

Programming .NET
Windows Applications

Other Microsoft .NET resources from O’Reilly

Related titles Programming C#

C# in a Nutshell

Programming Visual Basic
.NET

Programming ASP.NET

ASP.NET in a Nutshell

ADO.NET in a Nutshell

.NET Windows Forms in a
Nutshell

.NET Framework Essentials

Mastering Visual Studio .NET

.NET Books
Resource Center

dotnet.oreilly.com is a complete catalog of O’Reilly’s books on
.NET and related technologies, including sample chapters and
code examples.

ONDotnet.com provides independent coverage of fundamental,
interoperable, and emerging Microsoft .NET programming and
web services technologies.

Conferences O’Reilly & Associates bring diverse innovators together to nur-
ture the ideas that spark revolutionary industries. We specialize
in documenting the latest tools and systems, translating the in-
novator’s knowledge into useful skills for those in the trenches.
Visit conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today with a free trial.

Programming .NET
Windows Applications

Jesse Liberty and Dan Hurwitz

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Programming .NET Windows Applications
by Jesse Liberty and Dan Hurwitz

Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly & Associates books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Tatiana Apandi Diaz and Val Quercia

Production Editor: Mary Brady

Cover Designer: Ellie Volckhausen

Interior Designer: David Futato

Printing History:

October 2003: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly & Associates, Inc. Many of the designations used by manufacturers and
sellers to distinguish their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly & Associates, Inc. was aware of a trademark claim, the designations
have been printed in caps or initial caps. The association between the image of a darter and the
topic of .NET Windows applications is a trademark of O’Reilly & Associates, Inc.

IntelliSense, JScript, Microsoft, Visual Basic, Visual C++, Visual Studio, Windows, and Windows
NT, Visual C#, and Visual J# are registered trademarks of Microsoft Corporation.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-00321-8

[M]

v

Table of Contents

Preface . ix

1. Windows Forms and the .NET Framework . 1
The .NET Framework 1
Windows Forms 3

2. Getting Started . 5
System Requirements 5
Hello World 7

3. Visual Studio .NET . 31
Overview 31
Start Page 32
Projects and Solutions 34
The Integrated Development Environment (IDE) 36
Building and Running 70

4. Events . 71
Publish and Subscribe 71
Performance 90
Some Examples 90

5. Windows Forms . 117
Web Applications Versus Windows Applications 118
The Forms Namespace 120
Form Properties 124
Forms Inheritance 126
User Interface Design 144

vi | Table of Contents

6. Dialog Boxes . 168
Modal Versus Modeless 168
Form Properties 169
DialogResult 174
Termination Buttons 179
Apply Button 181
CommonDialog Classes 189

7. Controls: The Base Class . 219
Control Class 219

8. Mouse Interaction . 272
SystemInformation Properties 272
Mouse Events 276

9. Text and Fonts . 305
Text 305
Fonts 307

10. Drawing and GDI+ . 342
The Drawing Namespace 342
The Analog Clock Project 361

11. Labels and Buttons . 423
Label 423
Button Classes 444

12. Text Controls . 474
Text 474
Editable Text Controls: TextBoxBase 475
RichTextBox 503

13. Other Basic Controls . 529
Containers 529
Tabbed Pages 540
PictureBox 553
ScrollBar 560
TrackBar 573
Up-Down Controls 578
ProgressBar 592

Table of Contents | vii

14. TreeView and ListView . 597
Class Hierarchy 597
Splitter 598
TreeView 604
ListView 635

15. List Controls . 681
Class Hierarchy 681
ListControls 681

16. Date and Time Controls . 738
Class Hierarchy 738
Date and Time Values 738
DateTimePicker 748
MonthCalendar 759
Timer Component 776

17. Custom Controls . 791
Specializing an Existing Control 792
Creating a User Control 797
Creating Custom Controls from Scratch 819

18. Menus and Bars . 836
Creating Your First Menu 836
The MainMenu Object 837
Toolbars 880
Writing It by Hand 886
Status Bars 900

19. ADO.NET . 910
Bug Database: A Windows Application 911
The ADO.NET Object Model 914
Getting Started with ADO.NET 919
Managed Providers 936
Binding Data 940
Data Reader 942
Creating a DataGrid 946

viii | Table of Contents

20. Updating ADO.NET . 985
Updating with SQL 985
Updating Data with Transactions 993
Updating Data Using DataSets 1025
Multiuser Updates 1049
Command Builder 1070

21. Exceptions and Debugging . 1080
Bugs Versus Exceptions 1080
Exceptions 1081
Throwing and Catching Exceptions 1082
Bugs 1084
Debugging in Visual Studio .NET 1084
Assert Yourself 1104

22. Configuration and Deployment . 1109
Class Hierarchy 1109
Configuration 1110
Assemblies 1133
Build Configurations 1165
Deployment 1168

Appendix: Characters and Keys . 1191

Index . 1203

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

ix

Preface

Windows Forms represents the third generation of Windows development. When
Microsoft first released Windows in 1985, programmers built applications using the
Windows API, typically in C. Many of us learned how to build these applications
from Charles Petzold, and this is a good place to thank him for his seminal book on
Windows programming.

By 1992, many programmers were building Windows applications in C++ using the
Microsoft Foundation Classes (MFC). Mike Blaszcack wrote a killer book on this
topic, and it remains a classic. In essence, the MFC represented an object-oriented
wrapper on the more procedural API.

In the 1990s, the alternative to building C++/MFC applications was
using VB and its Rapid Application Development environment.

Microsoft first announced the third generation of Windows development, Windows
Forms, and the .NET platform in July 2000. In short, C# (and Visual Basic .NET) and
Windows Forms replace C++ and the MFC as well as classic VB. This book aims to
provide a complete tutorial to this new way of creating Windows applications.

On a personal note, having spent nine years building MFC applica-
tions in C++ (and having earned much of my livelihood writing books
about C++) you might expect me to have a certain resistance to the
new paradigm. About an hour after writing my first C#/Windows
Forms application, I said to my dog, “I’ll never go back, and you can’t
make me.” The improvements were so significant, and the increase in
productivity so unmistakable, that there was no doubt in my mind
that Windows Forms would totally replace C++/MFC in my develop-
ment of Windows applications.

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

x | Preface

About This Book
This book will teach you all you need to know to use Windows Forms effectively. We
assume you have some background with either C# or Visual Basic .NET (VB.NET), or
sufficient programming experience to pick up what you need to know from the exam-
ples shown.

Windows Forms is not difficult. All of its concepts are straightforward, and the Visual
Studio .NET environment makes building powerful applications much simpler than
writing code by hand. The only difficulty of Windows Forms is that many pieces must
be woven together to build a robust, scalable, and efficient application.

You will find two authors’ names on this book. Each chapter was written initially by
one or the other author, but all chapters were then edited by both authors. Jesse Lib-
erty then extensively edited and rewrote every chapter to give the book a more uni-
fied voice. The chapters were subsequently edited by the O’Reilly editors and then
again by the authors. The bottom line is that although two authors wrote this book,
it should read as if it were written by a single author.

How the Book Is Organized
Chapter 1, Windows Forms and the .NET Framework, is an introduction to Win-
dows Forms and the .NET Framework, and is compatible with .NET 1.1 and Visual
Studio 2003.

Chapter 2, Getting Started, covers system requirements and walks you through the
creation of several simple “Hello World” applications, using both a text editor and
Visual Studio .NET.

Chapter 3, Visual Studio .NET, gives a thorough review of the Integrated Develop-
ment Environment (IDE) that is provided by Microsoft for developing .NET
applications.

Chapter 4, Events, covers the use of events in .NET Forms applications, and includes
extensive examples involving keyboard events and text box validation.

Chapter 5, Windows Forms, covers topics common to all .NET Forms applications,
including the Form class and the Control class, as well as a discussion of forms inher-
itance and user interface design.

Chapter 6, Dialog Boxes, describes the different types of dialog boxes, including
those you can create from scratch and those provided as part of the CommonDialog
classes.

Chapter 7, Controls: The Base Class, covers the features common to all controls in
.NET Forms, including such things as parent/child relationships, ambient proper-
ties, size and location, anchoring and docking, and keyboard interaction. It also
describes image lists.

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Preface | xi

Chapter 8, Mouse Interaction, covers the use of the mouse with .NET Windows
applications, including mouse events and properties.

Chapter 9, Text and Fonts, discusses the use of the written word as part of Windows
applications, including the Font class and techniques for drawing and measuring text
strings.

Chapter 10, Drawing and GDI+, covers the Drawing namespace, which provides
support for rendering graphics as part of a .NET application. It also includes a sam-
ple project, which creates a wicked cool analog clock on your screen.

Chapter 11, Labels and Buttons, begins the detailed coverage of the native controls
available to the .NET developer. This chapter covers labels, link labels, buttons,
checkboxes, and radio buttons.

Chapter 12, Text Controls, continues the discussion of native controls, with descrip-
tions of the editable text controls, including the text box and rich text box.

Chapter 13, Other Basic Controls covers the rest of the native basic controls, includ-
ing containers such as the panel and the group box, tabbed pages, the picture box,
scrollbars and trackbars, up-down controls (sometimes known as spinners), and the
progress bar.

Chapter 14, TreeView and ListView, describes the controls necessary to create hierar-
chical user interfaces as typified by Windows Explorer. A clone of Windows
Explorer is developed as an exercise.

Chapter 15, List Controls, describes native controls used for presenting lists, includ-
ing the listbox, the checked listbox, and the combo box.

Chapter 16, Date and Time Controls, starts with the techniques that deal with date and
time values in .NET, including the DateTime and TimeSpan structures. It then
describes the DateTimePicker and MonthCalendar controls and the Timer component.

Chapter 17, Custom Controls, describes how you can create your own controls to use
when the native controls don’t do what your application needs. These custom con-
trols can extend or combine existing controls or can be built entirely from scratch.

Chapter 18, Menus and Bars, describes the provisions for creating menus, toolbars,
and status bars in .NET Forms applications.

Chapter 19, ADO.NET, covers the .NET database technology and how to use data-
bases in your applications.

Chapter 20, Updating ADO.NET, describes how to update the data in your data-
base, including the use of transactions and multiuser updates.

Chapter 21, Exceptions and Debugging, describes error handling and debugging in the
.NET Framework, including the debugger included as part of Visual Studio .NET.

Chapter 22, Configuration and Deployment, describes how to configure and deploy
.NET Windows applications. It also includes a description of .NET assemblies.

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

xii | Preface

The Appendix lists several tables of data useful to .NET programmers, including the
ASCII character set, members of the KeyCode enumeration for mapping keyboard
keys, and standard and system color names.

Who This Book Is for
This book was written for programmers and web developers who want to build desk-
top applications using Microsoft’s powerful new .NET platform. Many readers will
have experience with the Microsoft Foundation Classes or writing to the Windows
API, but they may find that while the Windows Forms applications accomplish the
same tasks, the approach is often quite different.

It might be helpful to first read a primer on C# or VB.NET (see Jesse Liberty’s Pro-
gramming C# (O’Reilly) or Programming Visual Basic .NET (O’Reilly)), but this is
not required. Experienced VB, Java, or C++ developers may decide that they can
pick up what they need to know about the languages just by working through the
exercises in this book.

Conventions Used in This Book
The following font conventions are used in this book:

Italic is used for:

• Pathnames, filenames, and program names.

• Internet addresses, such as domain names and URLs.

• New terms where they are defined.

Constant Width is used for:

• Command lines and options that should be typed verbatim.

Constant-Width Italic is used for replaceable items, such as variables or optional
elements, within syntax lines or code.

Constant-Width Bold is used for emphasis within program code.

Indicates C# code.

Indicates VB.NET code.

Pay special attention to notes set apart from the text with the following icons:

This is a tip. It contains useful supplementary information about the
topic at hand.

C#

VB

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Preface | xiii

This is a warning. It helps you solve and avoid annoying problems.

Version Support
All code in this book was tested both with Version 1.0 and 1.1 of the .NET Frame-
work and Visual Studio .NET.

Support: A Note From Jesse Liberty
As part of my responsibilities as an author, I provide ongoing support for my books
through my web site. You can also obtain the source code for all examples in Pro-
gramming .NET Windows Applications at my site, http://www.LibertyAssociates.com.

From my web site, you can access a dedicated book-support discussion forum with a
section set aside for questions about Programming .NET Windows Applications.
Before you post a question, however, please check my web site to see if there is a Fre-
quently Asked Questions list or an errata file. If you check these files and still have a
question, then please post to the discussion center.

The most effective way to get help on the discussion forum is to ask a very precise
question or to create a very small program that illustrates your area of concern or
confusion. You may also want to check the various newsgroups and discussion cen-
ters on the Internet. Microsoft offers a wide array of newsgroups, and Developmen-
tor (http:/discuss.develop.com) has a wonderful .NET email discussion list.

We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made mistakes!).
Please let us know about any errors you find, as well as your suggestions for future
editions, by posting to my discussion forum.

We’d Like to Hear from You
If you would like to provide feedback or suggestions to the editors, please write to:

O’Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

xiv | Preface

There is a web page for this book, which lists errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/pnetwinaps

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

You can also send messages electronically. To be put on the mailing list or request a
catalog, send email to:

info@oreilly.com

For more information about this book and others, as well as additional technical arti-
cles and discussion on Windows Forms and the .NET Framework, see the O’Reilly
& Associates web site:

http://www.oreilly.com

and the O’Reilly .NET DevCenter:

http://www.oreillynet.com/dotnet

Acknowledgments
From Jesse Liberty:

John Osborn signed me to O’Reilly, and has nurtured my work and created a special
niche for my books, for which I will be forever be in his debt. Valerie Quercia contin-
ues to be a phenomenal editor who adds tremendous value to my books.

This book would not be nearly as complete were it not for the extraordinary skills of
Dan Hurwitz. He literally made this project possible, and I am grateful to him for
both his ongoing contributions and his friendship.

Seth Weiss provides perspective and support, and Mike Kraley is like a tiny thruster
rocket on the side of a lumbering ship—providing intermittent abrupt nudges in the
right direction.

Stacey, Robin, and Rachel offer the love and support that make writing possible and
worthwhile.

This book is dedicated to my mom, Edythe Levine, who has set a very high standard
for courage and responsibility.

From Dan Hurwitz:

First and foremost I would like to thank my wife Jennifer, for her love, tolerance, and
unwavering support. It sounds like a cliché, but without her help, it would not have
been possible for me to put in the tremendous amount of work required to write this
book. I would also like to thank my father, brothers Marvin and David, and good

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Preface | xv

friends Joe, Tom, Peter, David, Grover, and Ann, who, along with Jennifer and many
others, have helped me get through a very difficult period of my life. Finally, I would
like to thank Jesse, my very good friend and coauthor, for providing the opportu-
nity, again, for us to work together.

From both authors:

We would like to thank Ian Griffiths for his extraordinary technical editing of this
manuscript, his expertise, and his advice. In addition, we’d like to thank Tatiana
Diaz, who stitched together our otherwise disparate pieces into a single coherent
work. Ian, Tatiana, Weimeng Lee, and others at O’Reilly, contributed to making this
book far better than it otherwise would have been.

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

1

Chapter 1 CHAPTER 1

Windows Forms and
the .NET Framework

.NET is a new development framework that provides a fresh application program-
ming interface to the services and APIs of classic Windows operating systems and
brings together several disparate technologies that emerged from Microsoft during
the late 1990s. These new technologies include COM+ component services, a com-
mitment to XML and object-oriented design, and a clean interface to the Internet.

To lay the foundation for a full understanding of Windows Forms, this chapter begins
with an introduction to the .NET platform and a focus on the .NET Framework.

The .NET Framework
Microsoft .NET supports a Common Type Specification (CTS) that lets you choose
the syntax with which you are most comfortable. You can write classes in C# and
derive from them in VB.NET. You can throw an exception in VB.NET and catch it in
a C# class. Suddenly the choice of language is a personal preference rather than a
limiting factor in your application’s development.

The .NET Framework sits on top of the operating system, which can be any modern
flavor of Windows,* and consists of multiple components. Currently, the .NET
Framework contains:

• An expanding list of official languages (e.g., C#, VB.NET, and JScript .NET)

• The Common Language Runtime (CLR), an object-oriented platform for Win-
dows and web development that all these languages share

• A number of related class libraries, collectively known as the Framework Class
Library (FCL).

* Because of the Common Language Runtime architecture, in theory the operating system can be any OS,
including Unix.

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

2 | Chapter 1: Windows Forms and the .NET Framework

Figure 1-1 more fully breaks down the .NET Framework into its system architec-
tural components.

The CLR executes your program; it activates objects, performs security checks on
your code, lays your objects out in memory, executes them, and handles garbage
collection.

In Figure 1-1, the layer on top of the CLR is a set of framework base classes, fol-
lowed by an additional layer of data and XML classes, plus another layer of classes
intended for applications based on Windows Forms, Web Forms, or web services.
Collectively, these classes are known as the Framework Class Library (FCL). With
more than 5,000 classes, the FCL facilitates rapid development of applications for
either the desktop or the Web.

The set of framework base classes support rudimentary input and output, string
manipulation, security management, network communication, thread management,
text manipulation, reflection, and collections functionality.

Above the base class level are classes that support data management and XML
manipulation. The data classes support persistent management of data that is main-
tained on backend databases. These classes together are referred to as ADO.NET.
Some classes are optimized for Microsoft SQL Server relational database, and some
are generic classes that interact with OLE DB–compliant databases. The .NET
Framework also supports classes that let you manipulate XML data and perform
XML searching and translations. The data handling aspects of the .NET Framework
are covered in Chapter 19.

Figure 1-1. .NET Framework architecture

Data and XML classes
(ADO.NET, SQL, XSLT, XPath, XML, etc.)

Web Services Windows FormsWeb Forms

Framework Base Classes
(IO, string, net, security, threading, text, reflection, collections, etc.)

Common Language Runtime
(debug, exception, type checking, JIT compilers)

Windows Platform

.NET Framework

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Windows Forms | 3

Going beyond the framework base classes and the data and XML classes (and to
some extent, building on their technology) are yet another tier of classes geared
toward three different technologies:

Windows Forms
Allows the development of Windows desktop applications with rich and flexible
user interfaces. These desktop applications can interact with other computers on
the local network or over the Internet through the use of web services.

Web Forms
Allows the development of robust, scalable web pages and web sites.

Web services
Allows the development of applications that provide method calls over the
Internet.

To learn more about Web Forms and web services, please see Programming ASP.NET,
Second Edition, by Jesse Liberty and Dan Hurwitz (O’Reilly).

Windows Forms
Windows Forms is the name Microsoft gave to its desktop development technology.
Using Windows Forms, it is easier than ever to create applications that are dynamic
and data-driven, and that scale well. Used in conjunction with Visual Studio .NET,
Windows Forms technology allows you to apply Rapid Application Development
(RAD) techniques to building Windows applications. Simply drag and drop controls
onto your form, double-click on a control, and write the code to respond to the asso-
ciated event. In short, the RAD techniques previously available only to VB.NET pro-
grammers is now fully realized for all .NET languages.

Languages: C# and VB.NET
You can program Windows Forms in any language that supports the .NET Com-
mon Language Specification (CLS). The examples in this book will be given in C#
and VB.NET. We believe that C# and VB.NET are very similar, and if you know
one you will have no problem with examples shown in the other. That said, we offer
the examples in both languages to simplify the process of learning the technology.

Visual Studio .NET
Since all Windows Forms source files are plain text, you can develop all your applica-
tions by using your favorite text editor (e.g., Notepad). In fact, many examples in
this book are presented just that way. However, Visual Studio .NET offers many
advantages and productivity gains. These include the items listed next.

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

4 | Chapter 1: Windows Forms and the .NET Framework

• Visual development of Windows Forms

• Drag-and-drop Windows controls

• IntelliSense and automatic code completion

• Integrated debugging

• Automated build and compile

• Integration with the Visual SourceSafe source control program

• Fully integrated and dynamic help

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

5

Chapter 2 CHAPTER 2

Getting Started

The start of any journey is often the hardest part, especially if the goal is unclear or
seems daunting. So too with learning a new computer technology. One way to allevi-
ate this difficulty is to present, right up front, a clear idea of what is needed to start
the journey and examples that demonstrate the possibilities that lie at the end of the
road.

