

DAO Object Model
The Definitive Reference

Helen Feddema

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

DAO Object Model: The Definitive Reference
by Helen Feddema

Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Editor: Ron Petrusha

Production Editor: Clairemarie Fisher O’Leary

Cover Designer: Edie Freedman

Printing History:

January 2000: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly & Associates, Inc. Many of the designations used by manufacturers
and sellers to distinguish their products are claimed as trademarks. Where those designations
appear in this book, and O’Reilly & Associates, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps. The association between the image of
a sparrow hawk and the DAO Object Model is a trademark of O’Reilly & Associates, Inc.
ActiveX, Microsoft, Outlook, Visual Basic, Visual Studio, Windows, and Windows NT are
registered trademarks of Microsoft Corporation.

While every precaution has been taken in the preparation of this book, the publisher assumes
no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 1-56592-435-5 [7/00]
[M]

ix
This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Preface

Access has an object model, but that isn’t where its data is kept. I can recall the
first time I tried to work with Access data, from Word VBA code. I set up a refer-
ence to the Access type library, then opened the Object Browser with the Access
library selected, and looked for objects representing the Access tables and fields
that I could use to get at the data I wanted to import into a Word document. I
couldn’t find anything! There were only a few major components in the Access
object model, and none of them had anything to do with data. After some
research, I found that what I needed was another object model entirely—DAO
(Data Access Objects). Until recently, if you wanted to work with the data stored
in Access tables, you had to use DAO. Now there is another object model that can
be used to get at data in Access tables—ADO (ActiveX Data Objects)—but DAO is
still the primary object model used for manipulating Access data.

What This Book Is About
This book explains all the objects in the DAO object model, down to the fields
that contain the data, including their methods and properties. I will let you know
where a property or method doesn’t work the way Help says it should. Since you
might be working with DAO from a variety of applications, I don’t just cover using
it in Access and Excel VBA, like the examples in Help; my examples include
Access, Word, Outlook, Excel VBA, Outlook VBS (used for code behind Outlook
forms), and even a few WSH (Windows Scripting Host) examples, so you can see
the syntax needed to work with DAO in these dialects of VB (sometimes it is sur-
prisingly different).

x Preface

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

What This Book Covers
This book covers the DAO object model that represents Access data; it applies to
DAO versions 3.5 to 3.6 (Access 97 to Access 2000), since there are minimal differ-
ences between these versions. Basically, DAO 3.6 added support for Jet 4.0 and
made some changes in the way non-Access data is handled.

Who This Book Is For
If you need to work with data stored in Access tables from another Office applica-
tion, in VBA or VBS, this book is for you. Even if you work with DAO exclusively
within Access, you will find it handy, especially if you are working with Access
2000, because of a very unfortunate change in the way Help is handled between
Access 97 and Access 2000.

Why Not Just Use Online Help?
In Access 97, when you are working with code in a module and you open Help,
there is a DAO book in the Help Contents tab. In addition, DAO objects, meth-
ods, and properties are listed in the Help index, so you can open these while
working in Access VBA code, which is where you need information on these
objects.

In Access 2000, however, opening Help from a code module will get you
Microsoft Visual Basic Help, which has lots of well-organized information about
VBA (as you would expect), but DAO is a different matter. There is no Help book
for DAO in the Help index, but there is some DAO information buried in Help,
along with information related to the new ADO object model, some of whose
objects have the same name as objects in the DAO object model, to make it even
more confusing! As is the case with HTML Help in general, if you follow the links
from topic to topic, you will find yourself viewing topics belonging to many differ-
ent applications, since there is no structure in HTML Help to ensure that you
remain in a thread of topics appropriate for the language or object model with
which you are working.

For example, if you look up “recordset” in the Help index, you will get a list of
topics, some of which apply to DAO and some to ADO, and it isn’t always easy to
tell which object model a topic belongs to. There is no way of examining DAO
objects in an organized manner because of the lack of a DAO Help book in the
Contents list. HTML Help suffers from the same deficiency as many web search
engines, which blindly pull up all topics containing a particular word, regardless of
whether they are relevant or not.

Preface xi

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

To get at the DAO Help topics in Access 2000, you have to open Help from the
main Access window and open the DAO book. If you then switch from Help back
to Access, open a module, and select Help from the VBE menu, you will get an
“Unable to display Help” error message, and Help will switch to the VB Help top-
ics, with a “The page cannot be displayed” message where the Help topic should
be. Since Access Help is now less helpful than ever, a DAO reference work which
is available when you are working in Access code is essential. Word is, Microsoft
is working on an improved interface for Access 2000 Help, but for the time being,
Help is more of a hindrance than a useful tool.

How This Book Is Organized
Each chapter in this book covers a DAO collection together with its singular object
(or an individual object) and provides a complete reference to that object and its
properties and methods. (There are no events in the DAO object model.) The
treatment of each collection or object follows a standard format. The collection (or
object) is described, summary tables list its properties and methods, and (where
appropriate) code samples are given. In addition, the end of the section contain-
ing the general description of the collection or object includes an “Access” section
that provides you with the following items of information:

• Whether the object is creatable. That is, whether a new instance of a class can
be instantiated in VBA by using the New keyword or the CreateObject func-
tion, or in a scripted environment by using the VBScript CreateObject function
or an object creation method provided by the scripted environment’s object
model (such as Server.CreateObject in ASP, for instance). To retrieve a
reference to an object that is not creatable (such as a Recordset object), you
must either navigate to it, access it through another object’s property, or han-
dle it as the return value of another object’s method.

• The properties and methods of particular objects that return that type of col-
lection or object.

Each object in the DAO object model is covered, with the exception of the Con-
nection object, which is used only with ODBCDirect.

The treatment of collection and object properties also follows a standardized format,
which consists of the following:

• An icon that indicates whether a property is read-only—that is, that a prop-
erty’s value can be retrieved but cannot be set. All other properties are either
read-write (which is true of the vast majority of properties) or have an unusual
behavior that is explained in the property description.

xii Preface

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

• The syntax needed to set to retrieve a property for those cases, such as collec-
tions and property arrays, where simple assignment does not work.

• The property’s data type.

• A description of the property

• Where they are appropriate, tips and suggestions for using the property effec-
tively or for avoiding some pitfall associated with the property.

• Where relevant, a code fragment that uses the property either in VBA code, in
VBScript code, or in both.

Collection and object methods also are treated consistently throughout the book.
Each entry for the method of a DAO collection or a DAO object includes the fol-
lowing:

• The method’s syntax

• A description of the method’s parameters

• A general description of the method

• Where they are appropriate, tips and suggestions for using the method effec-
tively or for avoiding some pitfall associated with the method

• Where relevant, a code fragment that uses the method either in VBA code, in
VBScript code, or in both

About the CD-ROM
The CD-ROM accompanying DAO Object Model:The Definitive Reference includes
all the sample code from the book, along with the Object Model Browser, an
enhanced object browser for DAO. Unlike the Object Browser, which offers a flat,
one-dimensional view of an object browser, Object Model Browser graphically
depicts an object model hierarchically, so that you can easily determine how to
navigate the object hierarchy or what methods and/or properties return objects of
a particular type. For documentation on the Object Model Browser, see the appendixes.

