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Preface

This book is based on lectures given by the first author at Cal Poly Pomona,
Arizona State University (ASU), and the Massachusetts Institute of Technol-
ogy (MIT), and by the second author at Western Kentucky University (WKU)
and California State Polytechnic University–Pomona (Cal Poly Pomona). The
text can be used for a traditional one-semester sophomore-level course in or-
dinary differential equations (such as WKU’s MATH 331). However, there
is ample material for a two-quarter sequence (such as Cal Poly Pomona’s
MAT 216-431), as well as sufficient linear algebra in the text so that it can be
used for a one-quarter course that combines differential equations and linear
algebra (such as Cal Poly Pomona Math 224), or a one-semester course in
differential equations that brings in linear algebra in a significant way (such
as ASU’s MAT 275 or MIT’s 18.03 without the PDEs). Most significantly,
computer labs are given in MATLAB R©,1 MapleTM, and Mathematica at the
end of each chapter so the book may be used for a course to introduce and
equip the student with a knowledge of the given software (such as ASU’s MAT
275). Near the end of this Preface, we give some sample course outlines that
will help show the independence of various sections and chapters. The focus
of the text is on applications and methods of solution, both analytical and
numerical, with emphasis on methods used in the typical engineering, physics,
or mathematics student’s field of study. We have tried to provide sufficient
problems of a mathematical nature at the end of each section so that even the
pure math major will be sufficiently challenged.

Key Features

This second edition of the book keeps many of the key features from the
first edition:

• MATLAB, Maple, and Mathematica are incorporated at the end of each
chapter, helping students with pages of tedious algebra and many of
the differential equations topics; the goal of the software is still to show

1MATLAB is a registered trademark of The MathWorks, Inc. For product information,
please contact:
The Mathworks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

xi

www.mathworks.com
mailto:info@mathworks.com
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xii Preface

students how to make informed use of the relevant software in the field;
all three software packages have parallel code and exercises;

• There are numerous problems of varying difficulty for both the applied
and pure math major, as well as problems for the nonmathematician
(engineers, etc.);

• An appendix that gives the reader a “crash course” in the three software
packages; no prior knowledge is assumed;

• Answers to most of the odd problems in the back of the book;

• Chapter reviews at the end of each chapter to help the students review;

• Projects at the end of each chapter that go into detail about certain topics
and sometimes introduce new topics that the students are now ready to
see;

• An appendix on linear algebra to supplement the treatment within the
text, should it be appropriate for the reader/course;

• A full solutions manual for the qualified instructor.

It also incorporates new features, many of which have been suggested by
professors and students who have taught/learned from the first edition:

• The computer codes are moved to the end of each chapter as Computer
Labs to facilitate reading of the book by students and professors who
either choose not to use the technology or who do not have access to it
immediately;

• The latest software versions are used; significant changes have occurred
in certain aspects of MATLAB, Maple, and Mathematica since the first
edition in 2006, and the relevant changes are incorporated;

• Much of the linear algebra discussion has been moved to Chapter 5 (from
Chapter 3), which deals with linear systems;

• Sections have been added on complex variables (Chapter 3), the expo-
nential response formula for solving nonhomogeneous equations (Chapter
4), forced vibrations (Chapter 4) as well as a subsection on nondimen-
sionalization (Chapter 2), and a combining of the sections on Euler and
Runge-Kutta methods (Chapter 2);

• Many rewritten sections highlight applications and modeling within many
fields;

• Exercises flow from easiest to hardest;

• Color graphs to help the reader better understand crucial concepts in
ordinary differential equations;

• Updated and extended projects at the end of each chapter to reflect
changes within the chapters.

Approaches to Teaching Ordinary Differential Equations

The second edition of this book has evolved with our understanding of how
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to teach the material in the best possible way. Some notable examples from
the above list:

1. The structure of the course in covering linear systems in their entirety
before covering applications to nonlinear systems (phase plane, etc.) was
a direct result of numerous conversations with MIT’s Professor Haynes
Miller (who frequently teaches MIT’s 18.03) as was the incorporation of
the new sections on essential topics from complex variables, exponential
response and complex replacement (developed by Haynes) for solving
nonhomogeneous differential equations, and the s-domain and poles as
an important use of Laplace transforms by engineers.

2. Combining the computer codes into Computer Labs at the end of each
section rather than having snippets of code embedded throughout the
text was a direct result of a switch in ASU’s method of teaching this
course. Setting aside six class periods for such labs is the way differential
equations is now taught at ASU.

3. The presentation of essential linear algebra topics to aid in the under-
standing of differential equations was helped by discussions with MIT’s
Professor Gil Strang as well as seeing some of his lectures firsthand.

Most differential equations we have encountered in practice have needed ana-
lytical approximations or numerical approximations to gain insight into their
behavior. We don’t feel that students use technology wisely if they simply ask
the computer to solve a given problem. We thus focus on what we consider
to be the basics necessary for adequately preparing a student for study in her
or his respective fields, including mathematics. We present the syntax from
MATLAB, Maple, and Mathematica in Computer Labs at the end of each
chapter. We feel that this provides the readers a better understanding of the
theory and allows them to gain more insight into real-world problems they
are likely to encounter. The vast majority of our students also have no pre-
vious experience with MATLAB, Maple, or Mathematica and we start from
the basics and teach informed use of the relevant mathematical software. The
student whom we “typically encounter” has had one year of calculus and is
usually a major in a field other than pure mathematics.

Our book is traditional in its approach and coverage of basic topics in
ordinary differential equations. However, we cover a number of “modern”
topics such as direction fields, phase lines, the Runge-Kutta method, and
nondimensionalization in Chapter 2 and epidemiological and ecological models
in Chapter 6. As mentioned earlier, we also bring elements from linear algebra,
such as eigenvectors, bases, and transformations, in order to best equip the
reader of the book for a solid understanding of the material. Besides the
Computer Labs there are also Projects at the end of each chapter that give
useful insight into past and future topics covered in the book. The topics
covered in these projects include a mix of traditional, modeling, numerical,
and linear algebra aspects of ordinary differential equations. It is the intent
that students who study this book and work most of the problems contained
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in these pages will be very prepared to continue their studies in engineering
and mathematics.

Some Sample Course Outlines

While we could not begin to prescribe how this book may best be used
for each school, we include some possible sections covered for various course
outlines. We stress that if you intend to incorporate MATLAB, Maple, or
Mathematica into your course, it is crucial to assign Exercises 1-4 (plus a
few others) from Appendix A and the Chapter 1 Computer Lab early in the
course. Appendix A only requires a knowledge of college algebra and some
calculus (Taylor series) while Chapter 1 Computer Lab requires a knowledge
of calculus as it is applied to differential equations. Thus both can be assigned
within the first 2 weeks of the course (and likely together).

Traditional semester ODE course:

Chap. 1 Chap. 2 Chap. 3 Chap. 4 Chap. 5 Chap. 7 Chap. 8

1.1-1.6 2.1-2.2 3.1-3.3 4.1, 4.3 5.1 7.1-7.4 8.1-8.5
3.5-3.6 4.5-4.6 5.4-5.8

Semester ODE course with modeling or application emphasis:

Chap. 1 Chap. 2 Chap. 3 Chap. 4 Chap. 5 Chap. 6 Chap. 7

1.1-1.4 2.1-2.6 3.1-3.2 4.1-4.2 5.1, 5.4 6.1-6.5 7.1-7.5
3.4-3.7 4.4-4.7 5.5, 5.7

Semester ODE course with linear algebra emphasis and no separate
computer labs:

Ch. 1 Ch. 2 Ch. 3 Ch. 4 Ch. 5 Ch. 6 Ch. 7 App. B

1.1-1.4 2.1-2.2 3.1-3.2 4.1-4.2 5.1-5.5 6.1 7.1-7.7 B.1-B.4
2.5 3.4-3.7 4.4, 4.7 5.7-5.8

Semester ODE course with linear algebra emphasis and 6 computer
labs:

Ch. 1 Ch. 2 Ch. 3 Ch. 4 Ch. 5 Ch. 7 Comp. Labs

1.1-1.4 2.1-2.2 3.1-3.2 4.1-4.2 5.1-5.5 7.1-7.6 A& 1, 2,
2.5 3.4-3.7 4.4, 4.7 3, 4, 5&B, 7

Quarter ODE course with linear algebra emphasis:

Ch. 1 Ch. 2 Ch. 3 Ch. 4 Ch. 5 App. B

1.1-1.4 2.1-2.2 3.1-3.2 4.1-4.2 5.1-5.5 B.1-B.4
2.5 3.4-3.7 4.7

Acknowledgments

Students, with their questions both in-class and during office hours, helped
shaped this second edition as did those professors who used the first edition
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and/or provided constructive feedback to us, including Erika Camacho, An-
drew Knyazev, Luis Melara, Jenny Switkes, Steven Weintraub, and many
others. Various chapters were read by Alexandra Churikova, Maytee Cruz-
Aponte, Clay Goggil, and Christine Sowa, and their feedback has been of
great help. Mike Pappas, in particular, was a big help in proofreading near-
final drafts of several chapters. Valerie Cheathon provided a valuable check
of all the codes as did Joshua Grosso (MATLAB) and Alan Wirkus-Camacho
(Maple and Mathematica). Scott Wilde, again, provided invaluable help in
revising the solutions manual.

As texts based upon lecture notes seemingly develop, many of the examples,
exercises, and projects have been collected over many years for various courses
taught by both authors. Some were taken from others’ textbooks and papers.
We have tried to give proper credit throughout this text; however, it was not
always possible to properly acknowledge the original sources. It is our hope
that we repay this explicit debt to earlier writers by contributing our (and
their) ideas to further student understanding of differential equations.

We particularly wish to thank our production coordinator, Jessica Vakili, as
well as Michele Dimont, Amy Blalock, Hayley Ruggieri, and Sherry Thomas.
Bob Stern and Bob Ross, our editors at Chapman & Hall/CRC Press, both
deserve a big thanks for believing in this project and for helpful guidance,
advice and patience. We sincerely thank all these individuals; without their
assistance this text would not have succeeded.

URL for typos and errata:
http://www.public.asu.edu/∼swirkus/ACourseInODEs

Finally, we would appreciate any comments that you might have regarding
this book.

Stephen A. Wirkus (e-mail: swirkus@asu.edu)
Randall J. Swift (e-mail: rjswift@csupomona.edu)

From the first edition:

We owe a very special thanks to Erika Camacho (Arizona State University)
for her help in writing the MATLAB and Maple code for this book and for de-
tailed suggestions on numerous sections. John Fay and Gary Etgen reviewed
earlier drafts of this text and provided helpful feedback. Scott Wilde pro-
vided valuable assistance in writing and preparing the solutions manual for
the book. We owe a big thanks to our former students David Monarres, for
help in preparing portions of this book, and Walter Sosa and Moore Chung,
for their help in preparing solutions. We would also like to acknowledge our
Cal Poly Pomona colleagues Michael Green, Jack Hofer, Tracy McDonald, Jim
McKinney, Siew-Ching Pye, Dick Robertson, Paul Salomaa, Jenny Switkes,
Karen Vaughn, and Mason Porter (Caltech/Oxford) for their willingness to
use draft versions of this text in their courses and their important suggestions,

http://www.public.asu.edu/~swirkus/ACourseInODEs
mailto:swirkus@asu.edu
mailto:rjswift@csupomona.edu
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which improved the overall readability of the text. The faculty and students of
AMSSI and MTBI also deserve a special thanks for comments on early drafts
of the computer code. Mary Jane Hill assisted us with certain aspects of the
text and helped in typesetting some of the chapters of the initial drafts of the
book; her effort is greatly appreciated. The production and support staff at
Chapman & Hall/CRC Press have been very helpful. We particularly wish
to thank our project coordinator Theresa Del Forn and project editor Pru-
dence Board. Our editor Bob Stern deserves a special thanks for believing in
this project and for his guidance, advice, and patience. We sincerely thank all
these individuals; without their assistance this text would not have succeeded.

A few remarks for students and professors:

This book will succeed if any fears and reservations about learning one of the
three computer algebra systems used in this book are put aside. Computers
are not here to supplant us, but rather they are here to help illustrate and
illuminate concepts and insights that we have. Nothing is foolproof and we
stress the importance of informed use of the relevant mathematical software.
Numerical answers, although quite accurate most of the time, should always
be examined carefully because computers are as smart as the programmer
allows them to be. There should never be a blind trust in an answer.

It is essential that the technology that you choose—MATLAB, Maple, or
Mathematica—be introduced early in the class, just as it is introduced early in
the book. While certain mathematical software packages may be better suited
for studying differential equations, none have the versatility that the above
three programs have to give insight into other areas of mathematics. The two
keys to learning the programs are (1) learning the syntax and (2) learning to
use the help menus to figure out some of the commands. Setting aside one
class, for example, to give a brief tutorial on one of these software packages in
the computer lab is a very worthwhile investment. It is by no means necessary
and the typical student will be able to learn the material on his/her own by
carefully following Appendix A. For reinforcement, it is crucial to include at
least one or two technology problems with each homework assignment. The
conscientious student will be well prepared to use the same software package
in any upper division course in any branch of the mathematical sciences and
its applications.

It is not necessary to bring computer demonstrations into the classroom.
Both authors have taught their courses successfully without classroom demon-
strations; handouts sometimes are useful, especially from the appendices. The
students, for better or worse, are generally far less afraid of technology than
one might expect. If students are sent to the computer lab with an assign-
ment to do and aided with Appendix A, the vast majority will come back
with satisfactory answers. Yes, you may bang your head against your desk
in frustration at times, but just ask the person next to you for help and also
seek the help menus and you will be able to learn MATLAB, Maple, and
Mathematica quite well.
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Chapter 1

Traditional First-Order Differential
Equations

A Very Brief History

The study of Differential Equations began very soon after the invention of
Differential and Integral Calculus, to which it forms a natural sequel. In 1676
Newton solved a differential equation by the use of an infinite series, only
11 years after his discovery of the fluxional form of differential calculus in
1665. These results were not published until 1693, the same year in which a
differential equation occurred for the first time in the work of Leibniz (whose
account of the differential calculus was published in 1684).