The previous chapter introduced the .NET Framework and overall architecture. In
later chapters, you will learn how to create Windows applications using .NET and
the Windows Forms technology.

This chapter will cover what software you need on your computer to develop appli-
cations using the .NET Framework. Then it will show you what a Windows Forms
application looks like. It will do this using the traditional route of a simple program
to say “Hello World.” In this case, there will actually be three successive Hello
World programs, each showing progressively more capability. Each of the three pro-
grams will be developed twice—once in Notepad and again in Visual Studio .NET—
to show the advantages of a good development environment.

System Requirements
This being the new millennium, you need a lot of horsepower to develop and run any
modern Windows application, no less so for .NET. Fortunately, memory and disk
space are modestly priced commodities these days.

Microsoft officially recommends a 600 MHz Pentium III–class processor or better for
developing .NET applications, and RAM ranging from 96 to 256 MB, depending on
the operating system. The application will run fine, if slowly, on a 300 MHz machine
with 512 MB of RAM. However, as with money and brains, you can never have too
much memory, and we recommend the biggest, fastest machine you can afford with
at least 512 MB of RAM if at all possible.

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

6 | Chapter 2: Getting Started

Visual Studio .NET is a program that benefits from a lot of screen real
estate, so a large, high-resolution monitor makes the development
experience much more productive. You should consider a screen reso-
lution of 1024 × 768 to be the minimum. Both authors of this book
use high-speed Pentium machines with 512 MB of RAM and two large
monitors running at 1280 × 1024, powered by an Appian (http://
www.apian.com) dual-headed graphics adapter.

To develop .NET applications, the minimum you will need to install is a supported
version of Windows (NT 4 Workstation or Server, 2000 Professional or Server, XP
Professional, or .NET Server) and the .NET Software Development Kit (SDK) (down-
loadable from Microsoft). This software will provide all necessary documentation,
compilers and tools, the .NET Framework, and the CLR. You will have to write all
your code in a text editor, such as Notepad, or a third party tool.

To be most productive with .NET, we recommend you purchase Visual Studio .NET.
Visual Studio .NET includes the SDK and documentation, along with an integrated
editor, debugger and other useful tools. Some examples in this book will be developed
using only a text editor, but most will be developed in Visual Studio .NET. You can
save money by buying the C#- or VB.NET-only version

To run an application developed by .NET on a client machine, i.e., a machine with-
out an installed development environment, the .NET Framework Redistributable
Package must be downloaded from Microsoft and installed on each client machine.
This is possible on all the versions of Windows, mentioned earlier, plus Windows 98
and Windows Me. Deployment is covered in Chapter 22.

If you plan on doing any development that uses the Internet, such as ASP.NET
projects, Internet deployment of Windows desktop applications, or the creation or
consumption of web services, use an Internet connection for your final testing. For
all these activities except the consumption of web services, you also need to install
Internet Information Services (IIS) on your development machine. After IIS is
installed, you will need to reinstall your .NET product. Bummer, eh? The best solu-
tion is to install IIS first, and then the .NET product.

Actually, it is possible to configure IIS after installing .NET by run-
ning the aspnet_regiis.exe command-line utility. From a command
prompt enter aspnet_regiis -i.

This utility can also enable different web applications to run with dif-
ferent versions of the CLR on the same machine.

IIS is not installed by default with any of these operating systems but can be added
easily after the OS is installed, if necessary. To add IIS to Windows 2000 or XP, go to
the Control Panel, choose Add/Remove Programs, and then Add/Remove Windows
Components. Select and install IIS. You will probably need to provide a Windows
installation CD as part of the process. To add IIS to NT, install the Windows NT4

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Hello World | 7

Option pack, downloadable from Microsoft over the Internet, and install Internet
Information Server 4.0. Don’t forget to reinstall any .NET development products
after installing IIS.

If you are installing IIS on a system using either the FAT16 or FAT32
filesystems, then manually configure the FrontPage 2000 Server Exten-
sions. To do this, go to Control Panel, then Administrative Tools, and
then Computer Management. Open the Computer Management dia-
log box and drill down to Internet Information Services (IIS). Right-
click on Default web site or web sites (depending on the operating sys-
tem), and select Configure Server Extensions. Follow the wizard. If the
Configure Server Extensions menu item is missing, then the server
extensions are already installed.

If you are planning any development that uses database access, you need to install a
database. ADO.NET, the database-enabling technology within the .NET Framework,
works with any OLE DB–compliant database, although it works best (of course) with
Microsoft SQL Server. If you don’t have Microsoft SQL Server, Microsoft Access, or
another ODBC compliant database installed on your development machine, install the
Microsoft SQL Server Desktop Engine (MSDE). This can either be done directly when
the .NET product is installed, or the MSDE installation files can be copied to the
machine as part of the .NET setup, and then the MSDE installed later.

Some examples in this book assume that you have installed either SQL
Server or MSDE.

Hello World
A long-standing tradition among programmers is to begin study of any new lan-
guage by writing a program that prints “Hello World” to the screen. In deference to
tradition, the first windows applications you create will do just that.

In this section, you will create three progressively more interesting versions of the
venerable Hello World program. These versions will demonstrate some of the funda-
mental features of a Windows application. The first version will be a console applica-
tion that writes a line of text to the system console (also known as a Command
Prompt Window. Some old-timers still call it a DOS box, which is technically no
longer accurate.). The next version will be a true Windows application, even if it is
somewhat limited. The final version will add a button to demonstrate event han-
dling. (Chapter 4 will cover events in detail.)

Using a Text Editor
The tool you are most likely to use when developing Windows applications is Visual
Studio .NET. You may use any editor you like, however. All source code and

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

8 | Chapter 2: Getting Started

configuration files for all .NET applications (Windows and web) are flat ASCII text
files—easily created, read, and modified using any text editor, ranging from Note-
pad or WordPad (included with Windows) to powerful third-party code editors and
development environments.

Both Visual Studio .NET and the C# command-line compilers sup-
port different language encodings. In Visual Studio .NET, encoding is
accessed under File ➝ Advanced Save Options. The C# command-line
compiler has a /codepage option to specify the codepage. The VB.NET
command-line compiler does not support alternative encodings. In
any case, the default code page is UTF8, which is a superset of flat
ASCII.

Using Visual Studio .NET has several advantages. The code editor provides indenta-
tion and color coding of your source code, the IntelliSense feature helps you choose
and enter the right commands and attributes, and the integrated debugger helps you
find and fix errors in your code.

The disadvantage of using Visual Studio .NET, however, is that it automatically gen-
erates copious amounts of boilerplate code and default object names. As a beginner,
you may be better off doing more of the work yourself, giving up the support of the
IDE in exchange for the opportunity to see how things really work.

You enhance the clarity, readability, and maintainability of your program by using
your own names for namespaces, classes, methods, and functions, rather than using
the default names provided by Visual Studio .NET.

Each of the three versions of Hello World mentioned above will first be developed by
using a simple text editor to create the source code. The same three versions will
then be created using Visual Studio .NET.

All code examples will be presented in both VB.NET and C#, unless both language
versions are nearly identical.

Hello World as a console application

The first version of the Hello World program created here will be a console applica-
tion. A console application has no user interface (UI) other than a command prompt.
It has no windows, buttons, menus, listboxes, or other graphical elements. All it can
do is execute program code, accept input, and display text.

For most purposes, the input console is the keyboard and the output console is the
command prompt window. The Console class of the .NET Framework encapsulates
both the input and output console, and provides properties and methods for com-
municating with the console. Text written to (or read from) the console can also be
directed to or from other devices or files using streams. The Hello World program
shown here will just send some characters to the screen.

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Hello World | 9

If a console application EXE file is double clicked in Windows Explorer, the console
application will open its own command prompt window, execute, and close the win-
dow. For a quickly running program like Hello World, it all happens so fast that you
barely see the screen flicker.

To execute a console application and actually see the results, open a command
prompt and run the program by typing the executable name from the command line.

The code listings shown in Example 2-1 and Example 2-2 are the Hello World console
applications in C# and VB.NET, respectively. These programs use the WriteLine
method to output a line of text to the system console, which is your computer screen.

This book is not a primer on C#, VB.NET, or the .NET framework.
We assume you are familiar with this material, and we will not explain
the language fundamentals. For a full exploration of VB.NET, see
Jesse Liberty’s Programming Visual Basic .NET, and for C#, see his
book Programming C# (both from O’Reilly).

A significant theme of this book is that the choice between C# and
VB.NET is purely syntactic: you can express almost any programming
idea in either language. Write in whichever language is more comfort-
able for you. The transition from VB.NET or VBScript to VB.NET may
be slightly easier than to C#, but much of the Microsoft and third-
party documentation is in C#.

This book shows most examples in both languages, with a slight pref-
erence for C# because it is a bit more terse. In any case, you will
notice that in most cases, the differences between the languages are
small and easily understood.

Using the Command Line in .NET
For any of the tools or utilities provided as part of the .NET SDK to run from a com-
mand line, the Path property of the operating system environment for that command
window must include the correct location of the tool or utility executable. The easiest
way to ensure that the Path is set correctly is to not open a normal Command window
(Start ➝ Programs ➝ Accessories ➝ Command Prompt), but instead to open a special
command prompt window provided as part of .NET. This command window has the
Path correctly set to include the locations of all the .NET tools and utilities.

Click on the Start button, and then Programs ➝ Microsoft Visual Studio .NET 2003 ➝

Visual Studio .NET Tools ➝ Visual Studio .NET 2003 Command Prompt. You will
probably want to copy this shortcut to someplace more accessible, such as the Win-
dows desktop or a quick launch toolbar.

To execute a console application, either navigate to the directory where the console
application lives (using the cd command) and then type the name of the program, or
enter the full path to the program as part of the name.

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

10 | Chapter 2: Getting Started

Open a text editor, such as Notepad, and enter the code shown in Example 2-1 or
Example 2-2. Save the file to the name shown in the caption for each code listing.

The principal differences between C# and VB.NET are that C# is case
sensitive, statements in C# are terminated with a semicolon, and
namespaces, classes, and methods in C# are contained within curly
braces, whereas VB.NET uses the keyword end.

Although VB.NET is not case sensitive, Visual Studio .NET does
impose its own casing rules on VB.NET source code (something that is
lacking in C#). Since many of the examples in this book were created
outside Visual Studio .NET, the VB.NET code in those examples does
not necessarily follow the standard casing. It still compiles fine.

Compiling the program

To convert your source code to an executable program, it must be compiled. When
working outside Visual Studio .NET, this is done using a command-line compiler.
The SDK provides compilers for each supported language. This book uses both the
C# and the VB.NET compilers.

Open the Visual Studio .NET command prompt, as discussed in the earlier sidebar
“Using the Command Line in .NET.” This will ensure that the proper path is set.
Navigate to the directory where the source file is saved, using the cd command.

To compile the C# version of the Hello World program (the code shown in
Example 2-1), use the following command (assuming you have saved the source file
with the name HelloWorld-console.cs, as shown in the caption of Example 2-1):

Example 2-1. Hello World console application in C# (HelloWorld-console.cs)

namespace ProgrammingWinForms
{
 public class HelloWorld
 {
 static void Main()
 {
 System.Console.WriteLine("Hello World");
 }
 }
}

Example 2-2. Hello World console application in VB.NET (HelloWorld-console.vb)

namespace ProgrammingWinForms
 public class HelloWorld
 shared sub Main()
 System.Console.WriteLine("Hello World")
 end sub
 end class
end namespace

C#

VB

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Hello World | 11

csc HelloWorld-console.cs

To compile the VB.NET version, use the following command (again assuming the
source file was saved with the name HelloWorld-console.vb as shown in the caption
in Example 2-2):

vbc HelloWorld-console.vb

In either case, the source file will be processed by the compiler and an EXE file will
be created in the current directory. The name of the EXE file will be the same as the
source code, without the extension (HelloWorld-console) followed by the extension
.exe. Thus, HelloWorld-console.exe.

You can execute the program by typing its name on the command line. Figure 2-1
shows the results of opening a Visual Studio .NET command prompt window, navi-
gating to the proper directory, compiling, and running Hello World for the console
in C#.

This was the simplest kind of compilation. Often, however, you will want the out-
put name to be different from the input name, and for all but the simplest programs,
there may be other files that must be referenced as part of the compilation. You con-
trol these aspects of command-line compiling with command-line switches. A com-
mand-line switch begins with a forward slash. To see all the available options
available to the compiler, look in the SDK documentation or enter the appropriate
commands:

csc /?

vbc /?

Figure 2-1. Compiling and running HelloWorld-console in C#

C#

VB

C#

VB

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

12 | Chapter 2: Getting Started

Compile the programs again, this time explicitly specifying the name of the output
file and the type of executable (console application). To do so, use the appropriate
command line:

csc /out:csHelloWorld-console.exe /target:exe HelloWorld-console.cs

vbc /out:vbHelloWorld-console.exe /target:exe HelloWorld-console.vb

The /out parameter specifies the output filename. If no /out parameter is specified,
the output file will take its name from the source file that contains the Main proce-
dure (in the case of EXE outputs) or the first source file specified (for non-EXE out-
puts). If there is no path information as part of the /out parameter, then the output
file will be created in the current directory. You can qualify the filename with a path,
either absolute or relative, to specify the output file location.

The /target parameter specifies the type of executable that will be created. You may
also use /t as a shortcut form of /target. Table 2-1 lists four legal values for the /tar-
get parameter.

One of the most commonly used compiler options (in VB.NET compilations, espe-
cially) is /reference (the short form is /r). This parameter specifies a file that contains
an assembly manifest. The manifest exposes the assembly metadata. This allows
other parts of the project to learn about and use any types (classes, member vari-
ables, methods, etc.) contained in the referenced file(s). If these types have public
accessibility, then they will be available to the project being compiled.

Typically, the referenced files are DLLs that contain the .NET Framework class
libraries, although you may also reference class libraries developed by yourself or
others.

Table 2-1. Legal values of the /target parameter

Value Short form Description

/target:exe /t:exe Generates a console application with an extension of .exe. This is the
default if no target option is specified. A Main procedure is required in
at least one source file.

/target:library /t:library Generates a dynamic-link library (DLL). No Main procedure is required
in any source file. If no /out parameter is specified, the output file will
have an extension of .dll.

/target:module /t:module Generates a module that can be added to an assembly. If no out
parameter is specified, the output file will have an extension of .
netmodule. This option is available only via the command line; it is
not available from within Visual Studio .NET.

/target:winexe /t:winexe Generates an executable Windows program, with an extension of
.exe. A Main procedure is required in at least one source file.

C#

VB

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Hello World | 13

C# does not need the references in the command-line compile because
a file called csc.rsp contains “default” references for the C# compiler.
There is no equivalent in VB.NET, so the references must be included
in the command line.

You can reference multiple files either by using multiple /reference parameters or by
using a single parameter with a comma-separated list of filenames. Be certain not to
include any spaces between the filenames if referencing multiple files with a single /r.
The following two commands are equivalent:

vbc /out:bin\vbStockTickerCodeBehind.dll /t:library /r:system.dll,system.web.
dll,system.web.services.dll,
system.data.dll,system.xml.dll StockTickerCodebehind.vb

vbc /out:bin\vbStockTickerCodeBehind.dll /t:library
/r:system.dll /r:system.web.dll /r:system.web.services.dll
/r:system.data.dll /r:system.xml.dll StockTickerCodebehind.vb

In these command-line compilations, the VB.NET compiler is executed to compile a
source code file named StockTickerCodebehind.vb. The output file, vbStockTicker-
CodeBehind.dll, is a library file located in the bin subdirectory under the current
directory. Five other DLL’s are referenced: system.dll, system.web.dll, system.web.ser-
vices.dll, system.data.dll, and system.xml.dll.

Sometimes you need to reference an assembly that is not located in either the CLR’s
system directory or the current directory of the command prompt window. In this
case, use the /lib (with C#) or /libpath (with VB.NET) option to specify a directory
to search in. You can search multiple directories by passing in a comma-separated
list of directories. The compiler will first search the current directory of the com-
mand window, then the CLR system directory, and finally the directories specified in
the /lib or /libpath options.

The /bugreport option aids in debugging compile problems. This option opens a text
file and causes the compiler to put into it a copy of all the source files used in the
compilation (you will probably want to condense and isolate the problem area), all
the version information and compiler options, and the compiler output, if any. It will
also prompt you for a description of the problem and how you think it should be
fixed. These descriptions will accept carriage returns, so you can write a multiline
description. The /bugreport option takes a fully qualified filename as its value.

The @ option allows you to specify a file, called a response file, which contains com-
piler options and source code files, just as if they had been entered manually from
the command line. Use multiple @ options to specify multiple response files.
Response files can have multiple lines, but each compiler option must be on a single
line with no line break. The # symbol can be used in response files to comment lines.

VB

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

14 | Chapter 2: Getting Started

When compiling EXE files, the source code must have at least one Main() method as
an entry point for the program. This entry point must be static in C# or Shared in
VB.NET. It can return either void (a sub in VB.NET) or an integer. If there are multi-
ple Main() methods in the application, use the /main option to specify the class that
contains the Main() method you will use as the entry point.

You can tell the compiler to search for source code files either in the current direc-
tory or in a specified directory. To do so, include an optional path name (absolute or
relative) or a wildcard as part of the input file. For example, the following command
line compiles a Windows application called HelloWorld.exe, using all the C# files in
the current directory beginning with the characters HelloWorld:

csc /out:HelloWorld.exe /t:winexe HelloWorld*.cs

The following command line will search for all similarly named source files in the c:\
projects directory:

csc /out:HelloWorld.exe /t:winexe c:\projects\HelloWorld*.cs

You can also search for source files in the current or specified directory, plus all of
their subdirectories, using the /recurse option. For example, the following command
line will use all C# source code files in the current directory and all its subdirectories:

csc /out:HelloWorld.exe /t:winexe /recurse:*.cs

This command line will search for all the C# source code files in the deploy subdirec-
tory under the current directory, plus all subdirectories under deploy:

csc /out:HelloWorld.exe /t:winexe /recurse:deploy*.cs

Hello World as a Windows application

The next version of Hello World you create will be a very simple Windows applica-
tion. Example 2-3 shows the code for this program in C# and Example 2-4 shows it
in VB.NET. In both versions, a Windows Form is created with the text on the title-
bar set to Hello World.

Example 2-3. Hello World Windows application in C# (HelloWorld-win.cs)

using System.Windows.Forms;

namespace ProgrammingWinForms
{
 public class HelloWorld : System.Windows.Forms.Form
 {
 public HelloWorld()
 {
 Text = "Hello World";
 }

 static void Main()
 {

C#

C#

C#

C#

C#

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Hello World | 15

The first line of Example 2-3 and Example 2-4 imports the System.Windows.Forms
namespace:

using System.Windows.Forms;

imports System.Windows.Forms

This example lets you refer to objects in this namespace without the full qualifica-
tion. When you declare the form, you are then free to refer to the base class as either
System.Windows.Forms.Form or simply as Form.

The third line declares the Form class HelloWorld:

public class HelloWorld : System.Windows.Forms.Form

public class HelloWorld : inherits System.Windows.Forms.Form

The VB.NET version can be written equivalently as:

public class HelloWorld
inherits System.Windows.Forms.Form

Notice that the latter version is on two lines, and that it has neither a colon nor the
VB.NET line-continuation character.

However you mark the derivation, the fact that your new class derives from Win-
dows.Forms.Form makes it a Windows Form application.