For details on the organization of the CD-ROM as well as any other last-minute
changes, see the ReadMe.txt file in the root directory of the CD-ROM.

Conventions in This Book
Throughout this book, we’ve used the following typographic conventions:

Constant width
Constant width in body text indicates a language construct such as a VBA
statement (like For or Set), an intrinsic or user-defined constant, a user-

Preface xiii

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

defined type, or an expression (like DBEngine.Workspaces.Count – 1).
Code fragments and code examples appear exclusively in constant width text.
In syntax statements and prototypes, text in constant width indicates such lan-
guage elements as the function, procedure, or method’s name and any other
invariable elements required by the syntax.

Constant width italic
Constant width italic in body text indicates argument and variable names. In
syntax statements or prototypes, it indicates replaceable parameters.

Italic
Italicized words in the text indicate intrinsic or user-defined functions and pro-
cedure names. Many system elements like paths and filenames are also itali-
cized, as are new items.

This symbol indicates a tip.

This symbol indicates a warning

Indicates a property that is read-only at runtime. If neither the nor the
(write-only) icon appears beside a property name, that property is either

read-write or its precise read-write status is explained in the description.

How to Contact Us
We have tested and verified all the information in this book to the best of our abil-
ity, but you may find that features have changed (or even that we have made mis-
takes). Please let us know about any errors you find, as well as your suggestions
for future editions, by writing to:

O’Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
1-800-998-9938 (in the U.S. or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (fax)

xiv Preface

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

You can also send messages electronically. To be put on our mailing list or to
request a catalog, send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

For our Visual Basic-related web site that includes a discussion forum and fea-
tured articles on assorted programming topics, see:

http://vb.oreilly.com

Call for Additions and Amendments
I would be the first to acknowledge that I don’t know everything about every
component of the DAO object model. If you know how to do something that I
said can’t be done or have some tips or warnings that might be useful to others,
please submit them on the discussion forum at our web site, http://forums.oreilly.
com/~vb/.

Acknowledgments
My editor at O’Reilly, Ron Petrusha, has been of great help to me in guiding this
book through a long process. Originally, the book was to cover both the Access
and DAO object models, but when we saw that the number of major objects in the
Access 2000 object model had jumped from 6 to 21, we realized that the book
couldn’t do justice to the Access object model without growing to enormous size.
So we decided to split it into two books: the present book on the DAO object
model and an upcoming book on the Access object model.

In addition to Ron, Katie Gardner, Tara McGoldrick, and Cheryl Smith at O’Reilly
have assisted ably during the process of putting the book together. My thanks also
go to my agent, Claire Horne, who was the one who first put together the book
project. Thanks to tech editor Russ Darroch for many helpful suggestions, and to
Matt Childs for carefully testing the code. Many people associated with Woody’s
Office Watch have been helpful in answering questions and prying information out
of Microsoft, particularly Woody Leonhard and Peter Deegan. The readers of
Woody’s Access Watch (I am the editor of this e-zine) have also been helpful in
suggesting workarounds for various Access and Office programming problems.

1
This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Chapter 1

1
Introduction

As Windows versions have progressed, the techniques available for transferring
data among Windows applications have improved, from the simple cut and paste
available through the Windows 3.0 clipboard, to Dynamic Data Exchange (DDE)
and Open Database Connectivity (ODBC), to the presently dominant technique,
currently called Automation (it was originally called Object Linking and Embed-
ding, then OLE Automation). With Automation code you can work directly with
the components and functionality of applications that support Automation, using
their object models.

An object model represents the components of an application (or a subset of its
components) as a set of objects (usually arranged hierarchically), each of which
has properties, methods, and events (though not necessarily all three) that devel-
opers can reference in code. Theoretically, any language can access the DAO

OLE Servers and Clients
Microsoft used to make a distinction between applications that were OLE serv-
ers, which exposed their objects for manipulation by code running from other
applications, and OLE clients, which hosted a VB dialect with functions and
methods used to manipulate objects in OLE server applications’ object models.

In previous versions of Office, some applications were OLE servers only, some
were OLE clients only, and some were both OLE clients and servers. With
Office 2000, however, all the major Office applications (Access, Word, Excel,
Outlook, and PowerPoint) support Automation both as clients and servers, so
Microsoft has stopped making this distinction and simply notes that an appli-
cation supports Automation.

2 Chapter 1: Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

object model (for example, JScript or Perl running in IIS/ASP, or C/C++). But in
real life, Visual Basic for Applications (VBA) or VBScript (VBS) are the most com-
mon languages used to work with object models, probably by several orders of
magnitude. An object generally represents something you work with in the appli-
cation’s interface—for example, Access tables, forms, and reports; Word docu-
ments, tables, and words; Excel worksheets, charts, and ranges; and so forth.
Additionally, some of the objects in an object model may be collections of other
objects, such as the Reports collection in Access (which is a collection of all open
Report objects) or the Worksheets collection in Excel (which is a collection of all
the Worksheet objects in a particular workbook).

When you write code in a dialect of Visual Basic to work with other applications
that support Automation, you need to understand the server application’s object
model, so that you will be able to reference the appropriate application compo-
nents as represented in its object model, and use their methods and properties to
achieve the desired results. While the names of objects in an object model may be
familiar to you from working with the corresponding objects in the interface (for
example, Access tables, forms, and reports), in other cases the object names may
not be familiar from working in the application’s interface (such as the Access
Screen and DoCmd objects, the DAO Container objects, the Outlook NameSpace,
Explorer and Inspector objects, or the Word Range object.)

An application’s object model may not represent all of the applica-
tion’s functionality. For example, the Outlook object model omits
Views, and the Access object model omits Import/Export specifica-
tions. The DAO object model avoids such discrepancies, as it has no
interface.

Early and Late Binding
Visual Basic for Applications allows you to access an object model using either
early binding or late binding. In contrast, VBScript, because its code is interpreted
rather than compiled and because it supports only the Variant data type and does
not allow strong typing, supports only late binding.

Late binding means that references to objects in the object model are resolved at
runtime; this is because those references cannot be resolved at design time either
because precise object types are unknown or because the language does not sup-
port early resolution of object references. Typically, in VBA, which supports
explicit data typing, this means that object variables are declared to be of the

Early and Late Binding 3

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

generic Object data type, rather than of more specific object types (like a Data-
base object, a TableDef object, or a Workspace object, for instance).

The VBA code shown in Example 1-1 uses late binding to display the number of
records in the Customers table of the Northwind database. The equivalent VBScript
code (which is nearly identical) is shown in Example 1-2. Note the use of a named
constant for the recordset type argument in the VBA code, while the VBS code
uses its numeric equivalent.

The code in Example 1-1 can use a String variable because String is
not a component of an object model. This is possible in VBA code,
but not in VBS code, which doesn’t permit data typing of any vari-
ables.

