
Computer Science and Engineering

Formal Languages and Computation: Models and Their Applications gives a clear,
comprehensive introduction to formal language theory and its applications in computer
science. It covers all rudimental topics concerning formal languages and their models,
especially grammars and automata, and sketches the basic ideas underlying the theory
of computation, including computability, decidability, and computational complexity.
Emphasizing the relationship between theory and application, the book describes many
real-world applications, including computer science engineering techniques for language
processing and their implementation.

•	Covers the theory of formal languages and their models, including all essential
concepts and properties

•	Explains how language models underlie language processors

•	Pays special attention to programming language analyzers, such as scanners and
parsers, based on four language models—regular expressions, finite automata,
context-free grammars, and pushdown automata

•	Discusses the mathematical notion of a Turing machine as a universally accepted
formalization of the intuitive notion of a procedure

•	Reviews the general theory of computation, particularly computability and decidability

•	Considers problem-deciding algorithms in terms of their computational complexity
measured according to time and space requirements

•	Points out that some problems are decidable in principle, but are, in fact,
intractable problems for absurdly high computational requirements of the
algorithms that decide them

In short, this book represents a theoretically oriented treatment of formal languages and
their models with a focus on their applications. It introduces all formalisms concerning them
with enough rigor to make all results quite clear and valid. Every complicated mathematical
passage is preceded by its intuitive explanation so that even the most complex parts of the
book are easy to grasp. After studying this book, both student and professional should be able
to understand the fundamental theory of formal languages and computation, write language
processors, and confidently follow most advanced books on the subject.

ISBN: 978-1-4665-1345-7

9 781466 513457

90000

Formal Languages
and Computation

Models and Their Applications

M
ed

una
Alexander Meduna

F
o
rm

a
l L

a
n
g
u
a
g
e
s a

n
d
 C

o
m

p
u
ta

tio
n

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

K14956

www.auerbach-publications.com

K14956 cvr mech.indd 1 11/22/13 11:00 AM

Formal Languages
and Computation

Models and Their Applications

Formal Languages
and Computation

Models and Their Applications

Alexander Meduna

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140106

International Standard Book Number-13: 978-1-4665-1349-5 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

To Ivana and Zbyněk and

 in memory of Meister Eckhart and Gustav Mahler

vii

Contents

Preface�� xiii
Acknowledgments���xvii
Author���xix

Section I INT RODUCTION

1	 Mathematical Background..3
1.1	 Logic�� 3
1.2	 Sets and Sequences... 4
1.3	 Relations... 6
1.4	 Graphs.. 7

2	 Formal Languages and Rewriting Systems...13
2.1	 Formal Languages...13
2.2	 Rewriting Systems...15

2.2.1	 Rewriting Systems in General...16
2.2.2	 Rewriting Systems as Language Models...17
2.2.3	 Rewriting Systems as Computational Models...21

2.3	 Synopsis of the Book...25

Section II  REGULAR LANGUAGES AND THEIR MODELS

3	 Models for Regular Languages..31
3.1	 Finite Automata...31

3.1.1	 Representations of Finite Automata... 32
3.2	 Restricted Finite Automata... 34

3.2.1	 Removal of ε-Rules.. 34
3.2.2	 Determinism... 38

3.2.2.1	 Complete Specification.. 42
3.2.3	 Minimization.. 43

3.3	� Regular Expressions and Their Equivalence with Finite Automata..........................45
3.3.1	 Regular Expressions..45
3.3.2	 Equivalence with Finite Automata..47

3.3.2.1	 From Finite Automata to Regular Expressions............................47
3.3.2.2	 From Regular Expressions to Finite Automata........................... 49

viii  ◾  Contents

4	 Applications of Regular Expressions and Finite Automata:
	 Lexical Analysis...61

4.1	 Implementation of Finite Automata.. 62
4.1.1	 Table-Based Implementation... 62
4.1.2	 Case-Statement Implementation.. 64

4.2	 Introduction to Lexical Analysis... 66
4.2.1	 Lexical Units and Regular Expressions.. 66
4.2.2	 Scanners and Finite Automata... 66

4.3	 Implementation of a Scanner...67

5	 Properties of Regular Languages..73
5.1	 Pumping Lemma for Regular Languages... 73

5.1.1	 Applications of the Pumping Lemma for Regular Languages.................... 75
5.2	 Closure Properties.. 77

5.2.1	 Applications of Closure Properties... 80

Section III  CONTEXT-FREE LANGUAGES AND THEIR MODELS

6	 Models for Context-Free Languages..85
6.1	 Context-Free Grammars..85
6.2	 Restricted Context-Free Grammars.. 89

6.2.1	 Canonical Derivations and Derivation Trees... 90
6.2.1.1	 Leftmost Derivations... 90
6.2.1.2	 Rightmost Derivations.. 92
6.2.1.3	 Derivation Trees.. 92
6.2.1.4	 Ambiguity... 94

6.2.2	 Removal of Useless Symbols.. 96
6.2.3	 Removal of Erasing Rules.. 99
6.2.4	 Removal of Single Rules...103
6.2.5	 Chomsky Normal Form...104
6.2.6	 Elimination of Left Recursion..106
6.2.7	 Greibach Normal Form..110

6.3	 Pushdown Automata...113
6.3.1	 Pushdown Automata and Their Languages...113
6.3.2	 Equivalence with Context-Free Grammars...114

6.3.2.1	 From Context-Free Grammars to
	 Pushdown Automata��114
6.3.2.2	 From Pushdown Automata to Context-Free Grammars............ 115

6.3.3	 Equivalent Types of Acceptance...119
6.3.4	 Deterministic Pushdown Automata..121

7	 Applications of Models for Context-Free Languages:
	 Syntax Analysis...131

7.1	 Introduction to Syntax Analysis..132
7.1.1	 Syntax Specified by Context-Free Grammars..133
7.1.2	 Top-Down Parsing.. 134
7.1.3	 Bottom-Up Parsing.. 136

