustrate the key difference between Taylor series and asymp-
totic series. For a Taylor series, if we pick a value x close to a, then the more
terms we add gets us closer and closer to the function. For an asymptotic se-
ries, we first pick a number of terms, and we have an accurate approximation
to the function, getting more accurate as x approaches a. Hence, asymptotic
series can be used to compute complicated limits, regardless of whether the
series converges or diverges.

For limits in which there is cancellation in the first order approximation,
we can replace a function with not just a similar function, but with the first
several terms of its asymptotic series.

Example 1.9

Find the limit

lim
x→0+

S(x)

x2 − x3
− 1

x2

where S(x) is the Stieltjes integral function.

SOLUTION: If we consider just the first order approximation, we find that
S(x)/(x2 − x3) ∼ 1/x2, causing cancellation to occur. The solution is to
keep more terms of the asymptotic series. Although it is possible to find the
asymptotic series for S(x)/(x2 − x3) via long division, it is easier to rewrite
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the original limit in terms of a single fraction.

S(x)

x2 − x3
− 1

x2
=
x2S(x)− x2 + x3

x4 − x5
.

There is still cancellation in the numerator as x → 0, but if we keep three
terms of the asymptotic series for S(x),

x2
(
1− x+ 2x2 +O(x3)

)
− x2 + x3 = 2x4 +O(x5).

Thus,
S(x)

x2 − x3
− 1

x2
=

2x4 +O(x5)

x4 +O(x5)
= 2 +O(x).

Thus, the limit as x→ 0+ is 2.

Unfortunately, it is impossible to know ahead of time how many terms of
the asymptotic series must be used to compute the limit. The only advise is
to try a reasonable number of terms, and if all of these cancel out, try again
with more terms.

Example 1.10
Find the limit

lim
x→0

sin(x) sin−1(x)− sinhx sinh−1(x)

x2(cos(x)− cosh(x) + sec(x)− sech(x))
.

SOLUTION: We will need to use equation 1.20, along with the following:

sin(x) ∼
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
∼ x− x3

6
+

x5

120
− x7

5040
+ · · · as x→ 0. (1.22)

sinh(x) ∼
∞∑
n=0

x2n+1

(2n+ 1)!
∼ x+

x3

6
+

x5

120
+

x7

5040
+ · · · as x→ 0. (1.23)

sin−1(x) ∼
∞∑
n=0

(2n)!x2n+1

22n(n!)2(2n+ 1)
∼ x+

x3

6
+

3x5

40
+

5x7

112
+· · · as x→ 0. (1.24)

sinh−1(x) ∼
∞∑
n=0

(−1)n(2n)!x2n+1

22n(n!)2(2n+ 1)
∼ x− x3

6
+

3x5

40
− 5x7

112
+ · · · as x→ 0.

(1.25)

cosh(x) ∼
∞∑
n=0

x2n

(2n)!
∼ 1 +

x2

2
+
x4

24
+

x6

720
+ · · · as x→ 0. (1.26)

sec(x) ∼ 1 +
x2

2
+

5x4

24
+

61x6

720
+

1385x8

8!
+

50521x10

10!
+ · · · as x→ 0. (1.27)
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sech(x) ∼ 1− x
2

2
+

5x4

24
− 61x6

720
+

1385x8

8!
− 50521x10

10!
+ · · · as x→ 0. (1.28)

Since the denominator does not involve any products, let us begin there,
keeping three terms in each of the series.

x2

[(
1− x2

2
+
x4

24
+O(x6)

)
−
(

1 +
x2

2
+
x4

24
+O(x6)

)
+

(
1 +

x2

2
+

5x4

24
+O(x6)

)
−
(

1− x2

2
+

5x4

24
+O(x6)

)]
= O(x8).

We discover that all terms canceled, so we will need to keep more terms.

x2

[(
1− x2

2
+
x4

24
− x6

720
+O(x8)

)
−
(

1 +
x2

2
+
x4

24
+

x6

720
+O(x8)

)
+

(
1 +

x2

2
+

5x4

24
+

61x6

720
+O(x8)

)
−
(

1− x2

2
+

5x4

24
− 61x6

720
+O(x8)

)]
=
x8

6
+O(x10).

