
IIT KHARAGPUR RESEARCH MONOGRAPH SERIES

STRUCTURAL INTERMETALLICS and Intermetallic Matrix Composites

STRUCTURAL INTERMETALLICS and Intermetallic Matrix Composites

IIT KHARAGPUR RESEARCH MONOGRAPH SERIES

Published Titles:

Structural Intermetallics and Intermetallic Matrix Composites, Rahul Mitra

Digital Geometry in Image Processing, Jayanta Mukhopadhyay, Partha Pratim Das, Samiran Chattopadhyay, Partha Bhowmick, and Biswa Nath Chatterji

Mathematical Techniques for Wave Interaction with Flexible Structures, *Trilochan Sahoo*

Microfluidics and Microscale Transport Processes, edited by Suman Chakraborty

Modeling of Responsive Supply Chain, M.K. Tiwari, B. Mahanty, S. P. Sarmah, and M. Jenamani

Micellar Enhanced Ultrafiltration: Fundamentals & Applications, *Sirshendu De and Sourav Mondal*

STRUCTURAL INTERMETALLICS and Intermetallic Matrix Composites

RAHUL MITRA

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works Version Date: 20150415

International Standard Book Number-13: 978-1-4665-1188-0 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Contents

		gures	
		tions	
1.	Phase	e Equilibria and Structure	1
	1.1	Introduction	1
	1.2	Stability of Intermetallic Phases	
	1.3	Nomenclature of Crystal Structures	
	1.4	Crystal Structures and Phase Diagrams of Silicides	
		1.4.1 Molybdenum Silicides	
		1.4.2 Tungsten Silicides	
		1.4.3 Titanium Silicides	
		1.4.4 Niobium Silicides	
		1.4.5 Chromium Silicides	11
	1.5	Crystal Structure and Phase Diagram of Aluminides	12
		1.5.1 Nickel Aluminides	
		1.5.2 Titanium Aluminides	14
		1.5.3 Iron Aluminides	18
	1.6	Summary	19
	Refer	ences	
2	Math	and of Drococcine	25
2.		nods of Processing	
2.	2.1	Introduction	25
2.		Introduction Ingot Metallurgy Processing	25 26
2.	2.1	Introduction Ingot Metallurgy Processing 2.2.1 Nonequilibrium Solidification	25 26 27
2.	2.1	Introduction Ingot Metallurgy Processing 2.2.1 Nonequilibrium Solidification 2.2.1.1 Rapid Solidification	25 26 27 27
2.	2.1	Introduction Ingot Metallurgy Processing 2.2.1 Nonequilibrium Solidification 2.2.1.1 Rapid Solidification 2.2.1.2 Thermal Spraying	25 26 27 27 29
2.	2.1 2.2	Introduction Ingot Metallurgy Processing 2.2.1 Nonequilibrium Solidification 2.2.1.1 Rapid Solidification 2.2.1.2 Thermal Spraying 2.2.2 Directional Solidification	25 26 27 27 29 30
2.	2.1	Introduction Ingot Metallurgy Processing 2.2.1 Nonequilibrium Solidification 2.2.1.1 Rapid Solidification 2.2.1.2 Thermal Spraying 2.2.2 Directional Solidification Powder Metallurgy Processing	25 26 27 27 29 30 30
2.	2.1 2.2	Introduction Ingot Metallurgy Processing 2.2.1 Nonequilibrium Solidification 2.2.1.1 Rapid Solidification 2.2.1.2 Thermal Spraying 2.2.2 Directional Solidification Powder Metallurgy Processing 2.3.1 Conventional Methods	25 26 27 27 29 30 30 30
2.	2.1 2.2	Introduction Ingot Metallurgy Processing	25 26 27 27 29 30 30 30 31
2.	2.1 2.2	Introduction Ingot Metallurgy Processing 2.2.1 Nonequilibrium Solidification 2.2.1.1 Rapid Solidification 2.2.1.2 Thermal Spraying 2.2.2 Directional Solidification Powder Metallurgy Processing 2.3.1 Conventional Methods 2.3.2 Reactive Consolidation 2.3.3 Mechanical Alloying	25 26 27 27 29 30 30 30 31 35
2.	2.1 2.2	Introduction Ingot Metallurgy Processing 2.2.1 Nonequilibrium Solidification 2.2.1.1 Rapid Solidification 2.2.1.2 Thermal Spraying 2.2.2 Directional Solidification Powder Metallurgy Processing 2.3.1 Conventional Methods 2.3.2 Reactive Consolidation 2.3.3 Mechanical Alloying 2.3.4 Shock Consolidation and Synthesis	25 26 27 27 29 30 30 30 31 35 36
2.	2.1 2.2 2.3	Introduction Ingot Metallurgy Processing 2.2.1 Nonequilibrium Solidification 2.2.1.1 Rapid Solidification 2.2.1.2 Thermal Spraying 2.2.2 Directional Solidification Powder Metallurgy Processing 2.3.1 Conventional Methods 2.3.2 Reactive Consolidation 2.3.3 Mechanical Alloying 2.3.4 Shock Consolidation and Synthesis 2.3.5 Displacement Reaction-Based Synthesis	25 26 27 27 29 30 30 30 31 35 36 36
2.	2.12.22.32.4	 Introduction Ingot Metallurgy Processing 2.2.1 Nonequilibrium Solidification 2.2.1.1 Rapid Solidification 2.2.1.2 Thermal Spraying 2.2.2 Directional Solidification Powder Metallurgy Processing 2.3.1 Conventional Methods 2.3.2 Reactive Consolidation 2.3.3 Mechanical Alloying 2.3.4 Shock Consolidation and Synthesis 2.3.5 Displacement Reaction-Based Synthesis Homogenization and Thermomechanical Processing 	25 26 27 27 29 30 30 30 31 35 36 36 37
2.	 2.1 2.2 2.3 2.4 2.5 	Introduction Ingot Metallurgy Processing 2.2.1 Nonequilibrium Solidification 2.2.1.1 Rapid Solidification 2.2.1.2 Thermal Spraying 2.2.2 Directional Solidification Powder Metallurgy Processing 2.3.1 Conventional Methods 2.3.2 Reactive Consolidation 2.3.3 Mechanical Alloying 2.3.4 Shock Consolidation and Synthesis 2.3.5 Displacement Reaction-Based Synthesis Homogenization and Thermomechanical Processing Summary	25 26 27 27 29 30 30 30 30 31 35 36 36 37 38
	2.1 2.2 2.3 2.4 2.5 Refer	Introduction Ingot Metallurgy Processing 2.2.1 Nonequilibrium Solidification 2.2.1.1 Rapid Solidification 2.2.1.2 Thermal Spraying 2.2.2 Directional Solidification Powder Metallurgy Processing 2.3.1 Conventional Methods 2.3.2 Reactive Consolidation 2.3.3 Mechanical Alloying 2.3.4 Shock Consolidation and Synthesis 2.3.5 Displacement Reaction-Based Synthesis Homogenization and Thermomechanical Processing Summary	25 26 27 27 29 30 30 30 30 31 35 36 36 37 38 39
	2.1 2.2 2.3 2.4 2.5 Refer	Introduction Ingot Metallurgy Processing 2.2.1 Nonequilibrium Solidification 2.2.1.1 Rapid Solidification 2.2.1.2 Thermal Spraying 2.2.2 Directional Solidification Powder Metallurgy Processing 2.3.1 Conventional Methods 2.3.2 Reactive Consolidation 2.3.3 Mechanical Alloying 2.3.4 Shock Consolidation and Synthesis 2.3.5 Displacement Reaction-Based Synthesis Homogenization and Thermomechanical Processing Summary	25 26 27 27 29 30 30 30 30 31 35 36 36 37 38 39
	2.1 2.2 2.3 2.4 2.5 Refer	Introduction Ingot Metallurgy Processing 2.2.1 Nonequilibrium Solidification 2.2.1.1 Rapid Solidification 2.2.1.2 Thermal Spraying 2.2.2 Directional Solidification Powder Metallurgy Processing 2.3.1 Conventional Methods 2.3.2 Reactive Consolidation 2.3.3 Mechanical Alloying 2.3.4 Shock Consolidation and Synthesis 2.3.5 Displacement Reaction-Based Synthesis Homogenization and Thermomechanical Processing Summary	25 26 27 27 29 30 30 30 31 35 36 36 36 37 38 39 45 45