 Application.Run(new HelloWorld());
 }
 }
}

Example 2-4. Hello World Windows application in VB.NET (HelloWorld-win.vb)

imports System.Windows.Forms

namespace ProgrammingWinForms
 public class HelloWorld : inherits System.Windows.Forms.Form
 public sub New()
 Text = "Hello World"
 end sub

 shared sub Main()
 Application.Run(new HelloWorld())
 end sub
 end class
end namespace

Example 2-3. Hello World Windows application in C# (HelloWorld-win.cs) (continued)

C#

VB

C#

VB

C#

VB

VB

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

16 | Chapter 2: Getting Started

The next several lines contain the constructor for the HelloWorld class. In this exam-
ple, you will set the window caption from within the form’s constructor by assigning
a string to the form’s Text property:

public HelloWorld()
{
 Text = "Hello World";
}

public sub New()
 Text = "Hello World"
end sub

Once again, the Main() method is the entry point to the program:

static void Main()
{
 Application.Run(new HelloWorld());
}

shared sub Main()
 Application.Run(new HelloWorld())
end sub

The Application class is contained within the System.Windows.Forms namespace.
Launch a Windows application by calling the static Run method of the Application
class.

As always, the source code must be compiled to create an executable program. The
command line for compiling the program is:

csc /out:csHelloWorld-win.exe /t:winexe HelloWorld-win.cs

vbc /out:vbHelloWorld-win.exe /t:winexe /r:system.dll,system.windows.forms.dll
HelloWorld-win.vb

In the C# compilation, the output file is called csHelloWorld-win.exe, and in the
VB.NET compilation it is vbHelloWorld-win.exe. Both files are located in the cur-
rent directory. In both cases, the target output type is a Windows application. The
VB.NET command line also includes references to several .NET class libraries.

When either output EXE file is executed, the results will look like that shown in
Figure 2-2. Notice that the title of the form was set to Hello World. The form has all
the functionality one would expect of a rudimentary Windows application: the win-
dow can be moved or resized using standard Windows techniques; clicking on the
icon in the upper-left corner of the window drops down the standard window menu;
and the minimize, maximize, and close window buttons are present and functional
in the upper-righthand corner. Not bad for a very small amount of code.

C#

VB

C#

VB

C#

VB

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Hello World | 17

Notice the correlation, if only by convention, between the namespace referenced in
the source code and the files referenced in the compile command. Namespaces are
referenced in the source code with using statements in C# and Imports statements in
VB.NET. These namespaces are themselves contained within assembly files, most
typically DLLs. Table 2-2 shows the correspondence between some of the com-
monly used namespaces and the assemblies in which they are contained.

Hello World Windows application with a button

The final step in the evolution of this Hello World application will be the addition of
a control that generates an event in response to a user action. For this example, you
will add a button control that raises the click event when a user clicks on the button.
An event handler will handle this click event. Chapter 4 discusses events in detail.

The code in Example 2-5 adds a button control and the click-event handler to the
previous example in C#. The additional lines of code are shown in boldface.
Example 2-6 shows the equivalent example in VB.NET.

Figure 2-2. Hello World as a Windows application

Table 2-2. Correspondence of source code and compiler references

Source-code reference Compiler reference Comment

- system.dll Supplies fundamental classes and base classes. Not necessary
in the source code because it is referenced by default.

System.Windows.Forms system.windows.
forms.dll

Contains classes necessary to instantiate form objects.

System.Collections - Provides classes and interfaces used by various collections,
including Arrays and ArrayLists. Not necessary in the compiler
reference because it is included in mscorlib.dll, which is
referenced by default.

System.Drawing system.drawing.dll Supplies basic drawing capabilities, including Font and Pen
classes, and Color, Point, and Rectangle structures.

Example 2-5. Hello World Windows application with button control in C#
(HelloWorld-win-button.cs)

using System;
using System.Drawing;
using System.Windows.Forms;

C#

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

18 | Chapter 2: Getting Started

namespace ProgrammingWinForms
{
 public class HelloWorld : System.Windows.Forms.Form
 {

private Button btn;

 public HelloWorld()
 {
 Text = "Hello World";

btn = new Button();
btn.Location = new Point(50,50);
btn.Text = "Goodbye";
btn.Click += new System.EventHandler(btn_Click);

Controls.Add(btn);
 }

 static void Main()
 {
 Application.Run(new HelloWorld());
 }

private void btn_Click(object sender, EventArgs e)
{

Application.Exit();
}

 }
}

Example 2-6. Hello World Windows application with button control in VB.NET
(HelloWorld-win-button.vb)

imports System
imports System.Drawing
imports System.Windows.Forms

namespace ProgrammingWinForms
 public class HelloWorld : inherits System.Windows.Forms.Form

Private WithEvents btn as Button

 public sub New()
 Text = "Hello World"

btn = new Button()
btn.Location = new Point(50,50)
btn.Text = "Goodbye"

Controls.Add(btn)
 end sub

Example 2-5. Hello World Windows application with button control in C#
(HelloWorld-win-button.cs) (continued)

C#

VB

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Hello World | 19

The C# code from Example 2-5 is compiled with the following command line:

csc /out:HelloWorld-Win-Button.exe /t:winexe HelloWorld-Win-Button.cs

The VB.NET code from Example 2-6 is compiled with this command line:

vbc /out:vbHelloWorld-win-Button.exe /t:winexe /r:system.dll,system.windows.forms.
dll,system.drawing.dll HelloWorld-win-Button.vb

As above, the VB.NET compiler does not reference any assemblies by default, so they
must be explicitly included in the command line.

When the code from Example 2-5 or Example 2-6 is compiled and run, the results
look like Figure 2-3.

In the code that created this application, a private member variable was declared to
represent the button:

private Button btn;

Private WithEvents btn as Button

The WithEvents keyword in the VB.NET code is required for event handling and will
be explained in Chapter 4.

 public shared sub Main()
 Application.Run(new HelloWorld())
 end sub

private sub btn_Click(ByVal sender as object, _
ByVal e as EventArgs) _
Handles btn.Click

Application.Exit()
end sub

 end class
end namespace

Figure 2-3. Hello World with a button control

Example 2-6. Hello World Windows application with button control in VB.NET
(HelloWorld-win-button.vb) (continued)

VB

C#

VB

C#

VB

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

20 | Chapter 2: Getting Started

Inside the HelloWorld() constructor, the button variable btn is instantiated as a new
instance of the Button class and the Location property is specified as a Point:

btn = new Button();
btn.Location = new Point(50,50);

btn = new Button()
btn.Location = new Point(50,50)

In the C# version, the event handler for the Click event is added.

btn.Click += new System.EventHandler(btn_Click);

In the VB.NET version, the event handler is hooked up by the combination of the
WithEvents keyword in the btn declaration and the Handles keyword in the event-
handler method declaration, as you will see momentarily.

Finally in the constructor, the button is added to the Controls collection on the form:

Controls.Add(btn);

Controls.Add(btn)

The btn_Click method responds to the button Click event:

private void btn_Click(object sender, EventArgs e)
{

Application.Exit();
}

private sub btn_Click(ByVal sender as object, _
ByVal e as EventArgs) _
Handles btn.Click

Application.Exit()
end sub

Unlike in VB6, the name of the event handler is insignificant. The
Handles keyword determines the events handled by each event-han-
dler method.

Chapter 4 will describe the event handler methods in detail. For now, suffice it to say
that when the button is clicked, the Exit() method of the Application class is called,
which closes the application.

Using Visual Studio .NET
Now that you have created the three Hello World programs using a text editor, you
will make the same three programs using Visual Studio .NET. This chapter offers a

C#

VB

C#

C#

VB

C#

VB

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Hello World | 21

whirlwind tour of the IDE to show how easy it is to create applications. The next
chapter covers Visual Studio .NET in greater detail.

Hello World as a console application

Open Visual Studio .NET. You will see a Start page with a list of your previous
projects, if any, an Open Project button, and a New Project button. Click on the
New Project button.

You will be presented with the New Project dialog box. You will see a list of Project
Types in the left pane and a list of Templates in the right pane.

In the left pane, click on either Visual Basic Projects or Visual C# projects, depend-
ing on which language you wish to use.

In the right pane, click on Console Application.

The name will default to ConsoleApplication1 and the Location will be the default
project directory for your system.

You can change the default Location by clicking Tools ➝ Options. In
the tree control on the left, click on Environment ➝ Projects and Solu-
tions. You will see an edit field on the right labeled Visual Studio
projects location, along with a Browse button. Either type or browse
to the new default directory.

Change the name of the project to csHelloWorld-Console or vbHelloWorld-Console,
depending on which language you are using. The dialog box will look like Figure 2-4.

As indicated by the label below the Location edit field, Visual Studio .NET will cre-
ate a project in a subdirectory with the same name as the project, located under the
default location.

Click OK to create the new project.

Visual Studio .NET will cook for a few moments, and then present a code-editing
screen, along with menus and toolbars along the top and information windows along
the right edge. If you are using C#, it will look something like Figure 2-5.

If you are using VB.NET, it will look like Figure 2-6.

The next chapter will cover Visual Studio .NET in detail. For now, focus on the code
windows.

If you are using C#, notice the commented lines inside the Main() method. Place
your mouse cursor at the end of the last commented line and press Enter. This will
put the cursor on the next line, properly indented and ready to enter code.

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

22 | Chapter 2: Getting Started

Figure 2-4. New Project dialog box

Figure 2-5. C# Console application code-editing screen in Visual Studio .NET

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Hello World | 23

If you are using VB.NET, put your cursor inside the Main() method and tab to get
the proper indentation.

Type in the appropriate line of code:

Console.WriteLine("Hello World");

Console.WriteLine("Hello World")

As soon as you type the period after the word Console, IntelliSense will display a list
of all the possible methods and properties available to the Console class. (Remember
that C# is case sensitive.)

You can use the arrow key or the mouse to select one of the methods or properties.
Alternatively, just start typing. As you do, the first available selection starting with
that character will be highlighted. Successive characters will refine the selection.
When the desired method or property is highlighted, press Tab or any other key on
the keyboard.

If you press Tab, the selection will be entered in the line of code. If you press any
other key, the selection will be entered in the line of code, and that key character will
also be entered. When you get to the point of entering arguments for the method, a
tool tip will pop up showing all the different valid signatures. The next chapter will
explore the IntelliSense feature in more detail.

Figure 2-6. VB.NET Console application code-editing screen in Visual Studio .NET

C#

VB

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

24 | Chapter 2: Getting Started

The behavior of C# and VB.NET differ here. In C#, pressing Enter will
insert the selected item without adding a new line, while in VB.NET,
Enter will add a new line. Tab works the same in either language,
inserting the selection with no additional characters or new lines.

Normally you would press F5 to start a program. However, if you do this for a con-
sole application, it will go by too fast to see.

Press Ctrl-F5 to run the program without debugging. A console window, similar to a
command prompt window, will appear with the output of your program. It will look
something like Figure 2-7.

As you may recall, when you created the console application using a text editor, the
relevant line of code had the class System prepended to it, as in:

System.Console.WriteLine("Hello World");

That is not necessary here because Visual Studio .NET automatically included a ref-
erence to the System namespace. In C#, this is immediately apparent from the first
line in the code editor:

using System;

In VB.NET, it is less obvious, but several namespaces are imported by default, rather
than with explicit Imports statements. You can see them by right-clicking on the

Figure 2-7. Console application output

C#

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Hello World | 25

solution in Solution Explorer and selecting Properties, to display the Property Pages
for the project (not to be confused with the Properties window). Under Common
Properties, click on Imports to see the namespaces imported by default.

Unlike C#, Visual Studio .NET:

• Automatically provides the boilerplate code to create the skeleton of a program

• Automatically provides default namespace references

• Automatically provides default assembly references

• Provides IntelliSense to minimize typing and coding errors

• Automatically compiles the program when you run the application

Hello World as a Windows application

As you did with the text-editor versions of Hello World, now create a new version
of the Hello World program as a Windows application—this time using Visual
Studio .NET.

Open Visual Studio .NET and click on the New Project button on the Start page. In
the left side of the New Project dialog box, select either Visual Basic Projects or
Visual C# Projects, depending on the language you want to use.

In the right side of the dialog box, select Windows Application. The default name of
the project will be WindowsApplication1. Change this name to either csHelloWorld-
Win or vbHelloWorld-Win, depending on which language you are using. The New
Project dialog should look like Figure 2-8.

The project will be created in a subdirectory with the same name as the project,
located under the default location, as indicated by the label under the Location edit
field.

After clicking OK on the dialog box, you will be presented with the Visual Studio .NET
design page, similar to Figure 2-9.

Figure 2-9 is similar to the console application screen shown in Figure 2-5, except the
main design view contains a visual representation of a Windows Form, rather than a
code-editing window, and the Properties window along the lower-right side of the
screen now shows properties for the Form1.cs file, which is currently highlighted in
the Solution Explorer.

Click on the form on the design surface. The Properties window will display the
properties of the current control, which in this case is the form. Slide down the Prop-
erties window until you see the Text property. It currently has the value Form1.
Change the value to Hello World. You will see the titlebar of the form change to say
Hello World.

To differentiate it even more from the console version, add a label to the form. Click
on the View menu item, then ToolBox. The Toolbox will appear on the screen. Click

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

26 | Chapter 2: Getting Started

on the Label control and drag it onto the form. Grab the label control (by clicking on
it and dragging) and move it to a suitable location. While the label control is
selected, look at the Properties window. It will show the properties for the label.
Change the Text property to Visual Studio .NET Version. If necessary, resize the
label by clicking on one of the resizing handles and dragging it to enlarge the label
until the text no longer wraps. Visual Studio .NET should look something like
Figure 2-10.

Run the program by pressing F5 or clicking on the Start icon () on the toolbar.
When you do, the window shown in Figure 2-11 will open.

As with the manually coded version, this is a full-fledged Windows application,
which can be moved and resized, opens a fully functional window menu once you
click the icon in the upper-left corner, and minimize, maximize and close window
buttons in the upper-right corner.

Hello World Windows application with a button

The final step in the evolution of this Hello World program is the addition of a but-
ton that can respond to a user action. As with the hand-coded version, the button
will raise a click event that the program will handle. However, as you will see, Visual
Studio .NET will write most of the code for you.

Open the Toolbox once again. You can open it by either hovering the mouse cursor
over Toolbox tab on the left edge of the design surface or clicking on View ➝ Toolbox
from the menu.

Figure 2-8. New Project Dialog for Hello World Windows application

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Hello World | 27

By default, the Toolbox will auto-hide, disappearing from view when
the cursor is not over it. It will pop out when the cursor is placed on
the Toolbox tab. You can turn this feature off by clicking on the push-
pin icon at the top of the Toolbox. The pushpin will be vertical when
Auto-Hide is off and sideways when it is on.

Click on the Button control and drag it to a suitable location on the form, or double-
click it in the Toolbox to add it to the form and then drag it into position.

While the button is highlighted, go to the Properties window and change the text
property to Goodbye. The text written on the button will change accordingly.

Now create and hook up the default event handler by double-clicking the button.

A code window will open up with an event handler method skeleton already cre-
ated. The cursor will be inside the method, ready to type. Enter the appropriate line
of code:

Application.Exit();

Figure 2-9. Design page for Hello World Windows application

C#

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

28 | Chapter 2: Getting Started

Application.Exit()

As you saw when entering the code for the Windows version of the console applica-
tion above, IntelliSense will pop up all the available methods and properties of the
Application class as soon as you type the period.

The screen should look like Figure 2-12 if you are using C# or Figure 2-13 if you are
using VB.NET.

Run the program by pressing F5 or clicking on the Start icon () on the toolbar.
When you do, the window shown in Figure 2-14 will open.

Figure 2-10. Hello World Windows application with label

Figure 2-11. Hello World Windows application

VB

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Hello World | 29

Figure 2-12. Hello World button event handler in C#

Figure 2-13. Hello World button event handler in VB.NET

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

30 | Chapter 2: Getting Started

Clicking on the Goodbye button will raise the click event, which will be handled by
the Button1_Click event handler method. Visual Studio .NET automatically pro-
vides all the code necessary for creating that event handler and hooking it to the
event, greatly easing your programming chores.

Figure 2-14. Hello World Windows application with button

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

31

Chapter 3 CHAPTER 3

Visual Studio .NET

Overview
If your goal is to produce significant, robust, and elegant applications with few
bugs in a minimum amount of time, then a modern integrated development envi-
ronment (IDE) such as Microsoft Visual Studio .NET is an invaluable tool. Visual
Studio .NET offers many advantages to the .NET developer:

• A modern interface using a tabbed document metaphor for code and layout
screens, and dockable toolbars and informational windows.

• Convenient access to multiple design and code windows.

• What You See Is What You Get (WYSIWYG) visual design of Windows and
Web Forms.

• Code completion that allows you to enter code with fewer errors and less typing.

• IntelliSense pop-up help on every method and function call as you type, provid-
ing and types of all parameters and the return type.

• Dynamic, context sensitive help that lets you view topics and samples relevant to
the code you are writing at the moment. You can also search the complete SDK
library from within the IDE.

• Syntax errors are flagged immediately, allowing you to fix problems as they are
entered.

• A Start Page that provides easy access to new and existing projects.

• .NET languages that use the same code editor, shortening the learning curve.
Each language can have specialized aspects, but all benefit from shared features
such as incremental search, code outlining, collapsing text, line numbering, and
color coded keywords.

• An HTML editor that provides Design and HTML views that update each other
in real time.

• A Solution Explorer that displays all the files comprising your solution (which is
a collection of projects) in a hierarchical, outline.

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

32 | Chapter 3: Visual Studio .NET

• A Server Explorer that allows you to log on to servers to which you have net-
work access, access the data and services on those servers, and perform a variety
of other chores.

• An integrated Debugger that allows you to step through code, observe program
run-time behavior, and set breakpoints, even across multiple languages and
processes.

• Customization that allows you to set user preferences for IDE appearance and
behavior.

• Integrated build and compile support.

• Integrated support for source control software.

• A built-in task list.

On the negative side, Visual Studio .NET can be a black box and thus inscrutable. It
is sometimes difficult to know how Visual Studio .NET accomplishes its legerde-
main. While Visual Studio .NET can save you a lot of grunt typing, the automati-
cally generated code can obscure what is really necessary to create good working
programs. The proliferation of mysteriously named files across your filesystem can
be disconcerting when all you want is a simple housekeeping chore, like renaming a
minor part of the project. Worst of all, it occasionally decides to reformat all your
carefully constructed code, mashing indents and line breaks like a malevolent typist
drunk on too much coffee.

Visual Studio .NET is a large and complex program in it’s own right, so it is impossi-
ble to explore all the possible nooks and crannies in this book. This chapter will lay
the foundation for understanding and using Visual Studio .NET and point out traps
along the way.

For a thorough coverage of Visual Studio .NET, please see Mastering
Visual Studio .NET, by Jon Flanders, Ian Griffiths, and Chris Sells
(O’Reilly).

Start Page
The Start Page is what you will see first when you open Visual Studio .NET (unless
you configure it otherwise). A typical Start Page is shown in Figure 3-1.

Along the top of the application window is a typical set of menus and buttons. These
menus and buttons are context sensitive and will change as the current window
changes.

You will see three tabs: Projects, Online Resources, and My Profile. The Projects tab
shows the list of existing projects and lets you open a new project. The Online
Resources shows a series of links that include:

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Start Page | 33

Get Started
The default selection, provides a means of finding sample code.

What’s New
Links to new developments in the .NET world, training and events, and tips.

Online Community
More links to the .NET community, including web sites, newsgroups, tech sup-
port resources, code examples, and component sources.

Headlines
Links to news stories about .NET and specific topics such as XML web services.

Search Online
A form for searching the MSDN online library.

Downloads
Links to free and subscriber downloads, including sample applications.

XML Web Services
Forms to search for or register web services.

Web Hosting
Links to hosting providers.

The My Profile tab allows configuration of high-level Visual Studio .NET settings.

Figure 3-1. Visual Studio .NET Start Page

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

34 | Chapter 3: Visual Studio .NET

Projects and Solutions
A typical .NET application is comprised of many items: source files, assembly infor-
mation files, references, icons, and other files and folders. Visual Studio .NET orga-
nizes these items into a container called a project. One or more projects are
contained within a solution. When you create a new project, Visual Studio .NET
automatically creates the containing solution.