Now we can proceed with the numerator, using the distributive law to
perform the product of two series. By doing the denominator first, we learn
that we must keep terms of order x8. The numerator of the limit can now be
computed to be(

x− x3

6
+

x5

120
− x7

5040
+O(x9)

)(
x+

x3

6
+

3x5

40
+

5x7

112
+O(x9)

)
−
(
x+

x3

6
+

x5

120
+

x7

5040
+O(x9)

)(
x− x3

6
+

3x5

40
− 5x7

112
+ +O(x9)

)
=

(
x2 +

x6

18
+
x8

30
+O(x10)

)
−
(
x2 +

x6

18
− x8

30
+O(x10)

)
=
x8

15
+O(x10).

Putting the pieces together, we get

sin(x) sin−1(x)− sinhx sinh−1(x)

x2(cos(x)− cosh(x) + sec(x)− sech(x))
∼ x8/15 +O(x10)

x8/6 +O(x10)
=

2

5
+O(x2).

This example reviewed many of the classical Maclaurin series, but there are
a few more that may be used in future exercises, so let us cover these here.
All of these series are for x→ 0.
Exponential series, converges for all x:

ex ∼
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ · · · (1.29)
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Logarithmic series, converges for |x| < 1:

ln(1 + x) ∼
∞∑
n=1

(−1)n+1xn

n
= x− x2

2
+
x3

3
− x4

4
+ · · · (1.30)

Binomial series, converges for |x| < 1:

(1 + x)k ∼ 1 + kx+
k(k − 1)

2!
x2 +

k(k − 1)(k − 2)

3!
x3 + · · · (1.31)

+
k(k − 1) · · · (k − n+ 1)

n!
xn + · · ·

1√
1− 4x

∼
∞∑
n=0

(2n)!xn

(n!)2
= 1 + 2x+ 6x2 + 20x3 + 70x4 + · · · (1.32)

Inverse tangent series:

tan−1 x ∼
∞∑
n=0

(−1)nx2n+1

2n+ 1
= x− x3

3
+
x5

5
− x7

7
+ · · · (1.33)

Inverse hyperbolic tangent series:

tanh−1 x ∼
∞∑
n=0

x2n+1

2n+ 1
= x+

x3

3
+
x5

5
+
x7

7
+ · · · (1.34)

Tangent series:

tan(x) ∼ x+
x3

3
+

2x5

15
+

17x7

315
+

62x9

2835
+

1382x11

155925
+ · · · (1.35)

Hyperbolic tangent series:

tanh(x) ∼ x− x3

3
+

2x5

15
− 17x7

315
+

62x9

2835
− 1382x11

155925
+ · · · (1.36)

Some limits require plugging one asymptotic series into another asymptotic
series.

Example 1.11
Find the limit

lim
x→∞

√
x4 + 4x3 + 7x2 − x2 − 2x.

SOLUTION: Again, a first order approximation yields
√
x4 − x2 = 0, which

cannot be the asymptotic approximation of this function. So we must use an
asymptotic series.
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The asymptotic series for the square root function is found by plugging
k = 1/2 into the binomial series.

√
1 + ε ∼ 1 +

1

2
ε− 1

8
ε2 +

1

16
ε3 − 5

128
ε4 + · · · as ε→ 0. (1.37)

To utilize this series, we rewrite
√
x4 + 4x3 + 7x2 as x2

√
1 + 4/x+ 7/x2, and

as x→∞, 4/x+ 7/x2 → 0. So we replace ε with 4/x+ 7/x2 in the series.√
1 +

4

x
+

7

x2
= 1+

1

2

(
4

x
+

7

x2

)
− 1

8

(
4

x
+

7

x2

)2

+
1

16

(
4

x
+

7

x2

)3

+O(1/x4).