Example 1-1. VBA Code Using Late Binding

Private Sub cmdRecordCountLB_Click()

 Dim objDBEng As Object
 Dim objRS As Object
 Dim objDB As Object
 Dim strDBName As String

 strDBName = "D:\Documents\Northwind.mdb"
 'Use DBEngine.35 for Access 97, DBEngine.36 for Access 2000.
 Set objDBEng = CreateObject("DAO.DBEngine.35")
 Set objDB = objDBEng.OpenDatabase(strDBName)
 Set objRS = objDB.OpenRecordset("Customers", dbOpenTable)

 Debug.Print objRS.RecordCount & " records in Customers table"

 objRS.Close
 objDB.Close

End Sub

Example 1-2. VBScript Code Using Late Binding

Sub cmdRecordCount_Click()

 Dim dbe
 Dim wks
 Dim dbs
 Dim rst
 Dim strDBName
 strDBName = "D:\Documents\Northwind.mdb"

 Set dbe = Application.CreateObject("DAO.DBEngine.35")
 Set wks = dbe.Workspaces(0)

4 Chapter 1: Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Early binding, on the other hand, involves accessing an automation object’s type
library (a library that contains information about an object model) to resolve refer-
ences at design time rather than at runtime. This in turn requires that the develop-
ment environment produce compiled code; hence, scripting languages such as
VBScript cannot support early binding. Taking advantage of early binding requires
exact typing of object variables; variables can’t be declared as generic objects of
the Object data type, but must instead be declared as specific objects defined by
the object model.

The VBA code in Example 1-3 is the equivalent of that in Example 1-1, except that
it uses early binding. Note that, rather than declaring generic object variables of
type Object, the code declares specific object types (the DBEngine, Recordset, and
Database objects) defined by the DAO object model. Also note that the code takes
advantage of a symbolic constant, dbOpenTable, that is defined in the type
library.

 Set dbs = wks.OpenDatabase(strDBName)
 Set rst = dbs.OpenRecordset("Customers", 1)
 Msgbox rst.RecordCount & " records in Customers"
 rst.Close
 dbs.Close

End Sub

Example 1-3. VBA Code Using Early Binding

Private Sub cmdRecordCountEB_Click()

 Dim dbe As DAO.DBEngine
 Dim dbs As DAO.Database
 Dim rst As DAO.Recordset
 Dim strDBName As String

 strDBName = "D:\Documents\Northwind.mdb"
 'Use DBEngine.35 for Access 97, DBEngine.36 for Access 2000.
 Set dbe = CreateObject("DAO.DBEngine.35")
 Set dbs = dbe.OpenDatabase(strDBName)
 Set rst = dbs.OpenRecordset("Customers", dbOpenTable)

 Debug.Print rst.RecordCount & " records in Customers table"

 rst.Close
 dbs.Close

End Sub

Example 1-2. VBScript Code Using Late Binding (continued)

Early and Late Binding 5

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Late binding is vastly inferior to early binding in two major respects:

Performance
Because all object references must be resolved at runtime rather than at design
time, in most cases late binding involves an enormous performance penalty. It
is not uncommon for a particular operation in late-bound code to consume
anywhere from 25% to 1000% more time than the same operation in early-
bound code.

Assistance when coding
Both the Visual Basic and VBA development environments (though not the
VBS Script Editor) offer a feature called Auto List Members that allows you to
select an item that completes an expression from a popup list box. For exam-
ple, Figure 1-1 shows the list box that appears when you type dbs (the name
of a Database object variable) followed by a period, indicating that you want
to use a method or property of a Database object. Support for auto list mem-
bers is not available for late-bound objects.

In other words, unless there’s a compelling reason to do otherwise, it’s best to
take advantage of early-bound object references.

Typically, early binding to a particular object model is made available to VB or
VBA by adding a reference to the object library to a project. In VB this is done by
selecting the References option from the Project menu; in hosted VBA environ-
ments, by selecting the References option from the Tools menu. The result is the
References dialog, shown in Figure 1-2, which allows you to select object model
references from a list box.

Figure 1-1. Auto list members for a database variable

6 Chapter 1: Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The Object Models for
Working with Access
While most applications have only one object model, Access has three: one for the
interface, one for data stored in Access databases, and one for data stored in either
Access databases or external data sources. (One of them—ADO—is a recent addi-
tion to Microsoft’s stable of data access technologies and new to Access 2000.)

The Access Object Model

The Access object model (shown in Figure 1-3) represents the Access interface ele-
ments (forms, reports, and modules) and a good deal of the application’s function-
ality via the Screen and DoCmd objects. Although there is some overlap of
functionality between the Access and DAO object models (via the DBEngine
object, located under the Application object), the Access object model is primarily
used to work with Access objects, such as forms and reports.

The DAO Object Model

The DAO (Data Access Objects) object model represents the data stored in Access
tables. You need to work with the DAO object model both within Access VBA and
when working with data stored in Access databases from other applications, using

Figure 1-2. The References dialog with references set to the ADO and DAO object libraries

The Object Models for Working with Access 7

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

VBA and VBS. The DAO object model is available to anyone who has the Jet
engine library installed (this library is fairly easy to redistribute), while in order to
use the Access object model, the user must have Access installed on his machine.
There are two versions of the DAO object model: one for Jet workspaces (shown
in Figure 1-4) and one for ODBCDirect workspaces (shown in Figure 1-5).

When you write code to work with Access, you need the DAO object model to
retrieve data from tables, append records to tables, or update data in tables, and
you need the Access object model to display forms, print reports, or run macros.
Often you will need to use both the Access and DAO object models in the same

Figure 1-3. The Access 2000 object model

Application

Forms (Form)

Controls

Properties (Control)

Module

Properties (Form)

Reports (Report)

Controls

Properties (Control)

Module

Properties (Form)

Modules (Module)

References (Reference)

DataAccessPages (DataAccessPage)

Screen

DoCmd

VBE

WebOptions

Assistant

CommandBars

DBEngine

FileSearch

COMAddins

AnswerWizard

LanguageSettings

CurrentProject

CurrentData

CodeProject

CodeData

DefaultWebOptions

KEY: Object and collection
Object only

8 Chapter 1: Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

procedure. The DAO object model (primarily the more extensive Jet version) is
covered in this book; an upcoming book will cover the Access 2000 object model.

Figure 1-4. The DAO object model for Jet workspaces

DBEngine

Errors

Workspaces

Databases

Containers

QueryDefs

Recordsets

Relations

TableDefs

Groups

Users

Error

Workspace

Group

Users

Groups

User

User

Group

Database

Container

Documents

QueryDef

Fields

Parameters

Recordset

Fields

Relation

Fields

TableDef

Fields

Indexes

Fields

Document

Field

Parameter

Field

Field

Field

Index

Field

The Object Models for Working with Access 9

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data Objects

The ADO (ActiveX Data Objects, with a silent “X”) object model (shown in
Figure 1-6) can represent data in Access tables, but it is also used to work with
data in external (non-Access) data sources. As a rule of thumb, if you are working
exclusively with Access data, you can stick with the DAO object model; if you
need to work with data in non-Access data sources, you need the ADO object
model. However, ADO is a new (think version 1.0) technology, which many
developers consider to be lacking in robustness; many are waiting until the next
version to rely on ADO for real-world applications.

Each of the Connection, Command, Recordset, and Field objects also has its own
Properties collection, as shown in Figure 1-7.

See the forthcoming ActiveX Data Objects: The Definitive Guide, writ-
ten by Jason T. Roff and published by O’Reilly & Associates, for
more details on the ADO object model.