		3.2.1	Antipha	ase Boundaries and Superdislocations	45
			3.2.1.1	Observation of Antiphase Boundaries and	
				Measurement of Fault Energies	
			3.2.1.2	Structure and Energies of Antiphase	
				Boundaries	49
		3.2.2	Dislocat	tion Core and Peierls Stress	50
		3.2.3	Possible	Planar Faults in Intermetallics and	
			Dislocat	tion Dissociation Mechanisms	51
		3.2.4	Relatior	between Dislocation Core Structure and	
			Crystal	Symmetry	53
			3.2.4.1	Dislocations in L1 ₂ Alloys	53
			3.2.4.2	Dislocations in D0 ₂₂ Alloys	55
			3.2.4.3	Dislocations in L1 ₀ Alloys	56
			3.2.4.4	Dislocations in B2 Alloys	57
			3.2.4.5	Dislocations in L2 ₁ and D0 ₃ Structures	58
		3.2.5	Effect of	f Alloying, Elastic Anisotropy, and Bonding	
			on Dislo	ocation-Core Structure	58
		3.2.6	Slip Sys	tems	59
	3.3	Twinr	ning and l	Displacive Transformation	60
	3.4	Tensil	e and Co	mpressive Deformation Behavior	61
	3.5	Creep	and Supe	erplasticity	62
	3.6	Fractu	ıre Behav	ior	63
	3.7	Sumn	nary		66
	Refe	rences.	-		66
1	Ovid	lation E	Cohavior		72
4.	4.1				
	4.1			Oxidation and Oxidation Protection	
	4.4	4.2.1		dynamic Stability of Oxidation Products	
		4.2.2		s of Oxide Scale Growth	
		4.2.3		on of Oxide Scale Grow III	
		4.2.3		aling Ability of Oxide Scale	
	4.3		tions of F	Exposure at High Temperatures	70 80
	4.4			Oxide Scale	
	4.5			tion	
	4.6				
5.	Allo			for Structural Applications	
	5.1				
	5.2	Devel	opment S	trategy	93
	5.3			Current and Futuristic	
		5.3.1		5	
			5.3.1.1 5.3.1.2	Gas Turbine Engines of Aerospace Vehicles Molten-Metal Lances	

7.2.1

		5.3.1.3		
			Sensors	97
		5.3.1.4	Industrial Gas Burners	97
		5.3.1.5	Diesel Engine Glow Plugs	
	5.3.2	Nickel .	Aluminides	
	5.3.3	Titaniu	m Aluminides	99
	5.3.4	Iron Al	uminides	100
5.4	Sumn	nary		101
Refe	rences.			102
6. Silic	ides: P	rocessing	and Mechanical Behavior	107
6.1			,	
6.2	Cryst	al Structu	re-Related Properties	110
6.3				
6.4			havior	
	6.4.1	Fractur	e Toughness	114
		6.4.1.1		
		6.4.1.2	5	
		6.4.1.3	Silicides of W, Ti, and Cr	124
	6.4.2	High-Te	emperature Deformation Behavior of	
			lenum Silicides at Constant Strain Rates	126
		6.4.2.1	Dislocation-Based Deformation	
			Mechanisms in MoSi ₂	126
		6.4.2.2	Yielding and Flow Behavior of MoSi ₂	132
		6.4.2.3	÷	
		6.4.2.4	Effect of Reinforcements	139
	6.4.3	Creep I	Behavior of Molybdenum Silicides	140
		6.4.3.1	MoSi ₂	140
		6.4.3.2	Mo ₃ Si	149
		6.4.3.3	Mo ₅ Si ₃	149
		6.4.3.4	Mo ₅ SiB ₂	151
		6.4.3.5	Mo-Si-B Multiphase Alloys	
	6.4.4	Deform	nation Behavior of Silicides of W, Nb, and C	r 155
		6.4.4.1	WSi ₂	
		6.4.4.2	Niobium Silicides	
		6.4.4.3	CrSi ₂	160
		6.4.4.4	Ti ₅ Si ₃	
6.5				
Refe	rences.	•••••		165
7. Silic	ides: O	xidation	Behavior	181
7.1				
7.2			avior of Molybdenum Silicides	