In the next few years progress was rapid. In 1694–1697 John Bernoulli
explained the method of “Separating the Variables,” and he showed how to
reduce a homogeneous differential equation of the first order to one in which
the variables were separable. He applied these methods to problems on or-
thogonal trajectories. He and his brother Jacob (after whom the “Bernoulli
Equation” is named; see Section 1.6.1) succeeded in reducing a large number
of differential equations to forms they could solve. Integrating Factors were
probably discovered by Euler (1734) and (independently of him) by Fontaine
and Clairaut, though some attribute them to Leibniz. Singular Solutions,
noticed by Leibniz (1694) and Brook Taylor (1715), are generally associated
with the name of Clairaut (1734). The geometrical interpretation was given
by Lagrange in 1774, but the theory in its present form was not given until
much later by Cayley (1872) and M.J.M. Hill (1888).

Today, differential equations are used in many different fields. They can
often accurately capture the behavior of continuous models or a large number
of discrete objects where the current state of the system determines the future
behavior of the system. Such models are called deterministic (as opposed
to stochastic or random). The study of nonlinear differential equations
is still a very active area of research. Although this text will consider some
nonlinear differential equations, here the focus will be on the linear case. We
will begin with some basic terminology.

1.1 Introduction to First-Order Equations

Order, Linear, Nonlinear

We begin our study of differential equations by explaining what a differen-

1
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2 Chapter 1. Traditional First-Order Differential Equations

tial equation is. From our experience in calculus, we are familiar with some
differential equations. For example, suppose that the acceleration of a falling
object is a(t) = −32, measured in ft/sec2. Using the fact that the derivative
of the velocity function v(t) (measured in ft/sec) is the acceleration function
a(t), we can solve the equation

v′(t) = a(t) or
dv

dt
= a(t) = −32.

Many different types of differential equations can arise in the study of familiar
phenomena in subjects ranging from physics to biology to economics to chem-
istry. We give examples from various fields throughout the text and engage
the reader with many such applications.

It is clearly necessary (and expedient) to study, independently, more re-
stricted classes of these equations. The most obvious classification is based
on the nature of the derivative(s) in the equation. A differential equation in-
volving derivatives of a function of one variable (ordinary derivatives) is called
an ordinary differential equation, whereas one containing partial deriva-
tives of a function of more than one independent variable is called a partial
differential equation. In this text, we will focus on ordinary differential
equations.

The order of a differential equation is defined as the order of the highest
derivative appearing in the equation.

Example 1 The following are examples of differential equations with indi-
cated orders:

(a) dy/dx = ay (First-Order)
(b) x′′(t)− 3x′(t) + x(t) = cos t (second order)
(c) (y(4))3/5 − 2y′′ = cosx (fourth order)

where the superscript (4) in (c) represents the fourth derivative.

Our focus will be on linear differential equations, which are those equations
that have an unknown function, say y, and each of its higher derivatives ap-
pearing in linear functions. That is, we do not see them as y2, yy′, sin y, or
(y(4))3/5.1 More precisely, a linear differential equation is one in which the de-
pendent variable and its derivatives appear in additive combinations of their
first powers. Equations where one or more of y and its derivatives appear in
nonlinear functions are called nonlinear differential equations. In the above
example, only (c) is a nonlinear differential equation.

Example 2 Classify the equations as linear or nonlinear.

1Most of the equations we consider will involve an unknown function y that depends on x.
Two other common variables used are (i) the unknown function y that depends on t and
(ii) the unknown function x that depends on t, the latter being used in Example 1b.
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1.1. Introduction to First-Order Equations 3

(a) y′′ + 3y′ − x2y = cosx

(b) y′′ − 3y′ + y2 = 0

(c) y(3) + yy′ + sin y = x2

Solution
The first of these equations is linear as it consists of an additive combination
of y, y′, and y′′, each of which is raised to the first power. In contrast to this,
the second equation is nonlinear because of the y2 term. The last equation
is nonlinear both because of the yy′ term and the sin y term—either of these
terms by itself would have made the equation nonlinear. Our study of non-
linear differential equations will focus on techniques for specific equations or
on understanding the qualitative behavior of a nonlinear differential equation,
since general techniques of solution are rarely applicable.

Much of this book is concerned with the solutions of linear differential
equations. Thus we need to explain what we mean by a solution. First we
note that any nth-order differential equation can be written in the form

F (x, y, y′, ..., y(n)) = 0, (1.1)

where n is a positive integer. For example, y′ = x2 + y2 can be written as

y′ − x2 − y2 = 0.

Here F (x, y, y′) = y′ − x2 − y2. The second-order equation y′′ − 3x2y′ + 5y =
sinx can be written as

y′′ − 3x2y′ + 5y − sinx = 0

and we see that F (x, y, y′, y′′) = y′′ − 3x2y′ + 5y − sinx.

Definition 1.1.1
A solution to an nth-order differential equation is a function that is n
times differentiable and that satisfies the differential equation. Symboli-
cally, this means that a solution of differential equation (1.1) is a function
y(x) whose derivatives y′(x), y′′(x), ..., y(n)(x) exist and that satisfies the
equation

F (x, y(x), y′(x), ..., y(n)(x)) = 0

for all values of the independent variable x in some interval (a, b) where

F (x, y(x), y′(x), ..., y(n)(x))

is defined. (Note that the solution to a differential equation does not
contain any derivatives, although the derivatives of this solution exist.)
The interval (a, b) may be infinite; that is, a = −∞, or b =∞, or both.
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4 Chapter 1. Traditional First-Order Differential Equations

Example 3 The function y(x) = 2e3x is a solution of the differential equa-
tion

dy

dx
= 3y,

for x ∈ (−∞,∞) because it satisfies the differential equation by giving an
identity:

dy

dx
= 2

de3x

dx
= 6e3x = 3y.

Initial-Value vs. Boundary-Value Problems

We will soon see that solving a general differential equation gives rise to a
solution that has constants. These constants can be eliminated by specifying
the initial state of the system or conditions that the solution must satisfy on
its domain of definition or “boundary.” An example of the first situation is
specifying the position and velocity of a mass on a spring. An example of the
second is a rope hanging from two supports, given the location of these two
supports.

Consider a first-order differential equation

dy

dx
= f(x, y)

and suppose that the solution y(x) was subject to the condition that y(x0) =
y0. This is an example of an initial-value problem. The condition y(x0) =
y0 is called an initial condition and x0 is called the initial point. More
generally, we have the following:

Definition 1.1.2
An initial-value problem consists of an nth-order differential equation
together with n initial conditions of the form

y(x0) = a0, y′(x0) = a1, ..., y
(n−1)(x0) = an−1

that must be satisfied by the solution of the differential equation and its
derivatives at the initial point x0.
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1.1. Introduction to First-Order Equations 5

Example 4 The following are examples of initial-value problems:
(a) dy/dx = 2y − 3x, y(0) = 2 (here x = 0 is the initial point)
(b) x′′(t)+5x′(t)+sin(tx(t)) = 0, x(1) = 0, x′(1) = 7 (here t = 1 is the initial
point).
(Note that the differential equation in (a) is linear, whereas the equation in
(b) is nonlinear.) We define a solution to an nth-order initial-value problem
as a function that is n times differentiable on an interval (a, b); this satisfies
the given differential equation on that interval, and satisfies the n, given ini-
tial conditions with the requirement that x0 ∈ (a, b). As before, the interval
(a, b) might be infinite.

In contrast to an initial-value problem, a boundary-value problem con-
sists of a differential equation and a set of conditions at different x-values
that the solution y(x) must satisfy. Although any number of conditions (≥2)
may be specified, usually only two are given. Rather than specifying the
initial state of the system, we can think of a boundary-value problem as
specifying the state of the system at two different physical locations, say
x0 = a, x1 = b, a 6= b.

Example 5 The following are examples of boundary-value problems:
(a) d2y/dx2 + 5xy = cosx, y(0) = 0, y′(π) = 2
(b) dy/dx+ 5xy = 0, y(0) = y(1) = 2

Although a boundary-value problem may not seem too different from an
initial-value problem, methods of solution are quite varied. We will focus on
initial-value problems. We ask whether an initial-value problem has a unique
solution. Essentially this is two questions:
1. Is there a solution to the problem?
2. If there is a solution, is it the only one?

As we see in the next two examples, the answer may be “no” to each ques-
tion.

Example 6 An initial-value problem with no solution.
The initial-value problem(

dy

dx

)2

+ y2 + 1 = 0

with y(0) = 1 has no real-valued solutions, since the left-hand side is always
positive for real-valued functions.

Example 7 An initial-value problem with more than one solution.
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6 Chapter 1. Traditional First-Order Differential Equations

The initial-value problem
dy

dx
= xy1/3

with y(0) = 0 has at least two solutions in the interval −∞ < x < ∞. Note
that the functions

y = 0 and y =
x3

3
√

3

both satisfy the initial condition and the differential equation.

Two Important Models

One of the most fundamental models in biology deals with population growth
and one of the most fundamental models in physics deals with a mass on
a spring. In the next two examples, we examine how differential equations
describe the behavior of these two phenomena.

Example 8 The change in the population of bacteria with sufficient nutri-
ents and space to grow is known to be proportional to its current population.
The differential equation can be written as

dP

dt
= kP (1.2)

where P (t) is the current population of bacteria and k is a constant determined
by its growth rate. We can verify that

P (t) = P (0)ekt (1.3)

is a solution to this differential equation. Because of the presence of the con-
stant P (0), we say that Equation (1.3) is a family of solutions parameterized
by the constant P (0). To verify this is indeed a solution we take the derivative
to get P (0)kekt. Subsituting this into the left side of the differential equation
and the supposed solution into the right side:

dP

dt︸︷︷︸
P (0)kekt

= k· P︸︷︷︸
P (0)ekt

we see that with a slight rearrangement of the expressions underneath, we have
equality for all t. Thus (1.3) is a solution to differential equation (1.2) for all
t and we see the solution describes the exponential growth of the population.

Example 9 In a later chapter we will learn that a mass on a spring moving
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1.1. Introduction to First-Order Equations 7

along a slippery2 surface can be described by the differential equation

mx′′ + kx = 0

where x(t) is the distance the spring has stretched from its resting length, k is
the spring constant, and m is the mass, as shown in Figure 1.1. We can verify

that x = cos

(√
k
m t

)
is a solution. To do so we take the second derivative

to get x′′ = − k
m cos

(√
k
m t

)
and substitute it into the equation along with

the assumed form of x:

m ·

[
− k
m

cos

(√
k

m
t

)]
︸ ︷︷ ︸

x′′

+ k · cos

(√
k

m
t

)
︸ ︷︷ ︸

x

= 0.

Simplification shows that it is indeed a solution and it holds for all t.

m

k

x

x=0
(rest position)

FIGURE 1.1: Model of spring system for Example 9. x = 0 marks the
position if the spring were at its natural (unstretched) length and we will take
x to the right as positive.

In the next several sections we will develop methods for finding solutions to
first-order differential equations. We will then discuss existence and unique-
ness of solutions in Chapter 2.

• • • • • • • • • • • •
Problems

In Problems 1–12, classify the differential equations by specifying (i) the or-
der, (ii) whether it is linear or nonlinear, and (iii) whether it is an initial-value
or boundary-value problem (where appropriate).

2Physicists use the word “slippery” to mean “ignore frictional forces.”
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8 Chapter 1. Traditional First-Order Differential Equations

1. 3y′′ + y = sinx 2. y′′ = sinx
3. y′′ + y′ − y = 0 4. y′′ + 3y′ = 0, y(0) = 1, y′(1) = 0
5. y(3) + (sinx)y(2) + y = x, y(0) = 1, y′(0) = 0, y′′(0) = 2
6. y′′ = 0, y(1) = 1, y′(1) = 2 7. y′ + exy = y4, y(0) = 0
8. y′′ − 3yy′ = x 9. y′′ + sin y = 0
10. y′′ − 4y′ + 4y = 0, y(0) = 1, y′(0) = 1
11. y′′ + exy′ + y2 = 0, y(0) = 1, y(π) = 0
12. x2y′′ + y′ + (lnx)y = 0

In Problems 13–24, verify that the given function is a solution to the differ-
ential equation by substituting it into the differential equation and showing
that the equation holds true. Assume the interval is (−∞,∞) unless other-
wise stated. Do NOT attempt to solve the differential equation.

13. y(x) = 2x3, x
dy

dx
= 3y 14. y(x) = x, y′′ + y = x

15. y = 2,
dy

dx
= x3(y − 2)2 16. y(x) = x3,

dy

dx
= 3y2/3

17. y(x) = ex − x,
dy

dx
+ y2 = e2x + (1− 2x)ex + x2 − 1

18. y(x) = sinx+ 2 cosx, y′′ + y = 0 19. y(x) = x2 − x−1, x2y′′ = 2y, x 6= 0
20. y(x) = x+ C sinx, y′′ + y = x, C =constant

21. y(x) =
−1

x− 3
,
dy

dx
= y2, (−∞, 3) 22. y(x) =

−1

5x+ 4
,
dy

dx
= 5y2, (−4/5,∞)

23. y1(x) = ex and y2(x) = e2x, y′′ − 3y′ + 2y = 0
24. y1(x) = ex and y2(x) = xex, y′′ − 2y′ + y = 0

In Problems 25–28, detetermine which of the functions solve the given differ-
ential equation.
25. y′′+6y′+9y = 0: (a) ex, (b) e−3x, (c) xe−3x, (d) 4e3x, (e) 2e−3x+xe−3x

26. y′′ + 9y = 0: (a) sin 3x, (b) sinx, (c) cos 3x, (d) e3x, (e) x3

27. y′′ − 7y′ + 12y = 0: (a) e2x, (b) e3x, (c) e4x, (d) e5x, (e) e3x + 2e4x

28. y′′+ 4y′+ 5y = 0: (a) e−2x, (b) e−2x sin 2x, (c) e−2x cos 2x, (d) cos 2x

In Problems 29–32, find values of r for which the given function solves the
differential equation on (−∞,∞).
29. y(x) = erx, y′′ + 3y′ + 2y = 0 30. y(x) = erx, y′′ + 3y′ − 4y = 0
31. y(x) = xerx, y′′ + 6y′ + 9y = 0 32. y(x) = xerx, y′′ + 4y′ + 4y = 0

1.2 Separable Differential Equations

We will now introduce the simplest first-order differential equations. Al-
though these are the simplest class of differential equations we will encounter,
they appear in numerous applications and aspects of subsequent theory. We



i
i

“MAIN˙Ed2˙1p˙v02” — 2014/11/8 — 10:49 — page 9 — #22 i
i

i
i

i
i

1.2. Separable Differential Equations 9

make the following definition:

Definition 1.2.1
A first-order differential equation that can be written in the form

g(y) y′ = f(x) or g(y) dy = f(x) dx,

where y = y(x), is called a separable differential equation.