Solutions
Solutions typically contain one or more project. They may contain other indepen-
dent items as well. These independent solution items are not specific to any particu-
lar project, but apply, or scope, to the entire solution. The solution items are not an
integral part of the application, in that they can be removed without changing the
compiled output. You can manage them with source control.

It is also possible to have a solution that does not contain any projects—just solu-
tion or miscellaneous files that can be edited using Visual Studio .NET.

Miscellaneous files are independent of the solution or project, but they may be use-
ful. They are not included in a build or compile, but will display in the Solution
Explorer (described below) and may be edited there. Typical miscellaneous files
include project notes, database schemas, or sample code files.

Solutions are defined within a file named for the solution and have the extension.sln.
The .sln file contains a list of the projects that comprise the solution, the location of
any solution-scoped items, and solution-scoped build configurations. Visual Studio
.NET also creates a .suo file with the same name as the .sln file (e.g., mySolution.sln and
mySolution.suo). The .sou file contains data used to customize the IDE on a per-user
and per-solution basis.

You can open a solution by double-clicking the .sln file in Windows Explorer. If
the .sln file is missing, then recreate that solution from scratch by adding projects
into the solution. On the other hand, if the .suo file is missing, it will be recreated
automatically the next time the solution is opened.

Projects
A project contains source files and other content. Typically, the build process results
in the contents of a project being compiled into an assembly—e.g., an executable file
(EXE) or a dynamic link library (DLL).

The data describing the project is contained in a project file named after the
project name with a language-specific extension. For VB.NET and C#, the exten-
sions are .vbproj and .csproj, respectively. The project file contains version infor-
mation, build settings, references to other assemblies (typically members of the
CLR, but also custom developed and third-party components), and source files to
include as part of the project.

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Projects and Solutions | 35

Templates

When you create a new project by clicking the New Project button on the Start Page
(shown in Figure 3-1), you get the New Project dialog box, shown in Figure 3-2.

Select the Project Type and the Template. You will find several templates for each
project type. For example, the templates for Visual C# Projects, shown in Figure 3-2,
are different from the templates available to Setup and Deployment Projects. By select-
ing a Visual Studio Solutions project type, you can create an empty solution that is
ready to receive whatever items you wish to add.

The template controls what items will be automatically created and included in the
project, as well as default project settings. For example, if the project is a C# Win-
dows application, such as the Hello World programs created in Chapter 2, then lan-
guage-specific .csproj, .csprojusers, and .cs files will be created as part of the project.
If the project were a VB.NET project, then the corresponding .vbproj, .vbprojusers,
and .vb files would be created instead. If a different template were selected, then an
entirely different set of files would be created.

Project names

Project names may consist of any standard ASCII characters, except for those shown
in Table 3-1.

Figure 3-2. New Project dialog box

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

36 | Chapter 3: Visual Studio .NET

The Integrated Development Environment
(IDE)
The Visual Studio .NET Integrated Development Environment (IDE) consists of win-
dows for visual design of forms; code-editing windows, menus and toolbars provid-
ing access to commands and features; toolboxes containing controls for use on the
forms; and windows providing properties and information about forms, controls,
projects and the solution.

Layout
Visual Studio .NET is a Multiple Document Interface (MDI) application. It consists
of a single parent window, which contains multiple other windows. All menus, tool-
bars, design and editing windows, and miscellaneous other windows are associated
with the single parent window.

Figure 3-3 shows a typical layout of the IDE. This section will cover the overall lay-
out and many of the features that make working with the IDE so productive.

The Visual Studio .NET window has a titlebar across the top, with menus below.
Under the menus are toolbars with buttons that duplicate many common menu
commands. Nearly everything that can be done through menus can also be done
with context sensitive pop-up menus, as described below. You can customize the
menu and toolbars easily by clicking on Tools ➝ Customize.

Table 3-1. Forbidden project name characters

Project name Ascii character

Pound #

Percent %

Ampersand &

Asterisk *

Vertical bar |

Backslash \

Colon :

Double quotation mark “

Less than <

Greater than >

Question mark ?

Forward slash /

Leading or trailing spaces

Windows or DOS keywords, such as “nul”, “aux”, “con”, “com1”, and “lpt1”

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The Integrated Development Environment (IDE) | 37

The toolbars are docked along the top of the window by default. As with many Win-
dows applications, they can be undocked and moved to other locations, either free-
floating or docked along other window edges. Move the toolbars by grabbing them
with the mouse and dragging them where you want.

Figure 3-3 shows a design view of a Windows Form, with the design window occu-
pying the main area in the center of the screen. This position allows you to create a
visual design by dragging and dropping components from the Toolbox along the left
side of the screen.

Along the right side of the screen are two windows, both of which will be covered in
more detail below. The upper window is the Solution Explorer. Below it is the Prop-
erties window. Many other, similar windows, are available to you, as described later.

All of these windows, plus the Toolbox, are resizable and dockable. You can resize
them by placing the mouse cursor over the edge you wish to move. The cursor will
change to a double arrow resizing cursor, at which point you can drag the window
edge one way or the other.

Figure 3-3. Typical IDE layout

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

38 | Chapter 3: Visual Studio .NET

Right-clicking on the titlebar of a dockable window pops up a menu with four mutu-
ally exclusive check items:

Dockable
The window can be dragged and docked along any side of the Visual Studio .NET
window.

Hide
The window disappears. To see the window again—i.e., to unhide it—use the
View main menu item.

Floating
The window will not dock when dragged against the edge of the Visual Studio
.NET window. The floating window can be placed anywhere on the desktop,
even outside the Visual Studio .NET window.

You can also double-click on either the titlebar or the tab to dock and undock
the window. Double-clicking on the title while docked undocks the entire group.
Double-clicking on the tab just undocks the one window, leaving the rest of the
group docked.

Auto Hide
The window will disappear, indicated only by a tab, when the cursor is not over
the window. It will reappear when the cursor is over the tab. A pushpin in the
upper-right corner of the window will point down when Auto Hide is turned off
and point sideways when it is turned on.

In the upper-right corner of the window are two icons:

Pushpin
This icon toggles the AutoHide property of the window.

When the pushpin points down, the window is pinned in place; AutoHide is
turned off. Moving the cursor off the window will not affect its visibility.

When the pushpin points sideways, AutoHide is turned on. Moving the cursor
off the window hides the window. To see the window again, click on the tab,
which is now visible along the edge where the window had been docked.

X
The standard close window icon.

The main design window uses a tabbed metaphor—i.e., the tabs along the top edge
of that window indicate there are other windows below it. (You can change to an
MDI style, if you prefer, in Tools ➝ Options.) Clicking on the tab labeled test.cs in
Figure 3-3, for example, will bring up the screen shown in Figure 3-4, which con-
tains a code window.

When you switch from a design window to a code window, the menu items, tool-
bars, and Toolbox change in a context-sensitive manner.

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The Integrated Development Environment (IDE) | 39

The code window has drop-down lists at the top of the screen for navigating around
the application. The left drop-down contains a list of all the classes in the code and
the right drop-down has a list of all objects in the current class. In VB.NET you can
also use these drop-downs to select event sources (from the lefthand drop-down) and
add event handlers (from the righthand drop-down). This also works in the HTML
editor.

Along the bottom edge of the IDE window is a status bar, which shows such infor-
mation as the current cursor position (when a code window is visible), the status of
the Insert key, and any pending shortcut key combinations.

Menus and Toolbars
The menus provide access to many of Visual Studio .NET’s commands and capabili-
ties. The most commonly used menu commands are duplicated with toolbar but-
tons for ease of use.

Figure 3-4. Code window in IDE

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

40 | Chapter 3: Visual Studio .NET

The menus and toolbars are context sensitive—i.e., the available selection depends
on what part of the IDE is currently selected and what activities are expected or
allowed. For example, if the current active window is a code-editing window, the
top-level menu commands are:

• File

• Edit

• View

• Project

• Build

• Debug

• Tools

• Window

• Help

If the current window is a design window, then the Data and Format menu com-
mands also become available.

The following sections will describe some of the menu items and their submenus,
focusing on the aspects that are interesting and different from common Windows
commands.

File menu

The File menu provides access to a number of file, project, and solution-related com-
mands. Many of these commands are content sensitive. Below are descriptions of
those commands that are not self-explanatory.

New… As in most Windows applications, the New menu item creates new items to
be worked on by the application. In Visual Studio .NET, the New menu item has
three submenu items to handle the different possibilities:

Project…(Ctrl+Shift+N)
The Project command brings up the New Project dialog, which is context sensi-
tive. If no project is currently open, as is sometimes the case when Visual Studio
.NET is just opened, you will see the dialog box shown in Figure 3-2.

If there is already a project open, then you will get the New Project dialog box
shown in Figure 3-5. This dialog box adds radio buttons to give you the choice
of adding the new project to the solution or closing the existing solution and cre-
ating a new one to hold the new project.

File…(Ctrl+ N)
The File command brings up a New File dialog box, as shown in Figure 3-6. It
offers three different categories of files and many different types of files (tem-
plates) within each category. Files created this way are located by default in the

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The Integrated Development Environment (IDE) | 41

project directory (although you can browse for a different location). They are
displayed in the Solution Explorer if the Show All button is toggled, but are not
actually part of the solution unless explicitly added using one of the Add menu
items described below. In other words, they are the miscellaneous files described
above in the section on Solutions.

Blank Solution…
The Blank Solution command also brings up a New Project dialog similar to that
shown in Figure 3-5, with the Add to Solution radio button grayed out, the
default Project Type set to Visual Studio Solutions, and the Template set to
Blank Solution. When a blank solution is created, it contains no items. Add
items by using one of the Add menu items described below.

The New command has an equivalent button in the Standard Toolbar that exposes
the New Project and Blank Solution commands.

Open… The Open menu item opens pre-existing items. It has four submenu items:

Project…(Ctrl+Shift+O)
Opens a previously existing project. The currently opened solution is closed
before the new project is opened.

Figure 3-5. New Project dialog box from menu

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

42 | Chapter 3: Visual Studio .NET

Project From Web…
An Open Project From Web dialog box is presented, and it accepts a URL point-
ing to the project to open. As with Open Project, the currently opened solution
is closed before the new project is opened.

File…(Ctrl+O)
Presents a standard Open File dialog box, allowing you to browse to and open
any file accessible on your network. Opened files are visible and editable in
Visual Studio .NET, but are not part of the project. To make a file part of the
project, use one of the Add menu commands described below. The Open File
command has an equivalent button on the Standard Toolbar.

File From Web…
An Open File From Web dialog box is presented and accepts a URL pointing to
the file to open. As with Open File, the selected file is not made part of the
project.

Add New Item…(Ctrl+Shift+A). Add New Item lets you add a new item to the current
project. It presents the Add New Item dialog box shown in Figure 3-7. Expanding
the nodes in the Categories pane on the left side of the dialog box narrows the list of
Templates shown on the right side.

Use this menu item if you want to add new files to your project, including new
source code files. For source code, you would typically add a new Class file, which
automatically would have the language-specific filename extension.

This command has an equivalent button in the Standard Toolbar. It is also accessi-
ble from the context menu in the Solution Explorer.

Figure 3-6. New File dialog box

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The Integrated Development Environment (IDE) | 43

Add Existing Item…(Shift+Alt+A). Add Existing Item is very similar to the Add New
Item menu item just described, except that it adds already existing items to the cur-
rent project. If the item added resides outside the project directory, a copy is made
and placed in the project directory.

This menu option is also available from the Solution Explorer context menus.

Add Project. Add Project has three submenus. The first two, New Project and Exist-
ing Project, let you add either a new or pre-existing project to the solution. The third,
Existing Project From Web, presents a dialog box that accepts the URL of the project
to be added.

Open Solution. Clicking on this menu item brings up the Open Solution dialog box,
which allows you to browse for the solution to open. The currently open solution
will be closed before the new solution is opened.

Close Solution. This menu item is only available if there a solution is currently open. If
this menu item is selected, the currently open solution will be closed.

Advanced Save Options… Advanced Save Options is a context-sensitive submenu that
is only visible when editing in a code window. It presents a dialog box that lets you
set the encoding option and line ending character(s) for the file.

Figure 3-7. Add New Item dialog box

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

44 | Chapter 3: Visual Studio .NET

Source Control. The Source Control submenu item allows you to interact with your
source control program.

Edit menu

The Edit menu is fairly standard, containing the typical editing and searching com-
mands. It also has some very interesting capabilities.

Cycle Clipboard Ring (Ctrl+Shift+V). The Clipboard Ring is like copy and paste on ste-
roids. Copy different selections to the Windows clipboard, using the Edit ➝ Cut
(Ctrl-X) or Edit ➝ Copy (Ctrl-C) commands. Then use Ctrl+Shift+V to cycle through
all the selections, allowing you to paste the correct one when it comes around. You
can also see the whole clipboard ring in the Toolbox—it’s one of the panes that is
visible when you’re editing a text file.

This submenu item is context sensitive and is visible only when editing a code
window.

Find and Replace ➝ Find in Files (Ctrl+Shift+F). Find in Files is a very powerful search util-
ity that finds text strings anywhere in a directory or in subdirectories (subfolders). It
presents the dialog box shown in Figure 3-8. Checkboxes present several self-
explanatory options, including the ability to search using either wildcards or regular
expressions.

Figure 3-8. Find in Files dialog box

Regular Expressions
Regular expressions are a language unto themselves, expressly designed for incredibly
powerful and sophisticated searches. A full explanation of regular expressions is
beyond the scope of this book. For a complete discussion of regular expressions, see
the SDK documentation or Mastering Regular Expressions, by Jeffrey E. F. Friedl
(O’Reilly).

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The Integrated Development Environment (IDE) | 45

If you click on the Replace button in the Find in Files dialog box, you will get the
Replace in Files dialog box shown in Figure 3-9 and described next.

Find and Replace ➝ Replace in Files (Ctrl+Shift+H). Replace in Files is identical to the Find
in Files command, just described, except that it also allows you to replace the target
text string with a replacement text string.

This command is extremely useful for renaming forms, classes, namespaces, and
projects. Renaming objects is a very common requirement, and it is wise—you don’t
want to be saddled with the default names assigned by Visual Studio .NET.

Renaming should not be difficult, but it can be. Object names are spread throughout
a project, often hidden in obscure locations such as solution or project files, and
throughout source code files. Although all of these files are text files that can be
searched and edited, the task can be tedious and error-prone. The Replace in Files
command makes it simple, thorough, and reasonably safe.

Find and Replace ➝ Find Symbol (Alt+F12). Clicking on this submenu item brings up the
Find Symbol dialog box shown in Figure 3-10. This allows you to search for symbols
such as namespaces, classes, and interfaces, and their members such as properties,
methods, events, and variables.

The search results will be displayed in a window labeled Find Symbol Results. From
there, you can move to each location in the code by double-clicking on each result.

Go To… This submenu item brings up the Go To Line dialog box, which allows you
to enter a line number and immediately go to that line. It is context sensitive and visi-
ble only when editing a text window.

Insert File As Text… This submenu item allows you to insert the contents of any file
into your source code as though you had typed it in. It is context sensitive and visi-
ble only when editing a text window.

Figure 3-9. Replace in Files dialog box

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

46 | Chapter 3: Visual Studio .NET

A standard file browsing dialog box is presented to search for the file that will be
inserted. The default file extension will correspond to the project language, but you
can search for any file with any extension.

Advanced. The Advanced submenu item is context sensitive and visible only when
you edit a code window. It has many submenu items, including commands for:

• Creating or removing tabs in a selection (converting spaces to tabs and vice
versa)

• Forcing selected text to uppercase or lowercase

• Deleting horizontal whitespace

• Viewing whitespace (make tabs and space characters visible on the screen)

• Toggling word wrap

• Commenting and uncommenting blocks of text

• Increasing and decreasing line indenting

• Incremental search (described below)

Incremental search (Ctrl+I). Incremental search lets you search an editing window by
entering the search string character by character. As each character is entered, the
cursor moves to the first occurrence of matching text.

To use incremental search in a window, select the menu item or press Ctrl+I. The
cursor icon will change to a binocular with an arrow indicating the direction of
search. Begin typing the text string you want to search for.

The case sensitivity of an incremental search will come from the previous Find,
Replace, Find in Files, or Replace in Files search (described above).

The search will proceed downward and left to right from the current location. To
search backward, use Ctrl+Shift+I.

The key combinations listed in Table 3-2 apply to incremental searching:

Figure 3-10. Find Symbol dialog box

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The Integrated Development Environment (IDE) | 47

Bookmarks. Bookmarks are useful for marking spots in your code and easily navigat-
ing from marked spot to marked spot. Table 3-3 lists five bookmark commands,
along with their shortcut key combinations.

This menu item appears only when a code window is the current window.

Outlining. Visual Studio .NET allows you to outline, or collapse and expand sections
of your code, to make it easier to view the overall structure. When a section is col-
lapsed, it appears with a plus sign in a box along the left edge of the code window
(). Clicking on the plus sign expands the region.

You can nest the outlined regions so that one section can contain one or more other
collapsed sections. Several commands that facilitate outlining are shown in
Table 3-4.

Table 3-2. Incremental searching

Key combination Description

Esc Stop the search

Backspace Remove a character from the search text

Ctrl+Shift+I Change the direction of the search

Ctrl+I Move to the next occurrence in the file for the current search text

Table 3-3. Bookmark commands

Command Key Combination Description

Toggle Bookmark Ctrl+K, Ctrl+K Place or remove a bookmark at the current line. When a book-
mark is set, a blue rectangular icon will appear in the column
along the left edge of the code window.

Next Bookmark Ctrl+K, Ctrl+N Move to the next bookmark.

Previous Bookmark Ctrl+K, Ctrl+P Move to the previous bookmark.

Clear Bookmark Ctrl+K, Ctrl+L Clear all the bookmarks.

Add Task List Shortcut Ctrl+K, Ctrl+H Add an entry to the Task List (described below under the View
menu item) for the current line. When a task list entry is set, a
curved arrow icon () will appear in the column along the left
edge of the code window.

Table 3-4. Outlining commands

Command Key combination Description

Hide Selection Ctrl+M, Ctrl+H Collapses currently selected text. In C# only, this command is vis-
ible only when automatic outlining is turned off or the Stop Out-
lining command is selected.

Toggle Outlining Expansion Ctrl+M, Ctrl+M Reverses the current outlining state of the innermost section in
which the cursor lies.

Toggle All Outlining Ctrl+M, Ctrl+L Sets all sections to the same outlining state. If some sections are
expanded and some collapsed, then all become collapsed.

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

48 | Chapter 3: Visual Studio .NET

The default behavior of Outlining can be set using the Tools ➝ Options menu item.
Go to Text Editor, then indicate the specific language for which you wish to set the
options. The outlining options can be set for VB.NET under Basic ➝ VB Specific, for
C# under C# ➝ Formatting, and for C++ under C/C++ ➝ Formatting.

IntelliSense. Microsoft IntelliSense technology makes programmers’ lives much eas-
ier. It has real-time, context-sensitive help available that appears right under your
cursor. Code completion automatically completes your thoughts for you, drastically
reducing your need to type. Drop-down-lists provide all methods and properties pos-
sible in the current context, and are available at a keystroke or mouseclick.

What’s not to love? IntelliSense makes up for a lot of Visual Studio .NET’s more,
shall we say, exasperating traits.

The default IntelliSense features can be configured by going to Tools ➝ Options, and
then the language-specific pages under Text Editor.

Most IntelliSense features appear as you type inside a code window, or allow the
mouse to hover over a portion of the code. In addition, the Edit ➝ IntelliSense menu
item offers the commands shown in Table 3-5.

Stop Outlining Ctrl+M, Ctrl+P Expands all sections. Removes the outlining symbols from view.

Stop Hiding Current Ctrl+M, Ctrl+U Removes outlining information for the currently selected sec-
tion. In C# only, this command is visible only when automatic
outlining is turned off or the Stop Outlining command is
selected.

Collapse to Definitions Ctrl+M, Ctrl+O Automatically creates sections for each procedure in the code
window and collapses them all.