However, despite concerns about ADO’s reliability, there are some circumstances
in which ADO code is more efficient for working with Access data, such as using

Figure 1-5. The DAO object model for ODBCDirect workspaces

DBEngine

Errors

Workspaces

Connections

QueryDefs

Recordsets

Recordsets

Error

Workspace

Connection

QueryDef

Parameters

Recordset

Fields

Recordset

Fields

Parameter

Field

Field

Databases Database

10 Chapter 1: Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

an ADO recordset to fill the drop-down list of a combo box in place of a cumber-
some fill function, or saving a recordset to a file on your computer, which is possi-
ble with ADO recordsets but not with DAO recordsets.

If you need to use both the DAO and ADO objects models in your code, bear in
mind that they have some identically named objects, recordsets in particular. Even
though an object name may be the same in both object models, its functionality
may differ in ADO and DAO, which can result in strange bugs in your code. If you
have references set to both the DAO and ADO object models (see Figure 1-2) and
you don’t use prefixes in your code to indicate which object model your database
variables belong to, when the code is compiled, variables for objects such as
recordsets will be assumed to belong to whichever object model is highest in the
list of available object libraries, possibly with unfortunate results. By default, new
Access 2000 databases have a reference set to the ADO object library, but not to
the DAO object library, while converted databases will usually have a reference set
to the DAO object library.

Figure 1-6. The ADO object model

Figure 1-7. The Properties collection in the ADO object model

Connection

Errors Error

Command

Parameters Parameter

Recordset

Fields Field

Connection

Command

Properties Property

Field

Recordset

The Visual Basic Dialects 11

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

If you get compile errors after converting an Access 97 database to
Access 2000, this may be because the ADO reference is located
above the DAO reference in the References list. If you don’t antici-
pate using ADO in the database, just uncheck its reference; other-
wise, move the DAO reference above the ADO reference in the list,
so any ambiguous objects will be interpreted as belonging to the
DAO object model.

To prevent confusion (particularly likely with recordsets, which are the most com-
monly used objects in both object models), use the prefix DAO when declaring a
DAO database or recordset and the prefix ADODB when declaring a recordset, as
in the following code samples (and Example 1-3):

Dim dbs as DAO.Database
Dim rst as DAO.Recordset
Dim rst as ADODB.Recordset

(You have to work down to recordsets from databases in DAO, while in ADO you
can create a recordset variable directly.)

If you only need to work with a single object model (DAO or ADO) in your code,
you can eliminate the need to use prefixes by checking only the appropriate
library in the References dialog so as to remove ambiguity in your code. How-
ever, it may be prudent to use prefixes even in that case, as you may need to use
the other object model at a later time. If you use prefixes right from the start, you
won’t have to rewrite your code later on when you add the second reference.

The Visual Basic Dialects
You can work with object models in any programming language that supports
Automation. For working with Office applications using their object models, gener-
ally you will use a dialect of Visual Basic—either Visual Basic (VB) itself, Visual
Basic for Applications (VBA), or Visual Basic Scripting Edition (VBS). VBA is well
documented in the Help files provided with Office, but VBS is another matter. The
documentation for the dialect of VBS used in Outlook is quite inadequate: cover-
ing only properties, methods, and events, and omitting functions, operators, key-
words, and other language components. Microsoft provides online documentation
for VBS at http://msdn.microsoft.com/scripting/default.htm (and you can down-
load the documentation to your computer for offline access).

To work with object models representing other applications, you can use the
CreateObject and GetObject functions (or, in some dialects, methods). In some

12 Chapter 1: Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

cases, the New keyword can be used when declaring an object using early bind-
ing, thus avoiding the need to use CreateObject or GetObject:

Dim appWord As New Word.Application

However, different dialects of VB and different Office applications are inconsistent
in their support of these features, so you may need to experiment with the New
keyword, CreateObject, and GetObject in a particular procedure to see which is
most reliable. Depending on the dialect of VB you are using and the object model
you are manipulating, you may get different results. In Outlook VBS, for example,
GetObject doesn’t work at all, while when working with the Outlook object model
from another application, there appears to be no difference between using the New
keyword and the CreateObject method to create an instance of Outlook.

In my experience, sometimes GetObject works with Excel worksheets, and some-
times it doesn’t. When you use the New keyword to create an instance of Word
2000, you can create multiple Word instances by repeated use of the keyword
(with different application variables). When you try the same thing with Outlook
2000, however, you won’t get any extra instances of Outlook. These differences
depend on whether the target application is an SDI (Single Document Interface)
application (like Word 2000) or an MDI (Multiple Document Interface) application
(like Excel 2000) and perhaps other factors as well.

While working with various dialects of VBA and VBS on several Office applica-
tions, I have found the CreateObject method to be the most reliable way of creat-
ing an instance of an application; it works with all dialects and all target
applications. The New keyword works in many cases, and the GetObject method
works in some cases. Regardless, once you have created an instance of an applica-
tion, you can always work down through its object model to the particular compo-
nent you need to work with. So GetObject is not needed, though if it works in a
particular case, it can be a handy shortcut.

There is a difference between Access and other hosted apps (as well
as VB). Since the database engine is always active in Access, you
don’t have to instantiate a new DBEngine object; with VB and
hosted VBA in Word, etc., you do.

VBA and VBS have been upgraded a number of times since their introduction; the
VBA versions are listed in Table 1-1, and VBS versions are listed in Table 1-2.

The Visual Basic Dialects 13

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The main differences between VB, VBA, and VBS are listed in Table 1-3.

Table 1-1. VBA Versions

Product VBA Version Year

Excel 5.0 1.0 1993

Project 4.0 1.0 1994

Excel 95 1.0 1995

Visual Basic 4.0 2.0 1994

Access 95 2.0 1995

Office 97 5.0 1997

Office 2000 6.0 1999

Table 1-2. VBS Versions

Product VBS Version Year

Internet Explorer 3.0 1.0 1996

Internet Information Server 3.0 2.0 1997

Internet Explorer 4.0 3.0 1998

Windows Scripting Host 1.0 3.0 1998

Outlook 98 3.0 1998

Visual Studio 6.0 4.0 1998

Internet Explorer 5.0 5.0 early 1999

Internet Information Server 5.0 5.0 early 1999

Preliminary releases of Windows 2000 5.1 late 1999

Table 1-3. The Visual Basic Dialects

VB VBA VBS

Allows you to create a
standalone executable

Doesn’t support creating a
standalone executable; runs
from a module or macro

Doesn’t support creating a
standalone executable; runs
from code attached to a form
(Outlook), a web page (IE),
or a standalone script (WSH)

Must be purchased sepa-
rately

Included with most Office
and other Microsoft applica-
tions (substantially the same
dialect) and many third-party
applications (e.g., AutoCAD)

Included with Internet
Explorer, Outlook, and Win-
dows 98 (significantly differ-
ent dialects)

Has a rich developer’s
environment

Has a rich developer’s envi-
ronment

Has a limited developer’s
environment

Has powerful debug-
ging tools

Has powerful debugging
tools

Has limited or nonexistent
debugging tools

Has a full-featured
Object Browser

Has a full-featured Object
Browser

Has a limited Object Browser

14 Chapter 1: Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Given a choice, VBA is generally preferable since it is provided with most
Microsoft Office applications. With Office 2000, Outlook finally hosts VBA as well
as VBS. In Office 97, Word, Access, Excel, and PowerPoint host VBA, while Out-
look only hosts VBS. Internet Explorer 4.x and 5.x host VBS, and Windows 98
includes VBS as well in the form of the Windows Script Host. Additionally, some
non-Office Microsoft applications (such as Project) host VBA, as do some non-
Microsoft applications, such as Visio (which was recently purchased by Microsoft).
VBA also provides the developer with a sophisticated work environment (VBE),
unlike VBS with its Notepad-like Script Editor.

