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1
Phase Equilibria and Structure

1.1 Introduction

In many of the binary equilibrium phase diagrams for alloys, new phases 
are found at intermediate concentrations and their range of existence does 
not extend to pure components. Either these phases are line compounds or 
they are characterized by their nonstoichiometric composition and extended 
range of compositions. The line compounds with a fixed ratio of metallic 
components are often called intermetallic compounds. This terminology is 
appropriate only for stoichiometric compositions. It is not suitable for alloys 
with nonstoichiometric or extended range of compositions, and therefore 
such materials are referred to as intermetallic phases or alloys.

For substantial or complete solid solubility, the Hume-Rothery rules need 
to be satisfied: (i) the difference of atomic radii should not exceed 15%; (ii) the 
difference of electronegativity (chemical affinity) should be small; (iii) the 
crystal structures of solute and solvent must match; and (iv) the number of 
valence electrons should not be very different. The formation of intermetal-
lic phases is preferred when the aforementioned rules are not satisfied. For 
example, both gold and copper have a face-centered cubic (fcc) structure, but 
the difference between their lattice constants is ≈12.8%, which promotes the 
formation of intermetallics in the Cu–Au system.

The formation and microstructural evolution of intermetallics depend on 
their thermodynamic stability. Very often, metastable phases with inhomo-
geneous compositions are formed through solidification, and suitable heat 
treatment is required for the evolution of equilibrium phases. For desirable 
mechanical properties or for carrying out forming operations, it may be 
necessary to stabilize desirable metastable phases through the addition of 
suitable alloying elements. Furthermore, the mechanical properties of the 
intermetallics are strongly dependent on their crystal structures. Hence, 
knowledge of phase equilibria along with crystal structures is necessary to 
understand the processing–structure–property relations of various binary 
and multicomponent intermetallic alloys.
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1.2 Stability of Intermetallic Phases

A reduction of the Gibbs free energy of the system provides the driving 
force for the formation of intermetallics. The stability of the intermetallic 
phase depends not only on the reduction of free energy due to its formation 
but also on the free energies of the phases in equilibrium with the inter-
metallic phase. An example of a two-component system (A–B) is shown in 
Figure 1.1a.1 In this system, α and β are solid-solution phases along with a sta-
ble intermetallic, I, and a metastable intermetallic, I′. In Figure 1.1b, the Gibbs 
free energies of the phases present at temperature T are plotted as a function 
of atomic fraction, c = cB.1 For the phases coexisting in equilibrium, the first 
derivatives of the Gibbs free energy (dG/dc) are equal, such that the chemi-
cal potentials or partial molal free energies are equal. Thus, common tan-
gents can be drawn to G–c curves for the phases in equilibrium, as shown in 
Figure 1.1b. The stable intermetallic phase exists over the homogeneity range 
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Metastable (I′)
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I′
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T1

T1
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FIGURE 1.1
Schematic illustration of the thermodynamic stability of intermetallic phases (I = stable phase, 
I′ = metastable phase, α and β are solid-solution phases): (a) phase equilibria in the temperature 
(T)–composition (c) diagram; and (b) the corresponding free energy (G)–composition (c) dia-
gram for true and metastable equilibria at absolute temperature, T1.
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between c2′ and c3′. The atomic fractions of the phases α and β coexisting with 
I have compositions of c1′ and c4′, respectively. The metastable intermetallic 
phase, I′, exists over the narrower homogeneity range c2″ to c3″. The atomic 
fractions of the phases coexisting with I′ are the phases α and β, with compo-
sitions of c1″ and c4″, respectively.