In expanding, we only have to keep terms up to order 1/x3. Thus,√
1 +

4

x
+

7

x2
= 1 +

2

x
+

3

2x2
− 3

x3
+O(1/x4).

Thus,

x2

√
1 +

4

x
+

7

x2
− x2 − 2x =

3

2
− 3

x
+O(1/x2).

So the limit is 3/2.

Problems for §1.3

For problems 1 through 14: By replacing functions with a few terms of their
asymptotic series, find the following limits.

1 lim
x→0

ex −
√

2x+ 1

x2

2 lim
x→0

cos(x)−
√

1− x2

x4

3 lim
x→∞

√
x2 + x− x

4 lim
x→∞

√
2x2 + 3x−

√
2x2 + x

5 lim
x→0

ex

x2 + x3
− 1

x2

6 lim
x→0

cosh(x)

2x4 + x6
− 1

2x4

7 lim
x→0

ex ln(x+ 1) + ln(1− x)

cos(x) cosh(x)− 1

8 lim
x→0

tan(x)− sin(x) cosh(x)

x5

9 lim
x→0

sin(x) sin−1(x)− x2

tan(x) tan−1(x)− x2

10 lim
x→∞

√
x4 + 2x3 − x2 − x

11 lim
x→∞

3
√
x3 + 2x2 − x

12 lim
x→0

1

sin2 x
− 1

sinh2 x

13 lim
x→0

1

tanh2 x
− 1

tan2 x

14 lim
x→0

e−x
2

cosh(x)− cos(x)

sin(x) sinh(x)− x2

15 Find the limit

lim
x→0

S(x)ex − 1

x2
,

where S(x) is the Stieltjes integral function, defined by equation 1.21.
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16 Note that in figure 1.4, the curves y = 1 and y = 1 − x + 2x2 cross at
x = 1/2, the curves y = 1−x and y = 1−x+2x2−6x3 cross at x = 1/3, and the
curves y = 1− x+ 2x2 and 1− x+ 2x2 − 6x3 + 24x4 cross at x = 1/4. Show
that the pattern continues. That is, show that the nth degree polynomial
approximation and the (n − 2)nddegree polynomial approximation cross at
x = 1/n.

For problems 17 through 28: Find the first three (non-zero) terms of the
asymptotic series as x→ a for the following functions.

17 ln(x2 + x3) as x→∞
18 ln(ex + 1) as x→∞
19
√
x4 + 2x3 + 4x2 as x→∞

20
√
x4 + 2x3 + 4x2 as x→ 0

21 sin(x) sin−1(x) as x→ 0
22 sin(x+ x3) as x→ 0

23 e(x+x2) as x→ 0
24 ln(sin(x)) as x→ 0
25 3
√
x3 + 4x2 + 3x as x→∞

26 1/ ln(1 + x) as x→ 0
27 csc(x) as x→ 0
28 sinh(x)/ sin(x) as x→ 0

1.4 Inverse Functions

Although we have used asymptotics to calculate limits, we still have not
applied this tool for what it is mainly designed to do: approximate functions
that cannot be calculated any other way. One application of asymptotics
comes from finding inverses of tricky functions. Recall that an inverse of a
function f(x) is the function f−1(x) such that f(f−1(x)) = f−1(f(x)) = x,
at least for part of the domain. For a function like f(x) = x3 +x, it is difficult
to find a formula for f−1(x). Yet we can find the asymptotic series for f−1(x)
as x→∞.

Example 1.12
Find the first three terms for the inverse of the function f(x) = x3 + x as
x→∞.
SOLUTION: Since x3 + x ∼ x3 as x → ∞, it is natural to assume that
the inverse function will be similar to 3

√
x as x → ∞. But what will be

the next term in the series? The plan is to peel off this first term, writing
f−1(x) = 3

√
x+ g(x), and find the asymptotic approximation for g(x). Since

we know that f(f−1(x)) = x, we have

( 3
√
x+ g(x))3 + 3

√
x+ g(x) = x.

We can expand this out asymptotically, utilizing the fact that g(x) � 3
√
x.