If you need to run a procedure directly from an Outlook form, from an IE web
page, from an Active Server page or from the Windows command line, you need
to write the code in VBS; if the code can be run from Access, Word, Excel, Out-
look 2000 (for application-wide code), or PowerPoint, you can use the more pow-
erful VBA dialect. On the other hand, if you need to create a standalone
application, you must use VB.

The samples in Example 1-4 and Example 1-5 perform the same actions (running a
make-table query and then listing the TableDefs in the Northwind database) in
Access VBA and Outlook VBS code.

Supports data typing of
variables

Supports data typing of vari-
ables

Does not support data typing
of variables (all variables are
Variants)

Supports named con-
stants and arguments

Supports named constants
and arguments

Offers very limited support
for named constants (devel-
opers must use numeric val-
ues or declare their own
constants) and no support
for named arguments

Produces compiled code
stored in the “document”

Produces compiled code
stored in the “document”

Runs from script that is inter-
preted by Outlook, IE, IIE, or
WSH

Example 1-4. Access VBA Code

Private Sub cmdExecute_Click()

 Dim wks As Workspace
 Dim dbs As Database
 Dim qdf As QueryDef
 Dim strSQL As String
 Dim tdf As TableDef

 Set wks = Workspaces(0)
 Set dbs = wks.OpenDatabase("D:\Documents\Northwind.mdb")

Table 1-3. The Visual Basic Dialects (continued)

VB VBA VBS

The Visual Basic Dialects 15

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Since VBA has a richer developer’s environment than Outlook VBS,
it is often easier to write and debug a procedure in VBA, then con-
vert it to Outlook VBS.

The following syntactical differences between the VBA and VBS code are typical
of the changes you need to make when converting code from VBA to VBS. This

 strSQL = _
 "SELECT Orders.*, * INTO tmakNewOrders FROM Orders WHERE OrderDate>#1/6/96#;"
 Set qdf = dbs.CreateQueryDef("qmakTestQuery", strSQL)

 'Execute a make-table query to produce the tmakRecentOrders table.
 qdf.Execute

 For Each tdf In dbs.TableDefs
 Debug.Print "Table Name: " & tdf.Name & vbTab & vbTab & _
 "Attributes: " & tdf.Attributes
 Next tdf
 dbs.Close

End Sub

Example 1-5. VBScript Code

Sub cmdExecuteQDF_Click()

 Dim dao
 Dim wks
 Dim dbs
 Dim strSQL
 Dim qdf

 Set dao = Application.CreateObject("DAO.DBEngine.35")
 Set wks = dao.Workspaces(0)
 Set dbs = wks.OpenDatabase("D:\Documents\Northwind.mdb")
 Set qdf = dbs.QueryDefs("qmakRecentOrders")

 'Execute a SQL statement to produce the tmakRecentOrders table.
 qdf.Execute

 For Each tdf In dbs.TableDefs
 MsgBox "Table Name: " & tdf.Name
 Next
 dbs.Close

End Sub

Example 1-4. Access VBA Code (continued)

16 Chapter 1: Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

would be necessary, for example, if you need to retrieve Access data using the
DAO object model for display on an Outlook form:

• There are no data types in VBS, so you can’t declare variables as any specific
data type.

• In VBA, the bang (!) operator is used to indicate a member of a collection,
such as a field in a recordset, while the dot (.) operator is used to indicate
methods or properties. In VBS, you must use the dot operator both for mem-
bers of collections and for properties and methods.

• In VBA, you can use named constants (such as dbHiddenObject) as function
arguments or as free-standing expression components (such as vbTab). In VBS
(with a very few exceptions, such as True and False), you must use the
argument’s numeric value or define the constant yourself using the Const key-
word.

• VBS lacks the Debug window, so you need to replace Debug.Print calls with
MsgBox functions.

• The With...End With statement is not supported by VBS, so you have to use
the full syntax every time you reference a variable.

• When using a looping code structure (such as For Each...Next), you can’t
specify the looping variable—just use Next instead of Next tdf.

• When you call an object model method from VBA, you have a choice between
using positional arguments or named arguments. For example, some develop-
ers prefer to write code like the following:

Set rst = qdf.OpenRecordset(dbOpenForwardOnly)

in which the meaning of an argument is determined by its function call. Oth-
ers find it easier to write code like the following:

Set rst = qdf.OpenRecordset(Type:=dbOpenForwardOnly)

in which arguments are identified by their names. In VBScript, you don’t have
this choice, since VBScript supports only positional arguments.

The following chapters will contain code samples for Access VBA and (where
appropriate) one of the other Office VBA dialects, Outlook VBS or WSH (Win-
dows Script Host) VBS, as well, so you can see the syntactical differences in usage
between VBA and VBS code.

17
This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Chapter 2

2
DBEngine Object

The DBEngine object is the highest-level object in the Jet/DAO object model, rep-
resenting the entire hierarchy of data objects you can manipulate from code. There
is only one DBEngine object, and you can’t create additional ones. This object cor-
responds to the Application object that is at the top of most of the Microsoft Office
object hierarchies.

DAO has two flavors: Jet and ODBCDirect. The Jet version of DAO lets you access
data in Jet databases (basically, Access databases or .mdb databases used by other
Microsoft applications), Jet-connected ODBC databases, and installable ISAM data
sources such as Paradox or Lotus (although ISAM data sources have become much
less important in Office 2000). The object model for the Jet version of DAO is
shown in Figure 2-1.

The ODBCDirect version of DAO is used to access data sources through ODBC
without use of the Jet engine. Its object model is shown in Figure 2-2. This object
model lacks some of the components that are needed for working with data in Jet
databases. This chapter will cover the more extensive Jet version of the DAO
object model.

The DBEngine object contains two collections, Errors and Workspaces, which will
be discussed in the next two chapters. The VBA code behind an Access form,
shown in Example 2-1, lists the DBEngine object’s properties if Access has been
started by the user, rather than through automation. The resulting message box is
shown in Figure 2-3.