The formation of ordered solid solutions is preferred in a binary alloy sys-
tem if the bonding between unlike constituents is stronger than that between 
like atoms. In such cases, each atom tries to have the maximum number of 
unlike nearest neighbors. This is the example of a regular solution with large 
negative exchange energy2:

 
H H H H

0 2
0= −

+( )
AB

AA BB


 
(1.1)

where HAB, HAA, and HBB are the heats of formation of A–B, A–A, and B–B 
bonds, respectively. The heat of formation in the case of a binary intermetal-
lic alloy system (such as Ni–Al or Fe–Al) varies with its composition, increas-
ing to a maximum value and then decreasing. The variation of enthalpy with 
concentration for binary Ni-, Ti-, and Fe-aluminides is plotted in Figure 1.2 
on the basis of the experimental data.3–7 The heat of formation of intermetal-
lics is usually determined using experiments based on solution calorimetry 
with the help of high-temperature calorimeters specially designed for such 
experiments.8 First, the intermetallic alloy is dissolved in a liquid metal used 
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FIGURE 1.2
Plots depicting the variation of enthalpy of formation of binary intermetallic phases with 
temperature in Ni–Al, Ti–Al, and Fe–Al systems. The data have been taken from the liter-
ature. (From Desai, P. D., J Phys. Chem. Ref. Data, 16, 1, 109–124, 1987; Kubashewski, O. and 
W. A. Dench, Acta Metall., 3, 339–346, 1955; Nash, P. and O. Kleppa, J. Alloys Compd., 321, 228–
231, 2001; Huang, W. and Y. A. Chang, Intermetallics, 6, 487–498, 1998; Samokhval, V. V., et al., 
Russ. J. Phys. Chem., 145, 1174, 1971.)
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as a solvent, and the heat of solution is determined. Subsequently, the heat 
of solution of the unreacted elemental mixture is measured. The difference 
between these two heats of solution provides the heat of formation of the 
intermetallic phase.

For stoichiometric intermetallic compositions, strictly periodic arrange-
ments of atoms are attained. In the case of an intermetallic phase, AB, with 
the composition cA = 0.5 and an ordered body-centered cubic (bcc) structure, 
the body-centered and corner positions of a unit cell are occupied by atoms 
of A and B, respectively, or vice versa. In other words, the ordered bcc unit 
cell comprises two simple cubic sublattices. If each sublattice site is occupied 
by only one type of atom, that is, either A or B, each A atom will have a B 
atom as its nearest neighbor.

1.3 Nomenclature of Crystal Structures

Two types of notation, Strukturbericht and Pearson’s symbols, are normally 
used for the nomenclature of crystal structures of different intermetallic 
phases. Strukturbericht symbols are a partly systematic method for specify-
ing the structure of a crystal. Here, the structures named A are monatomic 
(either X or Y, e.g., Al and Fe), Bs are diatomic with equal numbers of atoms of 
each type (XY, e.g., NaCl, NiAl, and FeAl), Cs have a 2:1 atomic ratio (X2Y or 
XY2, e.g., MoSi2 and NbSi2), D0s are 3:1 (XY3 or X3Y, e.g., Al3Ti and Fe3Al), E and 
H are used for perovskite and spinel structures, respectively, and Ls represent 
ordered cubic structures. It is customary to write the aformentioned structure 
notations with examples of real materials. A1 (fcc), A2 (bcc), A3 (hexagonal 
close-packed [hcp]), A4 (diamond), and A9 (graphite) are some examples of 
monatomic phases. The only example of A with a diatomic composition is 
the A15 structure, and the examples of intermetallic phases having this struc-
ture are Cr3Si and Mo3Si. Examples of diatomic phases are the B1 (NaCl), B2 
(CsCl), B3 (zinc blende), and B11 (CuTi) structures. Similarly, typical C-type 
structures are C11b (MoSi2), C14 (Laves—MgZn2), C49 (ZrSi2), etc., whereas 
typical D-type structures are D011 (Fe3C, cementite), D022 (Al3Ti), D023 (Al3Zr), 
etc. Some of the L-type structures are L10 (AuCu), L11 (CuPt), L12 (Cu3Au), etc.