Separable differential equations are solved by collecting all the terms in-
volving the dependent variable y on one side of the equation and all the terms
involving the independent variable x on the other side. Once this is com-
pleted (it may require some algebra), both sides of the resulting equations are
integrated. That is, the equation

g(y) y′ = f(x)

can be written in “differential form”

g(y)
dy

dx
= f(x)

so that treating dy/dx as a fraction, we have

g(y) dy = f(x) dx.

Here the variables are separated, so that integrating both sides gives∫
g(y) dy =

∫
f(x) dx. (1.4)

The Method of Separation of Variables, which we just applied to (1.4), is the
name given to the method we use to solve Separable Equations—it is one
of the simplest and most useful methods for solving differential equations.
(Incidentally, it is an important technique for solving certain classes of partial
differential equations, too.)

Sometimes we will be able to solve (1.4) for y. When we can do so, we will
say we can express the explicit solution and will write y = h(x). Other
times, we will not be able to solve (1.4) or it will not be worth our time and
efforts to do so. In these situations, we say that we are giving the implicit
solution with (1.4). When our solution can be written explicitly, it will be
easy to plot solutions in the x-y plane, by hand or with the computer; how-
ever, when the solution is implicit, plotting solutions by hand is challenging
at best. The various computer programs, discussed in Appendix A and the
end of each chapter, will allow us to view plots in the x-y plane without much
additional work. We now consider a number of examples.
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10 Chapter 1. Traditional First-Order Differential Equations

Example 1 Solve y′ = ky where k is a constant.

Solution
Writing y′ as dy

dx gives
dy

dx
= ky.

Treating dy
dx as a “fraction” and rearranging terms gives

dy

y
= k dx.

This step will only be valid if y 6= 0. We note that y = 0 is also a solution to
the original differential equation. Integrating gives∫

dy

y
=

∫
k dx,

which is
ln |y| = kx+ C1,=⇒ |y| = ekx+C1 .

This gives
y = ±ekxeC1 .

Now eC1 is a positive constant, so that we may let C = ±eC1 . In the above
process, we encountered the constant solution y = 0, which also gives us the
possibility that C = 0. Thus, we have

y = Cekx (1.5)

as our solution, where x ∈ (−∞,∞) and C is any real constant. We say that
(1.5) defines a one-parameter family of solutions of y′ = ky. It is also
important to remember the “trick” used above for getting rid of the absolute
values—it will come up quite often in practice! We will consider a few more
examples with similar standard “tricks.”

Example 2 Solve
dx

dt
= et−x, x(0) = ln 2, for x(t).

Solution
Separating the variables gives

dx

dt
= ete−x

and thus
ex dx = et dt.
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1.2. Separable Differential Equations 11

Integrating both sides of this equation gives

ex = et + C.

Solving for x, we have
x = ln |et + C|.

Applying the initial condition x(0) = ln 2 yields

ln 2 = ln |1 + C|, so that C = 1.

Thus
x = ln(et + 1),

which is defined for all t. Note that et + 1 is always positive so that we can
drop the absolute value signs. We should also note that after integrating, we
could have applied the initial condition to determine C and then proceeded to
solve for x instead of first solving for x and then applying the initial condition
to determine C. Both methods will result in the same final answer. See Figure
1.2 for a plot of the solution.

FIGURE 1.2: Plot of solution for Example 2.

Example 3 Solve (x− 4) y4 − x3 (y2 − 3)
dy

dx
= 0.

Solution
To separate variables, we divide by x3y4, which implicitly assumes that x 6= 0
and y 6= 0. Doing so gives

x− 4

x3
dx =

y2 − 3

y4
dy.

This simplifies to (x−2 − 4x−3) dx = (y−2 − 3y−4) dy. Integrating gives

−1

x
+

2

x2
=
−1

y
+

1

y3
+ C
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12 Chapter 1. Traditional First-Order Differential Equations

as the general solution, which is valid when x 6= 0 and y 6= 0. This is definitely
a case where giving the solution in an implicit representation is acceptable!
See Figure 1.3 for a plot of the implicit solution. We refer the reader to the
end of this chapter for the computer code used to plot these types of solutions
with one of the software packages. There is, however, a more important idea
that is illustrated by this example. If we assume x 6= 0 and y2 − 3 6= 0, we
can rewrite the original differential equation as

dy

dx
=

(x− 4)y4

x3(y2 − 3)
,

and then one can clearly see that y = 0 is a solution. (That is, when y = 0 is
substituted into both sides of the equation we get an identity for all x.) This
problem shows that the separation process can lose solutions.

x

y

Plot of Example 3 with C=−10,2,6,50
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FIGURE 1.3: Implicit plot for Example 3. The curves plotted here satisfy
the implicit solution. We note here that the C-values superimposed on the
curves were good for this problem, but it often takes ingenuity, experience,
trial and error, or some combination of these to get a “nice” picture.

How can we verify that

−1

x
+

2

x2
=
−1

y
+

1

y3
+ C

is a solution? We need to substitute it into the differential equation as before.
This will require us to find y′ and we will do so with implicit differentiation.
Taking the derivative of both sides of the equation gives

1

x2
− 4

x3
=

1

y2
y′ − −3

y4
y′.
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1.2. Separable Differential Equations 13

We solve for y′ and then simplify the complex fraction to obtain

y′ =
y4(x− 4)

x3(y2 − 3)
,

which is an equivalent form of our original differential equation.

Although the separation process will work on any differential equation in
the form of Definition 1.2.1, evaluating the integrals in (1.4) can sometimes be
a daunting, if not impossible, task. As discussed in calculus, certain indefinite
integrals such as ∫

ex
2

dx

cannot be expressed in finite terms using elementary functions. When such an
integral is encountered while solving a differential equation, it is often helpful
to use definite integration by assuming an initial condition y(x0) = y0.

Example 4 Solve the initial-value problem

dy

dx
= ex

2

y2, y(2) = 1

and use the solution to give an approximate answer for y(3).

Solution
We would like to divide both sides by y2 and we note that y = 0 is a solution.
We set this solution aside and now assume y 6= 0, divide by y2, and integrate
from x = 2 to x = x1 to obtain∫ x1

2

[y(x)]−2 dy

dx
dx = −[y(x)]−1|x1

2

=
−1

y(x1)
+

1

y(2)

=

∫ x1

2

ex
2

dx.

If we let t be the variable of integration and replace x1 by x and y(2) by 1,
then we can express the solution to the initial-value problem by

y(x) =
1

1−
∫ x

2

et
2

dt

.

With an explicit solution, we often want to be able to find the corresponding
y-value given any x. The right-hand side still cannot be solved exactly but
can be approximated if x is given. For example, y(3) ≈ −0.0007007. We note
that we will have a point x > 2 that will make the denominator zero (and thus
is not in the domain of our solution) and our function will become unbounded.
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14 Chapter 1. Traditional First-Order Differential Equations

It is sometimes the case that a substitution or other “trick” will convert
the given differential equation into a form that we can solve. A differential
equation of the form

dy

dx
= f(ax+ by + k),

where a, b, and k are constants, is separable if b = 0; however, if b 6= 0 the
substitution

u(x) = ax+ by + k

makes it a separable equation.

Example 5 Solve
dy

dx
= (x+ y − 4)2

by first making an appropriate substitution.

Solution
We let u = x + y − 4 and thus dy

dx = u2. We need to calculate du
dx . For this

example, taking the derivative with respect to x gives

du

dx
= 1 +

dy

dx
.

Substitution into the original differential equation gives

du

dx
− 1 = u2.

This equation is separable. Dividing by 1 + u2, we obtain

du

1 + u2
= dx

and integrating gives
arctan(u) = x+ c.

Thus u = tan(x+ c). Since u = x+ y − 4, we then have

y = −x+ 4 + tan(x+ c),

which is defined wherever tan(x+ c) is defined.

• • • • • • • • • • • •
Problems
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1.2. Separable Differential Equations 15

In Problems, 1–20, solve each of the following differential equations. Explic-
itly solve for y(x) or x(t) when possible.

1. dydx = cosx

2. x dydx = (1 + y)2

3. xdxdt + t = 1

4. (1 + x) dydx = 4y
5. tanx dy + 2y dx = 0
6. dydx = 2

√
xy

7. 4xydx+ (x2 + 1)dy = 0

8. dydx = x2

1+y2

9. y′ = 10x+y

10. xy′ =
√

1− y2

11. y′ = xyex
2

, y(0) = 1. Explain why this differential equation guarantees
that its solution is symmetric about x = 0.
12. y′ = 2x2(y2 + 1), y(0) = 1
13. (ex + 1) cos y dy + ex(sin y + 1) dx = 0, y(0) = 3
14. (tanx)y′ = y, y

(
π
2

)
= π

2
15. 2x(y2 + 1) dx+ (x4 + 1) dy = 0, y(1) = 1
16. (x2 − 1)y′ + 2xy2 = 0, y(

√
2) = 1

17. (y + 2) dx+ y(x+ 4) dy = 0, y(−3) = −1
18. 8 cos2 y dx+ csc2 x dy = 0, y(π/12) = π/4

19. y′ = ex
2

, y(0) = 0

20.
dy

dx
=
y3 + 2y

x2 + 3x
, y(1) = 1

21. Find the solution of the following equation that satisfies the given condi-
tions for x→ +∞: x2y′ − cos 2y = 1, y(+∞) = 9π

4 .
22. Find the solution of the following equation that satisfies the given condi-
tions for x→ +∞: 3y2y′ + 16x = 2xy3, y(x) is bounded for x→ +∞.

In Problems 23–27 make an appropriate substitution to solve each of the fol-
lowing differential equations. Explicitly solve for y(x) or x(t) when possible.

23. xydx+ (x+ 1)dy = 0 24. y′ − y = 2x− 3
25. (x+ 2y)y′ = 1 y(0) = −2 26. y′ = cos(y − x)
27. y′ =

√
4x+ 2y − 1

28. Suppose that the population N(t) of a given species (bacteria, elves,
Toolie birds, college students, etc.) is not always zero and varies at a
rate proportional to its current value. That is,

dN

dt
= rN,

where r ∈ R is some measured constant proportionality factor. If the
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16 Chapter 1. Traditional First-Order Differential Equations

initial population is assumed to be N(0) = N0 > 0, solve this exponential
differential equation and discuss the behavior of the solution as t → ∞
for different values of r.

29. An equivalent way of thinking of the exponential growth problem 28 is to
assume the per capita growth rate, 1

N
dN
dt , is constant. That is, we assume

1
N
dN
dt = r. It is more realistic to assume that the per capita growth rate

decreases as the population grows. If we assume this decrease is linear
and agrees with the exponential growth model for small populations, we
can write the equation

1

N

dN

dt
= r

(
1− N

K

)
where the left-hand side is the per capita growth rate and the right-hand
side is a linearly decreasing function in N that has y-intercept r and
x-intercept K. Multiplying both sides by N gives

dN

dt
= r

(
1− N

K

)
N,

which is the well-known logistic differential equation. If the initial pop-
ulation is given as N(0) = N0 > 0, solve this differential equation and
discuss the behavior of the solution as t → ∞. From this behavior, why
is K called a carrying capacity?

1.3 Linear Equations

Linear first-order differential equations are perhaps the most commonly aris-
ing class of differential equations in applications. A linear differential equation
is defined as follows:

Definition 1.3.1
A first-order ordinary differential equation is linear in the dependent

variable y and the independent variable x if it can be written as

dy

dx
+ P (x)y = Q(x). (1.6)

More generally, we often see equations of the form

a1(x)y′ + a0(x)y = b(x)
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1.3. Linear Equations 17

but, provided a1(x) 6= 0 for all x, we can always divide by a1(x) and define
P (x) = a0/a1 and Q(x) = b/a1 to obtain an equation of the form of (1.6).

In our work to follow, specifically in Chapters 3 and 4 we will refer to an
equation of this form as a “linear nonhomogeneous equation.” In the case
when Q(x) = 0, we refer to the equation as “homogeneous,” but we caution
the reader to be careful with the word “homogeneous” as it can also have other
meanings; see Section 1.6. While it is an unfortunate fact that mathematicians
often use the same term for different mathematical notions, our use of it should
be clear by context.

In the following pages, we present two techniques for solving linear differ-
ential equations. It is likely the case that only one of these methods will be
presented in class depending on the emphasis of your course. The first is
variation of parameters while the second is the integrating factor technique.

Variation of Parameters

The first method of solving linear equations that we consider has a nice gen-
eralization for higher order equations. If we consider (1.6) with Q(x) = 0:

dy

dx
+ P (x) y = 0

we can solve this linear homogeneous equation by using separation of vari-
ables. We obtain yc, the complementary solution.3 We know that we can
multiply yc by any constant and it will still be a solution; however, we instead
consider uyc where u is a function of x and try to find a function u that will
make this work. In order for u(x)yc to be a solution, it needs to satisfy the
differential equation. Substituting the assumed solution into (1.6) we obtain

(u′(x)yc + u(x)yc
′) + P (x)u(x)yc = Q(x), (1.7)

which we can regroup and then simplify:

u′(x)yc + u(x)[yc
′ + P (x)yc]︸ ︷︷ ︸

= 0

= Q(x)

=⇒ u′(x)yc = Q(x)

since yc is a solution to the homogeneous equation. We then solve for u′(x)
and integrate to obtain:

u(x) =

∫
Q(x)

yc
dx. (1.8)

As we only care about finding one function u(x) that will work, we don’t
introduce the typical +C upon integration. Thus we have found a function

3This solution is sometimes called the homogeneous solution and is denoted yh. The
terms are used interchangeably.
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18 Chapter 1. Traditional First-Order Differential Equations

u(x) that makes uyc a solution—we call this a particular solution and denote
it yp. Our general solution to (1.6), with yp = u(x)yc, is then

y = Cyc + yp, (1.9)

where C is a constant that is determined by the initial condition.