Contents  ◾  ix

7.2	 Top-Down Parsing..141
7.2.1	 Predictive Sets and LL Grammars..142

7.2.1.1	 LL Grammars...145
7.2.2	 Predictive Parsing...146

7.2.2.1	 Predictive Recursive-Descent Parsing.......................................146
7.2.2.2	 Predictive Table-Driven Parsing..149
7.2.2.3	 Handling Errors...153
7.2.2.4	 Exclusion of Left Recursion..154

7.3	 Bottom-Up Parsing..155
7.3.1	 Operator-Precedence Parsing..155

7.3.1.1	 Operator-Precedence Parser..156
7.3.1.2	 Construction of Operator-Precedence Parsing
	 Table...158
7.3.1.3	 Handling Errors...159
7.3.1.4	 Operator-Precedence Parsers for Other
	 Expressions...162

7.3.2	 LR Parsing..163
7.3.2.1	 LR Parsing Algorithm..164
7.3.2.2	 Construction of LR Table...167
7.3.2.3	 Handling Errors in LR Parsing...173

8	 Properties of Context-Free Languages..187
8.1	 Pumping Lemma for Context-Free Languages..187

8.1.1	 Applications of the Pumping Lemma...189
8.2	 Closure Properties...189

8.2.1	 Union, Concatenation, and Closure...190
8.2.2	 Intersection and Complement..190
8.2.3	 Homomorphism...192
8.2.4	 Applications of the Closure Properties..192

Section IV T URING MACHINES AND COMPUTATION

9	 Turing Machines and Their Variants...199
9.1	 Turing Machines and Their Languages..199
9.2	 Restricted Turing Machines... 202

9.2.1	 Computational Restrictions... 203
9.2.2	 Size Restrictions.. 205

9.3	 Universal Turing Machines.. 206
9.3.1	 Turing Machine Codes.. 206
9.3.2	 Construction of Universal Turing Machines.. 208

10	 Applications of Turing Machines: Theory of Computation......................................213
10.1	 Computability...214

10.1.1	 Integer Functions Computed by Turing
	 Machines..214
10.1.2	 Recursion Theorem...217
10.1.3	 Kleene’s s-m-n Theorem..219

x  ◾  Contents

10.2	 Decidability.. 220
10.2.1	 Turing Deciders... 220
10.2.2	 Decidable Problems... 223

10.2.2.1	 Decidable Problems for Finite Automata................................. 223
10.2.2.2	 Decidable Problems for Context-Free Grammars..................... 225

10.2.3	 Undecidable Problems... 227
10.2.3.1	 Diagonalization... 228
10.2.3.2	 Reduction.. 230
10.2.3.3	 Undecidable Problems Not Concerning
	 Turing Machines..233

10.2.4	 General Approach to Undecidability... 234
10.2.4.1	 Rice’s Theorem.. 237

10.2.5	 Computational Complexity... 238
10.2.5.1	 Time Complexity.. 238
10.2.5.2	 Space Complexity.. 240

11	 Turing Machines and General Grammars...245
11.1	� General Grammars and Their Equivalence with Turing
	 Machines...245

11.1.1	 General Grammars...245
11.1.2	 Normal Forms... 246
11.1.3	 Equivalence of General Grammars and Turing Machines....................... 248

11.1.3.1	 From General Grammars to Turing Machines........................ 248
11.1.3.2	 From Turing Machines to General Grammars.........................249

11.2	� Context-Sensitive Grammars and Linear-Bounded Automata...............................250
11.2.1	 Context-Sensitive Grammars and Their Normal Forms............................250

11.2.1.1	 Normal Forms..251
11.2.2	� Linear-Bounded Automata and Their Equivalence with
	 Context-Sensitive Grammars..251

11.2.2.1	 From Context-Sensitive Grammars to Linear-Bounded
	 Automata..251
11.2.2.2	 From Linear-Bounded Automata to Context-Sensitive

Grammars..252
11.2.3	 Context-Sensitive Languages and Decidable Languages...........................253

11.3	 Relations between Language Families.. 254

Section V  CONCLUSION

12	 Concluding and Bibliographical Remarks..261
12.1	 Summary...261
12.2	 Modern Trends... 263

12.2.1	 Conditional Grammars... 263
12.2.2	 Regulated Grammars... 263
12.2.3	 Scattered Context Grammars.. 264
12.2.4	 Grammar Systems... 264

12.3	 Bibliographical and Historical Remarks... 264

References..273

Contents  ◾  xi

Bibliography...279

xiii

Preface

This book is designed to serve as a text for a one-semester introductory course in the theory of formal
languages and computation. It covers all the traditional topics of this theory, such as automata,
grammars, parsing, computability, decidability, computational complexity, and properties of formal
languages. Special attention is paid to the fundamental models for formal languages and their appli-
cations in computer science.

Subject
Formal language theory defines languages mathematically as sets of sequences consisting of sym-
bols. This definition encompasses almost all languages as they are commonly understood. Indeed,
natural languages, such as English, are included in this definition. Of course, all artificial lan-
guages introduced by various scientific disciplines can be viewed as formal languages; perhaps
most illustratively, every programming language represents a formal language in terms of this
definition. It thus comes as no surprise that formal language theory, which represents a math-
ematically systematized body of knowledge concerning formal languages, is important to all the
scientific areas that make use of these languages to a certain extent.

The theory of formal languages represents the principal subject of this book. The text focuses
its attention on the fundamental models for formal languages and their computation-related appli-
cations in computer science, hence its title Formal Languages and Computation: Models and Their
Applications.

Models
The strictly mathematical approach to languages necessitates introducing formal models that
define them. Most models of this kind are underlain by rewriting systems, which are based on
rules by which they repeatedly change sequences of symbols, called strings. Despite their broad
variety, most of them can be classified into two basic categories—generative and accepting lan-
guage models. Generative models, better known as grammars, define strings of their language, so
their rewriting process generates them from a special start symbol. On the other hand, accepting
models, better known as automata, define strings of their language by a rewriting process that
starts from these strings and ends in a prescribed set of final strings.

xiv  ◾  Preface

Applications
The book presents applications of language models in both practical and theoretical computer
science.