As a general rule, we do not need to keep terms that involve the square (or
higher power) of the unknown function.

x+ 3g(x)
3
√
x2 +O

(
g(x)2 3

√
x
)

+ 3
√
x+ g(x) = x.
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The x’s cancel out, and g(x) is small compared to g(x)
3
√
x2 as x → ∞. By

throwing out terms that are known to be smaller than a non-canceling term
as x→∞, we get

3g(x)
3
√
x2 ∼ − 3

√
x,

which tells us that g(x) ∼ −x−1/3/3. So we now have two terms of the
asymptotic series:

f−1(x) ∼ 3
√
x− 1

3 3
√
x

as x→∞.

To find the next term in the series, we repeat the process, assuming that
f−1(x) = 3

√
x− x−1/3/3 + h(x). Since f(f−1(x)) = x,(

3
√
x− 1

3 3
√
x

+ h(x)

)3

+ 3
√
x− 1

3 3
√
x

+ h(x) = x.

Cubing a trinomial is a bit tricky, but any term involving h(x)2 will almost
certainly be small. So we can first rewrite this as(

3
√
x− 1

3 3
√
x

)3

+3

(
3
√
x− 1

3 3
√
x

)2

h(x)+O
(
h(x)2 3

√
x
)
+ 3
√
x− 1

3 3
√
x

+h(x) = x.

It is clear that the largest term involving h(x) is 3
3
√
x2h(x), which does not

cancel with any other terms. But we will have to expand the cube, to give us(
x− 3
√
x+

1

3 3
√
x
− 1

27x

)
+ 3

3
√
x2h(x) + 3

√
x− 1

3 3
√
x
∼ x.

Since the x’s canceled before, we expect them to cancel again. But this time,
the 3
√
x and x−1/3/3 also cancel, giving us

3
3
√
x2h(x) ∼ 1

27x
.

So h(x) ∼ x−5/3/81. Thus, we have

f−1(x) ∼ x1/3 − 1

3 3
√
x

+
1

81
3
√
x5

as x→∞.

Figure 1.5 shows how each successive term gives a better approximation to the
inverse function. Although the approximations are designed to be excellent
for large values of x, even at x = 1 there is only a 0.5% error.

Let us recap the steps that were used in this last example, since the same
steps will be used for a variety of different types of problems.

1) Determine the first term of the asymptotic series. Many times, this
can be done via simple approximations, but for more complicated problems
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√
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√
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√
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81

x

y

FIGURE 1.5: Comparing the inverse function of x+x3 with the first three
asymptotic approximations as x → ∞. Note that the final approximation is
indistinguishable from the inverse function for x > 1.

it may require more sophisticated methods such as a trial and error method
called dominant balance. This first term is called the leading behavior of the
solution.

2) Add an unknown function to the series so far. We can assume that this
function is smaller than the previous term, which will help in later steps.

3) Plug this series into the equation that the function must satisfy.

4) Carefully expand this equation asymptotically, canceling terms whenever
possible. Note that usually terms involving the unknown function squared
need not be considered.

5) After the terms have canceled, we want to throw out any terms that are
asymptotically smaller than a term that did not cancel.

6) The remaining terms should give an equation for the unknown function
that is now easy to solve. This gives us the next term in the series.

7) Repeat steps 2-6 to get more terms in the series.

One can see that each term in the series is progressively harder to obtain.
Nonetheless, it usually only takes a few terms of an asymptotic series to
achieve incredible accuracy in the approximation.

Example 1.13

Analyze the inverse of the function f(x) = xex as x→∞.

SOLUTION: Although there is only one term in f(x), it is clear that the
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dominant factor that controls the behavior is the exponential function, so it
is natural to assume that the inverse function will behave like a logarithm.
So let us try f−1(x) ∼ ln(x). If we successfully find the next order term, this
will verify that our guess is correct.

If we set f−1(x) = ln(x) + g(x), then since f−1(f(x)) = x, we have

ln(xex) + g(xex) = x.