18 Chapter 2: DBEngine Object

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Figure 2-1. The DAO object model for Jet workspaces

Example 2-1. Access Code to Display DBEngine Properties

Private Sub cmdDBEngine_Click()

 Call AppProperties(Me)

End Sub

DBEngine

Errors

Workspaces

Error

Workspace

Databases Database

Containers Container

Documents Document

QueryDefs QueryDef

Fields

Parameters

Field

Parameter

Recordsets Recordset

Fields Field

Relations Relation

Fields Field

TableDefs TableDef

Fields Field

Indexes Index

Fields Field

Groups Group

Users User

Users User

Groups Group

DBEngine Object 19

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Private Function AppProperties(obj As Object) As Integer

 Dim objAccess As Access.Application
 Dim i As Integer
 Dim strProperties As String

 On Error Resume Next
 Set objAccess = obj.Application

 If objAccess.UserControl = True Then
 For i = 0 To objAccess.DBEngine.Properties.Count - 1
 strProperties = strProperties & _
 objAccess.DBEngine.Properties(i).Name & vbCrLf
 Next i
 End If

 MsgBox left(strProperties, Len(strProperties) - 2), _
 vbOKCancel, "DBEngine properties"

End Function

Figure 2-2. The DAO object model for ODBC workspaces

Example 2-1. Access Code to Display DBEngine Properties (continued)

DBEngine

Errors

Workspaces

Error

Workspace

Connections Connection

QueryDefs QueryDef

Parameters Parameter

Recordsets Recordset

Fields Field

Recordsets Recordset

Fields Field

Databases Database

20 Chapter 2: DBEngine Object

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Although the example in Access Help implies that you will get a different set of
properties when Access is started from Automation code rather than by the user,
the code in Example 2-2, an Excel VBA function that opens Access using automa-
tion code, produces the same listing of properties.

Since it is more than likely that there will be several different versions of DAO on
any computer (installed by various versions of Microsoft applications), in order to
avoid an “ActiveX component can’t create object” error, you should append the
version number after the DBEngine object reference in your call to the
CreateObject function, as shown in the following Word VBA and Outlook VBScript
code samples. For Access 97, the DAO version ranges from 3.0 (referenced in code
as 30) to 3.51 (referenced as 35) depending on whether you have the original
release, SR-1, or SR-2; for Access 2000, it is 3.6 (referenced as 36).

Figure 2-3. DBEngine object properties when Access is started by the user

Example 2-2. Excel VBA Code to Display DBEngine Properties

Function ListDBEngineProps()

 Dim objAccess As New Access.Application
 Dim i As Integer
 Dim strProperties As String

 If objAccess.UserControl = False Then
 For i = 0 To objAccess.DBEngine.Properties.Count - 1
 strProperties = strProperties & _
 objAccess.DBEngine.Properties(i).Name & vbCrLf
 Next i
 End If

 MsgBox Left(strProperties, Len(strProperties) - 2), _
 vbOKCancel, "DBEngine properties"

End Function

DBEngine Object 21

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The first parameter passed to the VBA CreateObject function is a
programmatic identifier. When it includes only an object reference
(as in DAO.DBEngine), it is a version-independent programmatic
identifier. When it includes a version in the object reference (as in
DAO.DBEngine.36), it is a version-dependent programmatic identi-
fier. Typically, version-independent programmatic identifiers in the
registry are updated to include information about the most recent
installed version of that object. DAO, however, does not appear to
do this, making it more important that a version-dependent program-
matic identifier be used when calling the CreateObject function.

In order to use the DAO object model from other applications, such as Word or
Outlook, you need to first define a reference to the DBEngine object. Example 2-3
and Example 2-4, both of which use the CreateObject function to create an
instance of the DBEngine object, show how to do this using VBA for Word and
VBScript for Outlook, respectively. The Word VBA code in Example 2-3 imports
three fields from the sample Northwind Products table into a Word table that’s also
created from code (see Table 2-1 for a portion of the table of imported data). The
Outlook VBScript code in Example 2-4 imports three fields of data from the North-
wind Customers table into a list box on an Outlook form. The Word VBA code in
Example 2-3 uses early binding (after setting references to the Access and DAO
object libraries) and declares its variables as specific data types; the Outlook
VBScript code in Example 2-4 uses late binding and no data types because
VBScript does not support early binding or data typing.

Table 2-1. Data Imported into a Word Table from the Northwind Products Table

ID Product Name Units in Stock

1 Chai 39

2 Chang 17

3 Aniseed Syrup 13

4 Chef Anton’s Cajun Seasoning 53

5 Chef Anton’s Gumbo Mix 0

6 Grandma’s Boysenberry Spread 120

7 Uncle Bob’s Organic Dried Pears 15

8 Northwoods Cranberry Sauce 6

9 Mishi Kobe Niku 29

10 Ikura 31

22 Chapter 2: DBEngine Object

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Example 2-3. Word VBA Code to Access the DBEngine Object

Sub FillTableFromAccess()

 Dim dao As DAO.DBEngine
 Dim wks As Workspace
 Dim dbs As Database
 Dim rst As Recordset
 Dim strAccessDir As String
 Dim strDBName As String
 Dim objAccess As New Access.Application

 'Get path to Access database directory from Access SysCmd function.
 Set objAccess = CreateObject("Access.Application")
 strAccessDir = objAccess.SysCmd(9)
 strDBName = strAccessDir & "Samples\Northwind.mdb"
 Debug.Print "DBName: " & strDBName
 objAccess.Quit

 'Set up reference to Access database.
 Set dao = CreateObject("DAO.DBEngine.35")
 Set wks = dao.Workspaces(0)
 Set dbs = wks.OpenDatabase(strDBName)

 'Set reference to Products table.
 Set rst = dbs.OpenRecordset("Products")

 'Create 3-column Word table to fill with Access data.
 ActiveDocument.Tables.Add Range:=Selection.Range, _
 NumRows:=2, NumColumns:=3
 With Selection
 .TypeText Text:="ID"
 .MoveRight Unit:=wdCell
 .TypeText Text:="Product Name"
 .MoveRight Unit:=wdCell
 .TypeText Text:="Units in Stock"
 .MoveRight Unit:=wdCell
 End With

 'Write info from a record in Products to a row of the Word table;
 'loop through recordset until all data has been written to the table.
 Do Until rst.EOF
 With Selection
 .TypeText Text:=rst![ProductID]
 .MoveRight Unit:=wdCell
 .TypeText Text:=rst![ProductName]
 .MoveRight Unit:=wdCell
 .TypeText Text:=rst![UnitsInStock]
 .MoveRight Unit:=wdCell
 End With
 rst.MoveNext
 Loop

End Sub

DBEngine Object 23

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

In addition to the 2 collections we’ve briefly discussed (the Errors and Work-
spaces collections), the DBEngine object supports 8 properties (shown in
Table 2-2) and 12 methods (shown in Table 2-3).

Example 2-4. VBS Outlook Code to Import Data into a Listbox on an Outlook Form

Function FillListBox()

 Dim rst
 Dim dao
 Dim wks
 Dim dbs
 Dim ctl
 Dim strAccessDir
 Dim objAccess
 Dim CustomerArray(99, 2)

 'Get path to Access database directory from Access SysCmd function.
 Set objAccess = Item.Application.CreateObject("Access.Application")
 strAccessDir = objAccess.SysCmd(9)
 strDBName = strAccessDir & "Samples\Northwind.mdb"
 'MsgBox "DBName: " & strDBName
 objAccess.Quit

 'Set up reference to Access database.
 Set dao = Application.CreateObject("DAO.DBEngine.35")
 Set wks = dao.Workspaces(0)
 Set dbs = wks.OpenDatabase(strDBName)

 'Retrieve Customer info from table.
 Set rst = dbs.OpenRecordset("Customers")
 Set ctl = Item.GetInspector.ModifiedFormPages(_
 "Filling Combo & List Boxes").Controls("lstCustomers")

 ctl.ColumnCount = 3
 ctl.ColumnWidths = "50; 150 pt; 75 pt"