In practice, the text explains how appropriate language models underlie computer science engi-
neering techniques used in language processors. It pays special attention to programming language
analyzers based on four language models—regular expressions, finite automata, context-free
grammars, and pushdown automata. More specifically, by using regular expressions and finite autom-
ata, it builds up lexical analyzers, which recognize lexical units and verify that they are properly
formed. Based on context-free grammars and pushdown automata, it creates syntax analyzers, which
recognize syntactic structures in computer programs and verify that they are correctly written accord-
ing to grammatical rules. That is, the text first explains how to specify the programming language
syntax by using context-free grammars, which are considered the most widely used specification tool
for this purpose. Then, it describes how to write syntax analyzers based on pushdown automata.

In theory, the book makes use of language-defining models to explore the very heart of the
foundations of computation. That is, the text introduces the mathematical notion of a Turing
machine, which has become a universally accepted formalization of the intuitive notion of a proce-
dure. Based on this strictly mathematical notion, it studies the general limits of computation. More
specifically, it performs this study in terms of two important topics concerning computation—
computability and decidability. Regarding computability, it considers Turing machines as
computers of functions over nonnegative integers and demonstrates the existence of functions
whose computation cannot be specified by any procedure. As far as decidability is concerned, it
formalizes problem-deciding algorithms by Turing machines that halt on every input. The book
formulates several important problems concerning the language models discussed earlier in this
book and constructs algorithms that decide them. On the other hand, it describes several problems
that are not decidable by any algorithm. Apart from giving several specific undecidable problems,
this book builds up a general theory of undecidability. Finally, the text approaches decidability in a
much finer and realistic way. Indeed, it reconsiders problem-deciding algorithms in terms of their
computational complexity measured according to time and space requirements. Perhaps most
importantly, it shows that although some problems are decidable in principle, they are intractable
for absurdly high computational requirements of the algorithms that decide them.

Use
As already stated, this book is intended as a textbook for a one-term introductory course in formal
language theory and its applications in computer science.

Second, the book can also be used as an accompanying textbook for a compiler class at an
undergraduate level because the text allows the flexibility needed to select only the topics relevant
to compilers.

Finally, this book is useful to all researchers, including people out of computer science, who
somehow deal with formal languages and their models in their scientific fields.

Approach
Primarily, this book represents a theoretically oriented treatment of formal languages and
their models. Indeed, it introduces all formalisms concerning them with enough rigor to
make all results quite clear and valid. Every complicated mathematical passage is preceded

Preface  ◾  xv

by its intuitive explanation so that even the most complex parts of the book are easy to grasp.
Every new concept or algorithm is preceded by an explanation of its purpose and followed by
some examples with comments to reinforce its understanding. All applications are given in a
quite realistic way to clearly demonstrate a strong relation between the theoretical concepts
and their uses.

Secondarily, as already pointed out, the text also presents several significant applications of
formal languages and their models in practice. All applications are given in a quite realistic way to
clearly show a close relation between the theoretical concepts and their uses.

Prerequisites
On the part of the student, no previous knowledge concerning formal languages is assumed.
Although this book is self-contained, in the sense that no other sources are needed for understand-
ing the material, a familiarity with the rudiments of discrete mathematics is helpful for a quick
comprehension of formal language theory. A familiarity with a high-level programming language
helps to grasp the material concerning applications in this book.

Organization
Synopsis
The entire text contains 12 chapters, which are divided into 5 sections.

Section I, which consists of Chapters 1 and 2, gives an introduction to the subject. Chapter 1
recalls the basic mathematical notions used in the book. Chapter 2 gives the basics of formal
languages and rewriting systems that define them.

Section II, which consists of Chapters 3 through 5, studies regular languages and their
models. Chapter 3 gives the basic definitions of these languages and their models, such as regular
expressions and finite automata. Chapter 4 is application oriented; specifically, it builds lexical
analyzers by using models for regular languages. Chapter 5 studies properties concerning regular
languages.

Section III, which consists of Chapters 6 through 8, discusses context-free languages and their
models. To a large extent, its structure parallels Section II. Indeed, Chapter 6 defines context-free
languages and their models, including context-free grammars and pushdown automata. Chapter 7
explains how to construct syntax analyzers based on these grammars and automata. Chapter 8
establishes certain properties concerning context-free languages.

Section IV, which consists of Chapters 9 through 11, concerns Turing machines as a
formalization of algorithms. Chapter 9 defines them. Based on Turing machines, Chapter 10 gives
the basic ideas, concepts, and results underlying the theory of computation and its crucially impor-
tant parts, including computability, decidability, and computational complexity. Simultaneously,
this chapter establishes important properties concerning languages defined by Turing machines.
Chapter 11 presents the essentials concerning general grammars, which represent grammatical
counterparts to Turing machines.

Section V consists of Chapter 12. This chapter summarizes the entire textbook, points out
selected modern trends, makes many historical and bibliographical remarks, and recommends
further reading to the serious student.

xvi  ◾  Preface

Finally, the book contains two appendices. Appendix I gives the index to mathematical sym-
bols used in the text. Appendix II contains the alphabetic index that lists all important language
models introduced in the book.

Numbering
Regarding the technical organization of the text, algorithms, conventions, corollaries, definitions,
lemmas, and theorems are sequentially numbered within chapters. Examples and figures are
organized similarly. The end of conventions, corollaries, definitions, lemmas, and theorems is
denoted by ◾.

Exercises
At the end of each chapter, a set of exercises is given to reinforce and augment the material covered.
Selected exercises, denoted by S, have their solutions or parts of them at the end of the chapter.