Using the properties of logarithms, we can simplify this to the exact equation
ln(x)+g(xex) = 0. Again, since the dominant factor of xex is the exponential,
we get g(ex) ∼ − ln(x), so g(x) ∼ − ln(ln(x)). Indeed, this is smaller than
ln(x), so we have confirmed that the first term was correct.

Since we have an exact equation for g(x), we can use this as a shortcut for
finding the next term. We can let g(x) = − ln(ln(x)) + h(x), to produce the
equation

ln(x)− ln(ln(xex)) + h(xex) = 0.

Now

ln(ln(xex)) = ln(x+ ln(x)) = ln

(
x

(
1 +

ln(x)

x

))
= ln(x) + ln

(
1 +

ln(x)

x

)
,

so the ln(x) cancels to produce

h(xex) = ln

(
1 +

ln(x)

x

)
. (1.38)

Since ln(x)/x � 1 and ln(1 + ε) ∼ ε, we see that h(xex) ∼ ln(x)/x, or
h(x) ∼ ln(ln(x))/ ln(x).

This is proceeding well enough to brave yet another term. Substituting
h(x) = ln(ln(x))/ ln(x) + k(x) into equation 1.38 and expanding the inner
logarithms produces

ln(x+ ln(x))

x+ ln(x)
+ k(xex) = ln

(
1 +

ln(x)

x

)
. (1.39)

Expanding the right hand side asymptotically is easy using equation 1.12, but
the first term has to first be rewritten as

ln(x+ ln(x))

x+ ln(x)
=

1

x

(
ln(x) + ln

(
1 +

ln(x)

x

))(
1 +

ln(x)

x

)−1

.

Then equation 1.39 can be approximated asymptotically to give us

1

x

(
ln(x) +

ln(x)

x
+O

(
ln(x)2

x2

))(
1− ln(x)

x
+O

(
ln(x)2

x2

))
+ k(xex)

=
ln(x)

x
− ln(x)2

2x2
+O

(
ln(x)3

x3

)
.
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Expanding the product, we find that the ln(x)/x terms will cancel, and we
have

k(xex) =
ln(x)2

2x2
− ln(x)

x2
+O

(
ln(x)3

x3

)
.

Thus, we get the first two terms for k(x),

ln(ln(x))2/2(ln(x))2 − ln(ln(x))/(ln(x))2.

Putting all of the terms together, we get

f−1(x) ∼ ln(x)− ln(ln(x)) +
ln(ln(x))

ln(x)
+

ln(ln(x))2

2 ln(x)2
− ln(ln(x))

ln(x)2
. (1.40)

The inverse function of y = xex is called the Lambert W function. Its
asymptotic series as x→∞ is more complicated than the ones we have seen
before, since the logarithm terms complicate matters a bit. In fact, later terms
will all have a power of ln(ln(x)) in the numerator, and a power of ln(x) in the
denominator. Yet the simple function 1/x goes to zero faster than all of these
terms. So how well does the asymptotic series approximate W (x)? Figure 1.6
shows that in spite of the fact that the individual terms to go 0 very slowly,
the first few terms give a fairly accurate approximation to the function. There
is less than 0.4% error for x > 10.

1.4.1 Reversion of Series

For a function in which f(x) ∼ cx as x→ 0, it is fairly clear that the inverse
function will have f−1(x) ∼ x/c as x → 0. In fact, if we have a power series
expansion for such a function, we can compute the power series expansion for
its inverse.

Often the powers of x will appear in an arithmetic progression. For example,
an odd function will have only odd powers of x in its Maclaurin series. In
general, suppose that

f(x) ∼ a0x+ a1x
b+1 + a2x

2b+1 + · · · =
∞∑
n=0

anx
bn+1.

Then the inverse of y = f(x) is given by

f−1(y) = A0y +A1y
b+1 +A2y

2b+1 + · · · =
∞∑
n=0

Any
bn+1,

where

A0 =
1

a0
, A1 =

−a1

ab+2
0

, A2 =
1

a2b+3
0

((b+ 1)a2
1 − a0a2),
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FIGURE 1.6: Comparing the Lambert W function (the inverse of y = xex)
with the asymptotic approximation as x→∞. W (x) is defined for x ≥ −1/e,
but the approximation is fairly good for x ≥ e.