The crystal structures of the intermetallics can be any of the seven Bravais 
lattices: cubic (c), hexagonal and rhombohedral (h), tetragonal (t), orthorhom-
bic (o), monoclinic (m), and triclinic (a). The unit cells with each of these 
crystal structures can further be classified as primitive (P), body centered 
(I), face centered (F), side-face centered or base centered (S), and rhombo-
hedral (R). Fourteen possible Bravais lattices are represented by the follow-
ing notations: primitive cubic (cP), face-centered cubic (cF), body-centered 
cubic (cI), rhombohedral hexagonal (hR), primitive hexagonal (hP), primi-
tive tetragonal (tP), body-centered tetragonal (tI), primitive orthorhombic 
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(oP), body-centered orthorhombic (oI), face-centered orthorhombic (oF), 
side-centered orthorhombic (oS), primitive monoclinic (mP), side-centered 
monoclinic (mS), and primitive triclinic (aP). Besides the nature of the atomic 
arrangement, the number of atoms per unit cell is also included in the nota-
tion for a complete description of the unit cell. For example, the notation 
for the structure of any ordered fcc alloy can be written as cP4, as there are 
four atoms in its unit cell. In a similar manner, a body-centered, tetragonal-
structured unit cell with eight atoms can be referred to as tI8.

1.4 Crystal Structures and Phase Diagrams of Silicides

The major silicide phases of interest for high-temperature structural applica-
tions are drawn from the following binary phase equilibrium systems: Mo–
Si, W–Si, Ti–Si, Nb–Si, and Cr–Si. The crystal structures and lattice constants 
of different silicide-based intermetallics are shown in Table 1.1.

1.4.1 Molybdenum Silicides

The binary Mo–Si phase diagram shows the presence of stoichiometric com-
pounds with compositions Mo3Si and MoSi2.9 On the other hand, Mo5Si3 has 
a homogeneity range of 3 at.% Si. While MoSi2 has a body-centered tetrago-
nal (bct) structure (C11b, tI8) with eight atoms in the unit cell (Figure 1.3a), 
the tetragonal unit cell of Mo5Si3 has 32 atoms (20 Mo atoms and 12 atoms 
of Si, D8m, tI32) (Figure 1.3b).10 Mo3Si has a cubic structure (A15, cP8) com-
prising eight atoms in its unit cell, with six atoms of Mo and eight atoms of 
Si (Figure 1.3c). The bct structure of MoSi2 has a fixed c/a ratio of 2.452 and 
appears similar to three bcc unit cells, stacked one on top of another with 
the body-centered site occupied by the atom of Mo or Si, alternately. It has 
been shown by Francwicz11 that the c/a ratio of approximately 2.45 remains 
unchanged with minor alloying of tetragonal-structured MoSi2, and is essen-
tial for the stability of C11b crystal structure. Alloying with transition-metal 
elements such as Nb, Ti, and Cr, having an atomic radius and an electronic 
structure close to those of Mo, substitutes Mo sites, while alloying elements 
such as Al with atomic radius comparable to Si occupy the Si sublattice sites. 
Alloying MoSi2 with other elements to an extent that exceeds the limit of 
3 at.% has been observed to affect the stability of the bct structure.

MoSi2 has a hexagonal structure (C40, hP9) (Figure 1.3d) at high tempera-
ture (1900°C). The lattice vectors of Mo(Si,Al)2 formed on alloying with Al in 
excess of 3 at.% also possess C40 structure.12–14 Interestingly, the c/a ratio for 
the perfect hexagonal arrangement is 61/2 = 0.2449 nm,15 which is very close to 
that of the C11b structure (c/a = 0.2452 nm). The [001], ½[111], ½[331], and [110] 
directions in the C11b (110) plane are equivalent to [011

_
0], 1/3[112

_
0], [011

_
0], 
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and 1/3[2
_

110], respectively, in the C40 (0001) plane. While the C11b structure 
is characterized by ABAB… type stacking along the c axis, the C40 lattice 
shows ABCABC… type stacking. Hence, a stacking fault in the (110) plane 
of the C11b lattice would lead to the creation of localized C40-type structure.