Algorithms
This textbook contains many algorithms. Strictly speaking, every algorithm requires a verification
that it terminates and works correctly. However, the termination of the algorithms given in
this book is always so obvious that its verification is omitted throughout. The correctness of
complicated algorithms is verified in detail. On the other hand, we most often give only the gist
of the straightforward algorithms and leave their rigorous verification as an exercise. The text
describes the algorithms in Pascal-like notation, which is so simple and intuitive that even the
student unfamiliar with the Pascal programming language can immediately pick it up. In this
description, a Pascal repeat loop is sometimes ended with until no change, meaning that the loop
is repeated until no change can result from its further repetition. As the clear comprehensibility
is a paramount importance in the book, the description of algorithms is often enriched by an
explanation in words.

Support on the World Wide Web
Further backup materials, including lecture notes, are available at http://www.fit.vutbr.cz/~meduna/
books/flc.

xvii

Acknowledgments

For almost a decade, I taught the theory of formal languages and computation at the University
of Missouri-Columbia in the United States back in the 1990s, and since 2000, I have taught this
subject at the Brno University of Technology in the Czech Republic. The lecture notes I wrote
at these two universities underlie this book, and I have greatly benefited from conversations with
many colleagues and students there. In addition, this book is based on notes I have used for my
talks at various American, Asian, and European universities over the past three decades. Notes
made at the Kyoto Sangyo University in Japan were particularly helpful.

Writing this book was supported by the European Regional Development Fund in the
IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070). This work was also
supported by the Visual Computing Competence Center (TE01010415).

My thanks to Martin Čermák and Jiří Techet for their comments on a draft of this text.
Without the great collaboration, encouragement, and friendship with Zbyněk Křivka, I would
have hardly started writing this book, let alone complete it. I am also grateful to John Wyzalek
at Taylor & Francis for excellent editorial work. Finally, I thank my wife Ivana for her patience
and, most importantly, love.

xix

Author

Alexander Meduna, PhD, is a full professor of computer science at the Brno University of
Technology in the Czech Republic, where he earned his doctorate in 1988. From 1988 until
1997, he taught computer science at the University of Missouri-Columbia in the United States.
Even more intensively, since 2000, he has taught computer science and mathematics at the Brno
University of Technology. In addition to these two universities, he has taught computer science
at several other American, European, and Japanese universities for shorter periods of time. His
classes have been primarily focused on formal language theory and its applications in theoretical
and practical computer science. His teaching has also covered various topics including automata,
discrete mathematics, operating systems, and principles of programming languages. Among many
other awards for his scholarship and writing, he received the Distinguished University Professor
Award from Siemens in 2012. He very much enjoys teaching classes related to the subject of
this book.

Dr. Meduna has written several books. Specifically, he is the author of two textbooks—Automata
and Languages (Springer, 2000) and Elements of Compiler Design (Taylor & Francis, 2008; trans-
lated into Chinese in 2009). Furthermore, he is the coauthor of three monographs—Grammars with
Context Conditions and Their Applications (along with Martin Švec, Wiley, 2005), Scattered Context
Grammars and Their Applications (with Jiří Techet, WIT Press, 2010), and Regulated Grammars and
Automata (with Petr Zemek, Springer, 2014). He has published over 90 studies in prominent inter-
national journals, such as Acta Informatica (Springer), International Journal of Computer Mathematics
(Taylor & Francis), and Theoretical Computer Science (Elsevier). All his scientific work discusses the
theory of formal languages and computation, the subject of this book, or closely related topics, such
as compiler writing.

Alexander Meduna’s website is http://www.fit.vutbr.cz/~meduna. His scientific work is
described in detail at http://www.fit.vutbr.cz/~meduna/work.

IINTRODUCTION

In this two-chapter introductory section, we first review the mathematical notions, concepts, and
techniques used throughout this book to express all the upcoming theory of formal languages
clearly and precisely. Then, we introduce formal languages defined by rewriting systems, and we
also explain how these systems underlie important models used in both practical and theoretical
computer science. We conclude this section by giving a synopsis of the entire book.

Chapter 1 reviews the principal ideas and notions underlying some mathematical areas because
they are needed for understanding this book. These areas include logic, set theory, discrete math-
ematics, and graph theory.

Chapter 2 gives an introduction to this work. It defines its two central notions—formal lan-
guages and rewriting systems—and demonstrates how to use them as language-defining models
and models of computation. In terms of these models, this chapter closes its discussion by present-
ing a synopsis of the entire book.

3

Chapter 1

Mathematical Background

This chapter reviews rudimentary concepts from logic (Section 1.1), set theory (Section 1.2), dis-
crete mathematics (Section 1.3), and graph theory (Section 1.4). For readers familiar with them,
this chapter can be skipped and treated as a reference for notation and definitions.

1.1  Logic
In this section, we review the basics of elementary logic. We pay a special attention to the funda-
mental proof techniques used in this book.

In general, a formal mathematical system S consists of basic symbols, formation rules, axioms, and
inference rules. Basic symbols, such as constants and operators, form components of statements that
are composed according to formation rules. Axioms are primitive statements, whose validity is
accepted without justification. By inference rules, some statements infer other statements. A proof
of a statement s in S consists of a sequence of statements s1, …, si, …, sn such that s = sn and each si
is either an axiom of S or a statement inferred by some of the statements s1, …, si−1 according to the
inference rules; s proved in this way represents a theorem of S.

Logical connectives join statements to create more-complicated statements. The most common
logical connectives are not, and, or, implies, and if and only if. In this list, not is unary while the other
connectives are binary. That is, if s is a statement, then not s is a statement as well. Similarly, if s1 and
s2 are statements, then s1 and s2, s1 or s2, s1 implies s2, and s1 if and only if s2 are statements, too. We
often write ¬, ∧, and ∨ instead of not, and, and or, respectively. The following truth table presents
the rules governing the truth or falsity concerning statements connected by the binary connectives.
Regarding the unary connective ¬, if s is true, then ¬s is false, and if s is false, then ¬s is true.