			7.2.1.1	Oxidation Behavior in the Range of	
				400°C-600°C	183
			7.2.1.2	Oxidation Behavior in the Temperature	
				Range of 600°C–1000°C	184
			7.2.1.3	Oxidation Behavior at Temperatures ≥1000°C	185
			7.2.1.4	Effect of Alloying Elements on Oxidation	
				Behavior	186
		7.2.2	Oxidati	on Behavior of Mo ₅ Si ₃	190
		7.2.3	Oxidati	on Behavior of Mo-Si-B Alloys	191
	7.3	Oxidat		avior of Niobium Silicides	
	7.4			avior of WSi ₂	
	7.5			avior of Ti_5Si_3	
	7.6			avior of Chromium Silicides	
	7.7	Summ	ary		206
	Refer				
8.	Alun	ninides	: Process	ing and Mechanical Behavior	213
	8.1			•	
	8.2	Proces	sing		214
	8.3			ides	
		8.3.1	Ni ₃ Al		218
			8.3.1.1	Dislocation-Based Mechanism and	
				Anomalous Increase in Yield Strength	219
			8.3.1.2	8	
			8.3.1.3		
			8.3.1.4		
		8.3.2	NiAl	1	
			8.3.2.1	Physical Properties	
			8.3.2.2	Mechanical Behavior	
	8.4	Titaniı	um Alum	ninides	
		8.4.1	Al ₃ Ti		
			8.4.1.1	Physical Properties	
			8.4.1.2	Deformation Mechanisms	
			8.4.1.3	Strategies for Improving Ductility	
		8.4.2	TiAl		
			8.4.2.1	Physical Properties	
			8.4.2.2	Microstructure	
			8.4.2.3	Deformation Mechanisms	
			8.4.2.4	Microstructure–Mechanical Property	
				Relationship	235
			8.4.2.5	Effect of Alloying Additions	
		8.4.3	Ti ₃ Al		
		5.1.0	8.4.3.1	Alloying and Phase Composition	
			8.4.3.2	Slip Systems	
			8.4.3.3	Mechanical Behavior	210
			0.1.0.0	THE CHAINER DELIGITION TO COMPANY TANÀNY TAN	410

	8.5	Iron A	luminides	
		8.5.1	Basic Information	
		8.5.2	Environmental Embrittlement	
		8.5.3	Room-Temperature Mechanical Properties	
		8.5.4	Elevated-Temperature Mechanical Properties	
		8.5.5	Effect of Alloying	
		8.5.6	Effect of Dispersion Strengthening	
	8.6	Summa	ary	
	Refer			
9.	Alum	inides:	Oxidation Behavior	
	9.1	Introdu	action	
	9.2	Nickel	Aluminides	
		9.2.1	Ni ₃ Al	276
		9.2.2	NiAl	
	9.3	Titaniu	ım Aluminides	
		9.3.1	Al ₃ Ti	
		9.3.2	TiAl	
		9.3.3	Ti ₃ Al	
	9.4	Iron A	luminides	
		9.4.1	Oxidizing Environment	
		9.4.2	Corrosive Environment (Other than Oxidizing	
			Atmosphere)	
	9.5	Summa	ary	
	Refer	ences	-	

List of Figures

FIGURE 1.1	Schematic illustration of the thermodynamic stability of intermetallic phases (I=stable phase, I'=metastable phase, α and β are solid-solution phases): (a) phase equilibria in the temperature (<i>T</i>)–composition (<i>c</i>) diagram; and (b) the corresponding free energy (G)–composition (<i>c</i>) diagram for true and metastable equilibria at absolute temperature, <i>T</i> ₁
FIGURE 1.2	Plots depicting the variation of enthalpy of formation of binary intermetallic phases with temperature in Ni–Al, Ti–Al, and Fe–Al systems. The data have been taken from the literature
FIGURE 1.3	Schematic illustrations depicting the unit cells of (a) $MoSi_2$ (C11 _b , tP8); (b) Mo_5Si_3 (D8 _m , tI32); (c) Mo_3Si (A15, cP8); and (d) $MoSi_2$ (C40, hP9)
FIGURE 1.4	The Mo-rich section of the ternary isothermal phase diagram of the Mo–Si–B system corresponding to 1600°C. The position of Mo_5SiB_2 in this phase diagram is shown as T_2
FIGURE 1.5	Schematic illustration of the unit cell of Mo ₅ SiB ₂ (D8 ₁ , tI32)
FIGURE 1.6	Schematic illustration of the Ti ₅ Si ₃ unit cell (D8 ₈ , hP9)
FIGURE 1.7	Schematic representation of the Nb–Si–X ternary phase diagram
FIGURE 1.8	Schematic illustrations of the unit cells of (a) NiAl (B2, cP2) and (b) Ni ₃ Al (L1 ₂ , cP4)13
FIGURE 1.9	Schematic illustration of Al_3Ti unit cell: (a) $L1_2$ and (b) $D0_{22}$ 15
FIGURE 1.10	Modified Ti-rich part of the Ti–Al binary phase diagram showing the positions of various intermetallic phases
FIGURE 1.11	Schematic representation of the crystal structures of: (a) α_2 and (b) O phases
FIGURE 1.12	Schematic illustration of the crystal structures of FeAl (B2) and Fe_3Al (D0 ₃)

FIGURE 2.1	Plots showing the change in free energy and heat of formation of MoSi ₂ with temperature33
FIGURE 3.1	A square superlattice unit cell in the two-dimensional lattice of an ordered MN alloy. The location of the antiphase boundary (APB) and the antiphase domain (APD) is shown. The part of the boundary marked x is considered to be nonconservative, as N-type atoms are completely absent. The vector p in the unit cell is a typical APB vector
FIGURE 3.2	Schematic illustration of slip in $\{111\}$ planes leading to formation of APB in the MN_3 superlattice47
FIGURE 3.3	Schematic illustration of three successive {111} planes in the L1 ₂ -structured MN ₃ alloy. This illustration depicts (a) three {111} planes in a perfect lattice; (b) sliding of the top layer in (a) by $b_A = \frac{1}{2}[\overline{101}]$ to produce an APB, causing the formation of incorrect M–M nearest-neighbor bonds (shown using dashed lines); (c) sliding of the top layer in (a) by $b_S = \frac{1}{3}[\overline{211}]$ to cause the formation of a SISF; and (d) sliding of the top layer in (a) by $b_C = \frac{1}{6}[\overline{112}]$ to produce a CSF
FIGURE 3.4	Schematic illustration of a typical Kear–Wisdorf lock in an $L1_2$ -structured intermetallic alloy: superdislocation in dissociated form in an octahedral (111) plane, which has further cross-slipped into the (100) plane. The <i>arrow</i> in the (111) plane shows the direction of glide in the (111) plane
FIGURE 4.1	Plots depicting the variation of free energy per mole of oxygen with absolute temperature for the formation of selected oxides
FIGURE 4.2	Plots depicting the variation of (a) mass gain against temperature for Ti_5Si_3 and (b) variation of ln (mass gain) with ln (temperature) to find values of <i>n</i> and <i>k</i>
FIGURE 4.3	Plots depicting the variation of parabolic rate constants for the growth of selected oxide scales with temperature
FIGURE 4.4	Oxide scale of MoSi ₂ after exposure in air at 1200°C: (a) scanning electron microscopy (SEM) (backscattered electron) image and (b) wavelength-dispersive x-ray map of O