A3 =
1

a3b+4
0

(
− (3b+ 3)(3b+ 2)

6
a3

1 + (3b+ 2)a0a1a2 − a2
0a3

)
, (1.41)

A4 =
1

a4b+5
0

(
(4b+ 4)(4b+ 3)(4b+ 2)

24
a4

1 −
(4b+ 3)(4b+ 2)

2
a0a

2
1a2

+
(4b+ 2)

2
a2

0a
2
2 + (4b+ 2)a2

0a1a3 − a3
0a4

)
,

A5 =
1

a5b+6
0

(
− (5b+ 5)(5b+ 4)(5b+ 3)(5b+ 2)

120
a5

1

+
(5b+ 4)(5b+ 3)(5b+ 2)

6
a0a

3
1a2 −

(5b+ 3)(5b+ 2)

2
(a2

0a1a
2
2 + a2

0a
2
1a3)

+ (5b+ 2)(a3
0a2a3 + a3

0a1a4)− a4
0a5

)
.

For most functions, we use b = 1, but occasionally we may want to take the
inverse of an odd function, in which case we can use b = 2. The pattern for
these coefficients can be given by

An =
1

abn+n+1
0

∑
(−1)n+p0

(bn+ n− p0)!

(bn+ 1)!p1!p2! · · · pn!
ap00 a

p1
1 a

p2
2 · · · apnn ,

(1.42)
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where the sum is taken over all combinations of non-negative integers p0, p1,
. . . pn such that both p0 + p1 + p2 + · · · pn = n, and p1 + 2p2 + · · ·npn = n.
See problem 19. If the original series has a non-zero radius of convergence,
then the series for the inverse function will also have a non-zero radius of
convergence, but it may be difficult to determine exactly what that radius is.

Example 1.14
We have already seen Lambert’s W function, which is the inverse of y = xex.
Although we have seen the asymptotic series for when x → ∞, what is the
behavior as x→ 0?
SOLUTION: We have

xex ∼ x+ x2 +
x3

2
+
x4

6
+
x5

24
+ · · · as x→ 0.

Thus, we can plug in b = 1 and an = 1/n! into equations 1.41 to get A0 = 1,
A1 = −1, A2 = 3/2, A3 = −8/3, A4 = 125/24, and A5 = −54/5. Thus,

W (x) ∼ x− x2 +
3x3

2
− 8x4

3
+

125x5

24
− 54x6

5
+ · · · as x→ 0.

In fact, there turns out to be a nice pattern:

W (x) ∼
∞∑
n=1

(−1)n−1nn−1xn

n!
as x→ 0.

Example 1.15
Find the Maclaurin series for tan(x).
SOLUTION: We can use the fact that the series for its inverse has a simple
pattern.

tan−1(x) =
∞∑
n=0

(−1)nx2n+1

2n+ 1
= x− x3

3
+
x5

5
− x7

7
+ · · · .

Because this is an odd function, we can use b = 2, and replace

an =
(−1)n

(2n+ 1)

into equations 1.41 to get A0 = 1, A1 = 1/3, A2 = 2/15, A3 = 17/315,
A4 = 62/2835, and A5 = 1382/155925. This gives use the first 6 terms of the
tangent series:

tan(x) ∼ x+
x3

3
+

2x5

15
+

17x7

315
+

62x9

2835
+

1382x11

155925
+ · · · as x→ 0.
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Problems for §1.4

For problems 1 through 12: Find the first three (non-zero) terms of the
asymptotic series as x→∞ for the inverse of the following functions.

1 x2 + 5x+ 3
2 x3 + 2x
3 x3 + x+ 1
4 x3 + x2

5 x4 + x
6 x4 + x3

7 x2ex

8 x+ ln(x)
9 ex + ln(x)
10 x ln(x)
11 ex + x
12 ex ln(x)

For problems 13 through 18: Many inverse functions can be expressed in
terms of the Lambert W function. Express the inverse of the following func-
tions in terms of W (x).