Convention 1.1 Throughout this book, truth and falsity are denoted by 1 and 0, respectively.

By the truth table (Figure 1.1), s1 and s2 is true if both statements are true; otherwise, s1 and s2
is false. Analogically, we can interpret the other rules governing the truth or falsity of a statement
containing the other connectives from this table. A statement of equivalence, which has the form

4  ◾  Formal Languages and Computation

s1 if and only if s2, sometimes abbreviated to s1 iff s2, plays a crucial role in this book. A proof that it
is true usually consists of two parts. The only-if part demonstrates that s1 implies s2 is true although
the if part proves that s2 implies s1 is true.

Example 1.1 There exists a useful way of representing ordinary infix arithmetic expressions without
using parentheses. This notation is referred to as Polish notation that has two fundamental
forms—postfix and prefix notation. The former is defined recursively as follows:

Let Ω be a set of binary operators, and let Σ be a set of operands.

	 1.	 Every a ∈ Σ is a postfix representation of a.
	 2.	 Let AoB be an infix expression, where o ∈ Ω, and A, B are infix expressions. Then, CDo is

the postfix representation of AoB, where C and D are the postfix representations of A and B,
respectively.

	 3.	 Let C be the postfix representation of an infix expression A. Then, C is the postfix representa-
tion of (A).

Consider the infix logical expression (1 ∨ 0) ∧ 0. The postfix expressions for 1 and 0 are 1 and 0,
respectively. The postfix expression for 1 ∨ 0 is 1 0 ∨, so the postfix expression for (1 ∨ 0) is 1 0 ∨,
too. Thus the postfix expression for (1 ∨ 0) ∧ 0 is 1 0 ∨ 0 ∧.

The prefix notation is defined analogically, except that in the second part of the definition, o is
placed in front of AB; the details are left as an exercise.

There exist many logic laws useful to demonstrate that an implication is true. Specifically, the
contrapositive law says (s1 implies s2) if and only if ((¬s2) implies (¬s1)), so we can prove s1 implies s2
by demonstrating that (¬s2) implies (¬s1) holds true. We also often use a proof by contradiction
based on the law saying ((¬s2) and s1) implies 0 is true. Less formally, if from the assumption that
s2 is false and s1 is true, then we obtain a false statement, s1 implies s2 is true. A proof by induction
demonstrates that a statement si is true for all integers i ≥ b, where b is a nonnegative integer. In
general, a proof of this kind is made in the following way:

Basis. Prove that sb is true.

Inductive Hypothesis. Suppose that there exists an integer n such that n ≥ b and sm is true for all
b ≤ m ≤ n.

Inductive Step. Prove that sn + 1 is true under the assumption that the inductive hypothesis holds.

A proof by contradiction and a proof by induction are illustrated in the beginning of
Section 1.2 (see Example 1.2).

1.2  Sets and Sequences
A set, Σ, is a collection of elements that are taken from some prespecified universe. If Σ con-
tains an element a, then we symbolically write a ∈ Σ and refer to a as a member of Σ. On the
other hand, if a is not in Σ, then we write a ∉ Σ. If Σ has a finite number of members, then

s1 s2 implies> > if and only if
0 0 0 0 1 1
0 1 0 1 1 0
1 0 0 1 0 0
1 1 1 1 1 1

Figure 1.1 T ruth table.

Mathematical Background  ◾  5

Σ is a finite set; otherwise, Σ is an infinite set. The finite set that has no member is the empty
set, denoted by ∅. The cardinality of a finite set, Σ, card(Σ), is the number of Σ’s members;
note that card(∅) = 0.

Convention 1.2 Throughout this book, ℕ denotes the set of natural numbers—that is, ℕ = {1, 2, …},
and 0ℕ = {0} ∪ ℕ.

Example 1.2 The purpose of this example is twofold. First, we give examples of sets. Second, as
pointed out in the conclusion of Section 1.1, we illustrate how to make proofs by contradiction and
by induction.

Let P be the set of all primes (a natural number n is prime if its only positive divisors are
1 and n).

A proof by contradiction. By contradiction, we next prove that P is infinite. That is, assume that P
is finite. Set k = card(P). Thus, P contains k numbers, p1, p2, …, pk. Set n = p1 p2…pk + 1. Observe
that n is not divisible by any pi, 1 ≤ i ≤ k. As a result, either n is a new prime or n equals a product
of new primes. In either case, there exists a prime out of P, which contradicts that P contains all
primes. Thus, P is infinite. Another proof by contradiction is given in Example 1.3.

A proof by induction. As already stated, by induction, we prove that a statement si holds for all
i ≥ b, where b ∈ ℕ. To illustrate, consider {i2| i ∈ ℕ}, and let si state

1 + 3 + 5 + … + 2i − 1 = i2

for all i ∈ ℕ; in other words, si says that the sum of odd integers is a perfect square. An inductive
proof of this statement is as follows:

Basis. As 1 = 12, s1 is true.

Inductive Hypothesis. Assume that sm is true for all 1 ≤ m ≤ n, where n is a natural number.

Inductive Step. Consider sn+1 = 1 + 3 + 5 + ... + (2n − 1) + (2(n + 1) − 1) = (n + 1)2. By the inductive
hypothesis, sn = 1 + 3 + 5 + ... + (2n − 1) = n2. Hence, 1 + 3 + 5 + ... + (2n − 1) + (2(n + 1) − 1) =
n2 + 2n + 1 = (n + 1)2. Consequently, sn+1 holds, and the inductive proof is completed.

A finite set, Σ, is customarily specified by listing its members; that is, Σ = {a1, a2, …, an}, where
a1 through an are all members of Σ; as a special case, we have {} = ∅. An infinite set, Ω, is usually
specified by a property, π, so that Ω contains all elements satisfying π; in symbols, this specifica-
tion has the following general format Ω = {a| π(a)}. Sets whose members are other sets are usually
called families of sets rather than sets of sets.