FIGURE 4.5	Plots depicting stepwise mass change with increasing time of exposure of $MoSi_2$ at 500°C	82
FIGURE 4.6	SEM images of the oxide scale formed after exposure at 1150°C for 20 s: (a) top surface showing pores formed due to the vaporization of MoO ₃ (g) and (b) cross section of alloy–oxide interface	83
FIGURE 4.7	Top view of the $MoSi_2$ oxide scale formed on exposure in air at 500°C for 250 h showing the presence of MoO_3 whiskers	86
FIGURE 4.8	Plots depicting severe mass loss in the case of Mo–Si–B alloys during exposure at 700°C for 24 h	87
FIGURE 5.1	Plots depicting the variation of Young's modulus of NiAl, TiAl and Ti ₃ Al with temperature along with data representing typical nickel-based superalloys	93
FIGURE 6.1	SEM image depicting the toughening mechanism in the <i>in situ</i> MoSi ₂ –Al ₂ O ₃ composite (MoSi ₂ –5.5 at.% Al): crack deflection (D), crack bridging (BG), and interface cracking (IC)	115
FIGURE 6.2	SEM image depicting an indentation crack path in 76Mo–14Si–10B alloy, where crack arrest and bridging due to the presence of α-Mo particles are observed. <i>Arrows</i> show α-Mo particles involved in crack bridging	.119
FIGURE 6.3	Load–displacement plot obtained on fracture toughness testing of 76Mo14Si10B alloy	120
FIGURE 6.4	SEM (BSE) images depicting paths of indentation cracks through Nb–Si–Mo alloy, where (a) crack arrest and (b) bridging by the ductile Nb _{ss} phase ligaments are observed. BSE, backscattered electrons; SEM, scanning electron microscopy	123
FIGURE 6.5	Indentation cracking: (a) Ti_5Si_3 , (b) Ti_5Si_3 –20 vol.% TiC composite, and (c) variation of crack deflection frequency with angle	125
FIGURE 6.6	Slip systems observed in $MoSi_2$ single crystals: (a) $\{1\overline{1}0\}^{1/2}(111)$, (b) $\{011\}(100)$, (c) $\{010\}(100)$, (d) $\{023\}(100)$, and (e) $\{0\overline{1}3\}(331)$	130
FIGURE 6.7	Dislocations arranged in low angle boundaries in $MoSi_2$ with an average grain size of 5 μ m after compressive deformation at 1200°C	131

FIGURE 6.8	Stress–strain curves showing yield-point phenomena and serrated plastic flow in polycrystalline $MoSi_2$ with average grain sizes of 5 µm, tested at strain rate of (a) $10^{-3} s^{-1}$ and (b) $10^{-4} s^{-1}$
FIGURE 6.9	Variation of the logarithm of yield stress with logarithm of strain-rate sensitivity for RHP $MoSi_2$ (5 µm grain size) and Starck $MoSi_2$ (27 µm grain size) 134
FIGURE 6.10	Polarized light optical micrograph of MoSi ₂ , showing the location of globular SiO ₂ particles at grain interior and grain boundaries
FIGURE 6.11	Intergranular cracking on softening of amorphous SiO_2 layer during deformation at 1300°C. A diffraction pattern depicting a diffuse halo (arrowed) as evidence of amorphous intergranular film is shown as an inset 136
FIGURE 6.12	Variation of yield stresses of $MoSi_2$ and $MoSi_2$ -Al alloys with temperature at strain rates of 10^{-3} and 10^{-4} s ⁻¹ . Strain rates are shown in parentheses. The yield stresses of single crystals (marked as X in the legend) were obtained in the [0 15 1] orientation. The CRSS corresponds to the $\{1\overline{10}\}(111\}$ slip system
FIGURE 6.13	Comparison of the elevated-temperature yield stress of the MoSi ₂ -based composites with that of MoSi ₂
FIGURE 6.14	Creep behavior of MoSi ₂ with different grain sizes: (a) diffusion creep, (b) dislocation creep, and (c) transition from diffusion to dislocation-creep regime when subjected to incremental loading
FIGURE 6.15	Comparison of creep rates of MoSi ₂ with varying SiO ₂ content and SiC reinforcements added externally or formed by <i>in situ</i> reaction
FIGURE 6.16	Comparison of steady-state creep rates of polycrystalline $MoSi_2$ with grain sizes of 5, 18, and 27 μ m, $MoSi_2$ -20 vol.% SiC composite with matrix grain size of 18 μ m, and $MoSi_2$ -5.5 and 9 at.% Al alloys with matrix grain sizes of 20 μ m and 25 μ m, respectively. The stress exponents are shown next to the grain size 146
FIGURE 6.17	Comparison of steady-state creep rates of polycrystalline $MoSi_2$ and $MoSi_2$ -5.5 at.% Al alloy, as well as single crystals of $MoSi_2$ and $Mo(Si_{.97}Al_{.03})_2$ tested with [0 15 1] and [001] orientations at 1300°C. Single crystals are marked as X 147

FIGURE 6.18	Log–log plots of secondary creep rates against stress for [0 15 1] and [001]-oriented MoSi ₂ , [314]-oriented Mo ₅ Si ₃ , and [021] Mo ₅ SiB ₂ 150
FIGURE 6.19	Comparison of yield strengths of selected orientations of single crystals of $MoSi_2$, WSi_2 , Ti_5Si_3 , $NbSi_2$, and $CrSi_2$ 161
FIGURE 6.20	Comparison of the secondary creep rates of polycrystalline $MoSi_2$, Ti_5Si_3 , Nb_5Si_3 , and Cr_3Si at $1200^{\circ}C$ 162
FIGURE 6.21	Typical serrations in the flow curve of polycrystalline Ti_5Si_3 compression tested at 1200°C with a strain rate of 10^{-3} s ⁻¹
FIGURE 6.22	Comparison of the secondary creep rates of Ti_5Si_3 having average grain size of 5 µm and in the range of 20–30 µm and the effects of alloying with Al or dispersion of TiB_2 reinforcement particles
FIGURE 7.1	Plots showing the variation of (a) mass gain with time of exposure, and (b) logarithm of mass gain with that of time, for $MoSi_2$ and $MoSi_2$ –SiC composite at 500°C183
FIGURE 7.2	Plots showing the variation of mass gain with time of exposure for $MoSi_2$ and $MoSi_2$ –Al alloys at 1200°C
FIGURE 7.3	Oxide scale of the MoSi ₂ –5.5 at.% Al alloy after exposure in air at 1200°C: (a) SEM (back-scatter electron [BSE]) image, and WDS x-ray maps of: (b) Si, (c) Al, and (d) O
FIGURE 7.4	Plots showing (a) the change in mass of the 76Mo–14Si–10B alloy isothermally exposed for 24 h in the temperature range of 500°C–1300°C and (b) mass change in initial stages of isothermal exposure at 1150°C195
FIGURE 7.5	Oxide scale of the 76Mo–14Si–10B alloy subjected to cyclic exposure at 1150°C with air cooling at 1 h intervals. Here, a protective scale of B_2O_3 –Si O_2 is observed: SEM (SE) images of (a) top surface and (b) alloy–oxide cross section, as well as energy-dispersive spectroscopy (EDS) x-ray maps of (c) O, (d) Si, and (e) Mo
FIGURE 7.6	SEM (BSE) images depicting the morphology of the top surface of the oxide scale formed on the 76Mo–14Si–10B alloy after 40 s, 60 s, 120 s of exposure (a) and BSE images of the oxide-alloy cross-section (b) 197
FIGURE 7.7	SEM (BSE) images depicting the morphology of the top surface of the oxide scale formed on the