The tetragonal structure of Mo5Si3 is quite different from that of MoSi2 (com-
pare Figure 1.3a and b), as the former material exhibits the following charac-
teristics:16 (i) the value of a (lattice parameter) is greater than c such that a/c ≈ 2; 
(ii) close-packed planes are absent; and (iii) the –Si–Mo–Si– chains are along the 
[100] and [010] directions, while the –Mo–Mo– and –Si–Si– chains are along the 
[001] direction. In MoSi2, the close-packed planes and directions are distinct, and 
the –Si–Mo–Si– chains in MoSi2 are along the [001] direction, while the –Mo–Mo 
and –Si–Si chains are along the [100] and [010] directions. The interatomic bond 
along the [001] direction containing the –Si–Mo–Si– chain is believed to be stron-
ger and more directional compared with either Mo–Mo or Si–Si bonds.

TABLE 1.1

Crystal Structure and Lattice Constants of Silicides

Silicides Crystal Structure
Structure and 
Space Group

Lattice 
Parameters (nm)

MoSi2 Body-centered 
tetragonal

C11b (tI6), I4/mmm a = 0.3202
c = 0.7845

Mo5Si3 Body-centered 
tetragonal

D8m (tI32), I4/mcm a = 0.959
c = 0.487

Mo3Si Cubic A15 (cP8) a = 0.4892
Pm3n

Mo5SiB2 Body-centered 
tetragonal

D81 (tI32), I4/mcm a = 0.6013
c = 1.103

Mo(Si,Al)2 Hexagonal C40 (hP9), P6222 a = 4.644
c = 6.548

WSi2 Body-centered 
tetragonal

C11b (tI6), I4/mmm a = 0.3211
c = 0.7868

Ti5Si3 Hexagonal D88 (hP16), I4/mcm a = 0.7444
c = 0.5143

NbSi2 Hexagonal C40 (hP9) a = 4.7971
P6222 c = 6.592

Nb5Si3 Body-centered 
tetragonal

α: D81 α phase:
(tI32) a = 0.656

b = 1.187
β: D8m β phase:

I4/mcm a = 1.0
b = 0.507

CrSi2 Hexagonal C40 (hP9) a = 0.4428
P6222 c = 0.6363

Source: Mitra, R., Inter. Mater. Rev. 51, 1, 13–64, 2006.
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The Mo-rich section of the ternary isothermal phase diagram13 of the Mo–
Si–B system corresponding to 1600°C is shown in Figure 1.4. Mo–Si–B ternary 
alloys can be designed to have the optimum volume fractions of α-Mo, Mo3Si, 
and Mo5SiB2 phases. All three phases have a nearly fixed composition with 
a limited solubility for other elements and hence provide microstructural 
stability at high temperatures. The α-Mo phase has a bcc structure with the 
solubility for Si and B atoms being 3 and <1 at.%, respectively, while the Mo3Si 
possesses a single-phase composition close to 76Mo–24Si (at.%).17 On the other 
hand, Mo5SiB2 possesses a bct structure (D81, tI32) with 32 atoms in the unit 
cell, comprising 20 atoms of Mo, 4 atoms of Si, and 8 atoms of B (Figure 1.5). 
In the unit cell of Mo5SiB2, three layers can be identified, the first comprising 
only Mo atoms, the second having only Si atoms, and the third having a mix-
ture of Mo and Si atoms. It is interesting to note that the Mo-nearest neighbors 
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FIGURE 1.3
Schematic illustrations depicting the unit cells of (a) MoSi2 (C11b, tP8); (b) Mo5Si3 (D8m, tI32); 
(c) Mo3Si (A15, cP8); and (d) MoSi2 (C40, hP9).
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of the Mo sites in the unit cell are in bcc arrangement, which implies that the 
solubility of transition-metal atoms in Mo5SiB2 is similar to that in the bcc-
Mo. The coefficient of thermal expansion anisotropy (αc/αa) of Mo5SiB2 has 
been found to be 1.4 at 500°C,18 which is significantly lower than that (≈2.2) of 
Mo5Si3.16
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FIGURE 1.5
Schematic illustration of the unit cell of Mo5SiB2 (D81, tI32).
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