Let Σ and Ω be two sets. Σ is a subset of Ω, symbolically written as Σ ⊆ Ω, if each member of
Σ also belongs to Ω. Σ is a proper subset of Ω, written as Σ ⊂ Ω, if Σ ⊆ Ω and Ω contains an ele-
ment that is not in Σ. If Σ ⊆ Ω and Ω ⊆ Σ, then Σ equals Ω, denoted by Σ = Ω. The power set of
Σ, denoted by power(Σ), is the set of all subsets of Σ.

For two sets, Σ and Ω, their union, intersection, and difference are denoted by Σ ∪ Ω, Σ ∩ Ω,
and Σ − Ω, respectively, and defined as Σ ∪ Ω = {a| a ∈ Σ or a ∈ Ω}, Σ ∩ Ω = {a| a ∈ Σ and
a ∈ Ω}, and Σ − Ω = {a| a ∈ Σ and a ∉ Ω}. If Σ is a set over a universe U, then the complement
of Σ is denoted by ~Σ and defined as ~Σ = U − Σ. The operations of union, intersection, and
complement are related by DeMorgan’s laws stating that ~(~Σ ∪ ~Ω) = Σ ∩ Ω and ~(~Σ ∩ ~Ω) =
Σ ∪ Ω, for any two sets Σ and Ω. If Σ ∩ Ω = ∅, then Σ and Ω are disjoint. More generally, n sets
Δ1, Δ2, …, Δn, where n ≥ 2, are pairwise disjoint if Δi ∩ Δj = ∅ for all 1 ≤ i, j ≤ n such that i ≠ j.

6  ◾  Formal Languages and Computation

A sequence is a list of elements from some universe. A sequence is finite if it consists of finitely
many elements; otherwise, it is infinite. The length of a finite sequence x, denoted by |x|, is the num-
ber of elements in x. The empty sequence, denoted by ε, is the sequence consisting of no element;
that is, |ε| = 0. For brevity, finite sequences are specified by listing their elements throughout. For
instance, (0, 1, 0, 0) is shortened to 0100; notice that |0100| = 4.

1.3  Relations
For two objects, a and b, (a, b) denotes the ordered pair consisting of a and b in this order. Let A
and B be two sets. The Cartesian product of A and B, A × B, is defined as A × B = {(a, b)| a ∈ A
and b ∈ B}. A binary relation or, briefly, a relation, ρ, from A to B is any subset of A × B; that is,
ρ ⊆ A × B. If ρ represents a finite set, then it is a finite relation; otherwise, it is an infinite relation.
The domain of ρ, denoted by domain(ρ), and the range of ρ, denoted by range(ρ), are defined as
domain(ρ) = {a| (a, b) ∈ ρ for some b ∈ B} and range(ρ) = {b| (a, b) ∈ ρ for some a ∈ A}. If A = B,
then ρ is a relation on A. A relation σ is a subrelation of ρ if σ ⊆ ρ. The inverse of ρ, denoted by
inverse(ρ), is defined as inverse(ρ) = {(b, a)| (a, b) ∈ ρ}. A function from A to B is a relation φ from
A to B such that for every a ∈ A, card({b| b ∈ B and (a, b) ∈ φ}) ≤ 1. If domain(φ) = A, then φ is
total. If we want to emphasize that φ may not satisfy domain(φ) = A, then we say that φ is partial.
If for every b ∈ B, card({a| a ∈ A and (a, b) ∈ φ}) ≤ 1, then φ is an injection. If for every b ∈ B,
card({a| a ∈ A and (a, b) ∈ φ}) ≥ 1, then φ is a surjection. If φ is a total function that is both a
surjection and an injection, then φ represents a bijection.

As relations and functions are defined as sets, the set operations allied to them, too. For
instance, if ρ ⊆ A × B is a function, then its complement, ~ρ, is defined as (A × B) − ρ.

Convention 1.3 Let ρ ⊆ A × B be a relation. To express that (a, b) ∈ ρ, we usually write aρb. If ρ
represents a function, then we often write ρ(a) = b instead of aρb. If ρ(a) = b, then b is the value
of ρ for argument a.

If there is a bijection from an infinite set ψ to an infinite set Ξ, then ψ and Ξ have the same
cardinality. An infinite set, Ω, is countable or, synonymously, enumerable, if Ω and ℕ have the
same cardinality; otherwise, it is uncountable (according to Convention 1.2, ℕ is the set of natural
numbers).

Example 1.3 Consider the set of all even natural numbers, E. Define the bijection φ(i) = 2i, for all
i ∈ ℕ. Observe that φ represents a bijection from ℕ to E, so they have the same cardinality. Thus,
E is countable.

Consider the set ς of all functions mapping ℕ to {0, 1}. By contradiction, we prove that ς is
uncountable. Suppose that ς is countable. Thus, there is a bijection from ς to ℕ. Let i  f be the func-
tion mapped to the ith positive integer, for all i ≥ 1. Consider the total function g from ℕ to {0, 1}
defined as g(j) = 0 if and only if j  f (j) = 1, for all i ≥ 1, so g(j) = 1 if and only if j  f (j) = 0. As ς con-
tains g, g = k  f for some k ≥ 1. Specifically, g(k) = k  f (k). However, g(k) = 0 if and only if k  f (k) = 1,
so g(k) ≠ k  f (k), which contradicts g(k) = k  f (k). Thus, ς is uncountable.

The proof technique by which we have demonstrated that ς is uncountable is customarily called
diagonalization. To see why, imagine an infinite table with 1  f, 2  f, … listed down the rows and
1, 2, … listed across the columns (see Figure 1.2). Each entry contains either 0 or 1. Specifically, the

Mathematical Background  ◾  7

entry in row i  f and column j contains 1 if and only if i  f (j) = 1, so this entry contains 0 if and only
if i  f (j) = 0. A contradiction occurs at the diagonal entry in row k  f and column k because g(k) = 0 if
and only if k  f (k) = 1 and g(k) = k  f (k); in other words, this diagonal entry contains 0 if and only if
it contains 1, which is impossible. We make use of this proof technique several times in this book.