	76Mo–14Si–10B alloy after 240 s, 480 s, 3600 s of exposure (a) and BSE images of the oxide-alloy cross-section (b)	198
FIGURE 7.8	SEM (SE) micrograph of the oxide scale formed over the 76Mo–14Si–10B alloy after 24 h of exposure at 1150°C. It shows the presence of ripple-like features on the surface, which suggest the viscous flow of borosilicate glass	199
FIGURE 7.9	Plot of scale thickness (<i>S</i>) against duration of exposure (<i>t</i>) in the course of the transient-stage oxidation of the Mo76Si14B10 alloy (<i>Inset</i> : Plots showing log <i>S</i> vs. log <i>t</i> with the best-fit line used to calculate the exponent)	199
FIGURE 7.10	Plots depicting the kinetics of isothermal oxidation during exposure for 24 h at 1000°C for alloys with compositions: Nb–19Si–5Mo (Alloy A), Nb–18Si–26Mo (Alloy B), Nb–13Si–4Mo (Alloy C), and Nb–12Si–15Mo (Alloy D)	201
FIGURE 7.11	SEM (BSE) image of the cross section of the oxide scale formed on the Nb–12Si–15Mo alloy due to exposure at 1150°C for 24 h. The SiO ₂ layer at the metal–oxide interface is shown with a pair of arrows. Transverse cracks (single arrow) are visible in the oxide scale	201
FIGURE 7.12	SEM (SE) images of the top surfaces of oxide scales formed on (a) Nb–19Si–5Mo (Alloy A), and (b) Nb–18Si–26Mo (Alloy B)	202
FIGURE 7.13	Oxide scale formed on Ti_5Si_3 on exposure at 1200°C for 80 h: (a) SEM (BSE) image and EDS x-ray maps of (b) Ti, (c) Si, and (d) O	204
FIGURE 7.14	Plots of mass gain against temperature for $MoSi_2$ and Ti_5Si_3 subjected to cyclic exposure at 1200°C	205
FIGURE 8.1	Schematic illustration of splitting of $\langle 110 \rangle$ superdislocation into superpartials separated by SISF in L1 ₂ -structured Ni ₃ Al	220
FIGURE 8.2	Plots of yield strength of Ni ₃ Al-based alloys against temperature depicting anomalous behavior using published data	221
FIGURE 8.3	Schematic illustration of slip vectors in B2-structured NiAl	229

List of Figures

FIGURE 8.4	Schematic illustration of the slip vectors in L1 ₀ -structured TiAl	.235
FIGURE 8.5	Plots depicting the variation of 100 h rupture strength with temperature for γ -TiAl-based alloys with duplex and fully lamellar structures	. 239
FIGURE 8.6	SEM micrographs of Ti–22–25Al–(22–7)Nb alloy depicting typical microstructures containing O + B2 phase mixture with the following morphologies: (a) equiaxed O along with aged B2; (b) transformed B2 showing α_2 laths	.244
FIGURE 8.7	Schematic illustration of slip vectors in (a) the α_2 phase (Ti ₃ Al) and (b) the O2 phase (Ti ₂ AlNb)	. 245
FIGURE 8.8	Plots showing the variation of elongation of binary Fe-aluminide alloy with Al concentration in vacuum, oxygen, and air	.250
FIGURE 8.9	Plots depicting the variation of yield strength against temperature for Fe-aluminides with different Al concentrations	. 252
FIGURE 8.10	1000 h rupture strength of Fe_3Al and $FeAl$ with or without dispersion strengthening at (a) 600°C and (b) 700°C	.255
FIGURE 9.1	Schematic illustration of oxide scale formed on an aluminide-based intermetallic alloy showing: (a) diffusion paths of metallic cations and oxygen anions; (b) decohesion and buckling of the oxide scale due to formation of voids at the alloy–oxide interface	. 276
FIGURE 9.2	Bar charts showing mass gain by TiAl and TiAl–5 wt.% X alloys (X=Nb, Mo, Cr, and V) on exposure at 900°C for 100 h	.280
FIGURE 9.3	Bar charts showing mass gain by TiAl alloyed with Nb, Mo, or both along with other elements, drawn using data from literature	.280

Preface

Significant research has been carried out on structural intermetallics for several decades, involving both experimental and theoretical approaches. As a result, the structure-property relations of these materials are reasonably well understood, which has led to a road map for further research to develop high-performance materials for several diverse engineering applications. Work is in progress in many parts of the world to develop selected multicomponent intermetallic alloys based on silicides and aluminides for specific applications, particularly at elevated temperatures and in different types of extreme environments. Of course, there are excellent reviews and book chapters on many of these intermetallics. This monograph has been drafted as a part of the Diamond Jubilee Series of the Indian Institute of Technology Kharagpur. The author has been working on silicides for two decades and has also taught topics related to intermetallic alloys for a postgraduate course on advanced materials. A student learner often finds it difficult to grasp the complexities of the structure of intermetallics and their effect on various physical and mechanical properties. Keeping the requirement of students in mind, the first four chapters of this monograph are devoted to necessary fundamental aspects including thermodynamic principles, phase diagrams and crystal structures, processing methods, deformation and fracture mechanisms of ordered intermetallics, and oxidation behavior with mechanisms for protection against environmental degradation. The fifth chapter focuses on possible applications on the basis of the attractive properties of aluminides and silicides. The last four chapters contain exhaustive reviews of the existing literature on selected structural silicides and aluminides. The contents of this monograph are expected to be helpful to students interested in learning about intermetallics, as well as professionals beginning their research in this area.