13 x+ ln(x)
14 x ln(x)
15 x+ ex

16
√
xex

17 x2 + ln(x)
18 x2 ln(x)

19 Use equation 1.42 to find the formula for A6 when b = 1

Hint: A partition of n is a set of positive integers that add up to n. For
example, 1 + 1 + 1 + 3 is a partition of 6. Rearrangement of the integers are
not considered as different partitions. For example, there are seven partitions
of 5: 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 2, 1 + 2 + 2, 1 + 1 + 3, 2 + 3, 1 + 4, and
5. Each partition of n can be padded with 0’s to produce a set of n integers
adding to n. For example, 1 + 1 + 1 + 3 becomes 0 + 0 + 1 + 1 + 1 + 3.
Every partition of n becomes one term in equation 1.42. For each partition
padded with 0’s, we let pi be the number of i’s in the partition. For example,
the partition 0 + 0 + 1 + 1 + 1 + 3 produces p0 = 2, p1 = 3, p3 = 1, and
p2 = p4 = p5 = p6 = 0.

20 Find all of the partitions of 7. See problem 19 for an explanation of the
partitions of n.

For problems 21 through 26: Use equations 1.41 to find the first four non-zero
terms in the Maclaurin series for the inverse of the function.

21 x cosx
22 x coshx
23 x+ ln(x+ 1)

24 1/
√

1− 4x− 1− x
25 x+ x4 + x7

26 xex
3

27 Use equation 1.42 to find a formula for the nth term in the Maclaurin
series of the inverse of f(x) = x+ x3.

Hint: Using b = 2, the only partition of n that produces a non-zero term is
the one where p1 = n. See problem 19 for an explanation of the partitions of
n.



30 Asymptotic Analysis and Perturbation Theory

28 The equations 1.41 can be used for a divergent series as well, producing
an asymptotic series for the inverse function. Find the first six (non-zero)
terms for the inverse of the function S(x) − 1, where S(x) is the Stieltjes
integral function defined by equation 1.21. Show that this series is divergent
for all positive x.

1.5 Dominant Balance

In finding the asymptotic series for the solution of an equation, we must
first determine its leading behavior. Sometimes this is easy, but usually this
is a non-trivial problem. In these situations, a strategy that is very effective
is the method of dominant balance.

The principle behind the dominant balance is quite simple. If there are three
or more terms in an equation, usually two of the terms will be asymptotically
larger than the others, that is, they will dominate the other terms. Also, these
terms will balance each other, so we can form an asymptotic equation with
only two terms. Such equations are usually very easy to solve.

The problem, of course, is determining which two terms are the ones that
are dominant. This can only be determined by trial and error. In each case,
we can test to see if the other terms are indeed small compared to the ones
that we assumed were dominant.

Example 1.16

Find the behavior of the function defined implicitly by x2 + xy − y3 = 0 as
x→∞.

SOLUTION: Since there are three non-zero terms, there are three choices for
a pair of terms. If we assume y3 is small as x→∞, then we have x2 ∼ −xy.
This quickly leads to y ∼ −x as x → ∞. But then y3 ∼ −x3, which is not
small compared to a term that we kept, x2, as x→∞.

Suppose instead that we assume x2 � xy. Then xy ∼ y3, producing
y ∼ ±

√
x. But then xy ∼ ±x3/2, so x2 is larger as x→∞. So this possibility

is ruled out.

The final case to try is to assume that xy is the smallest term. Then
x2 ∼ y3, which tells us that y ∼ x2/3. To check to see if this is consistent, we
need to check that xy � x2. Indeed, xy ∼ x5/3 which is smaller than x2 as
x→∞.

At this point, we have shown that y ∼ x2/3 is consistent, but this alone is
not proof that the leading behavior is indeed x2/3. In order to show that this
is the correct leading behavior, we must find the next term in the series, and
show that it is smaller than x2/3.