Example 1 Solve
dy

dx
+ 2xy = 3x using variation of parameters.

Solution
This equation is linear with P (x) = 2x and Q(x) = 3x. We solve the homo-
geneous equation first:

dy

dx
= −2xy ⇒

∫
dy

y
=

∫
−2xdx

⇒ ln |y| = −x2 + C1

⇒ y = Ce−x
2

. (1.10)

We now assume that a particular solution can be written as

yp = u(x)yc = u(x)e−x
2

.

The function u(x) that will allow this to be a solution of the original linear
equation is

u(x) =

∫
Q(x)

yc
dx

=

∫
3x

e−x2 dx

= 3

∫
xex

2

dx

=
3

2
ex

2

. (1.11)

Recalling that yp = u(x)yc, our solution is then given by

y = Cyc + yp

= Ce−x
2︸ ︷︷ ︸

yc

+
3

2
ex

2︸ ︷︷ ︸
u(x)

e−x
2︸︷︷︸

yc

(1.12)

which simplifies to

y =
3

2
+ Ce−x

2

.

We can easily check that this is a solution of the original differential equation.
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1.3. Linear Equations 19

Example 2 Solve
dy

dx
+

(
2x+ 1

x

)
y = e−2x,

using variation of parameters.

Solution
This is clearly linear and we first solve the homogeneous equation

dy

dx
+

(
2x+ 1

x

)
y = 0.

Separation of variables gives us

yc = C
e−2x

x
.

We now assume a particular solution of the form yp = u(x) e
−2x

x . From the
derivation, we know that things will cancel out so that we need to solve for u
in (1.8):

u(x) =

∫
e−2x

e−2x
/
x

=

∫
xdx

so that

u(x) =
x2

2
=⇒ yp = u(x)yc =

x2

2

e−2x

x
=

1

2
xe−2x.

Our general solution is yc + yp:

y =
C

x
e−2x +

1

2
xe−2x.

Superposition

A key idea in the study of linear differential equations is that of superposi-
tion. We have been studying the basic linear equation (1.6)

dy

dx
+ P (x)y = Q(x).

We can state a very useful theorem that will serve as an important tool in our
further study.
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20 Chapter 1. Traditional First-Order Differential Equations

THEOREM 1.3.1 Superposition
Suppose that y1 is a solution to y′ + P (x)y = Q1(x) and y2 is a solution
to y′ + P (x)y = Q2(x). Then

c1y1 is a solution to y′ + P (x)y = c1Q1(x)

for any constant c1. For any constants c1, c2, we also have that

c1y1 + c2y2 is a solution to y′ + P (x)y = c1Q1(x) + c2Q2(x).

Example 3 Verify that e2x is a solution to
dy

dx
+ y = 3e2x and 5x − 5 is a

solution to
dy

dx
+ y = 5x. Then find a solution to

dy

dx
+ y = e2x + 4x.

Solution
We can easily verify that y1 = e2x and y2 = 5x − 5 are the solutions of
the respective differential equations. Let Q1(x) = 3e2x, Q2(x) = 5x, and
Q(x) = e2x+4x denote the right-hand sides of the three differential equations.
We observe that

Q(x) =
1

3
Q1(x) +

4

5
Q2(x).

By superposition, it follows that

y =
1

3
y1 +

4

5
y2 =

1

3
(e2x) +

4

5
(5x− 5)

is a solution of y′ + y = Q(x).

Integrating Factor Technique

In studying separable equations, we put all the terms of one variable on the
left side of the equation and the terms of the other variable on the right side
of the equation. This allowed us to integrate functions of just one variable.
Another trick that we will use is to rewrite the left side so that it looks like
the result of the product rule (from Calculus). To remind ourselves, for y, µ
that are both functions of the same variable, the product rule states that

(yµ)′ = y′µ+ µ′y.

We know how to integrate the left hand side so the goal is to somehow rewrite
part of our equation so that it looks like the right-hand side. Looking at
y′µ + µ′y and recalling our basic linear equation y′ + Py = Q, we want to
multiply the left-hand side by a function µ that satisfies

µ′ = µP. (1.13)
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1.3. Linear Equations 21

In this equation, P = P (x) is known, whereas µ = µ(x) (called the inte-
grating factor) is unknown. We can find µ(x) because Equation (1.13) is
separable. Thus

dµ

µ
= P (x) dx.

Integrating gives

µ(x) = e
∫
P (x)dx. (1.14)

Since (1.14) is an integrating factor, we have

e
∫
P (x)dx︸ ︷︷ ︸
µ

dy

dx︸︷︷︸
y′

+ e
∫
P (x)dxP (x)︸ ︷︷ ︸

µ′

y = Q(x)e
∫
P (x)dx,

which is the same as

d

dx

e∫ P (x)dx︸ ︷︷ ︸
µ

y

 = Q(x)e
∫
P (x)dx.

So

e
∫
P (x)dxy =

∫
Q(x)e

∫
P (x)dxdx+ C,

which gives

y = e−
∫
P (x) dx

(∫
Q(x)e

∫
P (x)dx dx+ C

)
(1.15)

as the solution of the differential equation (1.6). Note that we have explicitly
written the constant of integration even though the integral has not yet been
evaluated. Depending upon your situation, one can memorize the formula
(1.15) for the solution of a first-order linear equation; however, it is just as
easy (if not out right preferable) to simply apply the method of solution each
time.

Summary: Solving linear equations via an integrating factor
1. Write the linear equation in the form of Equation (1.6).
2. Calculate the integrating factor e

∫
P (x) dx.

3. Evaluate the integral
∫
Q(x)e

∫
P (x)dxdx and then multiply this result

by e−
∫
P (x) dx.

4. The general solution to (1.6) is

y = Ce−
∫
P (x) dx + e−

∫
P (x) dx

∫
Q(x)e

∫
P (x)dx dx.
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22 Chapter 1. Traditional First-Order Differential Equations

In the event that we are given an initial condition y(x0) = y0, we would
apply it at the time of integration, going from x0 to a final (general) value x.
If we let p̄(x) =

∫
P (x)dx, then the general formula becomes

y = Ce−p̄(x) + e−p̄(x)

∫
Q(x)ep̄(x) dx,

and applying the initial condition gives us the solution

y = y0e
p̄(x0)−p̄(x) + e−p̄(x)

∫ x

x0

Q(t)ep̄(t) dt, (1.16)

where the variable of integration has changed to a dummy variable t.

Example 4 Solve
dy

dx
+

(
2x+ 1

x

)
y = e−2x.

This is linear with

P (x) =
2x+ 1

x
and Q(x) = e−2x

so that an integrating factor is

e
∫
P (x)dx = e

∫
2x+1
x dx

= e(2x+ln |x|)

= |x|e2x.

We note that integrating factors are not unique. For instance, dropping the
absolute value to obtain xe2x gives another integrating factor of the differential
equation. Thus, multiplying the original equation by this expression gives

xe2x dy

dx
+ e2x(2x+ 1)y = x.

If we had multiplied by −xe2x, we would have obtained the same equation.
This equation can be simplified to give

d

dx
(xe2xy) = x.

Integrating this equation gives

xe2xy =
1

2
x2 + C,
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1.3. Linear Equations 23

which becomes

y =
1

2
xe−2x +

C

x
e−2x.

These last few steps could have been avoided by using (1.15).

Example 5 Solve (x2 +1)
dy

dx
+4xy = x with the initial condition y(0) = 10.

Solution
Rewriting this equation gives

dy

dx
+

(
4x

x2 + 1

)
y =

x

x2 + 1
,

hence

P (x) =
4x

x2 + 1
and Q(x) =

x

x2 + 1

so that an integrating factor is

e
∫
P (x)dx = e

∫
4x
x2+1

dx

= eln(x2+1)2

= (x2 + 1)2.

Once we have our integrating factor, we can use the solution as given in (1.15),
first noting that

e−
∫
P (x)dx = e− ln(x2+1)2

= (x2 + 1)−2. (1.17)

Then

y =
1

(x2 + 1)2

(∫
x(x2 + 1) dx

)

=
1

(x2 + 1)2

(
1

4
x4 +

1

2
x2 + C

)
.

Now the initial condition, y(0) = 10, gives C = 10 and thus

y =
1
4x

4 + 1
2x

2 + 10

(x2 + 1)2

is the solution we seek.
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24 Chapter 1. Traditional First-Order Differential Equations

Now that we know the techniques of solving linear equations, we consider
some applications. In Section 1.4, we will consider Newton’s law of cooling
that describes how the temperature of an object changes due to the constant
temperature of the medium surrounding it. This is not always realistic, as
in some settings the temperature of the surroundings varies. For example,
determining the temperature inside a building over a span of a 24-hour day
is complicated because the outside temperature varies. If we assume that
the building has no heating or air conditioning, the differential equation that
needs to be solved to find the temperature u(t) at time t inside the building
is

du

dt
= k(C(t)− u(t)), (1.18)

where C(t) is a function that describes the outside temperature and k > 0 is
a constant that depends on the insulation of the building. Note that (1.18) is
a linear equation. According to this equation, if C(t) > u(t), then

du

dt
> 0,

which implies that u(t) increases, and if C(t) < u(t), then

du

dt
< 0,

so that u(t) decreases.

Example 6 Suppose that on a given day during the month of April in
Pomona, California, the outside temperature in degrees Fahrenheit is given
by

C(t) = 70− 10 cos

(
πt

12

)
for 0 ≤ t ≤ 24. Determine the temperature in a building that has an initial
temperature of 60◦F if k = 1/4. See Figure 1.4.

Solution
We see that the average temperature (i.e., the average of C(t)) is 70◦F because∫ 24

0

cos

(
πt

12

)
dt = 0.

The initial-value problem that we must solve is

du

dt
= k

(
70− 10 cos

(
πt

12

)
− u
)

with initial condition u(0) = 60. The differential equation can be rewritten as

du

dt
+ ku = k

(
70− 10 cos

(
πt

12

))
,
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1.3. Linear Equations 25

Outside
Temperature

(in ◦F)

time (in hours)

FIGURE 1.4: Outside temperature over 24 hours for Example 6.

which is a linear equation and is thus solvable. This gives (check it!)

u(t) =
10

9 + π2

(
63 + 7π2 − 9 cos

(
πt

12

)
− 3π sin

(
πt

12

))
+ C1e

−t/4.

We then apply the initial condition u(0) = 60 to determine the arbitrary
constant C1 and obtain the solution

u(t) =
10

9 + π2

(
63 + 7π2 − 9 cos

(
πt

12

)
− 3π sin

(
πt

12

))
− 10π2

9 + π2
e−t/4.

A graph of this solution is shown in Figure 1.5. The graph shows that the
temperature reaches its maximum of about 77◦F near t = 15.5, which is about
3:30 p.m.

Inside
Temperature

(in ◦F)

time (in hours)

FIGURE 1.5: Inside temperature over 24 hours for Example 6.
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26 Chapter 1. Traditional First-Order Differential Equations

Sometimes an equation may not immediately appear to be linear.

Example 7 Consider the differential equation

y2 dx+ (3xy − 1) dy = 0.

This equation is not linear in y. What do we do? Look harder. If we consider
y as the independent variable and x as the dependent variable, we can write

dx

dy
=

1− 3xy

y2
,

which is
dx

dy
+

3x

y
=

1

y2
,

and we see that it is in the form

dx

dy
+ P (y)x = Q(y),

which is linear in x, so that this equation can be solved using the theory we
have just developed.

Hence, an integrating factor is

e
∫
P (y)dy = e

∫
3
y dy = eln |y|3 = y3.

We also have exp
(
−
∫
P (y)dy

)
= 1/y3. Then our solution is

x =
1

y3

(∫
1

y2
(y3)dy

)
+
C

y3

=
1

y3

(
y2

2

)
+
C

y3
.

This becomes

x =
1

2y
+
C

y3

which is defined for all y 6= 0.

• • • • • • • • • • • •

Problems

Solve the linear equations in Problems 1–18 by considering y as a function of
x, that is, y = y(x).
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1. y′ + y = ex 2. y′ + 2y = 4
3. y′ + 2y = −3x 4. y′ − 2xy = ex

2

5. y′ − 3x2y = x2 6. 3xy′ + y = 12x

7.
dy

dx
+

1

x
y = x 8. y′ +

1

x
y = ex

9.
dy

dx
− 2x

1 + x2
y = x2 10. xy′ + (1 + x)y = e−x sin 2x

11.
dy

dx
+ y = cosx 12. (2x+ 1)y′ = 4x+ 2y

13.
dy

dx
− y = 4ex, y(0) = 4 14. y′ + 2y = xe−2x, y(1) = 0

15. y′ + y tanx = secx, y(π) = 1 16. y′ = (1− y) cosx, y(π) = 2
17. dydx + y

x = cos x
x , y(π2 ) = 4

π , x > 0 18. xy′+2y = sinx, y
(
π
2

)
= 1, x > 0

Solve the linear equations in Problems 19–21 by considering x as a function
of y, that is, x = x(y).

19. (x+ y2)dy = ydx 20. (2ey − x)y′ = 1
21. (sin 2y + x cot y)y′ = 1

Problems 22–23 address aspects of superposition.

22. Recall that a linear equation is called homogeneous if Q(x) = 0, i.e., if
it can be written as

dy

dx
+ P (x) y = 0.

(a) Show that y = 0 is a solution (called the trivial solution).
(b) Show that if y = y1(x) is a solution and k is a constant, then y =
ky1(x) is also a solution.
(c) Show that if y = y1(x) and y = y2(x) are solutions, then y = y1(x) +
y2(x) is a solution.

23. (a) If y = y1(x) satisfies the homogeneous linear equation
dy

dx
+P (x) y =

0 and y = y2(x) satisfies the nonhomogeneous linear equation
dy

dx
+

P (x) y = r(x), show that y = y1(x) + y2(x) is a solution to the non-
homogeneous linear equation

dy

dx
+ P (x) y = r(x).