Start Automatic Outlining N.A. Restarts automatic outlining after it is stopped.

Collapse Block N.A. In C++ only. Similar to Collapse to Definitions, except it applies
only to the region of code containing the cursor.

Collapse All In N.A. In C++ only. Same as Collapse Block, except it recursively col-
lapses all logical structures in a function in a single step.

Table 3-5. IntelliSense commands

Command Key combination Description

List Members Ctrl+J Displays a list of all possible members available for the current context. Key-
strokes incrementally search the list. Press any key to insert the highlighted
selection into your code; that key becomes the next character after the
inserted name. Use the Tab key to select without entering any additional
characters.

This command can also be accessed by right-clicking and selecting List Mem-
ber from the context-sensitive menu.

Table 3-4. Outlining commands (continued)

Command Key combination Description

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The Integrated Development Environment (IDE) | 49

The member list presents itself when you type the dot following any class or mem-
ber name.

Every member of the class is listed, and each member’s type is indicated by an icon.
You can find icons for methods, fields, properties, events and so forth. In addition,
each icon may have a second icon overlaid to indicate the accessibility of the mem-
ber: public, private, protected, and so on. If there is no accessibility icon, then the
member is public.

If the member list does not appear, you should ensure that you have
added all the necessary using (or imports) statements. Also remember
that IntelliSense is case-sensitive in C#. Also, sometimes C# needs a
rebuild before it will reflect the most recent changes.

Table 3-6 lists all the different icons used in the member lists and other windows
throughout the IDE. Table 3-7 lists the accessibility icons.

Parameter Info Ctrl+Shift+Space Displays a list of number, names, and types of parameters required for a
method, sub, function, or attribute.

Quick Info Ctrl+K, Ctrl+I Displays the complete declaration for any identifier, e.g., variable name or
class name, in your code. It is also enabled by hovering the mouse cursor over
any identifier.

Complete Word Alt+Right Arrow
or
Ctrl+Space

Automatically completes the typing of any identifier once you type in enough
characters to uniquely identify it. This only works if the identifier is entered in
a valid location in the code.

Table 3-6. Object icons

Icon Member type

Class

Constant

Delegate

Enum

Enum item

Event

Exception

Global

Interface

Intrinsic

Macro

Map

Table 3-5. IntelliSense commands (continued)

Command Key combination Description

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

50 | Chapter 3: Visual Studio .NET

View menu

The View menu is a context-sensitive menu that provides access to the myriad win-
dows available in the Visual Studio .NET IDE. You will probably keep many of these
windows open all the time; you will use others rarely, if at all.

The View menu is context sensitive. For example, if your form has no controls on it,
the Tab Order submenu will be grayed out.

When the application is running, a number of other windows become visible or
available. These windows are accessed via the Debug ➝ Windows menu item, not
from the View menu item.

Visual Studio .NET can store several different window layouts. In particular, it
remembers a completely different set of open windows during debug sessions than it
does during normal editing. These layouts are stored per-user and not per-project or
per-solution.

This section covers the areas that may not be self-explanatory.

Map item

Method or function

Module

Namespace

Operator

Property

Structure

Template

TypeDef

Union

Unknown or error

Variable or field

Table 3-7. Object accessibility icons

Icon Accessibility

Shortcut

Friend

Internal

Private

Protected

Table 3-6. Object icons (continued)

Icon Member type

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The Integrated Development Environment (IDE) | 51

Open/Open With… This menu item lets you open the current item—i.e., the item cur-
rently selected in the Solution Explorer (described below)—in the program of your
choice. Open uses the default editor, and Open With allows you to pick from a list
of programs. You can add other programs to the list.

The Open With command also lets you open an item with the editor of your choice
in Visual Studio .NET. For example, you can open a file in the binary viewer when
you might normally get the resource viewer. Perhaps most usefully, you can also
specify the default editor for an item. For example, you can make a Windows Form
open in code view rather than design view by default.

Solution Explorer (Ctrl+Alt+L). Projects and solutions are managed using the Solution
Explorer, which presents the solution and projects, as well as all the files, folders,
and items contained within them, hierarchically and visibly. The Solution Explorer is
typically visible in a window along the upper-right side of the Visual Studio .NET
screen, although the Solution Explorer window can be closed or undocked and
moved to other locations.

To view the Solution Explorer if it is not already visible, select View ➝ Solution
Explorer from the Visual Studio .NET menu. Alternatively, press the Ctrl+Alt+L
keys simultaneously. Figure 3-11 shows a typical Solution Explorer.

There are several menu buttons along the top of the Solution Explorer window.
These buttons are context sensitive (i.e., they may or may not appear, depending on
the currently selected item in the Solution Explorer). Table 3-8 details the purpose of
each button.

Figure 3-11. Solution Explorer

Table 3-8. Solution Explorer buttons

Button Name Shortcut keys Description

View Code F7 Displays code in main window. Only visible for source files.

View Designer Shift +F7 Displays visual designer in main window. Only visible for items with visual
components.

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

52 | Chapter 3: Visual Studio .NET

You can also display miscellaneous files in the Solution Explorer. To do so, go to
Tools ➝ Options… and then Environment ➝ Documents. Check the checkbox
labeled Show Miscellaneous files in Solution Explorer.

Most of the functionality of the Solution Explorer is redundant with the Visual Stu-
dio .NET menu items, although it is often easier and more intuitive to perform a
given chore in Solution Explorer than in the menus. Right-clicking on any item in the
Solution Explorer pops up a context-sensitive menu. Three different pop-up menus

Refresh none Refreshes the Solution Explorer display.

Show All Files none Toggles display of all files in the Solution Explorer. By default, many files
are not shown. If Show All Files is clicked, the solution shown in Figure 3-9
will look like Figure 3-12 after several of the nodes are expanded.

Properties Alt+Enter If the currently highlighted item is a solution or a project, it displays the
Properties page for that item. Otherwise, moves the cursor to the Proper-
ties window for that item.

Figure 3-12. Solution Explorer (expanded)

Table 3-8. Solution Explorer buttons (continued)

Button Name Shortcut keys Description

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The Integrated Development Environment (IDE) | 53

from Solution Explorer are shown in Figure 3-13. From left to right, they are for a
solution, a project, and a source-code file.

Several points bear mention:

• The Add pop-up menu item for solutions and projects offers submenus that
allow new or existing items to be added. This item replicates items contained
under the main Project menu.

Set Startup Projects and Exclude From Project are also replicated under the main
Project menu.

• The Build and Rebuild pop-up menu items replicate items contained under the
main Build menu.

• The Debug pop-up menu item replicates two items from the main Debug menu.

• If the Properties item is clicked for a source file, the cursor moves to the Proper-
ties window. If the Properties item is clicked for a solution or project, the Proper-
ties page for that item is opened.

Properties Windows (F4). The Properties window displays all the properties for the cur-
rently selected item. Some of the properties, such as Font and Location, have sub-
properties, indicated by a plus sign next to their entry in the window. The property
values on the right side of the window are editable.

One possible source of confusion is that certain items have more than one set of
properties. For example, a Form source file can show two different sets of properties,

Figure 3-13. Solution Explorer context-sensitive menus

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

54 | Chapter 3: Visual Studio .NET

depending on whether you select the source file in the Solution Explorer or the form
as shown in the Design view.

Figure 3-14 shows a typical Properties window with the Font subproperty expanded
out.

The name and type of the current object is displayed in the field at the top of the
window. In Figure 3-14, it is an object named Button1 of type Button, contained in
the System.Windows.Forms namespace.

The Font property has subproperties that may be set either directly in the window or
by clicking on the button with three dots on it, which brings up a standard font dia-
log box. Other properties with subproperties may or may not have a dialog box asso-
ciated with them, as need be. Other properties, such as the Font Name property,
may have drop-downs in the property grid itself.

The property window has several buttons just below the name and type of the
object. The first two buttons on the left toggle the list by category or alphabetically.
The next button from the left displays properties for an object. The right-most but-
ton displays property pages for the object, if there are any.

Figure 3-14. Properties window

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The Integrated Development Environment (IDE) | 55

Some objects have both a Properties window and Properties pages.
The Property pages display additional properties from those shown in
the Properties window.

If the project is in C#, then an additional lighting bolt button () is used to create
event handlers for an item. Events are covered in Chapter 4.

For some controls, such as TabControl, an additional panel is part of the Properties
window with verbs, such as Add Tab and Remove Tab.

The box below the list has a brief description of the selected property.

Server Explorer (Ctrl+Alt+S). The Server Explorer allows you to access any server to
which you have network access. If you have sufficient permissions, you can log on,
access system services, open data connections, access and edit database information,
and access message queues and performance counters. You can also drag nodes from
the Server Explorer onto Visual Studio .NET projects, creating components that ref-
erence the data source.

Figure 3-15 shows a typical Server Explorer. It is a hierarchical view of the available
servers. In this figure, only one server is available, ATH13T. The figure shows a drill-
down into SQL Server, with the tables in the Northwind database. These tables, and all
other objects in this tree view, are directly accessible and editable from the window.

Class View (Ctrl+Shift+C). The Class View shows all the classes in the solution hierar-
chically. A typical Class View, somewhat expanded, is shown in Figure 3-16. The
icons used in this window are listed in Table 3-6 and Table 3-7.

As with the Solution Explorer, any item in the class view can be right-clicked, which
exposes a pop-up menu with context-sensitive menu items. This provides a conve-
nient way to sort the display of classes in a project or solution, or to add a method,
property, or field to a class.

The button on the left above the class list lets you sort the listed classes, either alpha-
betically, by type, by access, or grouped by type. Clicking on the button itself sorts
by the current sort mode, while clicking on the down arrow next to it presents the
other sort buttons and changes the sort mode.

The button on the right above the class list allows you to create virtual folders for orga-
nizing the listed classes. These folders are saved as part of the solution in the .suo file.

These folders are virtual (i.e., they are illusory). They are used only for viewing the
list, and as such they have no effect on the actual items. Items copied to the folder
are not physically moved, and if the folders are deleted, the items in them are not
lost. If you rename or delete an object from the code that is in a folder, you may need
to manually drag the item into the folder again to clear the error node.

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

56 | Chapter 3: Visual Studio .NET

Object Browser (Ctrl+Alt+J)
The Object Browser is a tool for examining objects such as namespaces, classes,
and interfaces, and their members, such as methods, properties, variables, and
events. Figure 3-17 shows a typical Object Browser window.

The objects are listed in the pane on the left side of the window, and members of
the object, if any, are listed in the right pane. The objects are listed hierarchi-
cally, with the ability to drill down through the tree structure. The icons used in
this window are listed in Table 3-6 and Table 3-7.

Right-clicking on either an object or a member brings up a context-sensitive pop-
up menu with a variety of menu options.

Figure 3-15. Server Explorer

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The Integrated Development Environment (IDE) | 57

Other Windows. Several other windows have been relegated to a submenu called
Other Windows:

Macro Explorer (Alt+F8)
Visual Studio .NET offers the ability to automate repetitive chores with macros.
A macro is a set of instructions written in VB.NET, either created manually or
recorded by the IDE, saved in a file. The Macro Explorer is one of the main tools
for viewing, managing, and executing macros. It provides access into the Macro
IDE.

Figure 3-16. Class View

Figure 3-17. Object Browser

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

58 | Chapter 3: Visual Studio .NET

Macros are described further in the section below on the Tools ➝ Macro menu
command.

Document Outline (Ctrl+Alt+T)
When you design Web Forms, the Document Outline window is used to pro-
vide an outline view of the HTML document.

Task List (Ctrl+Alt+K)
In large applications, keeping a to-do list can be quite helpful. Visual Studio .NET
provides this functionality with the Task List window. You can also provide short-
cuts to comments in the Task List along with token strings, such as TODO,
HACK, or UNDONE. The compiler also populates the Task List with compile
errors.

Command Window (Ctrl+Alt+A)
The Command window has two modes: Command and Immediate.

Command mode enters commands directly, either bypassing the menu system or
executing commands that are not contained in the menu system. (You can add
any command to the menu or a toolbar button by using Tools ➝ Customize.)

Immediate mode is used when debugging to evaluate expressions, view and
modify variables, and other debugging tasks. The Immediate window and
debugging will be covered further in Chapter 21.

For a complete discussion of command window usage, consult the SDK
documentation.

Output (Ctrl+Alt+O)
The Output window displays status messages from the IDE to the developer,
including debugger messages, compiler messages, and output from stored
procedures.

Project menu

The Project menu provides functionality related to project management. All func-
tionality exposed by the Project menu is available in the Solution Explorer. It is often
easier and more intuitive to accomplish your goals in Solution Explorer, but the
menus lend themselves to keyboard use.

Each command under this menu pertains to the object currently highlighted in the
Solution Explorer.

Add... Menu Items. Several menu items allow you to add either an existing or a new
item to a project. They are self-explanatory, offering the same functionality as the
equivalent items described previously under the File command.

They include:

Add Windows Form
Add Inherited Form

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The Integrated Development Environment (IDE) | 59

Add User Control
Add Inherited Control
Add Component
Add Class
Add New Item (Ctrl+Shift+A)
Add Existing Item (Shift+Alt+A)

Exclude From Project. Exclude From Project removes the file from the project but
leaves the file intact on the hard drive. This is in contrast with the Delete popup
menu item in the Solution Explorer. That will remove the file from the project and
delete it from the hard drive (actually into the Recycle Bin). If a resource file is associ-
ated with the file, it will also be excluded or deleted, respectively.

The Exclude From Project command is also made available in the Solution Explorer
by right-clicking on a file.

Add Reference… The Add Reference command is available in the Solution Explorer
by right-clicking on a project. In either case, you will get the Add Reference dialog
box shown in Figure 3-18. This dialog box allows you to reference assemblies or
DLL’s external to your application, making the public classes, methods, and mem-
bers contained in the referenced resource available to your application.

Figure 3-18. Add Reference dialog box

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

60 | Chapter 3: Visual Studio .NET

Add Web Reference… The Add Web Reference command, also available in the Solu-
tion Explorer by right-clicking a project, allows you to add a web reference to your
project, thereby becoming a consuming web service application.

Web services are covered in Programming ASP.NET, Second Edition,
by Jesse Liberty and Dan Hurwitz (O’Reilly).

Set as StartUp Project. If there is more than one project in a solution, specify the star-
tup project. This command, also available in the Solution Explorer by right-clicking a
project, allows you to make that specification. The project highlighted in Solution
Explorer when this command is executed will become the startup project.

Project Dependencies… / Project Build Order… These commands, visible only when a
solution contains multiple projects, also available in the Solution Explorer by right-
clicking a project, presents a dialog box that allows you to control the build order of
the projects in a solution. It presents a dialog box with two tabs: one for Dependen-
cies and one for the Build Order.

The Project Dependencies command allows you to specify, for each project in the
solution, which projects it depends upon. The dependent projects will be built first.

The Project Build Order command presents a list of all projects in the order in which
they will be built.

If you are using Project References (as added with the Add Reference dialog men-
tioned above), you won’t be able to edit either command. Project Dependencies are
inferred when there are references between projects in the same solution. Also, you
can’t change the Build Order in any case—it is always inferred from the dependen-
cies, whether or not those dependencies were automatically inferred.

Build menu

The Build menu offers menu items for building the current project (highlighted in
Solution Explorer) or the solution. It also exposes the Configuration Manager for
configuring the build process.

The Build menu will be covered in detail in Chapter 22, which discusses deployment
and configuration.

Debug menu

The Debug menu allows you to start an application with or without debugging, set
breakpoints in the code, and control the debugging session.

The Debug menu item will be covered, along with debugging, in Chapter 21.

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The Integrated Development Environment (IDE) | 61

Data menu

This context-sensitive menu is visible only in the design mode. It is not available
when editing code pages. The commands under it are available only when there are
appropriate data controls on the form.

Chapters 19 through 21 cover data controls and data binding.

Format menu

The Format menu is visible only when in design mode, and the commands under it
are available only when one or more controls on the form are selected.

This menu offers the ability to control the size and layout of controls. You can:

• Align controls with a grid or with other controls six different ways

• Change the size of one or more controls to be bigger or smaller (or all be the
same)

• Control the spacing horizontally and vertically

• Move controls forward or back in the vertical plane (z-order) of the form

• Lock a control so its size or position cannot be changed

To operate on more than one control, select the controls in one of several ways:

• Hold down Shift or Ctrl while clicking on controls you wish to select.

• Use the mouse to click and drag a selection box around all the controls to be
selected. If any part of a control falls within the selection box, then that control
will be included.

• To unselect one control, hold down Shift or Ctrl while clicking that control.

• To unselect all the controls, select a different control or press Esc.

When operating on more than one control, the last selected control will be the base-
line. In other words, if you are making all the controls the same size, they will all
become the same size as the last selected control. Likewise, if aligning a group of
controls, they will all align with the last selected control.

As controls are selected, they will display eight resizing handles. These resizing han-
dles will be white for all the selected controls except the baseline, or last control,
which will have black handles.

With that in mind, all the commands under the Format menu are fairly self-
explanatory.

Tools menu

The Tools menu presents commands that access a wide range of functionality, rang-
ing from connecting to databases, to accessing external tools, to setting IDE options.
Some of the most useful commands are described next.

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

62 | Chapter 3: Visual Studio .NET

Connect to Device... The Connect to Device command brings up a dialog box that
allows you to connect to either a physical mobile device or an emulator.

Connect to Database… The Connect To Database command brings up the dialog box
that allows you to select a server, log in to that server, and connect to the database
on the server. Microsoft SQL Server is the default database (surprise!), but the Pro-
vider tab lets you connect to any number of other databases, including any for which
there are Oracle, ODBC, or OLE DB providers.

Connect to Server… The Connect to Server command brings up the dialog box that
lets you specify a server to connect to, either by name or by IP address. It also lets
you connect by using a different username and password.

This same dialog box can be exposed by right-clicking on Servers in the Server
Explorer and selecting Add Server… from the pop-up menu.

Add/Remove Toolbox Items… The Add/Remove Toolbox Items command brings up
the Customize Toolbox dialog box shown in Figure 3-19. The dialog box has two
tabs: one for adding (legacy) COM components and one for adding .NET CLR–com-
pliant components. All the components available on your machine (including regis-
tered COM components and .NET components in specific directories; you can
browse for .NET components if they are not listed) are listed in one or the other. In
either case, check or uncheck the line in front of the component to include the
desired component.

For adding .NET components to the Toolbox, just drag it from Win-
dows Explorer onto the Toolbox.

It is also possible to add other tabbed lists to this dialog box, although the details for
doing so are beyond the scope of this book.

You can sort the components listed in the dialog box by clicking on the column head
by which you wish to sort.

Build Comment Web Pages… This menu command brings up a dialog box that allows
you to document your application via HTML pages. These HTML pages automati-
cally display the code structure of your application. Projects are listed as hyperlinks.
Clicking on a project brings up a page that shows all the classes as hyperlinks on the
left side of the page. Clicking on any class lists all the class members, with descrip-
tions, on the right side of the page.

If your language supports XML code comments (as does C#, but VB.NET does not),
then you can add your own comments to your source code, and those comments will
display in these web pages.

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The Integrated Development Environment (IDE) | 63

Comment web pages are created by default in a subdirectory of the project called
CodeCommentReport.

Macros. Macros are a wonderful feature that allows you to automate tasks in the IDE.
Macros can either be coded by hand or recorded as you perform the desired task. If
you allow the IDE to record the macro for you, then you can subsequently examine
and edit the macro code it creates. This is similar to the macro functionality pro-
vided as part of Microsoft Word or Excel.

Be aware that macro recording doesn’t work for anything inside a dia-
log box. For example, if you record the changing of property in a
project’s Property Pages, the recorded macro will open the Property
Pages but won’t do anything in there!

You can easily record a temporary macro by using the Macros ➝ Record Temporary-
Macro command, or by pressing Ctrl+Shift+R. This temporary macro can then be
played back using the Macros ➝ Run TemporaryMacro command, or by pressing
Ctrl+Shift+P. It can be saved using the Macros ➝ Save TemporaryMacro command,
which will automatically bring up the Macro Explorer, described next.