The author would like to thank Professor K. K. Ray and Professor S. K. Roy, senior colleagues of his department, for their encouragement to write this monograph. The assistance received from Dr. Monali Ray, a postdoctoral fellow in my research group, in preparing the reference lists for different chapters in a very short time is gratefully acknowledged. The author owes a lot to all his students and collaborators for their contributions in extending my understanding of the subject. The author would also like to thank Dr. Gagandeep Singh and Ms. Marsha Pronin, editors at Taylor and Francis, for their valuable guidance during preparation of the manuscript. This monograph would not have been possible without the constant support and encouragement received from his wife, Mrs. Barnali Mitra, and daughter, Miss Rituparna Mitra, as well as the blessings of his parents, Mr. Paritosh Kumar Mitra and Mrs. Smrity Rani Mitra.

Rahul Mitra

Kharagpur, India

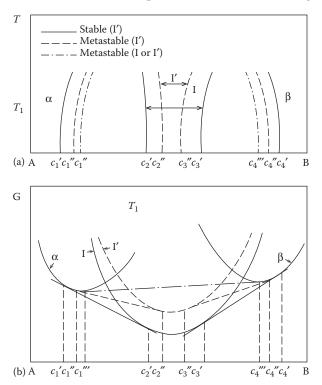
Abbreviations

APB	Antiphase boundary		
APD	Antiphase domain		
BDTT	Brittle-to-ductile transition temperature		
CRSS	Critical resolved shear stress		
CSF	Complex stacking fault		
CSL	Coincidence site lattice		
СТ	Compact tension		
CTE	Coefficient of thermal expansion		
DS	Directionally solidified		
EAM	Embedded atom method		
HIP	Hot isostatically pressed		
HP	Hot pressed		
KW	Kear–Wilsdorf		
LPPS	Low-pressure plasma spraying		
MA	Mechanical alloying/mechanically alloyed		
PM	Powder metallurgy		
Poly	Polycrystalline		
RT	Room temperature		
SC	Single crystal		
SEM	Scanning electron microscope		
SENB	Single-edge notch bend		
SHS	Self-propagating high-temperature synthesis		
SISF	Superlattice intrinsic stacking fault		
TEM	Transmission electron microscope		
UHV	Ultrahigh vacuum		
WB TEM	Weak-beam transmission electron microscopy		
	······································		

1

Phase Equilibria and Structure

1.1 Introduction


In many of the binary equilibrium phase diagrams for alloys, new phases are found at intermediate concentrations and their range of existence does not extend to pure components. Either these phases are line compounds or they are characterized by their nonstoichiometric composition and extended range of compositions. The line compounds with a fixed ratio of metallic components are often called *intermetallic compounds*. This terminology is appropriate only for stoichiometric compositions. It is not suitable for alloys with nonstoichiometric or extended range of compositions, and therefore such materials are referred to as intermetallic phases or alloys.

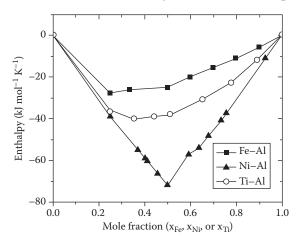
For substantial or complete solid solubility, the Hume-Rothery rules need to be satisfied: (i) the difference of atomic radii should not exceed 15%; (ii) the difference of electronegativity (chemical affinity) should be small; (iii) the crystal structures of solute and solvent must match; and (iv) the number of valence electrons should not be very different. The formation of intermetal-lic phases is preferred when the aforementioned rules are not satisfied. For example, both gold and copper have a face-centered cubic (fcc) structure, but the difference between their lattice constants is \approx 12.8%, which promotes the formation of intermetallics in the Cu–Au system.

The formation and microstructural evolution of intermetallics depend on their thermodynamic stability. Very often, metastable phases with inhomogeneous compositions are formed through solidification, and suitable heat treatment is required for the evolution of equilibrium phases. For desirable mechanical properties or for carrying out forming operations, it may be necessary to stabilize desirable metastable phases through the addition of suitable alloying elements. Furthermore, the mechanical properties of the intermetallics are strongly dependent on their crystal structures. Hence, knowledge of phase equilibria along with crystal structures is necessary to understand the processing–structure–property relations of various binary and multicomponent intermetallic alloys.

1.2 Stability of Intermetallic Phases

A reduction of the Gibbs free energy of the system provides the driving force for the formation of intermetallics. The stability of the intermetallic phase depends not only on the reduction of free energy due to its formation but also on the free energies of the phases in equilibrium with the intermetallic phase. An example of a two-component system (A–B) is shown in Figure 1.1a.¹ In this system, α and β are solid-solution phases along with a stable intermetallic, I, and a metastable intermetallic, I'. In Figure 1.1b, the Gibbs free energies of the phases present at temperature *T* are plotted as a function of atomic fraction, $c = c_{\rm B}$.¹ For the phases coexisting in equilibrium, the first derivatives of the Gibbs free energy (dG/dc) are equal, such that the chemical potentials or partial molal free energies are equal. Thus, common tangents can be drawn to G–*c* curves for the phases in equilibrium, as shown in Figure 1.1b. The stable intermetallic phase exists over the homogeneity range

FIGURE 1.1


Schematic illustration of the thermodynamic stability of intermetallic phases (I=stable phase, I' = metastable phase, α and β are solid-solution phases): (a) phase equilibria in the temperature (*T*)–composition (*c*) diagram; and (b) the corresponding free energy (G)–composition (*c*) diagram for true and metastable equilibria at absolute temperature, *T*₁.

between c_2' and c_3' . The atomic fractions of the phases α and β coexisting with I have compositions of c_1' and c_4' , respectively. The metastable intermetallic phase, I', exists over the narrower homogeneity range c_2'' to c_3'' . The atomic fractions of the phases coexisting with I' are the phases α and β , with compositions of c_1'' and c_4'' , respectively.