(b) Show that if y = y1(x) is a solution of
dy

dx
+ P (x) y = r(x), and

y = y2(x) is a solution of
dy

dx
+ P (x) y = q(x), then y = y1(x) + y2(x) is

a solution of
dy

dx
+ P (x) y = q(x) + r(x).
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(c) Use the results obtained in parts (a) and (b) to solve

dy

dx
+ 2y = e−x + cosx.

24. A pond that initially contains 500, 000 gal of unpolluted water has an
outlet that releases 10, 000 gal of water per day. A stream flows into the
pond at 12, 000 gal/day containing water with a concentration of 2 g/gal
of a pollutant. Find a differential equation that models this process and
determine what the concentration of pollutant will be after 10 days.

25. When wading in a river or stream, you may notice that microorganisms
like algae are frequently found on rocks. Similarly, if you have a swim-
ming pool, you may notice that in the absence of maintaining appropriate
levels of chlorine and algaecides, small patches of algae take over the pool
surface, sometimes overnight. Underwater surfaces are attractive envi-
ronments for microorganisms because water removes waste and provides
a continuous supply of nutrients. On the other hand, the organisms must
spread over the surface without being washed away. If conditions become
unfavorable, they must be able to free themselves from the surface and
recolonize on a new surface.

The rate at which cells accumulate on a surface is proportional to the
rate of growth of the cells and the rate at which the cells attach to the
surface. An equation describing this situation is given by

dN(t)

dt
= r(N(t) +A),

where N(t) represents the cell density, r the growth rate, A the attach-
ment rate, and t time.
(a) If the attachment rate, A, is constant, solve

dN(t)

dt
= r(N(t) +A)

with the initial condition N(0) = 0.
(b) If A = 3 in a particular colony of cells, use the following table to

find the growth rate at the end of each hour:
t 1 2 3 4

N(t) 3 9 21 45
.

Using this growth rate, estimate the algae population size at the end of
24 hours and 36 hours.

26. In Section 3.7, you will learn about electric circuits as an application of a
second order differential equation. However, consider the circuit with an
inductor and resistor only, whose differential equation is first-order and
linear and is given by

LI ′ +RI = V,
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where I is the to-be-determined current in the circuit, L measures the
inductance, R measures the resistance, and V is the constant applied
voltage. Find an equation describing the current in the circuit.

27. Suppose a(t) > 0, and f(t) → 0 for t → ∞. Show that every solution of
the equation

dx

dt
+ a(t)x = f(t)

approaches 0 for t→∞.

28. In the same equation suppose that a(t) > 0, and let x0(t) be the solution
for which the initial condition x(0) = b is satisfied. Show that for every
positive ε > 0 there is a δ > 0, such that if we perturb the function f(t)
and the number b by a quantity less than δ, then the solution x(t), t > 0,
is perturbed by less than ε. The word perturbed is understood in the
following sense: f(t) is replaced by f1(t) and b is replaced by b1 where

|f1(t)− f(t)| < ε, |b1 − b| < δ.

This property of the solution x(t) is called stability for persistent dis-
turbances.

1.4 Some Physical Models Arising as Separable Equa-
tions

Now that we have studied separable equations in detail, we consider some
applications. The wide variety of application problems that we will consider
all lead to equations in which variables can be separated.

Free Fall, Neglecting Air Resistance

We will begin this application section with an easy problem from elementary
physics. This application should be very familiar.

If x(t) represents the position of a particle at time t, then the velocity of
the particle is given by

v(t) =
dx

dt
.

Similarly, the acceleration of the particle is

a(t) =
dv

dt
=
d2x

dt2
.

Thus, if we consider a particle that is in free fall, where the acceleration of
the particle is due to gravity alone, we have

a(t) = −g.
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Here g is assumed to be a constant and we use −g as gravity acts downward.
For the moment, we ignore the effects of air resistance. Thus,

dv

dt
= −g,

which is a simple separable equation, so that

v(t) = −gt+ c.

If we assume that the particle has an initial velocity v0, so that v(0) = v0,
then v(t) = −gt+ v0. Now this gives the separable equation

dx

dt
= −gt+ v0

which has solution

x(t) =
−g
2
t2 + v0t+ C1.

If the particle has initial position x0, then

x(0) = x0

which gives

x(t) =
−g
2
t2 + v0t+ x0 (1.19)

as the position x(t) of the particle in free fall, at time t.

Example 1 A man standing on a cliff 60 m high hurls a stone upward at a
rate of 20 m/sec. How long does the stone remain in the air and with what
speed does it hit the ground below the cliff?

Solution
Here x0 = 60 and v0 = 20. We take g = 9.8 m/sec2. Thus,

x(t) = −9.8

2
t2 + 20t+ 60

and
v(t) = −9.8t+ 20.

The stone is in the air while x(t) > 0, so to find the time t that the stone is
in the air, we set x(t) = 0 and solve for t. Using the quadratic equation,

t =
−20±

√
(20)2 − 4(−4.9)(60)

2(−4.9)
= −2.01, 6.09.

The stone is thus in the air for about 6.1 sec. We use this time to find the
velocity upon impact:

v(6.1) = −9.8(6.1) + 20 = −39.78 m/sec.
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Air Resistance
We will now consider the effects of air resistance. The amount of air

resistance (sometimes called the drag force) depends upon the size and ve-
locity of the object, but there is no general law expressing this dependence.
Experimental evidence shows that at very low velocities for small objects it is
best to approximate the resistance R as proportional to the velocity, while for
larger objects and higher velocities it is better to consider it as proportional
to the square of the velocity [38].

By Newton’s second law F = ma, so that if v(t) is the velocity of the object,
we have

m
dv

dt
= F1 + F2

where F1 is the weight of the object,

F1 = mg,

and F2 is the force of the air resistance on the object as it falls, so

F2 = k1v or F2 = k2v
2

where k1, k2 are proportionality constants. Note that ki < 0 because air
resistance is always opposite the velocity; see examples 2 and 3 below. We
also point out that the units of k1 and k2 are different. In SI units, force has
units of Newtons = N = kg· m/sec2. Thus k1 must have the units of kg/sec.
On the other hand, k2 can be written as

k2 = −1

2
CρA

where ρ is the air density (SI units of kg/m3), A is the cross-sectional area of
the object (SI units of m2), and C is the drag coefficient (unitless) [38].

Example 2 An object weighing 8 pounds falls from rest toward earth from
a great height. Assume that air resistance acts on it with a force equal to 2v.
Calculate the velocity v(t) and position x(t) at any time. Find and interpret
limt→∞ v(t).

Solution
Remembering that pounds is a force (not a mass), we see that we need to
calculate the mass of the object in order to apply Newton’s second law. Using
g = 32 ft/sec2 gives m = w/g = 8/32 = 1/4. Thus by Newton’s second law

m
dv

dt
= F1 + F2,

that is
1

4

dv

dt
= 8− 2v.
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This is a separable equation and can be written as

dv

8− 2v
= 4dt

so that upon integrating both sides we have

−1

2
ln |8− 2v| = 4t+ c.

Using the condition that the object fell from rest, so that v(0) = 0, we can
determine the constant c and solve for v(t). We have

v(t) = 4− 4e−8t

as the velocity of the object at any time. A graph of this velocity is shown in
Figure 1.6. Analytically, we see that v(t) approaches 4 as t→∞. This value
is known as the limiting or terminal velocity of the object.

Now since dx
dt = v(t), we have

dx

dt
= 4− 4e−8t.

This is easily integrated to obtain x(t) = 4t+ 1
2e
−8t + c. If we take the initial

position of the object as zero, so that x(0) = 0, then

x(t) = 4t+
1

2
e−8t − 1

2
.
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FIGURE 1.6: Approach to terminal velocity of free-falling object of Ex-
ample 2.
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A Cool Problem
In addition to free-fall problems, separable equations arise in some simple

thermodynamics applications. One such application is the following example.

Suppose that a pie is removed from a hot oven and placed in a cool room.
After a given period of time the pie has a temperature of 150◦F. We want to
determine the time required to cool the pie to a temperature of 80◦F, when we
can finally enjoy eating it.

This example is an application of Newton’s law of cooling, which states

the rate at which the temperature T (t) changes in a cooling body is
proportional to the difference between the temperature of the body
and the constant temperature Ts of the surrounding medium.

Symbolically we know the rate of change is the derivative and the statement
is expressed as

dT

dt
= k(T − Ts), (1.20)

with the initial temperature of the body T (0) = T0 and k a constant of
proportionality. We observe that if the initial temperature T0 is larger than
the temperature of the surrounding Ts, then T (t) will be a decreasing function
of t (as the body is cooling), so dT/dt < 0, but T0 − Ts > 0 so that the
proportionality constant k must be negative. A similar analysis with T0 <
Ts also gives k < 0. This condition on k also follows by noting that the
temperature of the body will approach that of the surrounding medium as
time gets large.

To solve (1.20), we seek a function T (t) that describes the temperature at
time t. For this equation, separating the variables we have

dT

T − Ts
= k dt.

Integrating both sides of this equation gives∫
dT

T − Ts
=

∫
kdt.

Evaluating both integrals, we obtain

ln |T − Ts| = kt+ C,

where C is the constant of integration. Exponentiating both sides and sim-
plifying gives

|T − Ts| = ekteC =⇒ T − Ts = ±eCekt.
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Solving for the temperature, we see that

T (t) = C1e
kt + Ts

where C1 = ±eC . We can then apply the initial condition T (0) = T0, which
implies T0 = C1 + Ts, so that C1 = T0 − Ts and the solution is then

T (t) = (T0 − Ts)ekt + Ts. (1.21)

We know that the temperature of the body approaches that of its surround-
ings and this can be seen mathematically as

lim
t→∞

T (t) = Ts,

which is true because k < 0.
Let’s now consider a specific pie-cooling example.

Example 3 Suppose that a pie is removed from a 350◦F oven and placed
in a room with a temperature of 75◦F. In 15 min the pie has a temperature
of 150◦F. We want to determine the time required to cool the pie to a tem-
perature of 80◦F, when we can finally enjoy eating it.

Solution
Comparing with the above derivation, we see that T0 = 350 and Ts = 75.
Substituting these values in (1.21) gives

T (t) = 275ekt + 75.

We still need to find k or equivalently ek, which quantifies how fast the cooling
of the pie occurs. We were given the temperature after 15 min, i.e., T (15) =
150. Thus

275e15k + 75 = 150,

and solving for ek gives

ek =

(
3

11

)1/15

,

or k = −0.08662. Thus

T (t) = 275

(
3

11

)t/15

+ 75,

and this can be used to find the temperature of the pie at any given time.
We can also calculate the time it takes to cool to any given temperature. We
want to know when T (t) = 80◦F. Thus we solve

275

(
3

11

)t/15

+ 75 = 80
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for t to obtain

t =
−15 ln 55

ln 3− ln 11
≈ 46.264.

Thus, the pie will reach a temperature of 80◦F after approximately 46 min.
It is interesting to note that the first term in our equation for the pie

temperature satisfies

275

(
3

11

)t/15

> 0

for all t > 0. Thus

T (t) = 275

(
3

11

)t/15

+ 75 > 75.

The pie never actually reaches room temperature! This is an artifact of our
model; we do note, however, that

lim
t→∞

275

(
3

11

)t/15

+ 75 = 75,

which can also be seen in Figure 1.7.

0 10 20 30 40 50 60 70 80
0

50

100
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200

250

300
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FIGURE 1.7: Graph of pie temperature vs. time of Example 3.

We present another example of Newton’s law of cooling from forensic sci-
ence.

Example 4 In the investigation of a homicide, the time of death is impor-
tant. The normal body temperature of most healthy people is 98.6◦F. Suppose
that when a body is discovered at noon, its temperature is 82◦F. Two hours
later it is 72◦F. If the temperature of the surroundings is 65◦F, what was the
approximate time of death?
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Solution
This problem is solved as the last example. Here T (0) represents the temper-
ature when the body was discovered and T (2) is the temperature of the body
2 hours later.

Thus, T0 = 82 and Ts = 65 so that (1.21) becomes

T (t) = 17ekt + 65.

Using T (2) = 72, we solve 17e2k + 65 = 72 for ek to find

ek =

(
7

17

)1/2

so that

T (t) = 17

(
7

17

)t/2
+ 65.

This equation gives us the temperature of the body at any given time. To find
the time of death, we use the fact that the body temperature was at 98.6◦F
at this time. Thus we solve

17

(
7

17

)t/2
+ 65 = 98.6

for t and find that

t =
2 ln(1.97647)

ln 7− ln 17
≈ −1.53569.

This means that the time of death occurred approximately 1.53 hours be-
fore being discovered. Therefore, the time of death was approximately 10:30
a.m. because the body was found at noon.

Mixture Problems
Problems involving mixing typically give rise to separable differential equa-

tions. A typical mixture problem is given in the following example.

Example 5 A bucket contains 10 L of water and to it is being added a salt
solution that contains 0.3 kg of salt per liter. This salt solution is being poured
in at the rate of 2 L/min. The solution is being thoroughly mixed and drained
off. The mixture is drained off at the same rate so that the bucket contains
10 L at all times. How much salt is in the bucket after 5 min?

Solution
Let y(t) be the number of kilograms of salt in the bucket at the end of t
minutes. We need to derive a differential equation for this problem and we do
so by considering change in this system over a small time interval. We first
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find the amount of salt added to the bucket between time t and time t+ ∆t.
Each minute, 2 L of solution is added so that in ∆t minutes, 2∆t liters is
added.

In these 2∆t liters the amount of salt is

0.3 kg/L× (2∆t) L = (0.6∆t) kg.

On the other hand, 2∆t liters of solution is withdrawn from the bucket in an
interval ∆t. Now at time t the 10 L in the flask contains y(t) kilograms of
salt. Then 2∆t of these liters contains approximately (0.2∆t)(y(t)) kilograms
of salt if we suppose that the change in the amount of salt y(t) is small in the
short period of time ∆t.

We have computed the amount of salt added in the interval (t, t + ∆t),
as well as the amount subtracted in the same interval. But the difference
between the amounts of salt present at times t+ ∆t and t is y(t+ ∆t)− y(t),
so that we have obtained the equation

y(t+ ∆t)− y(t) = 0.6∆t− (0.2∆t)(y(t)).