Figure 3-19. Customize Toolbox dialog box

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

64 | Chapter 3: Visual Studio .NET

Macros are managed with a Macro Explorer window, accessed via a submenu of the
Macros command, or by pressing Alt+F8, as shown in Figure 3-20 after recording a
temporary macro.

Right-clicking on a macro in the Macro Explorer pops up a menu with four items:

Run
Runs the highlighted macro. The macro can also be run by double-clicking on
the macro name.

Edit
Brings up the macro editing IDE, where all macros for the user can be edited.
The macro language is VB.NET, irrespective of the language used for the project.
The macro editing IDE can also be invoked using the Macros ➝ Macro IDE com-
mand, or by pressing Alt+F11.

Rename
Allows the macro to be renamed.

Delete
Deletes the macro from the macro file.

All macros are contained in a macro project called, by default, MyMacros. This
project is comprised of a binary file called MyMacros.vsmacros (unless you have
elected to convert it to the multiple files format), which is physically located in the
Documents and Settings directory for each user. You can create a new macro project
by using the Macros ➝ New Macro Project command or by right-clicking on the root
object in the Macro Explorer and selecting New Macro Project. In either case, you
will get the New Macro Project dialog box, which lets you specify the name and loca-
tion of the new macro project file.

Macro projects contain modules, which are units of code. Each module contains sub-
routines, which correspond to the macros. For example, the macro called
TemporaryMacro, shown in Figure 3-20 is the TemporaryMacros subroutine con-
tained in the module named RecordingModule, which is part of the MyMacros
project.

Figure 3-20. Macro Explorer

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The Integrated Development Environment (IDE) | 65

External Tools… Depending on the options selected at the time Visual Studio .NET
was installed on your machine, you may have one or more external tools available on
the Tools menu. The tools might include Create GUID, ATL/MFC Trace Tool, or
Spy++. (Use of these tools is beyond the scope of this book.)

The Tools ➝ External Tools… command allows you to add additional external tools
to the Tools menu. When selected, you are presented with the External Tools dialog
box. This dialog box has fields for the tool title, the command to execute the tool,
any arguments and the initial directory, as well as several checkboxes for different
behaviors.

Customize… The Customize… command allows you to customize many aspects of
the IDE user interface. (The Options… command, described in the following sec-
tion, lets you set a variety of other program options.) It brings up the Customize dia-
log box, which has three different tabs, plus one additional button, allowing
customization in four different areas.

Toolbars
This tab, shown in Figure 3-21, presents a checkbox list of all available toolbars,
with checkmarks indicating currently visible toolbars. You can control the visi-
bility of specific toolbars by checking or unchecking them in this list, or alterna-
tively, use the View ➝ Toolbars command.

You can also create new toolbars, rename or delete existing toolbars, or reset all
the toolbars back to the original installation version on this tab.

Figure 3-21. Customize dialog (Toolbars tab)

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

66 | Chapter 3: Visual Studio .NET

Commands
The Commands tab, shown in Figure 3-22, allows you to add or remove com-
mands from a toolbar or modify buttons already on the toolbar.

To add a command to a toolbar, select the category and command from the lists
in the dialog box, and then use the mouse to drag the command to the desired
toolbar.

To remove a command from a toolbar, drag it from the toolbar to anywhere in
the IDE while the Customize Commands dialog is showing.

The Modify Selection button is active only when a button on an existing toolbar
is selected. It allows you to perform such chores as renaming or deleting the but-
ton, changing the image displayed on the button, changing the display style of
the button (image only, text only, etc.), and organizing buttons into groups.

Options
The Options tab, shown in Figure 3-23, allows you to change the toolbar’s
appearance.

The personalized Menus and Toolbars checkboxes are always unavailable and
grayed out.

The Other checkboxes allow selection of icon size on buttons, control of tool
tips, and the way the menus come in to view (Menu animations).

Keyboard…
The Keyboard… button brings up the Environment ➝ Keyboard page, shown in
Figure 3-24, also accessible under the Tools ➝ Options command described
below. This page allows you to define and change keyboard shortcuts for
commands.

Figure 3-22. Customize dialog (Commands tab)

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The Integrated Development Environment (IDE) | 67

Figure 3-23. Customize dialog (Options tab)

Figure 3-24. Customize dialog (Keyboard button)

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

68 | Chapter 3: Visual Studio .NET

Options… The Options… command brings up the Options dialog box, shown in
Figure 3-24. This dialog box lets you set a wide range of options, ranging from the
number of items to display in lists of recently used items, to XML Designer options.

The dialog box displays a hierarchical list of categories on the left side. Selecting any
category allows you to drill down through the tree structure. Clicking on a detail
item brings up the available properties on the right side of the dialog box.

Most available options are fairly self-explanatory. If you have any questions about
specific settings, clicking on the Help button at the bottom of the Options dialog box
will bring up context-sensitive help about all the properties relevant to the current
detail item.

Window menu

The Window menu item is a fairly standard Windows application Window com-
mand. It displays a list of the currently open windows, allowing you to bring any
window to the fore by clicking on it. All the file windows currently displayed in the
IDE also have tabs along the top edge of the design window, below the toolbars
(unless you selected MDI mode in Tools ➝ Options ➝ Environment ➝ General), and
windows can be selected by clicking on a tab.

This is a context-sensitive menu. Table 3-9 lists the menu items available for differ-
ent circumstances.

Table 3-9. Window menu item commands

Current window Description of available commands

Design Auto Hide All hides all dockable windows. Clicking on window’s pushpin icon turns AutoHide off
for that window.

New Horizontal/Vertical Tab Group creates another set of windows with it own set of tabs.

Close All Documents is self-explanatory.

Window list.

Code Same as for a design window plus the following:

New Window creates a new window containing the same file as the current window. Use it to
open two windows to the same source file.

Split creates a second window in the current window for two different views of the same file.

Remove Split removes a split window.

Dockable This category includes the Solution Explorer, the Properties window, the Class View window, the
Toolboxes, etc. These windows are dockable, as indicated by the pushpin icon in the upper-right
corner of each.

Available menu items are the same as for a design window, with the addition of commands to
dock, hide, or float a window.

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The Integrated Development Environment (IDE) | 69

Help menu

The Help menu provides access to a number of submenus. Those that are not self-
explanatory are described here.

Dynamic Help (Ctrl+F1). If you are developing on a machine with enough horsepower,
Dynamic Help is wonderful. Otherwise, it is a performance hog. (It can be disabled
by unchecking all the checkboxes under Tools ➝ Options ➝ Environment ➝

Dynamic Help) Alternatively, just closing the window is sufficient to prevent the per-
formance hit, and then it is still available when you need it.

That said, using Dynamic Help is very simple. Open a Dynamic Help window by
clicking on this menu item or pressing Ctrl+F1. Then wherever the focus is, whether
in a design, code, or dockable window, context-sensitive hyperlinks will appear in
the Dynamic Help window. Click on any link to bring up the relevant Help topic in a
separate window.

Contents… (Ctrl+Alt+F1)/Index… (Ctrl+Alt+F2)/Search… (Ctrl+Alt+F3). These three com-
mands provide different views into the SDK help system, allowing you to search by a
(pseudo) table of contents, an incremental index, or a search phrase, respectively.
The first type of search is an indexed search, while the latter two are full-text
searches, so you may get different results by using the different search types using the
same phrase.

The Help system exposed by these commands is the same Help sys-
tem exposed in two other places by the Start button:

• Programs ➝ Microsoft Visual Studio .NET 2003 ➝ Microsoft
Visual Studio .NET 2003 Documentation

• Programs ➝ Microsoft .NET Framework SDK v1.1 ➝

Documentation

This Help tool uses a browser-type interface, with Forward and Back navigation and
Favorites. The list of topics is displayed in the lefthand pane, and the help topic
itself, including hyperlinks, is displayed on the right.

Index Results… (Shift+Alt+F2). When searching for Help topics by Index, you will
often find many topics for a given index entry. In these cases, the multiple topics are
listed in an Index Results window. This window displays automatically if this is the
case. This command lets you view the Index Results window if it has been closed.

Search Results… (Shift+Alt+F3). The Search Results window is analogous to the Index
Results window described previously, except it pertains to searching for Help topics
by search phrase.

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

70 | Chapter 3: Visual Studio .NET

Edit Filters… The SDK Help system is voluminous, with information on the full array
of topics that might be found in any .NET installation, as well as a ton of non-.NET
stuff as well. The Edit Filters command lets you restrict which Help topics will be
searched. For example, if you are working exclusively in C#, you might set the filter
to either Visual C# or Visual C# and Related.

Check for Updates. This command checks for service releases for your currently
installed version of Visual Studio .NET. For this command to work, your machine
must be connected to the Internet. If an update is available, you will be prompted to
close the IDE before the service release is installed.

Building and Running
You can run your application at any time by selecting either Start or Start Without
Debugging from the Debug menu, or you can accomplish the same results by press-
ing either F5 or Ctrl+F5, respectively. In addition, you can start the program by
clicking the Start icon () on the Standard Toolbar.

The program can be built, i.e., EXE and DLL files generated, by selecting a com-
mand under the Build menu. You have the option of building the entire solution or
only the currently selected project.

For a full discussion of application deployment, please see Chapter 22.

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

71

Chapter 4 CHAPTER 4

Events

In the 1950s and 1960s, computer programs allowed for little user interaction. You
fed in your data and instructions, and an answer popped out. As computers evolved,
simple text-based menus were added. At specified times in the running of the pro-
gram, the user could make choices and the program would respond accordingly. In
the 1980s and 1990s, Graphical User Interfaces (GUIs) were developed, and com-
puter programming was revolutionized.

In a modern Windows program, the user constantly interacts with the system: mov-
ing, clicking, and dragging the mouse or entering characters at the keyboard.

In Microsoft Windows the widgets with which the user interacts are called controls,
and controls are visible on the monitor from the moment a modern program starts.
In a Windows application, the user’s action completely determines the order of exe-
cution of a program. This is called event-driven programming.

User actions, such as clicking on a button, generate (or “raise”) events. Other events
are generated by the system itself. For example, your program might raise an event
when a file has been read into memory, your battery’s power is running low, or a
timer indicates that a specified time interval has passed.

Publish and Subscribe
In .NET, controls publish a set of events to which other classes can subscribe. When
the publishing class raises an event, all the subscribed classes are notified.

This design is similar to the Publish/Subscribe (Observer) Pattern
described in the seminal work Design Patterns by Gamma, et al. (Addi-
son Wesley). Gamma describes the intent of this pattern, “Define a one
to many dependency between objects so that when one object changes
state, all its dependents are notified and updated automatically.”

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

72 | Chapter 4: Events

With this event mechanism, the control says, “Here are things I can notify you
about,” and other classes might sign up, saying, “Yes, let me know when that hap-
pens.” For example, a button might notify any number of interested observers when
it is clicked. The button is called the publisher because the button publishes the Click
event, and the other classes are the subscribers because they subscribe to the Click
event.

Events and Delegates
Events are implemented with delegates. The publishing class defines a delegate that
encapsulates a method that the subscribing classes implement. When the event is
raised, the subscribing classes’ methods (the event handlers) are invoked through the
delegate.

A delegate type defines the signature of methods that can be encapsu-
lated by instances of that delegate type. A delegate can be marked as
an event to restrict access to that delegate for use as an event handler.

For more information on the relationship between delegates and
events, please see either Programming VB.NET or Programming C#,
by Jesse Liberty (O’Reilly).

When you instantiate a delegate, pass in the name of the method the delegate will
encapsulate. Register the event using the += operator (in C#) or the Handles and
WithEvents keywords in VB.NET. (VB.NET can alternatively use the AddHandler
keyword.) You may register more than one delegate with an event; when the event is
raised, each of the delegated methods will be notified.

For example, when declaring an event, the .NET documentation describes the event
and delegate used in the Button control’s Click event:

public delegate void EventHandler(object sender, EventArgs e);
public event EventHandler Click;

EventHandler is defined to be a delegate for a method that returns void and takes
two arguments: one of type Object and the other of type EventArgs. The Click event
is implemented with the EventHandler delegate.

Event Arguments
By convention, event handlers in the .NET Framework are designated in C# to return
void, are implemented as a sub in VB.NET, and take two parameters. The first parame-
ter is the “source” of the event: the publishing object. The second parameter is an object
derived from EventArgs.

EventArgs is the base class for all event data. Other than its constructor, the Event-
Args class inherits all its methods only from Object, though it does add a public

C#

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Publish and Subscribe | 73

static field empty, which represents an event with no state (to allow for the efficient
use of events with no state).

If an event has no interesting data to pass, then the passed event argument will be of
type EventArgs, which has no public properties, being essentially a placeholder.
However, if there is interesting data, such as the location of a mouseclick or which
key was pressed, then the event argument will be of a type derived from EventArgs,
and it will have properties for the data being passed.

The general prototype for an event handler is as follows:

private void Handler (object sender, EventArgs e)

Private Sub Handler (ByVal sender As Object, ByVal e As EventArgs)

By convention, the name of the object argument is sender and the
name of the EventArgs argument is e.

The ByVal keyword in the VB.NET version indicates that the argu-
ments are passed by value, rather than by reference (ByRef). If nei-
ther ByVal nor ByRef is included, the default behavior in VB.NET is
by value, so the use of the keyword here is redundant. However,
using it explicitly serves as a form of documentation, and since
Visual Studio .NET explicitly includes the byVal keyword, you will
often see it included in event handlers.

While technically you pass by value, the object passed is itself a refer-
ence. A copy of the reference is made, but it refers to the original
object, and changes made within the method will affect the original
object through that copy of the reference. This book refers to passing a
reference by value as “pass by reference.”

Some events use the base class EventArgs, but EventArgs objects contain no useful
additional information about the event. The controls that do require their event han-
dlers to know additional information about the event will pass in an object of a type
derived from EventArgs.

For example, the TreeView AfterCollapse event handler receives an argument of type
TreeViewEventArgs, derived from EventArgs. TreeViewEventArgs has the properties
Action and Node, each of which has values pertaining to the actual event. The specif-
ics of the event argument for each control are detailed when that control is discussed
later in this book.

Control Events
Every form and control used in Windows Forms derives from System.Windows.
Forms.Control, so they inherit all of the more than 50 public events contained by the
Control object. Some of the most commonly used Control events are listed in

C#

VB

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

74 | Chapter 4: Events

Table 4-1 through Table 4-3. For each (public) event, a protected method handles
the event.

Many controls support other events, in addition to the inherited events. For exam-
ple, the TreeView class exposes several events for handling node expansion and col-
lapse. Control-specific events are detailed in the relevant sections.

Table 4-1. Common Control events

Event Event argument Description

Click EventArgs Raised when a control is clicked by the mouse.

ControlAdded ControlEventArgs Raised when a new control is added to Control.ControlCollection.

ControlRemoved ControlEventArgs Raised when a control is removed from Control.ControlCollection.

DockChanged EventArgs Raised if the Dock property— i.e., which edge of the parent container the
control is docked to—is changed, either by user interaction or program
control.

DoubleClick EventArgs Raised when a control is double-clicked. If a control has both a Click and
DoubleClick event handler, the DoubleClick will be preempted by the Click
event.

Enter EventArgs Raised when a control receives focus. Suppressed for Form objects. For
nested controls, cascades up and down the container hierarchy.

Layout LayoutEventArgs Raised when any change occurs that affects the layout of the control (e.g.,
the control is resized or child controls are added or removed).

Leave EventArgs Raised when focus leaves the control.

Move EventArgs Raised when a control is moved.

Paint PaintEventArgs Raised when a control is redrawn.

ParentChanged EventArgs Raised when the parent container of a control changes.

Resize EventArgs Raised when a control is resized. Generally preferable to use the Layout
event.

SizeChanged EventArgs Raised when the Size property is changed, either by user interaction or
programmatic control. Generally preferable to use the Layout event.

TextChanged EventArgs Raised when the Text property changes, either by user interaction or pro-
grammatic control.

Validating CancelEventArgs Raised when a control is validating. If CancelEventArgs Cancel property set
true, then all subsequent focus events are suppressed.

Suppressed if Control.CausesValidation property set false.

Validated EventArgs Raised when a control completes validation.

Suppressed if the CancelEventArgs.Cancel property passed to the Validat-
ing event is set true.

Suppressed if Control.CausesValidation property set false.

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Publish and Subscribe | 75

Although all Forms controls inherit from System.Windows.Forms.Con-
trol, not all controls necessarily expose all the events contained in Con-
trol. For example, the Windows user interface does not allow you to
double-click a button control. Yet the Button class inherits from Con-
trol via the ButtonBase class. In fact, even though Visual Studio .NET
does not expose a DoubleClick event for a Button control, you can add
the event and hook it up manually. Your program will compile and run,
but the DoubleClick event will never be raised for a button.

.NET can suppress the Click and DoubleClick events on selected con-
trols by setting the StandardClick and StandardDoubleClick values,
respectively, of the ControlStyles enumeration.

The events listed in Table 4-2 implement drag-and-drop.

The events listed in Table 4-3 are raised when a mouse interacts with a control. Some
of these low-level events, in addition to being raised, are synthesized into the higher-
level Click and DoubleClick events.

Table 4-2. Control Drag-and-Drop events

Event Event argument Description

DragDrop DragEventArgs Raised when a drag-and-drop operation is completed.

DragEnter DragEventArgs Raised when an object is dragged onto the control. At the time this event
is raised, the drag operation is still in progress (i.e., the user hasn’t yet let
the mouse button go up).

DragLeave DragEventArgs Raised when an object is dragged off of the control.

DragOver DragEventArgs Raised when an object is dragged over the control.

GiveFeedback GiveFeedbackEventArgs Raised during a drag operation to allow modification to the mouse
pointer.

Table 4-3. Control Mouse events

Event Event argument Description

MouseEnter EventArgs Raised when mouse pointer enters control.

MouseMove MouseEventArgs Raised when mouse pointer moved over control.

MouseHover EventArgs Raised when mouse hovers over control.

MouseDown MouseEventArgs Raised when mouse button pressed while mouse pointer is over control.

MouseWheel MouseEventArgs Raised when mouse wheel moved while control has focus.

MouseUp MouseEventArgs Raised when mouse button released while mouse pointer is over control.

MouseLeave EventArgs Raised when mouse pointer leaves control.

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

76 | Chapter 4: Events

Implementing an Event
Events were demonstrated back in Chapter 2. There, a Button was added to a form
and the Click event for the button was handled. Handling the event was demon-
strated both in a text editor and in Visual Studio .NET. Those examples also showed
that the syntax and mechanics of handling events is somewhat different in C# and
VB.NET, although the underlying fundamentals are the same.

The code samples shown in Example 4-1 (in C#) and Example 4-3 (in VB.NET) are
duplicates of those shown in Examples 2-5 and 2-6.

In C#

Example 4-1, reproduced here from Example 2-5, demonstrates the basic principles
of implementing an event handler in C# by using a text editor.

Web Controls Versus Windows Controls
ASP.NET web applications are also event driven. There are many similarities between
web form and Windows Forms events. The main difference is that there are nearly 60
different Windows control events, but only six different Web Control events.

The reason for this is that all web form events are processed on the server, rather than
locally on the client. As such, each event must be posted back to the server for process-
ing, necessitating a roundtrip between the server and the client. If Web Forms sup-
ported the full complement of user interaction events, such as Mouse or Key events,
performance would be severely impacted.

For a complete discussion of web form events, please see Programming ASP.NET, Sec-
ond Edition (O’Reilly).

Example 4-1. Hello World Windows application with button control in C#
(HelloWorld-win-button.cs)

using System;
using System.Drawing;
using System.Windows.Forms;

namespace ProgrammingWinApps
{
 public class HelloWorld : System.Windows.Forms.Form
 {

 private Button btn;

 public HelloWorld()
 {
 Text = "Hello World";

C#

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Publish and Subscribe | 77

Handling an event in C# involves two steps:

Implement the event handler method
The event handler method, highlighted in Example 4-1, is called btn_Click. It
has the required signature (two parameters: sender of type object and e of type
EventArgs), and, as required, it returns void.