The formation of ordered solid solutions is preferred in a binary alloy system if the bonding between unlike constituents is stronger than that between like atoms. In such cases, each atom tries to have the maximum number of unlike nearest neighbors. This is the example of a regular solution with large negative exchange energy²:

$$H_0 = H_{\rm AB} - \frac{(H_{\rm AA} + H_{\rm BB})}{2} \ll 0 \tag{1.1}$$

where H_{AB} , H_{AA} , and H_{BB} are the heats of formation of A–B, A–A, and B–B bonds, respectively. The heat of formation in the case of a binary intermetallic alloy system (such as Ni–Al or Fe–Al) varies with its composition, increasing to a maximum value and then decreasing. The variation of enthalpy with concentration for binary Ni-, Ti-, and Fe-aluminides is plotted in Figure 1.2 on the basis of the experimental data.^{3–7} The heat of formation of intermetallics is usually determined using experiments based on solution calorimetry with the help of high-temperature calorimeters specially designed for such experiments.⁸ First, the intermetallic alloy is dissolved in a liquid metal used

FIGURE 1.2

Plots depicting the variation of enthalpy of formation of binary intermetallic phases with temperature in Ni–Al, Ti–Al, and Fe–Al systems. The data have been taken from the literature. (From Desai, P. D., *J Phys. Chem. Ref. Data*, 16, 1, 109–124, 1987; Kubashewski, O. and W. A. Dench, *Acta Metall.*, 3, 339–346, 1955; Nash, P. and O. Kleppa, *J. Alloys Compd.*, 321, 228– 231, 2001; Huang, W. and Y. A. Chang, *Intermetallics*, 6, 487–498, 1998; Samokhval, V. V., et al., *Russ. J. Phys. Chem.*, 145, 1174, 1971.)

as a solvent, and the heat of solution is determined. Subsequently, the heat of solution of the unreacted elemental mixture is measured. The difference between these two heats of solution provides the heat of formation of the intermetallic phase.

For stoichiometric intermetallic compositions, strictly periodic arrangements of atoms are attained. In the case of an intermetallic phase, AB, with the composition $c_A = 0.5$ and an ordered body-centered cubic (bcc) structure, the body-centered and corner positions of a unit cell are occupied by atoms of A and B, respectively, or vice versa. In other words, the ordered bcc unit cell comprises two simple cubic sublattices. If each sublattice site is occupied by only one type of atom, that is, either A or B, each A atom will have a B atom as its nearest neighbor.

1.3 Nomenclature of Crystal Structures

Two types of notation, Strukturbericht and Pearson's symbols, are normally used for the nomenclature of crystal structures of different intermetallic phases. Strukturbericht symbols are a partly systematic method for specifying the structure of a crystal. Here, the structures named A are monatomic (either X or Y, e.g., Al and Fe), Bs are diatomic with equal numbers of atoms of each type (XY, e.g., NaCl, NiAl, and FeAl), Cs have a 2:1 atomic ratio (X₂Y or XY_2 , e.g., MoSi₂ and NbSi₂), D0s are 3:1 (XY_3 or X_3Y , e.g., Al₃Ti and Fe₃Al), E and H are used for perovskite and spinel structures, respectively, and Ls represent ordered cubic structures. It is customary to write the aformentioned structure notations with examples of real materials. A1 (fcc), A2 (bcc), A3 (hexagonal close-packed [hcp]), A4 (diamond), and A9 (graphite) are some examples of monatomic phases. The only example of A with a diatomic composition is the A15 structure, and the examples of intermetallic phases having this structure are Cr₃Si and Mo₃Si. Examples of diatomic phases are the B1 (NaCl), B2 (CsCl), B3 (zinc blende), and B11 (CuTi) structures. Similarly, typical C-type structures are C11_b (MoSi₂), C14 (Laves-MgZn₂), C49 (ZrSi₂), etc., whereas typical D-type structures are D0₁₁ (Fe₃C, cementite), D0₂₂ (Al₃Ti), D0₂₃ (Al₃Zr), etc. Some of the L-type structures are L1₀ (AuCu), L1₁ (CuPt), L1₂ (Cu₃Au), etc.

The crystal structures of the intermetallics can be any of the seven Bravais lattices: cubic (c), hexagonal and rhombohedral (h), tetragonal (t), orthorhombic (o), monoclinic (m), and triclinic (a). The unit cells with each of these crystal structures can further be classified as primitive (P), body centered (I), face centered (F), side-face centered or base centered (S), and rhombohedral (R). Fourteen possible Bravais lattices are represented by the following notations: primitive cubic (cP), face-centered cubic (cF), body-centered cubic (cI), rhombohedral hexagonal (hR), primitive hexagonal (hP), primitive tetragonal (tP), body-centered tetragonal (tI), primitive orthorhombic

(oP), body-centered orthorhombic (oI), face-centered orthorhombic (oF), side-centered orthorhombic (oS), primitive monoclinic (mP), side-centered monoclinic (mS), and primitive triclinic (aP). Besides the nature of the atomic arrangement, the number of atoms per unit cell is also included in the notation for a complete description of the unit cell. For example, the notation for the structure of any ordered fcc alloy can be written as cP4, as there are four atoms in its unit cell. In a similar manner, a body-centered, tetragonal-structured unit cell with eight atoms can be referred to as tI8.

1.4 Crystal Structures and Phase Diagrams of Silicides

The major silicide phases of interest for high-temperature structural applications are drawn from the following binary phase equilibrium systems: Mo– Si, W–Si, Ti–Si, Nb–Si, and Cr–Si. The crystal structures and lattice constants of different silicide-based intermetallics are shown in Table 1.1.

1.4.1 Molybdenum Silicides

The binary Mo–Si phase diagram shows the presence of stoichiometric compounds with compositions Mo₃Si and MoSi₂.⁹ On the other hand, Mo₅Si₃ has a homogeneity range of 3 at.% Si. While MoSi₂ has a body-centered tetragonal (bct) structure (C11_b, tI8) with eight atoms in the unit cell (Figure 1.3a), the tetragonal unit cell of Mo₅Si₃ has 32 atoms (20 Mo atoms and 12 atoms of Si, $D8_m$, tI32) (Figure 1.3b).¹⁰ Mo₃Si has a cubic structure (A15, cP8) comprising eight atoms in its unit cell, with six atoms of Mo and eight atoms of Si (Figure 1.3c). The bct structure of $MoSi_2$ has a fixed c/a ratio of 2.452 and appears similar to three bcc unit cells, stacked one on top of another with the body-centered site occupied by the atom of Mo or Si, alternately. It has been shown by Francwicz¹¹ that the c/a ratio of approximately 2.45 remains unchanged with minor alloying of tetragonal-structured MoSi₂, and is essential for the stability of C11_b crystal structure. Alloying with transition-metal elements such as Nb, Ti, and Cr, having an atomic radius and an electronic structure close to those of Mo, substitutes Mo sites, while alloying elements such as Al with atomic radius comparable to Si occupy the Si sublattice sites. Alloying MoSi₂ with other elements to an extent that exceeds the limit of 3 at.% has been observed to affect the stability of the bct structure.