We now divide by ∆t and let ∆t→ 0. The left side approaches the derivative
y′(t), and the right side is 0.6− 0.2y(t). The differential equation is thus

y′(t) = 0.6− 0.2y(t), (1.22)

which can be thought of as the rate of change in the number of kilograms of
salt in the bucket y′(t) being equal to the rate of salt (in kg) flowing into the
bucket 0.6 (= 0.3 kg/L× 2 L) minus the rate of salt flowing out of the bucket
0.2y(t).

Equation (1.22) is a separable equation and can be written as

dy

0.6− 0.2y
= dt.

Integrating both sides gives

ln |0.6− 0.2y| = −0.2t+ c

so that solving for y(t) we obtain

y(t) = 3− Ce−0.2t. (1.23)

When t is zero, the amount of salt in the bucket is zero, that is, y(0) = 0.
Equation (1.23) shows that when t = 0, we have

y(0) = 3− C;

or C = 3. The value of C is now known, so that Equation (1.23) becomes

y(t) = 3− 3e−0.2t.
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To find y at the end of 5 min, we simply substitute t = 5 so that the amount
of salt in the bucket is y(5) ≈ 1.9 kg.

• • • • • • • • • • • •
Problems

In Problems 1–7 it will be convenient to take the velocity to be the unknown
function.

1. A ball dropped from a building falls for 4.00 sec before it hits the ground.
If air resistance is neglected, answer the following questions:
(a) What was its final velocity just as it hit the ground?
(b) What was the average velocity during the fall?
(c) How high was the building?

2. You drop a rock from a cliff, and 5.00 sec later you see it hit the ground.
Neglecting air resistance, how high is the cliff?

3. A ball thrown straight up climbs for 3.0 sec before falling. Neglecting air
resistance, with what velocity was the ball thrown?

4. Iron Man is flying at treetop level near Paris when he sees the Eiffel
Tower elevator start to fall (the cable snapped). He knows Pepper Potts
is inside. If Iron Man is 2 km away from the tower, and the elevator
falls from a height of 350 m, how long does he have to save Pepper,
and what must be his average velocity? Solve this problem assuming
no air resistance. (Of course, Tony Stark instantly does the calculations
required, as he is an expert in differential equations!)

5. The mass of a football is 0.4 kg. Air resists passage of the ball, the
resistive force being proportional to the square of the velocity, and being
equal to 0.004 N when the velocity is 1 m/sec. Find the height to which
the ball will rise, and the time to reach that height if it is thrown upward
with a velocity of 20 m/sec. How is the answer altered if air resistance is
neglected?

6. The football of the preceding exercise is released (from rest) at an altitude
of 17.1 m. Find its final velocity and time of fall.

7. Assume that air resistance is proportional to the square of velocity. The
terminal velocity of a 75-kg human in air of standard density is 60 m/sec
[38]. Neglecting the variation of air density with altitude and assum-
ing that the 75-kg parachutist falls from an altitude of 1.8 km, find the
velocity. Hint: use the terminal velocity to find the coefficient of v2.

Problems 8–12 concern Newton’s law of cooling.

8. At the request of their children, Randy and Stephen make homemade
popsicles. At 2:00 p.m., Kaelin asks if the popsicles are frozen (0◦C), at
which time they test the temperature of a popsicle and find it to be 5◦C. If
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they put the popsicles with a temperature of 15◦C in the freezer at 12:00
noon and the temperature of the freezer is −2◦C, when will Erin, Kaelin,
Robyn, Ryley, Alan, Abdi, and Avani be able to enjoy the popsicles?

9. An object cools in 10 min from 100◦C to 60◦C. The surroundings are at
a temperature of 20◦C. When will the object cool to 25◦C?

10. Determine the time of death if a corpse is 79◦F when discovered at 3:00
p.m. and 68◦F 3 hours later. Assume that the temperature of the sur-
roundings is 60◦F and that normal body temperature is 98.6◦F.

11. A thermometer is taken from an inside room to the outside, where the
air temperature is 5◦F. After 1 minute the thermometer reads 55◦F, and
after 5 minutes it reads 30◦F. Determine the initial temperature of the
inside room.

12. A slug of metal at a temperature of 800◦F is put in an oven, the temper-
ature of which is gradually increased during an hour from a◦ to b◦. Find
the temperature of the metal at the end of an hour, assuming that the
metal warms kT degrees per minute when it finds itself in an oven that
is T degrees warmer.

In Problems 13–17 it is supposed that the amount of gas (or liquid) contained
in any fixed volume is constant. Also, thorough mixing is assumed.

13. A 20-L vessel contains air (assumed to be 80% nitrogen and 20% oxygen).
Suppose 0.1 L of nitrogen is added to the container per second. If con-
tinual mixing takes place and material is withdrawn at the rate at which
it is added, how long will it be before the container holds 99% nitrogen?

14. A 100-L beaker contains 10 kg of salt. Water is added at the constant
rate of 5 L/min with complete mixing, and drawn off at the same rate.
How much salt is in the beaker after 1 hour?

15. A tank contains 25 lb of salt dissolved in 50 gal of water. Brine containing
4 lb/gal is allowed to enter at a rate of 2 gal/min. If the solution is drained
at the same rate find the amount of salt as a function S(t) of time t. Find
the concentration of salt at time. Suppose the rate of draining is modified
to be 3 gal/min. Find the amount of salt and the concentration at time
t.

16. Consider a pond that has an initial volume of 10, 000 m3. Suppose that
at time t = 0, the water in the pond is clean and that the pond has
two streams flowing into it, stream A and stream B, and one stream
flowing out, stream C. Suppose 500 m3/day of water flows into the pond
from stream A, 750 m3/day flows into the pond from stream B, and 1250
m3 flows out of the pond via stream C. At t = 0, the water flowing
into the pond from stream A becomes contaminated with road salt at a
concentration of 5 kg/1000 m3. Suppose the water in the pond is well
mixed so the concentration of salt at any given time is constant. To make
matters worse, suppose also that at time t = 0 someone begins dumping



i
i

“MAIN˙Ed2˙1p˙v02” — 2014/11/8 — 10:49 — page 40 — #53 i
i

i
i

i
i

40 Chapter 1. Traditional First-Order Differential Equations

trash into the pond at a rate of 50 m3/day. The trash settles to the
bottom of the pond, reducing the volume by 50 m3/day. To adjust for
the incoming trash, the rate that water flows out via stream C increases
to 1300 m3/day and the banks of the pond do not overflow. Determine
how the amount of salt in the pond changes over time. Does the amount
of salt in the pond reach 0 after some time has passed?

17. A large chamber contains 200 m3 of gas, 0.15% of which is carbon diox-
ide (CO2). A ventilator exchanges 20 m3/min of this gas with new gas
containing only 0.04% CO2. How long will it be before the concentration
of CO2 is reduced to half its original value?

Problems 18–20 concern radioactive decay. The decay law states that the
amount of radioactive substance that decays is proportional at each instant
to the amount of substance present.

18. The strength of a radioactive substance decreases 50% in a 30-day period.
How long will it take for the radioactivity to decrease to 1% of its initial
value?

19. It is experimentally determined that every gram of radium loses 0.44 mg
in 1 year. What length of time elapses before the radioactivity decreases
to half its original value?

20. A tin organ pipe decays with age as a result of a chemical reaction that is
catalyzed by the decayed tin. As a result, the rate at which the tin decays
is proportional to the product of the amount of tin left and the amount
that has already decayed. Let M be the total amount of tin before any
has decayed. Find the amount of decayed tin p(t).

Problems 21–22 deal with geometric situations where the derivative arises
and yields a separable equation.

21. Find a curve for which the area of the triangle determined by the tangent,
the ordinate to the point of tangency, and the x-axis has a constant value
equal to a2.

22. Find a curve for which the sum of the sides of a triangle constructed as
in the previous problem has a constant value equal to b.

23. On an early Monday morning in February in rural Kentucky (not far
from Western Kentucky University) it started to snow. There had been
no snow on the ground before. It was snowing at a steady, constant
rate so that the thickness of the snow on the ground was increasing at
a constant rate. A snowplow began clearing the snow from the streets
at noon. The speed of the snowplow in clearing the snow is inversely
proportional to the thickness of the snow. The snowplow traveled two
miles during the first hour after noon and traveled one mile during the
second hour after noon. At what time did it begin snowing?
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1.5 Exact Equations

We will now introduce another type of differential equation. Exact equa-
tions are not separable equations nor are they necessarily linear. They come
up in higher level math in fields such as potential theory and harmonic anal-
ysis.

Consider the first-order differential equation dy
dx = f(x, y). We observe that

it can always be expressed in the differential form

M(x, y) dx+N(x, y) dy = 0

or equivalently as

M(x, y) +N(x, y)
dy

dx
= 0

and vice versa. We will now consider a type of differential equation that is
not separable, but, nevertheless, has a solution. We need a definition from
multivariable calculus to proceed:

Definition 1.5.1
Let F (x, y) be a function of two real variables such that F has continuous
first partial derivatives in a domain D. The total differential dF of F is
defined by

dF (x, y) =
∂F (x, y)

∂x
dx+

∂F (x, y)

∂y
dy

for all (x, y) ∈ D.

Example 1 Suppose F (x, y) = xy2 + 2x3y; then

∂F

∂x
= y2 + 6x2y and

∂F

∂y
= 2xy + 2x3

so that the total differential dF is given by

dF (x, y) =
∂F (x, y)

∂x
dx+

∂F (x, y)

∂y
dy

= (y2 + 6x2y) dx+ (2xy + 2x3) dy.
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Definition 1.5.2
The expression

M(x, y) dx+N(x, y) dy (1.24)

is called an exact differential in a domain D if there exists a function F
of two real variables such that this expression equals the total differential
dF (x, y) for all (x, y) ∈ D. That is, (1.24) is an exact differential in D if
there exists a function F such that

∂F

∂x
= M(x, y) and

∂F

∂y
= N(x, y)

for all (x, y) ∈ D.

If M(x, y) dx+N(x, y) dy is an exact differential, then the differential equa-
tion

M(x, y) dx+N(x, y) dy = 0 (1.25)

is called an exact differential equation. As long as x = C (a constant) is not
a solution, we consider the equivalent form

M(x, y) +N(x, y)
dy

dx
= 0 (1.26)

as the standard form for an exact equation.

Example 2 The differential equation

y2 + 2xy
dy

dx
= 0

is exact, since if F (x, y) = xy2 then

∂F

∂x
= y2 and

∂F

∂y
= 2xy.

Not all differential equations, however, are exact. Consider

y + 2x
dy

dx
= 0.

We cannot find an F (x, y) so that

∂F

∂x
= y and

∂F

∂y
= 2x.

Numerous trials and errors may be enough to convince us that this is the
case. What we really need is a method for testing a differential equation for
exactness and for constructing the corresponding function F (x, y). Both are
contained in the following theorem and its proof.
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THEOREM 1.5.1
Consider the differential equation

M(x, y) +N(x, y)
dy

dx
= 0 (1.27)

where M and N have continuous first partial derivatives at all points
(x, y) in a rectangular domain D. Then the differential equation (1.27)
is exact in D, if and only if

∂M(x, y)

∂y
=
∂N(x, y)

∂x
(1.28)

for all (x, y) in D.

Remark: The proof of this theorem is rather important, as it not only pro-
vides a test for exactness, but also a method of solution for exact differential
equations.
Proof: To prove one direction of the theorem, we first suppose the differential
equation (1.27) is exact in D and show that (1.28) must hold as a result. If
(1.27) is exact, then there is a function F such that

∂F

∂x
= M(x, y) and

∂F

∂y
= N(x, y).

So
∂2F

∂y∂x
=
∂M

∂y
and

∂2F

∂x∂y
=
∂N

∂x

by differentiation. Now we have assumed the continuity of the first partials
of M and N in D, so that

∂2F

∂y∂x
=

∂2F

∂x∂y
.

This means that
∂M

∂y
=
∂N

∂x
,

which is the same as (1.28).
To prove the other direction, we assume (1.28) and show that (1.27) must be

exact. (Proving this direction will also show us how to construct the solution
for a given exact equation.) Thus, we assume

∂M

∂y
=
∂N

∂x

and find an F so that

∂F

∂x
= M(x, y) and

∂F

∂y
= N(x, y). (1.29)
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It is clear that we can find an F that satisfies either of these equations, but
can we find an F that satisfies both? Let’s proceed and see what happens.
Suppose that F satisfies

∂F

∂x
= M(x, y).

We can integrate both sides of this equation to get

F (x, y) =

∫
M(x, y) dx+ φ(y) (1.30)

where
∫
M(x, y) dx is the partial integration with respect to x holding y con-

stant. Note that our “constant” of integration, φ(y), is a function but is a
function of y only (it might also include an additive constant, but definitely
no x). This is because the expression ∂F/∂x would result in the loss of any
“only y functions.” Now we need to find an F (x, y) that satisfies both equa-
tions in (1.29). We thus need to make sure the F (x, y) in (1.30) also satisfies
∂F
∂y = N(x, y). We calculate ∂F/∂y by differentiating (1.30) with respect to
y:

∂F

∂y
=

∂

∂y

∫
M(x, y) dx+

dφ(y)

dy
.

Equating with N(x, y) gives

N(x, y) =

(
∂

∂y

∫
M(x, y) dx

)
+ φ′(y),

where φ′(y) = dφ(y)/dy. Solving for φ′(y) gives

φ′(y) = N(x, y)− ∂

∂y

∫
M(x, y) dx.

Since φ(y) is a function of only y, it must also be the case that φ′(y) is a
function of only y. We can see this by showing

∂

∂x

(
N(x, y)− ∂

∂y

∫
M(x, y) dx

)
= 0.
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Evaluating the left-hand side and simplifying give

∂

∂x

(
N(x, y)− ∂

∂y

∫
M(x, y) dx

)
=
∂N

∂x
− ∂2

∂x∂y

∫
M(x, y) dx

=
∂N

∂x
− ∂2 F

∂x∂y
(by noting what F is)

=
∂N

∂x
− ∂2 F

∂y∂x
(by continuity)

=
∂N

∂x
− ∂2

∂y∂x

∫
M(x, y) dx

=
∂N

∂x
− ∂M

∂y

= 0,

where the last equality holds since we have assumed that

∂N

∂x
=
∂M

∂y
.