Let A be a set, ρ be a relation on A, and a, b ∈ A. For k ≥ 1, the k-fold product of ρ, ρk, is
recursively defined as (1) aρ1b iff aρb, and (2) aρkb iff there exists c ∈ A such that aρc and cρk-1b,
for k ≥ 2. Furthermore, aρ0b if and only if a = b. The transitive closure of ρ, ρ+, is defined as aρ+b
if and only if aρkb, for some k ≥ 1, and the reflexive and transitive closure of ρ, ρ*, is defined as aρ*b
if and only if aρkb, for some k ≥ 0.

1.4  Graphs
Let A be a set. A directed graph or, briefly, a graph is a pair G = (A, ρ), where ρ is a relation on A.
Members of A are called nodes, and ordered pairs in ρ are called edges. If (a, b) ∈ ρ, then edge
(a, b) leaves a and enters b. Let a ∈ A; then, the in-degree of a and the out-degree of a are card({b|
(b, a) ∈ ρ}) and card({c| (a, c) ∈ ρ}). A sequence of nodes, (a0, a1, …, an), where n ≥ 1, is a path of
length n from a0 to an if (ai-1, ai) ∈ ρ for all 1 ≤ i ≤ n; if, in addition, a0 = an, then (a0, a1, …, an) is
a cycle of length n. In this book, we frequently label the edges of G with some attached information.
Pictorially, we represent G = (A, ρ) so we draw each edge (a, b) ∈ ρ as an arrow from a to b possibly
with its label as illustrated in Example 1.4.

Example 1.4 Consider a program p and its call graph G = (P, ρ), where P represents the set of
subprograms in p, and (x, y) ∈ ρ iff subprogram x calls subprogram y. Specifically, let P = {a, b, c, d}, and
ρ = {(a, b), (a, c), (b, d), (c, d)}, which says a calls b and c, b calls d, and c calls d as well (see Figure 1.3).

k
1 f
2 f

g = k f

1 2
0 1 0
1 1 1

0 0 0 i� 1

Figure 1.2  Diagonalization.

a

b c

d

Figure 1.3  Graph.

8  ◾  Formal Languages and Computation

The in-degree of a is 0, and its out-degree is 2. Notice that (a, b, d) is a path of length 2 in G. G contains
no cycle because none of its paths starts and ends in the same node.

Suppose we use G to study the value of a global variable during the four calls. Specifically, we
want to express that this value is zero when call (a, b) occurs; otherwise, it is one. We express this by
labeling the edges of G in the way given in Figure 1.4.

Let G = (A, ρ) be a graph. G is an acyclic graph if it contains no cycle. If (a0, a1, …, an) is a
path in G, then a0 is an ancestor of an and an is a descendant of a0; if in addition, n = 1, then a0 is a
direct ancestor of an and an a direct descendant of a0. A tree is an acyclic graph T = (A, ρ) such that A
contains a specified node, called the root of T and denoted by root(T  ), and every a ∈ A − root(T  ) is
a descendant of root(T  ) and its in-degree is one. If a ∈ A is a node whose out-degree is 0, then a is a
leaf; otherwise, it is an interior node. In this book, a tree T is always considered as an ordered tree in
which each interior node a ∈ A has all its direct descendants, b1 through bn, where n ≥ 1, ordered
from the left to the right so that b1 is the leftmost direct descendant of a and bn is the rightmost
direct descendant of a. At this point, a is the parent of its children b1 through bn, and all these nodes
together with the edges connecting them, (a, b1) through (a, bn), are called a parent-children portion
of T. The frontier of T, denoted by frontier(T  ), is the sequence of T ’s leaves ordered from the left
to the right. The depth of T, depth(T  ), is the length of the longest path in T. A tree S = (B, υ) is a
subtree of T if ∅ ⊂ B ⊆ A, υ ⊆ ρ ∩ (B × B), and in T, no node in A − B is a descendant of a node
in B; S is an elementary subtree of T if depth(S ) = 1.

Like any graph, a tree T can be described as a two-dimensional structure. To simplify this
description, however, we draw a tree T with its root on the top and with all edges directed down.
Each parent has its children drawn from the left to the right according to its ordering. Drawing T
in this way, we always omit all arrowheads.

Apart from this two-dimensional representation, however, it is frequently convenient to specify
T by a one-dimensional representation, denoted by odr(T  ), in which each subtree of T is repre-
sented by the expression appearing inside a balanced pair of 〈 and 〉 with the node that is the root
of that subtree appearing immediately to the left of 〈. More precisely, odr(T  ) is defined by the
following recursive rules:

	 1.	If T consists of a single node a, then odr(T  ) = a.
	 2.	Let (a, b1) through (a, bn), where n ≥ 1, be the parent-children portion of T, root(T  ) = a, and

Tk be the subtree rooted at bk, 1 ≤ k ≤ n, then odr(T  ) = a〈odr(T1) odr(T2) … odr(Tn)〉.

a

0 1

1 1

b c

d

Figure 1.4  Labeled graph.

Mathematical Background  ◾  9

Example 1.5 illustrates both the one-dimensional odr-representation and the two-dimensional
pictorial representation of a tree. For brevity, we prefer the former throughout this book.

Example 1.5 Graph G discussed in Example 1.4 is acyclic. However, it is no tree because the in-
degree of node d is two. By removing edge (b, d), we obtain a tree T = (P, τ), where P = {a, b, c, d } and
τ = {(a, b), (a, c), (c, d)}. Nodes a and c are interior nodes while b and d are leaves. The root of T is a.
We define b and c as the first and the second child of a, respectively. A parent-children portion of T is,
for instance, (a, b) and (a, c). Notice that frontier(T  ) = bd, and depth(T  ) = 2. Following the recursive
rules (1) and (2), we obtain the one-dimensional representation of T as odr(T  ) = a〈bc〈d〉〉. Its subtrees
are a〈bc〈d〉〉, c〈d〉, b, and d. In Figure 1.5, we pictorially describe a〈bc〈d〉〉 and c〈d〉.