The code in the body of the event handler method performs whatever program-
ming task is required to respond to the event. In this example, the event handler
closes the application with the static method Application.Exit().

Hook up the event handler method to the event
This is done by instantiating an EventHandler delegate, which encapsulates the
btn_Click method, then using the += operator to add that delegate to the but-
ton’s Click event. This is done in Example 4-1 with the following line of code:

btn.Click += new System.EventHandler(btn_Click);

As easy as this is, Visual Studio .NET makes it even simpler. The fundamentals in
working with events in the IDE will be shown with a simple application.

Open Visual Studio .NET and create a new Visual C# Windows Application project.
Name it csEvents. Put a Label and Button control on the form. Using the Properties
window, set the control properties to the values listed in Table 4-4.

 btn = new Button();
 btn.Location = new Point(50,50);
 btn.Text = "Goodbye";

btn.Click += new System.EventHandler(btn_Click);

 Controls.Add(btn);
 }

 static void Main()
 {
 Application.Run(new HelloWorld());
 }

private void btn_Click(object sender, EventArgs e)
{

Application.Exit();
}

 }
}

Table 4-4. HelloWorld-Events Control properties

Control type Property Value

Form (Name) Form1

Text Events Demonstrator

Size 250,200

Example 4-1. Hello World Windows application with button control in C#
(HelloWorld-win-button.cs) (continued)

C#

C#

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

78 | Chapter 4: Events

After the controls are placed and the properties set, Visual Studio .NET should look
similar to Figure 4-1.

There are several different ways to implement an event in Visual Studio .NET with C#.

C# and VB.NET differ in the user interface used by Visual Studio .NET
to implement events, although the underlying class libraries and tech-
nology are the same. These differences are primarily a nod to backward
compatibility for VB6 programmers. The VB.NET version will be
detailed shortly.

Label (Name) lblTitle

Text Events Demonstrator

Size 150,25

Button (Name) btnTest

Text Do It!

Figure 4-1. csEvents layout in Visual Studio .NET

Table 4-4. HelloWorld-Events Control properties (continued)

Control type Property Value

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Publish and Subscribe | 79

Double-click the control. Double-click the button control. Visual Studio.NET takes this
as an indication that you want to implement the default event handler for the button
(the click event). Visual Studio.NET creates and registers an event handler, and moves
you to the code window with the cursor placed in the body of the event handler:

private void btnTest_Click(object sender, System.EventArgs e)
{

}

Visual Studio.NET has created a method declaration that follows the event handler
prototype exactly. The method name defaults to the name of the control with an
underscore character and the default event name concatenated on the end.

Each control has a default event (whichever event is most commonly
used with that control). For many controls, it is the Click event, but
not always. The default event for the TreeView control is AfterSelect,
although that control does have a Click event. The default event for
each control will be detailed when the control is covered.

Enter a line of code to pop up a message box in response to the button click:

private void btnTest_Click(object sender, System.EventArgs e)
{

MessageBox.Show("Click event just handled.","Event Demo");
}

Running the form will produce the application shown in Figure 4-2. Clicking the
button will pop up a message dialog with the words “Click event just handled,” as
shown in Figure 4-3.

Figure 4-2. Events Demonstrator application

Figure 4-3. Event Demonstrator MessageBox

C#

C#

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

80 | Chapter 4: Events

When you developed Example 4-1 in a text editor, you saw that in addition to imple-
menting the event handler method, you also had to add a delegate encapsulating that
method to the event. In Example 4-1, it was done with the following line of code:

btn.Click += new System.EventHandler(btn_Click);

When using Visual Studio .NET, registering the event is done for you automatically.
This can be seen by going to the code window for the form, finding and expanding
the region of code labeled Windows Form Designer generated code, and looking for
the following section of code inside the InitializeComponent method:

//
// btnTest
//
this.btnTest.Location = new System.Drawing.Point(56, 128);
this.btnTest.Name = "btnTest";
this.btnTest.TabIndex = 2;
this.btnTest.Text = "Do It!";
this.btnTest.Click += new System.EventHandler(this.btnTest_Click);

The highlighted line of code adds the method to the EventHandler delegate.

Use the lightning bolt icon in the Properties window. Double-clicking on the control only
allows you to handle the default event using the default event handler method name.
You can also create event handlers for any of a control’s events, and name them
whatever you like. To do so in C#, highlight the control in the design window and
view the Properties window for the control (select View ➝ Properties Window from
the menu, press F4, or right-click and select Properties).

At the top of the Properties window is a row of buttons, shown in Figure 4-4. The
first two buttons on the left sort the window’s contents by category or alphabeti-
cally. The right-most button displays Property pages, if any. Of most interest here are
the remaining two buttons.

The Properties button () causes the window to display all the properties for the
control, while the Events button () causes the window to display all the supported
events for the control. either alphabetically or by category.

If there is an event handler already defined for an event, it will be listed in the col-
umn next to the event name. Clicking on that name and pressing the Enter key will
take you to that event handler in the code window.

If there is no event handler listed next to an event, highlight the event and press the
Enter key to create an event handler with the default name. The method skeleton will
be created, the event will be registered, and you will be taken to that method in the
code window, where you can enter the body of the method.

Figure 4-4. Property Window button bar

C#

C#

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Publish and Subscribe | 81

Alternatively, you can enter any method name you wish. Pressing Enter will use the
name you entered to create a skeleton event handler method and automatically hook
up that event handler method to the event.

Finally, when an event is highlighted in the Properties window, a drop-down arrow
will appear in the column for the method names. Clicking on the drop-down will dis-
play all the methods in the code available to be event handlers. This can be used to
assign the same method to many different events, either for the same control or for
different controls.

To demonstrate this last point, go to the code window for csEvents. Create a generic
event handler method by adding the code shown in Example 4-2 to the Form1 class.

Now go back to the form designer and highlight the button. If the Events are not visi-
ble in the Property window, click on the Events button. Slide down to the Mouse-
Enter event and click the drop-down arrow. You will see all the available methods, as
shown in Figure 4-5.

Click on GenericEventHandler to hook that handler method to the event.

Example 4-2. Generic event handler in C#

private void GenericEventHandler(object sender, EventArgs e)
{
 MessageBox.Show("Generic event handler", "Event Demo");
}

Figure 4-5. Event drop-down

C#

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

82 | Chapter 4: Events

Now add the same event handler to the Click method of the Label control named lbl-
Title. Click on the lblTitle control, find the Click event in the list of events in the
Property window, click the drop-down arrow, and select GenericEventHandler. Run
the program.

You will see that every time the mouse moves over the button, a dialog box similar to
that shown in Figure 4-3 appears with the message Generic Event Handler. In fact, it
is not possible to click on the button with your mouse because the MouseEnter event
occurs before you have the opportunity to click on the button. (You can however
click the button by pressing the Enter key once the button has focus.)

Clicking on the label containing the title also brings up the Generic Event Handler
message.

Visual Studio .NET does all the work of hooking the GenericEventHandler method
to both the lblTitle Click event and the btnTest MouseOver event. You can see how
this was done by examining the region of code labeled Windows Form Designer
generated code. In the section of code initializing the lblTitle control, the following
line hooks the GenericEventHandler method to the Click event:

this.lblTitle.Click += new System.EventHandler(this.GenericEventHandler);

Similarly, the GenericEventHandler method is hooked to the btnTest MouseEnter
event with this line of code:

this.btnTest.MouseEnter +=
 new System.EventHandler(this.GenericEventHandler);

It is very easy to add event handlers to a form by double-clicking on a
control. Sometimes adding the handlers is too easy, since accidentally
double-clicking on a control will create an empty event handler
method for that control, if it does not already have one. You may
notice some of these empty methods in your code. These empty meth-
ods impose a small performance penalty on your program and clutter
your code.

If you simply delete the empty methods, your program will not com-
pile. Remember that the event handler was added to the event dele-
gate in the “hidden” code contained in the InitializeComponent
method in the Windows Form Designer generated code region. To man-
ually delete the empty method from your code, you must also delete
any references to the method where it is added to an event delegate.

A simple way to delete an event handler is to use the Properties win-
dow: highlight the offending event and delete the event handler. This
will remove both the method and the registration code.

By the same token, if you rename an event handler method manually,
you must find the relevant line in InitializeComponent and rename the
method reference there as well, but doing so on the Properties win-
dow will update the reference for you.

C#

C#

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Publish and Subscribe | 83

In the unusual case that you want more than one handler for a single event, you can
add as many event handler methods to an event as you wish simply by implement-
ing the event handler methods, and then adding those events to the delegate with
additional += statements. (Even in Visual Studio .NET, this requires inserting the
lines of code yourself.)

Similarly, you can remove an event handler method by using the -= operator. For
example, the following code snippet adds three methods to a delegate for handling
the Click event, then removes one of the methods from the delegate. In this way, it is
possible to add and remove event handler methods dynamically and thereby start
and stop event handling for specific events anywhere in your program:

btn.Click += new System.EventHandler(GenericEventHandler);
btn.Click += new System.EventHandler(SpecialEventHandler);
btn.Click += new System.EventHandler(ClickEventHandler);
btn.Click -= new System.EventHandler(GenericEventHandler);

In VB.NET

Example 4-3, reproduced from Example 2-6, demonstrates the basic principles of
implementing an event handler in VB.NET, using a text editor.

Example 4-3. Hello World Windows application with button control in VB.NET
(HelloWorld-win-button.vb)

imports System
imports System.Drawing
imports System.Windows.Forms

namespace ProgrammingWinApps
 public class HelloWorld : inherits System.Windows.Forms.Form

Private WithEvents btn as Button
 public sub New()
 Text = "Hello World"

 btn = new Button()
 btn.Location = new Point(50,50)
 btn.Text = "Goodbye"
 Controls.Add(btn)
 end sub

 public shared sub Main()
 Application.Run(new HelloWorld())
 end sub

private sub btn_Click(ByVal sender as object, _
ByVal e as EventArgs) _
Handles btn.Click

Application.Exit()
end sub

 end class
end namespace

C#

VB

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

84 | Chapter 4: Events

As with the C# example shown in Example 4-1, there are two steps to handling an
event in VB.NET. However the syntax used in VB.NET is somewhat different than
that in C#.

Implement the event handler method
The event handler method, highlighted in Example 4-3, is called btn_Click. It
has the required signature (two objects: sender of type object and e of type
EventArgs). Since this method is a subroutine, denoted by the sub keyword, it
does not return a value. Event handlers never return a value.

The Handles keyword specifies which event this method will handle. The identi-
fier following the keyword indicates that this method will handle the Click event
for the Button called btn.

The code in the body of the event handler method performs whatever program-
ming chore is required. In this example, it closes the application with the static
method Application.Exit().

Instantiate the control using the WithEvents keyword
Unlike in C#, there is no code here to explicitly add the method to the delegate.
Instead, a Button is declared as a private member variable using the keyword
WithEvents. This keyword tells the compiler that this object will raise events:

Private WithEvents btn as Button

The compiler automatically creates delegates for any events referred to by a Han-
dles clause and adds the event handler methods to the appropriate delegate.

Implementing events in VB.NET is made even easier when using Visual Studio .NET.
To demonstrate this, open Visual Studio .NET and create a new VB.NET Windows
application project called vbEvents.

Put a Label control and a Button control on the form. Using the Properties window,
set the control properties to the values listed in Table 4-4 (the same values used in
the C# example).

You can use VB.NET in several different ways to implement events in Visual Studio
.NET.

Double-click the control. Double-click the Button control. You will be brought immedi-
ately to the code-editing window for the control, ready to enter code for the default
event. The following code skeleton for the event handler method will be in place,
with the cursor properly placed for you to commence typing the body of the method:

Private Sub btnTest_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnTest.Click
End Sub

VB

VB

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Publish and Subscribe | 85

In Visual Studio .NET, the method declaration will be on a single line,
not wrapped with a line-continuation character, as printed here.

This method declaration exactly follows the event handler method prototype for
VB.NET. The method name defaults to the name of the control with an underscore
character and the default event name concatenated on the end. You can, however,
use any name you wish, since the actual relationship between the method and the
event it handles is dictated by the Handles keyword.

Each control has a default event (whichever event is most commonly
used with that control). For many controls, it is the Click event. The
default event for the TreeView control, however, is AfterSelect,
although that control does have a Click event. The default event for
each control will be detailed when the control is covered.

Enter a line of code to pop up a message box so that the btnTest_Click method now
looks like:

Private Sub btnTest_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles btnTest.Click

MessageBox.Show("Click event just handled.","Event Demo")
End Sub

Running the form will produce the same application previously developed in C#,
shown in Figure 4-2. Clicking the button will pop up a message dialog with the
words “Click event just handled,” as shown in Figure 4-3.

In Example 4-3, which was developed in a text editor, you saw that in addition to
implementing the event handler method, you must also instantiate the control using
the WithEvents keyword. In Example 4-3, that was done with the following line of
code:

Private WithEvents btn as Button

When using Visual Studio .NET, this step is done for you automatically. You can see
it by going to the code window for the form, finding and expanding out the region of
code labeled Windows Form Designer generated code, and looking for the following
line of code:

Friend WithEvents btnTest As System.Windows.Forms.Button

In Example 4-3, the Private access modifier was used for the object, which restricts
access to the object to the class of which it is a member, i.e., HelloWorld. Visual Stu-
dio .NET uses the Friend access modifier, which is somewhat more expansive, allow-
ing access from any class within the project in which it is defined.

VB

VB

VB

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

86 | Chapter 4: Events

It is very easy to add event handlers to a form by double-clicking on a
control. Sometimes it is too easy, since accidentally double-clicking on
a control will create an empty event-handler method for that control,
if it does not already have one. You may notice some of these empty
methods in your code. In VB.NET applications, they do not usually
cause any problems other than clutter.

If you simply delete the empty methods, the VB.NET program will still
compile (unlike with C#). This is because there is no explicit connec-
tion between the event-handler method and the event in the code. The
compiler makes the connection at compile time only if both halves of
the connection are present.

If the control itself is deleted from the form designer, the lines of code
instantiating the control with the WithEvents keyword will be
removed, but the event-handler method will remain. You might want
to delete these methods manually if they are no longer used, to mini-
mize clutter and confusion in your code.

Use the drop-down lists at the top of the code window. Double-clicking on the control
allows you to add code to the default event only by using the default event-handler
method name. You can also create event handlers for any of a control’s events. To do
so in VB.NET, view the code window. At the top of the window are two drop-down
lists, as shown in Figure 4-6. The drop-down on the left lists all the controls on the
form, while the drop-down on the right lists all the possible events for each control
(plus (Declarations), which moves the cursor to the top of the code window).

First select the control whose events you wish to handle from the left drop-down.
Select the event to handle from the right drop-down. If the event handler already
exists, the cursor will move to the subroutine. If the event handler subroutine does

Figure 4-6. VB.NET Object and event drop-down lists

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Publish and Subscribe | 87

not exist, then it will be created, with the cursor located inside the code skeleton,
ready to enter your code.

It is a good idea to use meaningful, nondefault names for all the con-
trols on your form that will be referenced elsewhere in the code to
enhance readability and maintainability. Default names of controls are
always the name of the control with a number appended, such as
Button23, and default event-handler names are the name of the con-
trol, with an underscore and the event name, such as Button23_Click.
This becomes especially important when assigning events to controls.

An event handler method can easily be renamed simply by editing the method decla-
ration. There is no need to edit any other line of code, since the method name is not
associated with the method until compile time.

It is not possible to directly assign the same event handler method to multiple events
on a form using this syntax, as can be done in C#. This is because each event-han-
dler method uses the Handles keyword to directly associate the method with a spe-
cific event. One way to accomplish this indirectly would be to call the same method
from within multiple event handlers.

It is possible, however, to have multiple event-handler methods respond to the same
event. This is accomplished by having the Handles keyword on each of the event-
handler methods refer to the same event. In this situation, the order in which the
multiple events will fire is not defined. If the order is important, then you need to use
the dynamic event implementation and the AddHandler statement, described next.

The drop-down at the top of the code window is somewhat different
for the Form than for the controls contained within the Form. When a
control other than the Form is selected in the left drop-down, the right
drop-down lists all the possible events for that control.

If the Form is selected in the left drop-down menu, the only thing
listed besides (Declarations) are existing methods in the Form class
plus the protected method Finalize.

There are two other entries in the left drop-down menu that are not
objects: (Overrides) and (Base Class Events). (Overrides) causes the
right drop-down to display all the virtual methods and properties of
the Form class that can be overridden. (Base Class Events) causes the
right drop-down to display all the events for the Form class that can be
implemented. In either case, selecting an entry from the right drop-
down causes Visual Studio .NET to insert the skeleton code for the
appropriate property, method, or event to be inserted in the code win-
dow. If an event is selected, Visual Studio .NET will also hook the
event-handler method to the event.

Dynamic event implementation. In the VB.NET syntax described so far, there is no sign
of delegates in the code. The compiler automatically creates the necessary delegates

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

88 | Chapter 4: Events

at compile time and adds the methods marked with the Handles keyword to the
appropriate delegate for each event.

You can explicitly add the event handler methods to the delegate in VB.NET, as is
done in C#, even though it is not the default way in which Visual Studio .NET han-
dles events in VB.NET programs. This is done with the AddHandler statement.
AddHandler does not provide any significant performance benefits over the Handles
keyword, but does provide greater flexibility. AddHandler and RemoveHandler
allow you to add, remove, and change the event handler associated with an event
dynamically (in your code at runtime). You can also add multiple event handlers to a
single event using AddHandler.

The listing in Example 4-4 shows the modifications to Example 4-3 necessary to use
the AddHandler statement rather than the Handles keyword for implementing
events. The new or modified lines are highlighted.

Three code changes are necessary to dynamically add event handlers in a VB.NET
program.

Example 4-4. Using AddHandler to implement events

imports System
imports System.Drawing
imports System.Windows.Forms

namespace ProgrammingWinApps
 public class EventsDemo : inherits System.Windows.Forms.Form

Private btn as Button
 public sub New()
 Text = "Events Demonstration - AddHandler"

 btn = new Button()
 btn.Location = new Point(50,50)
 btn.Text = "Test"

 Controls.Add(btn)
AddHandler btn.Click, AddressOf btn_Click

 end sub

 public shared sub Main()
 Application.Run(new EventsDemo())
 end sub

private sub btn_Click(ByVal sender as object, _
ByVal e as EventArgs)

 MessageBox.Show("btn_Click method","Events Demonstration")
 end sub
 end class
end namespace

VB

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Publish and Subscribe | 89

• The line instantiating the control no longer includes the WithEvents keyword.
(This is not mandatory, but the keyword is no longer needed.)

• The event handler method declaration no longer uses the Handles keyword.

• An AddHandler statement is included to add the event-handler method to the
delegate that handles the event.

The AddHandler statement takes two comma-separated arguments. The first
argument is the name of the event to be handled, using dot notation. It is a two-
part name consisting of the name of the object and the name of the event. The
second argument is the AddressOf keyword followed by the name of the method
that handles the event.

The RemoveHandler statement uses the same syntax as the AddHandler statement.
Together they let you start or stop event handling for any specific event anywhere in
the program.

It is possible to use both techniques for event handling in the same program, even for
the same event in the same control. Consider the program in Example 4-5, which
uses both techniques to handle the Click event for the button.

Example 4-5. Using both AddHandler and Handles to handle events

imports System
imports System.Drawing
imports System.Windows.Forms

namespace ProgrammingWinApps
 public class EventsDemo : inherits System.Windows.Forms.Form

Private WithEvents btn as Button
 public sub New()
 Text = "Events Demonstration - AddHandler"

 btn = new Button()
 btn.Location = new Point(50,50)
 btn.Text = "Test"

 Controls.Add(btn)
 AddHandler btn.Click, AddressOf btn_Click
 end sub

 public shared sub Main()
 Application.Run(new EventsDemo())
 end sub

 private sub btn_Click(ByVal sender as object, _
 ByVal e as EventArgs)
 MessageBox.Show("btn_Click method","Events Demonstration")
 end sub

private sub btn_ClickHandles(ByVal sender as object, _

VB

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

90 | Chapter 4: Events

The WithEvents keyword was added back to the line instantiating the Button object.
It has no effect on the AddHandler statement functionality. However, it does enable
the btn_ClickHandles method, which utilizes the Handles keyword, to also handle
the button Click event.