What this means is that

N(x, y)− ∂

∂y

∫
M(x, y) dx

cannot depend on x since its derivative with respect to x is zero. Hence,

φ(y) =

∫ (
N(x, y)− ∂

∂y

∫
M(x, y) dx

)
dy

and thus

F (x, y) =

∫
M(x, y) dx+ φ(y)

is a function that satisfies both

∂F

∂x
= M(x, y) and

∂F

∂y
= N(x, y).

Thus,

M(x, y) +N(x, y)
dy

dx
= 0

is exact in D.

In short, the criterion for exactness is (1.28):

∂N

∂x
=
∂M

∂y
.



i
i

“MAIN˙Ed2˙1p˙v02” — 2014/11/8 — 10:49 — page 46 — #59 i
i

i
i

i
i
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If this equation holds, then the differential equation is exact. If this is not
true, the differential equation is not exact.

Example 3 We considered the differential equation

y2 + 2xy
dy

dx
= 0 (1.31)

earlier. We see that

M(x, y) = y2 and N(x, y) = 2xy.

Thus,
∂M

∂y
= 2y =

∂N

∂x
,

so that the differential equation is exact. On the other hand,

y + 2x
dy

dx
= 0 (1.32)

gives M(x, y) = y and N(x, y) = 2x so that

∂M

∂y
= 1 6= 2 =

∂N

∂x
.

Hence y + 2x dy
dx = 0 is not exact.

Example 4 Consider the differential equation

(2x sin y + y3ex) + (x2 cos y + 3y2ex)
dy

dx
= 0.

Here

M(x, y) = 2x sin y + y3ex and N(x, y) = x2 cos y + 3y2ex;

hence
∂M

∂y
= 2x cos y + 3y2ex =

∂N

∂x
.

Thus the differential equation is exact.

Remark: The test for exactness applies to equations in the form

M(x, y) +N(x, y)
dy

dx
= 0. (1.33)

If the left-hand side is an exact differential, then we can solve the exact dif-
ferential equation (1.33) by finding a function F (x, y) so that

∂F (x, y)

∂x
dx+

∂F (x, y)

∂y
dy = 0.
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More simply, using the total differential, we obtain dF (x, y) = 0. Thus,

F (x, y) = C

is a solution to (1.33).

THEOREM 1.5.2
Suppose the differential equation

M(x, y) +N(x, y)
dy

dx
= 0

is exact. Then the general solution of this differential equation is given
implicitly by

F (x, y) = C,

where F (x, y) is a function such that

∂F

∂x
= M(x, y) and

∂F

∂y
= N(x, y).

Remark 1: As with separable and homogeneous equations, the constant in
Theorem 1.5.2 is determined by an initial condition.
Remark 2: We have an explicit form for F (x, y), namely,

F (x, y) =

∫
M(x, y) dx+ φ(y),

where φ(y) =

∫ (
N(x, y)− ∂

∂y

∫
M(x, y) dx

)
dy. This form, however, is

not always useful. We will see by example how to solve exact differential
equations.
Remark 3: We integrated ∂F/∂x = M and substituted this into ∂F/∂y = N .
We instead could have solved ∂F/∂y = N first (by integrating with respect to
y and obtaining a “constant” ψ(x)) and then substituted into ∂F/∂x = M .
The resulting F is the same but would be written

F (x, y) =

∫
N(x, y) dy + ψ(x), (1.34)

where ψ(x) =

∫ (
M(x, y)− ∂

∂x

∫
N(x, y) dy

)
dx. See Problem 19 at the

end of this section.

Example 5 Show that

(3x2 + 4xy) + (2x2 + 2y)
dy

dx
= 0
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is exact and then solve it by the methods discussed in this section.

Solution
We have

M(x, y) = 3x2 + 4xy and N(x, y) = 2x2 + 2y

so that the equation is exact, since

∂M

∂y
= 4x =

∂N

∂x
.

Our goal is to find an F (x, y) that simultaneously satisfies the equations

∂F

∂x
= M(x, y) and

∂F

∂y
= N(x, y).

That is, F must satisfy

∂F

∂x
= 3x2 + 4xy and

∂F

∂y
= 2x2 + 2y.

Integrating ∂F/∂x with respect to x gives

F (x, y) =

∫
(3x2 + 4xy) dx

= x3 + 2x2y + φ(y).

This same F must also satisfy ∂F/∂y = N and we then have

2x2 + φ′(y) =
∂F

∂y
= 2x2 + 2y.

Thus, φ′(y) = 2y. Integrating with respect to y gives

φ(y) = y2 + C0

so that

F (x, y) = x3 + 2x2y + y2 + C0.

Thus, a one-parameter family of solutions is given by

x3 + 2x2y + y2 = C.
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We now solve an exact equation by first integrating with respect to y; see
Remark 3 above.

Example 6 Show that

(2x cos y + 3x2y) + (x3 − x2 sin y − y)
dy

dx
= 0

is exact and solve it subject to the initial condition y(0) = 2. Plot the solution.

Solution
We have M(x, y) = 2x cos y + 3x2y and N(x, y) = x3 − x2 sin y − y. The
equation is exact because

∂M

∂y
= 3x2 − 2x sin y =

∂N

∂x
.

Now we find an F (x, y) so that

∂F

∂x
= M(x, y) and

∂F

∂y
= N(x, y).

This time we will integrate ∂F/∂y = N with respect to y. Thus

F (x, y) =

∫
N(x, y) dy

=

∫
(x3 − x2 sin y − y) dy

= x3y + x2 cos y − y2

2
+ ψ(x).

This must also satisfy ∂F/∂x = M . Calculating ∂F/∂x gives

∂F

∂x
= 3x2y + 2x cos y + ψ′(x).

Substituting into
∂F

∂x
= M(x, y)

gives ψ′(x) = 0, which is easily integrated to obtain ψ(x) = C1. Thus,

F (x, y) = x3y + x2 cos y − 1

2
y2 + C1,

and a one-parameter family of solutions is

x3y + x2 cos y − 1

2
y2 = C.



i
i

“MAIN˙Ed2˙1p˙v02” — 2014/11/8 — 10:49 — page 50 — #63 i
i

i
i

i
i

50 Chapter 1. Traditional First-Order Differential Equations

FIGURE 1.8: Implicit plot for Example 6. The upper curve is the solution
curve because it passes through the initial condition.

The initial condition y(0) = 2 gives C = −2. Hence

x2 cos y + x3y − 1

2
y2 = −2

is the implicit solution that satisfies the given initial condition. The solution
curves can be plotted as shown in Figure 1.8.

Note that although both curves in Figure 1.8 satisfy the implicit equation,
only one of these curves passes through the given initial condition and thus is
the correct solution.

Solution by Grouping

There is a much slicker method for solving exact differential equations and
it is known as the method of grouping. For better or worse, it requires a
“working knowledge” of differentials and a certain amount of ingenuity. We
again consider Example 5, this time in its differential form:

(3x2 + 4xy) dx+ (2x2 + 2y) dy = 0.

We rewrite it in the form

3x2 dx+ (4xy dx+ 2x2 dy) + 2y dy = 0

which is
d(x3) + d(2x2y) + d(y2) = d(C).

That is,
d(x3 + 2x2y + y2) = d(C)

so that
x3 + 2x2y + y2 = C.

Clearly, this procedure is much quicker if we can find the appropriate grouping.
Let’s try this method one more time by again considering Example 6. We
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group the terms as

(2x cos y dx− x2 sin y dy) + (3x2y dx+ x3 dy)− y dy = 0.

Thus, we have
d(x2 cos y) + d(x3y)− d

(
y2

2

)
= d(C)

and so
x2 cos y + x3y − 1

2
y2 = C

is a one-parameter family of solutions.

Important Note: If we use the method of grouping, we still need to check
that the equation is exact for our first step.
• • • • • • • • • • • •
Problems

In Problems 1–13, check to see if the equation is exact. If it is, solve it by the
methods of this section. If an initial condition is given, graph the solution.
1. (1 + xy2) + (1 + x3y) dydx = 0 2. (1 + y2 sin 2x)− 2y cos 2x dydx = 0

3. 2xy + (x2 − y2) dydx = 0 4. (1 + y2 sin 2x)− y cos 2x dydx = 0

5. 2xy3 + (1 + 3x2y2) dydx = 0 6. (2 + y
x2 ) dx+ (y − 1

x ) dy = 0

7. 3x2(1 + ln y) = (2y − x3

y ) dydx 8. ( x
sin y + 2) + (x2+1) cos y

cos 2y−1
dy
dx = 0

9. (2xy + 1) + (x2 + 4y) dydx = 0, y(0) = 1

10. (2y sinx cosx+ y2 sinx) + (sin2 x− 2y cosx) dydx = 0, y(0) = 3

11. (2− 9xy2)x+ (4y2 − 6x3)y dydx = 0, y(1) = 1

12. (y sec2 x+ secx tanx) + (tanx+ 2y) dydx = 0, y(0) = 1

13. e−y − (2y + xe−y) dydx = 0, y(1) = 3

In Problems 14–15, determine the constant A such that the equation is exact.
Then solve the resulting exact equation.
14. (x2 + 3xy) + (Ax2 + 4y) dydx = 0 15.

(
Ay
x3 + y

x2

)
+
(

1
x2 − 1

x

)
dy
dx = 0

In Problems 16–17, determine the most general function (N(x, y) or M(x, y))
that makes the equation exact.
16. M(x, y) + (2yex + y2e3x) dydx = 0 17. (x3 + xy2) +N(x, y) dydx = 0

18. Let x represent the units of labor and y represent the units of capital.
If f(x, y) measures the number of units produced, a differential equation
satisfied by a level curve of it is

axa−1y1−a + (1− a)xay−a
dy

dx
= 0.

Solve this equation as (i) a separable equation and (ii) an exact equation.
In doing (ii), we obtain the well-known Cobb-Douglas production
function f(x, y) = Cxay1−a.
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19. By following the proof of Theorem 1.5.1, show that an equivalent formu-
lation of F (x, y) is given by

F (x, y) =

∫
N(x, y)

dy

dx
+

∫ (
M(x, y)− ∂

∂x

∫
N(x, y)

dy

dx

)
.

Although this could easily be obtained by rearranging the previously
obtained expression for F (1.30), do not simply rearrange terms.

20. By using the substitution y = vx, show that the homogeneous equation

(Ax+By) + (Cx+ Ey)
dy

dx
= 0,

where A,B,C, and E are constants, is exact if and only if B = C.

21. By using the substitution y = vx, show that the homogeneous equation

(Ax2 +Bxy + Cy2) + (Ex2 + Fxy +Gy2)
dy

dx
= 0,

where A,B,C,E, F, and G are constants, is exact if and only if B = 2E
and F = 2C.

1.6 Special Integrating Factors and Substitution Meth-
ods

Special Integrating Factors

In solving linear equations, we learned that we could multiply by an appropri-
ate integrating factor, thus transforming the equation into a form we can
solve. Besides the one we learned, there are other integrating factors that we
will now consider.

Definition 1.6.1
If the differential equation

M(x, y) dx+N(x, y) dy = 0 (1.35)

is not exact in a domain D but the differential equation

µ(x, y)M(x, y) dx+ µ(x, y)N(x, y) dy = 0 (1.36)

is exact in D, then µ(x, y) is called an integrating factor of the differential
equation (1.35).
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Example 1 The differential equation

(3y + 4xy2) dx+ (2x+ 3x2y) dy = 0 (1.37)

is not exact since

∂M

∂y
= 3 + 8xy 6= 2 + 6xy =

∂N

∂x
.

If we let µ(x, y) = x2y, we can use (1.36) to rewrite (1.37) as

(x2y)(3y + 4xy2) dx+ (x2y)(2x+ 3x2y) dy = 0.

Expanding gives

M = 3x2y2 + 4x3y3 and N = 2x3y + 3x4y2.

Then

∂

∂y
(3x2y2 + 4x3y3) = 6x2y + 12x3y2 =

∂

∂x
(2x3y + 3x4y2).

Thus the new equation is exact and hence µ(x, y) = x2y is an integrating
factor.

We saw above how multiplying by an appropriate integrating factor con-
verted a linear equation into an exact equation, which we could then solve.
Multiplying by an appropriate integrating factor is a technique that will work
in other situations as well.

We have seen that if the equation

M(x, y) dx+N(x, y) dy = 0

is not exact and if µ(x, y) is an integrating factor, then the differential equation

µ(x, y)M(x, y) dx+ µ(x, y)N(x, y) dy = 0

is exact. Using the criterion for exactness, we must have

∂

∂y
(µ(x, y)M(x, y)) =

∂

∂x
(µ(x, y)N(x, y)).

To simplify notation, we will write M,N instead of M(x, y), N(x, y) when
taking the partial derivatives, even though both M and N are functions of x
and y. The criterion for exactness can then be written

∂µ

∂y
M(x, y) + µ(x, y)

∂M

∂y
=
∂µ

∂x
N(x, y) + µ(x, y)

∂N

∂x
.
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Rearranging gives

∂µ

∂y
M(x, y)− ∂µ

∂x
N(x, y) = µ(x, y)

∂N

∂x
− µ(x, y)

∂M

∂y
. (1.38)

Thus µ(x, y) is an integrating factor if and only if it is a solution of the partial
differential equation (1.38). We will not consider the solution of this partial
differential equation. We will instead consider (1.38) in the case where µ
only depends on x, i.e., µ(x, y) = µ(x). (We can also consider the case when
µ(x, y) = µ(y) and the analogous formulation is left as one of the exercises.)
In this situation, (1.38) reduces to

−µ′(x)N(x, y) = µ(x)
∂N

∂x
− µ(x)

∂M

∂y
.

That is,
1

µ

dµ

dx
=

1

N(x, y)

(
∂M

∂y
− ∂N

∂x

)
. (1.39)

If the right-hand side of (1.39) involves two dependent variables, we run into
trouble. If, however, it depends only upon x, then Equation (1.39) is separa-
ble, in which case we obtain

µ(x) = exp

[∫
1

N(x, y)

(
∂M

∂y
− ∂N

∂x

)
dx

]
as an integrating factor.

Example 2 Solve the differential equation

(2x2 + y) dx+ (x2y − x) dy = 0.