 'Assign Access data to an array of 3 columns and 100 rows.
 CategoryArray(99, 2) = rst.GetRows(100)

 'Display array data in list box.
 ctl.Column() = CategoryArray(99, 2)

End Function

Table 2-2. DBEngine Properties

Property Description

DefaultPassword Defines the type of the next Workspace object to be created

DefaultUser Defines the user name used to create the default workspace when-
ever it is initialized

DefaultType Defines the password used to create the default workspace when-
ever it is initialized

24 Chapter 2: DBEngine Object

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

It’s worth emphasizing that all of the members of the DBEngine object are glo-
bally available to any VB or VBA application (although not to VBS host applica-
tions) that has a reference to the DAO object library. In other words, although you
can reference each member of the DBEngine object by explicitly including a refer-
ence to the DBEngine object, you can also reference the member without refer-
encing the DBEngine object. For example, the following two statements are
identical:

Set db = DBEngine.Workspaces(0).Databases(0)
Set db = Workspaces(0).Databases(0)

Similarly, the following two method calls are identical:

Set db = DBEngine.OpenDatabase(NORTHWIND)
Set db = OpenDatabase(NORTHWIND)

IniPath Indicates the registry key containing information about Jet engine
settings

LoginTimeout Determines the number of seconds to wait before an attempt to log
onto an ODBC database is considered unsuccessful

Properties Returns a reference to the DBEngine object’s Properties collection

SystemDB Defines the Jet engine’s workgroup information file

Version Indicates the version of the Jet engine

Table 2-3. DBEngine Methods

Method Description

BeginTrans Begins a new transaction

CommitTrans Ends a transaction and saves the changes

CompactDatabase Compacts a closed database

CreateDatabase Creates a new database

CreateWorkspace Creates a Workspace object

Idle Suspends processing to allow the database engine to complete any
pending tasks

OpenConnection Opens a database connection

OpenDatabase Opens a database

RegisterDatabase Stores connection information for an ODBC data source in the sys-
tem registry

RepairDatabase Repairs a corrupted database

Rollback Ends a transaction and discards its changes

SetOption Temporarily overrides default configuration settings

Table 2-2. DBEngine Properties (continued)

Property Description

DBEngine Object 25

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The global members of the DBEngine Object are listed in Table 2-4.

The following sections document the DBEngine object’s methods and properties,
with the exception of the three properties (Errors, Properties, and Workspaces)
that return collections.

Access to the DBEngine Object

Creatable
Yes

Returned by
The DBEngine object is the top-level object in the DAO object model.

Table 2-4. Global Members of the DBEngine Object

DBEngine Member Type Global Availability

BeginTrans Method Yes

CommitTrans Method Yes

CompactDatabase Method Yes

CreateDatabase Method Yes

CreateWorkspace Method Yes

DefaultPassword Property Yes

DefaultType Property Yes

DefaultUser Property Yes

Errors Property/Collection Yes

Idle Method Yes

IniPath Property Yes

LoginTimeout Property Yes

OpenConnection Method Yes

OpenDatabase Method Yes

Properties Property/Collection Yes

RegisterDatabase Method Yes

RepairDatabase Method Yes

Rollback Method Yes

SetOption Method Yes

SystemDB Property Yes

Version Property Yes

Workspaces Property/Collection Yes

26 Chapter 2: DBEngine Object

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

DBEngine Properties

DefaultPassword

Data Type

String

Description

When it is initialized, uses a case-sensitive string to set the password used to cre-
ate the default workspace. The password string can be 1–20 characters in length
for Jet workspaces or any length for ODBCDirect workspaces. Any character is
permitted except ASCII 0. By default, DefaultPassword is a zero-length string,
which means that the database is not password protected. DefaultPassword must
be set before the default workspace is used in order to have any effect. Use this
method if you want to assign a certain password to all new databases. See the
DefaultUser entry for a code sample using this method.

DefaultType

Data Type

Long

Description

Sets or returns a value dictating what type of workspace (Jet or ODBCDirect) the
next Workspace object created will be. The property can be set to the values listed
in Table 2-5.

DefaultUser

Data Type

String

Table 2-5. The Values of the DefaultType Property

Named Constant Value Description

dbUseJet 2 Creates Workspace objects connected to the Jet engine

dbUseODBC 1 Creates Workspace objects connected to an ODBC data
source

IniPath 27

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Description

When it is initialized uses a string 1–20 characters in length to set the user name
used to create the default workspace. Alphabetic characters, accented characters,
numbers, spaces, and symbols are permitted, except for the characters listed in
Table 2-6, leading spaces, and control characters (ASCII 00 to ASCII 31). By
default, DefaultUser is set to “admin.”

Normally, user names aren’t case sensitive, except when you are recreating a user
account created or deleted in another workgroup. In that case, the user name must
be a case-sensitive match to the original name.

IniPath

Data Type

String

Description

Sets or returns a value indicating the Windows Registry key containing informa-
tion about Microsoft Jet database engine settings or parameters needed for install-
able ISAM (Indexed Sequential Access Method) databases such as Excel, dBASE,
and Paradox. This property must be set before invoking any other DAO code, or
the change has no effect.

Table 2-6. Characters Not Permitted in DefaultUser Strings

Character ASCII Number Description

“ 34 Double quotes

/ 47 Forward slash

\ 92 Backslash

[91 Left bracket

] 93 Right bracket

: 58 Colon

| 124 Pipe

< 60 Less than

> 62 Greater than

+ 43 Plus

= 61 Equal sign

; 59 Semicolon

, 44 Comma

? 63 Question mark

* 42 Asterisk

28 Chapter 2: DBEngine Object

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

You can use either the HKEY_LOCAL_MACHINE or the HKEY_LOCAL_USER key (as a
String) with this property. If you don’t supply a root key, HKEY_LOCAL_MACHINE
will be used as the default. When setting the property, note that the DAO engine
does not test for the existence of the registry key; it simply assigns the string you
specify to the IniPath property.

The code sample from Access 97 and Access 2000 Help does not work if run from
Microsoft Access, presumably because of some “under the hood” initialization of
DAO by Access itself. (Recall that the IniPath property must be set before any
other DAO code is invoked.) It does work properly if run from Visual Basic or any
other VBA-hosted environment.

Word VBA Code

This example shows how to use the IniPath property to retrieve and set the value
of the registry key containing information about the Jet database engine or install-
able ISAM driver settings, as shown in Figure 2-4.

Private Sub cmdIniPath_Click()

On Error GoTo cmdIniPath_ClickError

 Debug.Print "Original IniPath setting = " & _
 IIf(DBEngine.IniPath = "", "[Empty]", DBEngine.IniPath)
 DBEngine.IniPath = _
 "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\" & _
 "Jet\3.5\ISAM Formats\Excel 3.0"
 Debug.Print "New IniPath setting = " & _
 IIf(DBEngine.IniPath = "", "[Empty]", _
 DBEngine.IniPath)

cmdIniPath_ClickExit:
 Exit Sub

cmdIniPath_ClickError:
 MsgBox "Error No: " & Err.Number & "; Description: " & Err.Description
 Resume cmdIniPath_ClickExit
End Sub

LoginTimeout

Data Type

Integer

Description

Sets or returns the number of seconds allowed before an error occurs when you
try to log on to an ODBC database. The default value is 20 seconds. If LoginTime-
out is set to 0, no timeout will occur.