Exercises

	 1.	 A tautology is a statement that is true for all possible truth values of the statement variables.
	 a.	 Prove that the contrapositive law represents a tautology.
	 b.	 State and prove five more tautologies.
	 c.	 Finally, from a more general viewpoint, prove that every theorem of a formal mathematical

system represents a tautology, and conversely, every tautology is a theorem.
	 2.	 A Boolean algebra is a formal mathematical system, which consists of a set Σ and operations

∨, ∧, and ¬. The axioms of Boolean algebra are as follows.
Associativity:

	 a ∨ (b ∨ c) = (a ∨ b) ∨ c, and a ∧ (b ∧ c) = (a ∧ b) ∧ c, for all a, b, c ∈ Σ.

Commutativity:

	 a ∨ b = b ∨ a, and a ∧ b = b ∧ a, for all a, b ∈ Σ.

Distributivity:

	 a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c), and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c), for all a, b ∈ Σ.

In addition, Σ contains two distinguished members, 0 and 1, such that for all a ∈ Σ,

	 a ∨ 0 = a, a ∧ 1 = a, a ∨ (¬a) = 1, a ∧ (¬a) = 0

a

b c c

d d

Figure 1.5  A tree and a subtree.

10  ◾  Formal Languages and Computation

The rule of inference is substitution of equals for equals.
	 a.	� Consider the Boolean algebra in which 0 = 0 and 1 = 1, where 1 and 0 denote truth

and falsity according to Convention 1.1, and Σ − {1, 0} = ∅. Furthermore, consider this
statement

	 a ∨ (b ∧ ¬a) = a ∨ b

		� where a, b ∈ Σ. Prove that this statement represents a theorem in the Boolean algebra.
	 b.	� Reformulate (a) so Σ is any superset of {1, 0}. Does the above-mentioned statement nec-

essarily represent a theorem in the Boolean algebra generalized in this way? Prove your
answer rigorously.

	 c.	� Give five statements and prove that they are theorems in terms of the Boolean algebra
generalized in (b).

	 3.	� By induction, prove that for any set Σ, card(power(Σ)) = 2card(Σ) (see Section 1.1 for power(Σ)).
	 4.	 Let Σ ⊆ 0ℕ, and let φ be the total function from 0ℕ to {0, 1} defined by φ(i) = 1 iff i ∈ Σ,

for all i ∈ 0ℕ; then, φ is the characteristic function of Σ. Express basic set operations, such as
union, in terms of characteristic functions.

	 5.	 Let Σ and Ω be two sets, and let ρ and ρʹ be two relations from Σ to Ω. If ρ and ρʹ represent
two identical subsets of Σ × Ω, then ρ equals ρʹ, symbolically written as ρ = ρ .́
Perform (a) and (b), given as follows.

	 a.	 Illustrate this definition by five examples in terms of relations over 0ℕ.
	 b.	 Reformulate this definition by using characteristic functions.
	 6.	 Let Σ be a set, and let ρ be a relation on Σ. Then,
	 a.	 If for all a ∈ Σ, aρa, then ρ is reflexive.
	 b.	 If for all a, b ∈ Σ, aρb implies bρa, then ρ is symmetric.
	 c.	 If for all a, b ∈ Σ, (aρb and bρa) implies a = b, then ρ is antisymmetric.
	 d.	 If for all a, b, c ∈ Σ, (aρb and bρc) implies aρc, then ρ is transitive.

Consider relations (i) through (ix), given as follows. For each of them, determine whether it
is reflexive, symmetric, antisymmetric, or transitive.

i.	 ∅
ii.	 {(1, 3), (3, 1), (8, 8)}

iii.	 {(1, 1), (2, 2), (8, 8)}
iv.	 {(x, x)| x ∈ Σ}
v.	 {(x, y)| x, y ∈ Σ, x < y}

vi.	 {(x, y)| x, y ∈ Σ, x ≤ y}
vii.	 {(x, y)| x, y ∈ Σ, x + y = 9}

viii.	 {(x, y)| x, y ∈ Σ, y is divisible by x}
ix.	 {(x, y)| x, y ∈ Σ, x – y is divisible by 3}

	 Note that x is divisible by y if there exists a positive integer z such that x = yz.
	 7.	 Let Σ be a set, and let ρ be a relation on Σ. If ρ is reflexive, symmetric, and transitive, then

ρ is an equivalence relation. Let ρ be an equivalence relation on Σ. Then, ρ partitions Σ into
disjoint subsets, called equivalence classes, so that for each a ∈ Σ, the equivalence class of a is
denoted by [a] and defined as [a] = {b| aρb}.
	 Prove that for all a and b in Σ, either [a] = [b] or [a] ∩ [b] = ∅.

	 8.	 Let Σ be a set, and let ρ be a relation on Σ. If ρ is reflexive, antisymmetric, and transitive,
then ρ is a partial order. If ρ is a partial order satisfying either aρb or bρa, for all a, b ∈ Σ such
that a ≠ b, then ρ is a linear order.
	 Let Σ be a set. Define the relation ρ on power(Σ) as ρ = {(A, B)| A, B ∈ power(Σ), A ⊆ B}
(see Section 1.1 for power(Σ)). Prove that ρ represents a partial order.

	 9 S.	 Prove the following two theorems.

	 Theorem Let Σ be a set, ρ be a relation on Σ, and ρ+ be the transitive closure of ρ. Then,
(i) ρ+ is a transitive relation, and (ii) if ρʹ is a transitive relation such that ρ ⊆ ρʹ, then
ρ+ ⊆ ρ .́