Solution
In this equation,

M(x, y) = 2x2 + y and N(x, y) = x2y − x

so that
∂M

∂y
= 1 6= 2xy − 1 =

∂N

∂x

and the equation is not exact. It can also be shown (try it!) that the differ-
ential equation is not separable, homogeneous, or linear. Now

1

N(x, y)

(
∂M

∂y
− ∂N

∂x

)
=

1

x2y − x
(1− (2xy − 1))

=
−2

x
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depends only upon x. Thus,

µ(x) = exp

(
−
∫

2

x
dx

)
= e−2 ln |x| =

1

x2

is an integrating factor. If we multiply the equation through by this factor we
have (

2 +
y

x2

)
dx+

(
y − 1

x

)
dy = 0.

Now this equation is exact since

∂M

∂y
=

1

x2
=
∂N

∂x
.

We can thus solve this differential equation using the exact method to obtain

2x+
y2

2
− y

x
= C.

1.6.1 Bernoulli Equation

We will now consider a class of differential equations that can be reduced
to linear equations by an appropriate transformation. These equations are
called Bernoulli equations and often arise in applications.

Definition 1.6.2
A first-order differential equation of the form

dy

dx
+ P (x) y = Q(x) yn n ∈ R (1.40)

is called a Bernoulli differential equation.

Note that when n = 0 or n = 1, the Bernoulli equation is actually a linear
equation and can be solved as such. When n 6= 0 or 1, then we must consider
an additional method.

THEOREM 1.6.1
Suppose n 6= 0 or 1, then the transformation

v = y1−n
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reduces the Bernoulli equation (1.40) to

dv

dx
+ (1− n)P (x) v = (1− n)Q(x), (1.41)

which is a linear equation in v.

Proof: Multiply the Bernoulli equation by y−n and thus obtain

y−n
dy

dx
+ P (x) y1−n = Q(x) . (1.42)

Now let v = y1−n so that

dv

dx
= (1− n)y−n

dy

dx
.

Hence, Equation (1.42) becomes

1

1− n
dv

dx
+ P (x) v = Q(x),

that is,
dv

dx
+ (1− n)P (x) v = (1− n)Q(x).

Letting

P1(x) = (1− n)P (x) and Q1(x) = (1− n)Q(x)

gives
dv

dx
+ P1(x) v = Q1(x),

a linear differential equation in v.

Example 3 Solve the differential equation

dy

dx
+ y = xy3.

Solution
This is a Bernoulli equation with n = 3. We thus let v = y1−3 = y−2, so that

dv

dx
= −2y−3 dy

dx
.

Using (1.41) we obtain
dv

dx
− 2v = −2x. (1.43)
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This is a linear differential equation with integrating factor

exp

(∫
P (x) dx

)
= exp

(∫
−2 dx

)
= e−2x.

We also calculate exp
(
−
∫
P (x) dx

)
= e2x. Thus the solution of (1.43) can be

written

v = e2x

(∫
−2xe−2x dx

)
.

Integrating by parts gives

v = e2x

(
xe−2x +

1

2
e−2x

)
+ Ce2x.

Simplifying gives

v = x+
1

2
+ Ce2x.

But our original problem was in the variable y. We know v = y−2 and thus
the solution is

1

y2
= x+

1

2
+ Ce2x

which can be written as

y = ±
(

1

x+ 1
2 + Ce2x

)1/2

.

This solution is defined as long as the denominator is not equal to zero.

1.6.2 Homogeneous Equations of the Form g(y/x)

We have now been introduced to separable differential equations and their
relative ease of solution. We will now consider a class of differential equations
that can be reduced to separable equations by a change of variables.

Remark: Before proceeding, we alert the reader that the use of the word
homogeneous in this section must not be confused with its use as the type
of linear ordinary differential equation whose right-hand side is zero (as in
Chapters 3 and 4). Its use in the latter chapters is more common but both
have their place.

Example 4 Consider the differential equation

dy

dx
=
x− y
x+ y

.



i
i

“MAIN˙Ed2˙1p˙v02” — 2014/11/8 — 10:49 — page 58 — #71 i
i

i
i

i
i

58 Chapter 1. Traditional First-Order Differential Equations

Solution
After a minute or so of reflection, we see that this is not a separable equation.
We can, however, rewrite the equation as

dy

dx
=

1− y
x

1 + y
x

(1.44)

so that we can isolate the fraction y/x. This suggests we consider the change
of variable

v =
y

x
or equivalently

y = vx.

Our original problem has dy/dx and thus we take the derivative of both sides
of the above equation with respect to x to get

dy

dx
= v + x

dv

dx
.

Substitution of this and y = vx into (1.44) gives

v + x
dv

dx
=

1− v
1 + v

.

Simplifying results in the separable equation

x
dv

dx
=

1− 2v − v2

1 + v
,

and we separate its variables as

1 + v

1− 2v − v2
dv =

dx

x
,

and integrate to give

ln |1− 2v − v2| = −2 lnx+ C1.

Exponentiation of both sides yields

|1− 2v − v2| = eC1x−2 = C2x
−2.

But, v = y/x so that substitution gives

1− 2y

x
−
(y
x

)2

= ±C2x
−2 = Cx−2.

Multiplying by x2 to clear the fraction gives

x2 − 2xy − y2 = C

as the implicit solution to the differential equation.

This is an example of a general method of reducing a class of differential
equations to that of a separable equation. We need some terminology.
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Definition 1.6.3
The first-order differential equation

M(x, y) +N(x, y)
dy

dx
= 0

is said to be of homogeneous type (or homogeneous) if, when written in
the derivative form

dy

dx
= f(x, y),

there exists a function g such that f(x, y) can be expressed in the form
g(y/x).

By classifying the equation as homogeneous, we will be able to apply the
above technique in order to reduce the differential equation to one that is
separable. It is sometimes not obvious that a given equation can be rewritten
as a homogeneous equation. We present two examples now to help clarify this
concept.

Example 5 The differential equation

(x2 − 3y2) + 2xy
dy

dx
= 0

is homogeneous, since the equation can be written in derivative form as

dy

dx
=

3y2 − x2

2xy
,

and we can rearrange this as

3y2 − x2

2xy
=

3

2

(y
x

)
− 1

2

(
1

y/x

)
so that

dy

dx
=

3

2

(y
x

)
− 1

2

(
1

y/x

)
.

The right-hand side is of the form g(y/x) for the function

g(z) =
3z

2
− 1

2z
,

and so the differential equation is homogeneous.

Example 6 The differential equation(
y +

√
x2 + y2

)
dx− x dy = 0
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can be written as
dy

dx
=
y +

√
x2 + y2

x
.

For x > 0, we have

y +
√
x2 + y2

x
=
y

x
+

√
1 +

(y
x

)2

,

so
dy

dx
=
y

x
+

√
1 +

(y
x

)2

which is of the form g(y/x) for a function of the form

g(z) = z +
√

1 + z2.

If we had considered x < 0, we would have obtained

g(z) = z −
√

1 + z2.

In either case, we see that the differential equation is homogeneous.

As we mentioned, we have introduced homogeneous differential equations
because they are related to separable equations; in fact, we have the following
theorem which formalizes the method used in Example 4.

THEOREM 1.6.2
If

M(x, y) +N(x, y)
dy

dx
= 0 (1.45)

is a homogeneous equation, then the change of variables

y = vx

transforms (1.45) into a separable equation in the variables v and x.

Note that this change of variables implies that

y′ = v + xv′

by the product rule.

Example 7 Solve

y + (x− 2y)
dy

dx
= 0.
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Solution
We first observe that this can be rewritten as

dy

dx
=

y

2y − x
.

Dividing numerator and denominator by x gives

dy

dx
=

y/x

2y/x− 1
.

The right-hand side is then of the form g(y/x) and making the change of
variables y = vx gives

v + x
dv

dx
=

v

2v − 1
,

which becomes

x
dv

dx
=

2(v − v2)

2v − 1
.

This equation is separable! Rearranging gives

2v − 1

2(v − v2)
dv =

1

x
dx,

and integrating both sides yields

−1

2
ln |v − v2| = ln |x|+ C1.

We then use v = y/x to reintroduce the y-variable. Thus

−1

2
ln

∣∣∣∣yx − (yx)2
∣∣∣∣ = ln |x|+ C1,

but we can let C1 = lnC for an arbitrary constant C, so that

−1

2
ln

∣∣∣∣yx − (yx)2
∣∣∣∣ = ln |Cx|

is the implicit solution. We could obtain an explicit solution with a bit more
work but choose not to. Again, we could plot these solutions for various C-
values with our favorite software package.

• • • • • • • • • • • •
Problems

Solve Problems 1–8 by first finding an integrating factor of suitable form.
1. ydx+ (ex − 1)dy = 0 2. (x2 + y2 + x)dx+ ydy = 0
3. y(x+ y)dx+ (xy + 1)dy = 0 4. (x2 − y2 + y)dx+ x(2y − 1)dy = 0
5. ydx− xdy = 2x3 sinx dx 6. (3x2 + y) dx+ (x2y − x) dy = 0
7. (3x2y − x2)dx+ dy = 0 8. (x2 + 2x+ y)dx = (x− 3x2y)dy
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9. Show that if (∂N/∂x−∂M/∂y)/(xM−yN) depends only on the product
xy, that is,

∂N
∂x −

∂M
∂y

xM − yN
= H(xy),

then the equation

M(x, y) dx+N(x, y) dy = 0

has an integrating factor of the form µ(xy). Find the general formula for
µ(xy).

10. We derived a formula for an integrating factor if µ(x, y) = µ(x). If
µ(x, y) = µ(y), derive the integrating factor formula

µ(y) = exp

[∫
1

M(x, y)

(
∂N

∂x
− ∂M

∂y

)
dy

]
. (1.46)

Solve the Bernoulli equations given in Problems 11–21.
11. y′ + y = xy2 12. y′ + 3y = y4

13. y′ + 2xy = 4y 14. y′ − xy = xy3

15. xydy = (y2 + x)dx 16. xy′ + 2y + x5y3ex = 0
17. xy′ − 2x2√y = 4y 18. y′ = y4 cosx+ y tanx
19. xy2y′ = x2 + y3 20. (x+ 1)(y′ + y2) = −y
21. Solve the logistic equation dN

dt = rN
(
1− N

K

)
.

For Problems 22–34, solve the homogeneous differential equation analyti-
cally.
22. (x+ y) dx− x dy = 0 23. (x+ 2y)dx− xdy = 0
24. (y2 − 2xy)dx+ x2dy = 0 25. 2x3y′ = y(2x2 − y2)
26. 2x2 dy

dx = x2 + y2 27. dydx = y2+2xy
x2

28. xy′ − y = x tan( yx ) 29. (x2 + y2)y′ = 2xy
30. ydx = (2x+ y)dy 31. (x− y)dx+ (x+ y)dy = 0
32. y′ = 2( y

x+y )2 33. y2 + x2y′ = xyy′

34. (x+ 4y)y′ = 2x+ 3y

35. A function F is called homogeneous of degree n if

F (tx, ty) = tnF (x, y) for all x and y.

That is, if tx and ty are substituted for x and y in F (x, y) and if tn is then
factored out, we are left with F (x, y). For instance, if F (x, y) = x2 + y2,
we note that

F (tx, ty) = (tx)2 + (ty)2 = t2F (x, y)
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so that F is homogeneous of degree 2. Homogeneous differential equa-
tions and functions that are homogeneous of degree n are related in the
following manner. Suppose the functions M and N in the differential
equation

M(x, y) dx+N(x, y) dy = 0

are both homogeneous of the same degree n.
(a) Show, using the change of variables t = 1/x, that

M
(

1,
y

x

)
=

(
1

x

)n
M(x, y),

which implies that

M(x, y) =

(
1

x

)−n
M
(

1,
y

x

)
.

(b) Show, using a similar calculation, that

N(x, y) =

(
1

x

)−n
N
(

1,
y

x

)
,

so that the differential equation

M(x, y) dx+N(x, y) dy = 0

becomes

dy

dx
=
−M(x, y)

N(x, y)
= −

(
1
x

)−n
M(1, yx )(

1
x

)−n
N(1, yx )

.

Simplifying gives
dy

dx
= −

M(1, yx )

N(1, yx )
.

(c) Show that both numerator and denominator of the right-hand side of

dy

dx
= −

M(1, yx )

N(1, yx )

are in the form g(y/x) and conclude that if M and N are both homoge-
neous functions of the same degree n, then the differential equation

M(x, y) dx+N(x, y) dy = 0

is a homogeneous differential equation.

36. Using the idea presented in Problem 35, show that each of the equations
in Problems 22–34 are homogeneous.
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37. Suppose that the equation M(x, y) dx + N(x, y) dy = 0 is homogeneous.
Show that the transformation x = r cos t, y = r sin t reduces this equa-
tion to a separable equation in the variables r and t.

Use the method of Problem 37 to solve Problems 38–39.
38. (x− y)dx+ (x+ y)dy = 0 39. (x+ y) dx− x dy = 0

40. (a) Solve
dy

dx
=
y − x
y + x

.

(b) Now consider
dy

dx
=
y − x+ 1

y + x+ 5
. (1.47)

(i) Show that this equation is NOT homogeneous.
How can we solve this? Consider the equations y − x = 0 and y + x = 0.
They represent two straight lines through the origin. The intersection of
y − x + 1 = 0 and y + x + 5 = 0 is (−2,−3). Check it! Let x = X − 2
and y = Y − 3. This amounts to taking new axes parallel to the old with
an origin at (−2,−3).
(ii) Use this transformation to obtain the differential equation

dY

dX
=
Y −X
Y +X

.

(iii) Using the solution from part (a), obtain the solution to (1.47).

Use the technique of Problem 40 to solve Problems 41–45.
41. (2x+ y + 1)dx− (4x+ 2y − 3)dy = 0
42. x− y − 1 + (y − x+ 2)y′ = 0
43. (x+ 4y)y′ = 2x+ 3y − 5
44. (y + 2)dx = (2x+ y − 4)dy
45. y′ = 2( y+2

x+y−1 )2

Chapter 1 Review

In Problems 1–7, determine whether the statement is true or false. If it is
true, give reasons for your answer. If it is false, give a counterexample or
other explanation of why it is false.

1. The equation y′′ + xy′ − y = x2 is a linear ordinary differential equation
that is considered an initial-value problem.