MoSi₂ has a hexagonal structure (C40, hP9) (Figure 1.3d) at high temperature (1900°C). The lattice vectors of Mo(Si,Al)₂ formed on alloying with Al in excess of 3 at.% also possess C40 structure.^{12–14} Interestingly, the *c/a* ratio for the perfect hexagonal arrangement is $6^{1/2}$ =0.2449 nm,¹⁵ which is very close to that of the C11_b structure (*c/a*=0.2452 nm). The [001], ½[111], ½[331], and [110] directions in the C11_b (110) plane are equivalent to [0110], 1/3[1120], [0110],

		Structure and	Lattice
Silicides	Crystal Structure	Space Group	Parameters (nm)
MoSi ₂	Body-centered tetragonal	C11 _b (tI6), I4/mmm	a=0.3202
			c = 0.7845
Mo ₅ Si ₃	Body-centered tetragonal	D8 _m (tI32), I4/mcm	a = 0.959
			c = 0.487
Mo ₃ Si	Cubic	A15 (cP8)	a=0.4892
		Pm3n	
Mo ₅ SiB ₂	Body-centered tetragonal	D8 ₁ (tI32), I4/mcm	a=0.6013
			c=1.103
Mo(Si,Al) ₂	Hexagonal	C40 (hP9), P6 ₂ 22	a=4.644
			c=6.548
WSi ₂	Body-centered tetragonal	C11 _b (tI6), I4/mmm	a=0.3211
			c = 0.7868
Ti ₅ Si ₃	Hexagonal	D8 ₈ (hP16), I4/mcm	a = 0.7444
			c=0.5143
NbSi ₂	Hexagonal	C40 (hP9)	a=4.7971
		P6 ₂ 22	c=6.592
Nb ₅ Si ₃	Body-centered tetragonal	α: D8 ₁	α phase:
		(tI32)	a=0.656
			b = 1.187
		$\beta: D8_m$	β phase:
		I4/mcm	a = 1.0
			b = 0.507
CrSi ₂	Hexagonal	C40 (hP9)	a=0.4428
		P6 ₂ 22	c=0.6363

TABLE 1.1

Crystal Structure and Lattice Constants of Silicides

Source: Mitra, R., Inter. Mater. Rev. 51, 1, 13-64, 2006.

and 1/3[2110], respectively, in the C40 (0001) plane. While the C11_b structure is characterized by ABAB... type stacking along the *c* axis, the C40 lattice shows ABCABC... type stacking. Hence, a stacking fault in the (110) plane of the C11_b lattice would lead to the creation of localized C40-type structure.

The tetragonal structure of Mo_5Si_3 is quite different from that of $MoSi_2$ (compare Figure 1.3a and b), as the former material exhibits the following characteristics:¹⁶ (i) the value of *a* (lattice parameter) is greater than *c* such that $a/c \approx 2$; (ii) close-packed planes are absent; and (iii) the -Si-Mo-Si- chains are along the [100] and [010] directions, while the -Mo-Mo- and -Si-Si- chains are along the [001] direction. In $MoSi_2$, the close-packed planes and directions are distinct, and the -Si-Mo-Si- chains in $MoSi_2$ are along the [001] direction, while the -Mo-Mo and -Si-Si- chains are along the [100] and [010] direction containing the -Si-Mo-Si- chain is believed to be stronger and more directional compared with either Mo-Mo or Si-Si bonds.

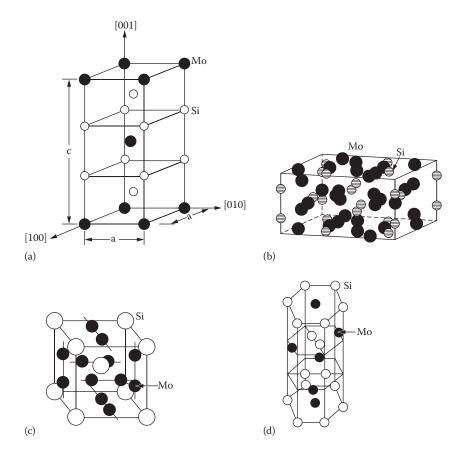
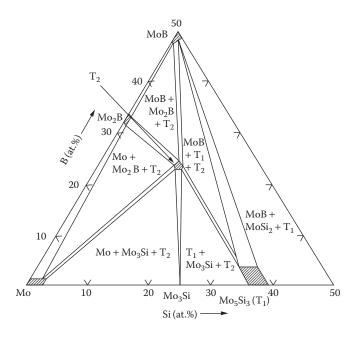
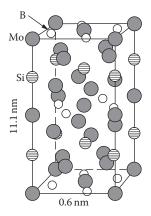



FIGURE 1.3


Schematic illustrations depicting the unit cells of (a) $MoSi_2$ (C11_b, tP8); (b) Mo_5Si_3 (D8_m, tI32); (c) Mo_3Si (A15, cP8); and (d) $MoSi_2$ (C40, hP9).

The Mo-rich section of the ternary isothermal phase diagram¹³ of the Mo– Si–B system corresponding to 1600°C is shown in Figure 1.4. Mo–Si–B ternary alloys can be designed to have the optimum volume fractions of α -Mo, Mo₃Si, and Mo₅SiB₂ phases. All three phases have a nearly fixed composition with a limited solubility for other elements and hence provide microstructural stability at high temperatures. The α -Mo phase has a bcc structure with the solubility for Si and B atoms being 3 and <1 at.%, respectively, while the Mo₃Si possesses a single-phase composition close to 76Mo–24Si (at.%).¹⁷ On the other hand, Mo₅SiB₂ possesses a bct structure (D8₁, tI32) with 32 atoms in the unit cell, comprising 20 atoms of Mo, 4 atoms of Si, and 8 atoms of B (Figure 1.5). In the unit cell of Mo₅SiB₂, three layers can be identified, the first comprising only Mo atoms, the second having only Si atoms, and the third having a mixture of Mo and Si atoms. It is interesting to note that the Mo-nearest neighbors

FIGURE 1.4

The Mo-rich section of the ternary isothermal phase diagram of the Mo–Si–B system corresponding to 1600°C. The position of Mo_5SiB_2 in this phase diagram is shown as T_2 .

FIGURE 1.5

Schematic illustration of the unit cell of Mo₅SiB₂ (D8₁, tI32).

of the Mo sites in the unit cell are in bcc arrangement, which implies that the solubility of transition-metal atoms in Mo₅SiB₂ is similar to that in the bcc-Mo. The coefficient of thermal expansion anisotropy (α_c/α_a) of Mo₅SiB₂ has been found to be 1.4 at 500°C,¹⁸ which is significantly lower than that (\approx 2.2) of Mo₅Si₃.¹⁶