Version 29

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

SystemDB

Data Type

String

Description

Sets or returns the workgroup information file (typically System.mdw) for Microsoft
Jet workspaces. In the interface, you can change to a different workgroup file by
using the Workgroup Administrator applet (Wrkgadm.exe), usually found in the
Windows system folder for Access 97, and the Office folder for Office 2000. Typi-
cally, you need to change to a different workgroup information file in order to log
on to a secured database.

Version

Data Type

String

Description

Returns a string representing the version of DAO currently in use. Table 2-7 shows
how Jet versions map with various Microsoft application versions.

Figure 2-4. The Windows 98 Registry Editor, showing Excel ISAM formats

Table 2-7. Jet Engine and Application Versions

Jet Version and Year Access Visual Basic Excel Visual C++

1.0 (1992) 1.0 N/A N/A N/A

1.1 (1993) 1.1 3.0 N/A N/A

30 Chapter 2: DBEngine Object

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

VBA Code

This example reports on the Jet version currently in use in the running database:

Private Sub cmdVersion_Click()

 MsgBox "Currently using Jet, v. " & DBEngine.Version

End Sub

DBEngine Methods

BeginTrans

DBEnginw.BeginTrans()

The BeginTrans method is listed in Access 97 Help as a method of the DBEngine
object. Actually, it is a method of the Workspace object, one of the members of
the Workspaces collection under the DBEngine object, so it will be discussed in
Chapter 4, Workspaces Collection and Workspace Object. This error has been cor-
rected in Access 2000 Help.

CommitTrans

DBEngine.CommitTrans()

As with BeginTrans, this method is actually a method of the Workspace object and
will be discussed in Chapter 4.

CompactDatabase

DBEngine.CompactDatabase srcname, dstname, [dstlocale], [options], [srclocale]

2.0 (1994) 2.0 N/A N/A N/A

2.5 (1995) N/A 4.0 (16-bit) N/A N/A

3.0 (1995) 95 (7.0) 4.0 (32-bit) 95 (7.0) 4.x

3.5 (1996) 97 (8.0) 5.0 97 (8.0) 5.0

3.6 (1999) 2000 (9.0) N/A N/A N/A

Argument Data Type Description

srcname String The filename (including extension) of a closed database. May
include full path and can be in UNC convention (\\server1\
share1\dir1\db1.mdb). If srcname is currently open, DAO
generates runtime error 3049 (“Can’t open database…”) or
3356 (“You attempted to open a database that is already
opened exclusively…”).

Table 2-7. Jet Engine and Application Versions (continued)

Jet Version and Year Access Visual Basic Excel Visual C++

CompactDatabase 31

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

This method must have been changed at the last moment before the release of
Office 97, because Access 97 Help incorrectly lists the parameters as olddb,
newdb, locale, options, and password. The correct parameter names are listed
in the IntelliSense popup. These incorrect parameter names are still listed in
Access 2000 Help.

dstname String The filename and path of the new, compacted database. Must
be different from srcname. If dstname already exists, runtime
error 3204, “Database already exists,” is generated.

dstlocale Variant (Optional) Sets the collating order for creating dstname. If
omitted, the locale is the same as that of srcname. See
Table 2-8 for a list of constants that can be used for this argu-
ment and their values. Help says that you can create a pass-
word for dstname by concatenating the password string
(starting with ";pwd=") with a constant in the dstlocale
argument to save having to specify two parameters. If
dstname is to be a password-protected database that uses the
same locale as srcname, you can omit the dstlocale con-
stant and supply just the password preceded by the string
";pwd=".

options Integer (Optional) Defines the format (version and encryption) of the
database. See Table 2-9 for a list of constants that can be used
for this argument, and their integer values. If omitted, the
encryption and version of dstname is the same as that of
srcname. If supplied, the version constant must represent the
same or a later version than that of srcname.

srclocale Variant (Optional) For password-protected databases, a Variant con-
taining a String expression. The string ";pwd=" must precede
the password. This setting is ignored if you include a pass-
word setting in the dstlocale argument.

Table 2-8. The dstlocale Named Constants

Named Constant Value Description

dbLangGeneral ";LANGID=0x0409;CP=125
2;COUNTRY=0"

English, German, French,
Portuguese, Italian, and
Modern Spanish

dbLangArabic ";LANGID=0x0401;CP=125
6;COUNTRY=0"

Arabic

dbLangChineseSimplified ";LANGID=0x0804;CP=936
;COUNTRY=0"

Simplified Chinese

dbLangChineseTraditional ";LANGID=0x0404;CP=950
;COUNTRY=0"

Traditional Chinese

dbLangCyrillic ";LANGID=0x0419;CP=125
1;COUNTRY=0"

Russian

dbLangCzech ";LANGID=0x0405;CP=125
0;COUNTRY=0"

Czech

Argument Data Type Description

32 Chapter 2: DBEngine Object

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

dbLangDutch ";LANGID=0x0413;CP=125
2;COUNTRY=0"

Dutch

dbLangGreek ";LANGID=0x0408;CP=125
3;COUNTRY=0"

Greek

dbLangHebrew ";LANGID=0x040D;CP=125
5;COUNTRY=0"

Hebrew

dbLangHungarian ";LANGID=0x040E;CP=125
0;COUNTRY=0"

Hungarian

dbLangIcelandic ";LANGID=0x040F;CP=125
2;COUNTRY=0"

Icelandic

dbLangJapanese ";LANGID=0x0411;CP=932
;COUNTRY=0"

Japanese

dbLangKorean ";LANGID=0x0412;CP=949
;COUNTRY=0"

Korean

dbLangNordic ";LANGID=0x041D;CP=125
2;COUNTRY=0"

Nordic languages
(Microsoft Jet database
engine version 1.0 only)

dbLangNorwDan ";LANGID=0x0414;CP=125
2;COUNTRY=0"

Norwegian and Danish

dbLangPolish ";LANGID=0x0415;CP=125
0;COUNTRY=0"

Polish

dbLangSlovenian ";LANGID=0x0424;CP=125
0;COUNTRY=0"

Slovenian

dbLangSpanish ";LANGID=0x040A;CP=125
2;COUNTRY=0"

Traditional Spanish

dbLangSwedFin ";LANGID=0x040B;CP=125
2;COUNTRY=0"

Swedish and Finnish

dbLangThai ";LANGID=0x041E;CP=874
;COUNTRY=0"

Thai

dbLangTurkish ";LANGID=0x041F;CP=125
4;COUNTRY=0"

Turkish

Table 2-9. The Options Named Constants

Named Constant Value Description

dbEncrypt 2 Encrypts the database while compacting

dbDecrypt 4 Decrypts the database while compacting

dbVersion10 1 Creates a database that uses the Microsoft Jet database engine
version 1.0 file format while compacting

dbVersion11 8 Creates a database that uses the Microsoft Jet database engine
version 1.1 file format while compacting

dbVersion20 16 Creates a database that uses the Microsoft Jet database engine
version 2.0 file format while compacting

Table 2-8. The dstlocale Named Constants (continued)

Named Constant Value Description