When the program is compiled and run, the btnClickHandles method, which the
compiler adds to the delegate behind the scenes, is called first. It is followed by the
btn_Click method, which is added to the delegate by the AddHandler statement.

The following two statements are equivalent:

btn.Click += new System.EventHandler(GenericEventHandler);

AddHandler btn.Click, AddressOf GenericEventHandler

Performance
As mentioned throughout this chapter, events are implemented in the .NET Frame-
work using delegates. This has a performance cost. For most events, especially those
involved with user interaction such as Click and MouseOver, the performance hit is
negligible. For some events in some applications, such as the Paint event in very
high-performance or drawing-intensive applications, the performance penalty may
be significant.

Creating a custom control and overriding the protected event method without add-
ing a delegate has many benefits, one of which may be a small reduction in this per-
formance penalty. This technique will be covered in Chapter 17.

Some Examples
In this section, you will see examples of events in use. In the first example, you will
use keyboard events to capture keystrokes, showing what information is available
about each keystroke. The next example will use keystroke information and the Vali-
dating event to control and validate the contents entered into a text box.

ByVal e as EventArgs) _
Handles btn.Click

MessageBox.Show("btn_ClickHandles method","Events Demonstration")
end sub

 end class
end namespace

Example 4-5. Using both AddHandler and Handles to handle events (continued)

VB

C#

VB

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Some Examples | 91

Keyboard Events
It is often useful or necessary to capture keystrokes and then take action based on the
details related to that keystroke. For example, you may want to disallow certain
characters or convert all lowercase characters to uppercase. Keyboard events provide
access to this type of functionality.

The three events listed in Table 4-5 are raised when the user presses a key on the
keyboard.

The KeyDown and KeyPress events may seem somewhat redundant, but they fire at
different points in the keyboard event stream and contain different information in
the EventArgs object.

The KeyEventArgs event data associated with the KeyDown and KeyUp events pro-
vides low-level information about the keystroke, listed in Table 4-6. This informa-
tion allows you to determine, for example, if an upper- or lowercase character was
pressed. It also tells you if any modifier keys (Alt, Ctrl, or Shift) were pressed and in
which combination. (You will also get a KeyDown and a KeyUp event if a modifier
key is pressed and released on its own.)

Table 4-5. Key Events for all controls

Event Event data Description

KeyDown KeyEventArgs Raised when a key is pressed. The KeyDown event occurs prior to the KeyPress event.

KeyPress KeyPressEventArgs Raised when a character generating key is pressed. The KeyPress event occurs after
the KeyDown event and before the KeyUp event.

KeyUp KeyEventArgs Raised when a key is released.

Table 4-6. KeyEventArgs properties (KeyDown and KeyUp)

Property Data type Description

Alt Boolean Read-only value indicating if the Alt key was pressed. true if pressed, false
otherwise.

Control Boolean Read-only value indicating if the Ctrl key was pressed. true if pressed, false
otherwise.

Shift Boolean Read-only value indicating if the Shift key was pressed. true if pressed, false
otherwise.

Modifiers Keys Read-only flags indicating the combination of modifier keys (Alt, Ctrl, Shift)
pressed. Modifier keys can be combined using the bitwise OR operator.

Handled Boolean Value indicating if the event was handled. false until set otherwise.

KeyCode Keys Read-only value containing the key code for the key pressed. Typical values include
the A key, Alt, and BACK (backspace).

KeyData Keys Read-only value containing the key code for the key pressed, combined with modi-
fier flags to indicate combination of modifier keys (Alt, Ctrl, Shift).

KeyValue integer Key code property expressed as a read-only integer.

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

92 | Chapter 4: Events

The state of the modifier keys can also be retrieved from the read-only
Control.ModifierKeys property. This property is static in C# and shared
in VB.NET. Like the Modifiers KeyEventArgs property, it is of type
Keys.

The Modifiers, KeyCode and KeyData properties are of type Keys. The Keys enumer-
ation, listed in Table A-2 in the Appendix, is comprised of constants identifying all
the possible keys on a keyboard. The decimal key code value in Table A-2 corre-
sponds to the virtual-key codes familiar to Windows programmers.

The KeyPress event exposes two properties contained in KeyPressEventArgs, listed in
Table 4-7. The KeyChar property is used to retrieve the composed ASCII character.
In other words, if an uppercase character is pressed, the KeyChar property tells you
that directly, as opposed to telling you a character was pressed in combination with
the Shift key.

Unicode and ASCII Characters
Each character in the American Standards Committee for Information Interchange
(ASCII) character set is represented by a single byte (8 bits) of data, representing 256
characters. The first 128 characters (represented by 7 bits) are standardized and usually
referred to as low-order ASCII characters. The upper 128 characters are not standard-
ized, although many well established character sets use all 256 characters. lists the low
order ASCII characters.

Unicode characters are a superset of the ASCII character set. They are represented by
two bytes, which allows a maximum of 65,536 characters. The Unicode technology
was introduced to allow easier representation of languages other than English, espe-
cially Asian languages such as Chinese and Japanese, which do not have limited alpha-
bets. Unicode also allows for character sets containing many more characters than an
ASCII character set, such as special symbols and stylings of characters.

You can insert Unicode characters or determine the Unicode character code for any
character in Windows using the Character Map tool, which is accessible by clicking on
the Start menu and then Programs ➝ Accessories ➝ System Tools.

Table 4-7. KeyPressEventArgs properties (KeyPress)

Property Description

Handled Boolean value indicating if the event was handled. false until set otherwise. When true, the key-
stroke is not displayed.

KeyChar Read-only value of type char containing the composed ASCII character.

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Some Examples | 93

In the next example, you will create a simple Windows application with a single-line
TextBox for entering keystrokes. A larger multiline TextBox will display the key-
stroke events and event argument properties so that you can see what is going on.
Two Labels will simultaneously display the character in both upper- and lowercase,
irrespective of how it was entered. Finally, a Reset button will clear all fields. During
the course of the example, you will also see how to translate keystrokes from one
character to another.

Open Visual Studio .NET and create a new project. Call it KeyEvents. (Since both
C# and VB.NET examples are shown here, the examples will be saved as
csKeyEvents and vbKeyEvents.)

Drag all the controls listed in Table 4-8 onto the form. Set the properties of the form
and the controls to the values shown in Table 4-8. When done, the form should look
something like Figure 4-7.

Table 4-8. KeyEvents controls

Control Name Property Value

Form Form1 Size 425,320

Text Key Event Demonstrator

TextBox txtInput Location 8,8

Multiline False

Size 100,20

Text <blank>

TextBox txtMsg Location 8,40

MultiLine True

ScrollBars Vertical

Size 304,232

TabStop False

Text <blank>

Button btnReset Location 328,8

Size 75,23

Text Reset

Label label1 Location 320,104

Size 40,16

Text Lower:

Label label2 Location 320,56

Size 40,16

Text Upper:

Label lblUpper BorderStyle Fixed3D

Location 368,56

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

94 | Chapter 4: Events

The Reset button will clear the Text properties of the TextBoxes and Labels. To
implement this functionality, add an event handler for the Reset button. The easiest
way to do this in either C# or VB.NET is to double-click on the control. Alterna-
tively, you could use any of the language-specific techniques described earlier in this
chapter. In any case, this will bring up a code window with an empty skeleton for the
btnReset_Click event in place and the cursor placed for code entry.

Add the highlighted lines of code shown in Example 4-6 for C# and in Example 4-7
for VB.NET to the event handler skeletons in the code window.

Size 32,23

Text <blank>

Label lblLower BorderStyle Fixed3D

Location 368,104

Size 32,23

Text <blank>

Figure 4-7. KeyEvents form layout

Example 4-6. btnReset Click event handler in C#

private void btnReset_Click(object sender, System.EventArgs e)
{

strMsg = "";
txtMsg.Text = strMsg;
txtInput.Text = "";

Table 4-8. KeyEvents controls (continued)

Control Name Property Value

C#

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Some Examples | 95

You may notice the variable strMsg underlined in the Visual Studio .NET code win-
dow. It is underlined because the editor recognizes that this variable name has not
yet been declared. You must declare strMsg as a member variable of the Form1 class
so that it is visible to all of the methods of the class. To do this, add the appropriate
line of code inside the Form1 class declaration:

private string strMsg = "";

Dim strMsg As String = ""

Now you will implement an event handler for the KeyDown event for the TextBox
named txtInput. Do not double-click on the TextBox control, or an empty code skel-
eton will be inserted for the TextChanged event, which is the default event for the
TextBox control.

Instead, use the techniques described previously in this chapter to insert a code skel-
eton for a nondefault event, in this case the KeyDown event for txtInput. In C#,
highlight the control in the design window, and then click on the Events icon () in
the Properties window. Scroll down to the KeyDown event, highlight the event, and
press Enter. In VB.NET, use the drop-down lists at the top of the code window. In
the left drop-down, select the control: txtInput. In the right drop-down, select
KeyDown.

To implement the KeyDown event handler, add the highlighted code shown in
Example 4-8 (for C#) or in Example 4-9 (for VB.NET) to the empty code skeletons.
The KeyDown event handler will get the character from the KeyEventArgs event
argument, extract various properties from the event argument, and then append that
information to the TextBox txtMsg.

lblUpper.Text = "";
lblLower.Text = "";

}

Example 4-7. btnReset Click event handler in VB.NET

Private Sub btnReset_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnReset.Click

strMsg = ""
txtMsg.Text = strMsg
txtInput.Text = ""
lblUpper.Text = ""
lblLower.Text = ""

End Sub

Example 4-6. btnReset Click event handler in C# (continued)

C#

VB

C#

VB

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

96 | Chapter 4: Events

Run the application, make certain the input TextBox has focus, and enter an upper-
case G (i.e., a shifted G). The result is shown in Figure 4-8.

Figure 4-8 shows that two KeyDown events were handled. The first was the pressed
Shift key; the second was the letter G. The first two lines of data displayed for each
event show the contents of the KeyEventArgs.KeyCode property. This is accom-
plished with the following two lines of code:

txtMsg.AppendText("\t" + "KeyCode name: " + e.KeyCode + "\r\n");
txtMsg.AppendText("\t" + "KeyCode key code: " + ((int)e.KeyCode) +
 "\r\n");

txtMsg.AppendText(vbTab + "KeyCode name: " + e.KeyCode.ToString() + _
 vbCrLf)
txtMsg.AppendText(vbTab + "KeyCode key code: " + _
 CInt(e.KeyCode).ToString() + vbCrLf)

Example 4-8. txtInput KeyDown event in C#

private void txtInput_KeyDown(object sender, System.Windows.Forms.KeyEventArgs e)
{

txtMsg.AppendText("KeyDown event." + "\r\n");
txtMsg.AppendText("\t" + "KeyCode name: " + e.KeyCode + "\r\n");
txtMsg.AppendText("\t" + "KeyCode key code: " + ((int)e.KeyCode) +

 "\r\n");
txtMsg.AppendText("\t" + "KeyData name: " + e.KeyData + "\r\n");
txtMsg.AppendText("\t" + "KeyData key code: " + ((int)e.KeyData) +

 "\r\n");
txtMsg.AppendText("\t" + "KeyValue: " + e.KeyValue + "\r\n");
txtMsg.AppendText("\t" + "Handled: " + e.Handled + "\r\n");
txtMsg.AppendText("\r\n");

}

Example 4-9. txtInput KeyDown event in VB.NET

Private Sub txtInput_KeyDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.KeyEventArgs) _
 Handles txtInput.KeyDown

txtMsg.AppendText("KeyDown event." + vbCrLf)
txtMsg.AppendText(vbTab + "KeyCode name: " + e.KeyCode.ToString() + _

vbCrLf)
txtMsg.AppendText(vbTab + "KeyCode key code: " + _

CInt(e.KeyCode).ToString() + vbCrLf)
txtMsg.AppendText(vbTab + "KeyData name: " + e.KeyData.ToString() + _

vbCrLf)
txtMsg.AppendText(vbTab + "KeyData key code: " + _

CInt(e.KeyData).ToString() + vbCrLf)
txtMsg.AppendText(vbTab + "KeyValue: " + e.KeyValue.ToString() + _

vbCrLf)
txtMsg.AppendText(vbTab + "Handled: " + e.Handled.ToString() + vbCrLf)
txtMsg.AppendText(vbCrLf)

End Sub

C#

VB

C#

VB

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Some Examples | 97

The object e refers to the instance of KeyEventArgs passed in as one of the method
arguments. It contains the properties listed in Table 4-6. The KeyCode property con-
tains a member of the Keys enumeration (listed in Table A-2 in the Appendix) that
identifies which key generated the KeyDown event.

e.KeyCode contains the name of the key. In VB.NET, the ToString() method must
be used to include it as part of a string. That is not necessary in C#, although it
would not do any harm.

Casting e.KeyCode to an integer returns the KeyCode key code, which corresponds to
the virtual-key code familiar to Windows programmers, which itself corresponds (for
the lower 127 characters) to the decimal ASCII value for the key. (The ASCII charac-
ters are listed in Table A-2.) The cast is done in C# using the cast operator (()) and
in VB.NET using the CInt function.

There is another significant difference between the two languages here. The C# ver-
sion embeds tab characters and new lines using escape sequences in string literals,
while the VB.NET version uses VB.NET constants for the purpose. The commonly
used VB.NET constants and their C# equivalent are listed in Table 4-9.

Figure 4-8. KeyEvents application showing a shifted G

Table 4-9. Commonly used VB.NET constants and C# escape sequences

VB.NET constant C# escape sequence KeyCode value (decimal) Meaning

vbCr \r 13 Carriage return

vbCrLf \r\n 13 & 10 Carriage return/line-feed combination

vbFormFeed \f 12 Form feed

vbLf \n 10 Line feed (new line)

vbTab \t 9 Tab

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

98 | Chapter 4: Events

The next two lines displayed in the output report on the KeyEventArgs.KeyData
property. This is accomplished with the following lines of code:

txtMsg.AppendText("\t" + "KeyData name: " + e.KeyData + "\r\n");
txtMsg.AppendText("\t" + "KeyData key code: " + ((int)e.KeyData) +
 "\r\n");

txtMsg.AppendText(vbTab + "KeyData name: " + e.KeyData.ToString() + _
 vbCrLf)
txtMsg.AppendText(vbTab + "KeyData key code: " + _
 CInt(e.KeyData).ToString() + vbCrLf)

The KeyData property returns the same information as the KeyCode property com-
bined with flags to indicate which modifier keys were pressed, if any. In this exam-
ple, the ShiftKey was pressed in combination with the Shift modifier key (that does
seem redundant since they are the same key) and the G key was pressed, also in com-
bination with the Shift modifier key.

The next line reports the value of the KeyValue property. This is the key code corre-
sponding to the key pressed. It is redundant with the KeyCode:

txtMsg.AppendText("\t" + "KeyValue: " + e.KeyValue + "\r\n");

txtMsg.AppendText(vbTab + "KeyValue: " + e.KeyValue.ToString() + _
 vbCrLf)

The final line displayed in the KeyDown event handler tells the status of the Han-
dled property, which is false until specifically set otherwise:

txtMsg.AppendText("\t" + "Handled: " + e.Handled + "\r\n");

txtMsg.AppendText(vbTab + "Handled: " + e.Handled.ToString() + vbCrLf)

Looking ahead, the KeyUp and the KeyDown events both use the same event argu-
ment, KeyEventArgs, so it is reasonable that both event handlers will want to display
the same information. To do this, abstract out the contents of the event handler into
a helper method, passing the event argument in, and then call the helper method in
the event handler. This process is shown in Example 4-10 for C# and in
Example 4-11 for VB.NET.

Example 4-10. Handling KeyDown and KeyUp with helper method in C#

private void KeyMsgBox(string str, KeyEventArgs e)
{

txtMsg.AppendText(str + " event." + "\r\n");
 txtMsg.AppendText("\t" + "KeyCode name: " + e.KeyCode + "\r\n");
 txtMsg.AppendText("\t" + "KeyCode key code: " + ((int)e.KeyCode) +
 "\r\n");
 txtMsg.AppendText("\t" + "KeyData name: " + e.KeyData + "\r\n");
 txtMsg.AppendText("\t" + "KeyData key code: " + ((int)e.KeyData) +
 "\r\n");

C#

VB

C#

VB

C#

VB

C#

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Some Examples | 99

The helper method is called KeyMsgBox. It takes two arguments: a string which
should contain the name of the event and the instance of KeyEventArgs. The first
argument is used in the first line in the method to display which event is being han-
dled. e is used just as it was in the actual event handler method, described above.

The call to the helper method is simple; it involves passing in the name of the event
and event argument:

KeyMsgBox("KeyDown", e);

KeyMsgBox("KeyDown", e)

Now that you have the KeyDown event handler implemented with a helper method
to do the work, it is very simple to implement the KeyUp event handler in a similar
fashion because both events use the same KeyEventArgs event argument. Again,
remember not to double-click on the txtInput control, since that will implement the

 txtMsg.AppendText("\t" + "KeyValue: " + e.KeyValue + "\r\n");
 txtMsg.AppendText("\t" + "Handled: " + e.Handled + "\r\n");
 txtMsg.AppendText("\r\n");
}

private void txtInput_KeyDown(object sender,
 System.Windows.Forms.KeyEventArgs e)

KeyMsgBox("KeyDown", e);

Example 4-11. Handling KeyUp and KeyDown with helper method in VB.NET

Private Sub KeyMsgBox(ByVal str As String, ByVal e As KeyEventArgs)

txtMsg.AppendText(str + " event." + vbCrLf)
 txtMsg.AppendText(vbTab + "KeyCode name: " + e.KeyCode.ToString() + _
 vbCrLf)
 txtMsg.AppendText(vbTab + "KeyCode key code: " + _
 CInt(e.KeyCode).ToString() + vbCrLf)
 txtMsg.AppendText(vbTab + "KeyData name: " + e.KeyData.ToString() + _
 vbCrLf)
 txtMsg.AppendText(vbTab + "KeyData key code: " + _
 CInt(e.KeyData).ToString() + vbCrLf)
 txtMsg.AppendText(vbTab + "KeyValue: " + e.KeyValue.ToString() + _
 vbCrLf)
 txtMsg.AppendText(vbTab + "Handled: " + e.Handled.ToString() + vbCrLf)
 txtMsg.AppendText(vbCrLf)
End Sub

Private Sub txtInput_KeyDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.KeyEventArgs) _
 Handles txtInput.KeyDown

KeyMsgBox("KeyDown", e)
End Sub

Example 4-10. Handling KeyDown and KeyUp with helper method in C# (continued)

C#

VB

C#

VB

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

100 | Chapter 4: Events

default event, which is not what you want here. Instead, use the techniques
described above for the language you are using. The KeyUp event handler is shown
implemented in C# in Example 4-12 and in VB.NET in Example 4-13.

When the application is run with the implemented KeyUp event handler and an
uppercase G is again entered in the TextBox, you will get the results shown in
Figure 4-9 (scrolling down to the bottom half of the displayed text). The two Key-
Down events, for the Shift key and for the G key, are the same as seen previously in
Figure 4-8. They are followed by the KeyUp event for the G key, and followed by the
KeyUp event for the Shift key. The event data for the KeyUp event is identical to the
event data for the KeyDown event.

The KeyDown and KeyUp events provide a lot of information, but often you really
care about the ASCII value of the keystroke—i.e., how the operating system

Example 4-12. KeyUp event in C#

private void txtInput_KeyUp(object sender,
 System.Windows.Forms.KeyEventArgs e)
{
 KeyMsgBox("KeyUp", e);
}

Example 4-13. KeyUp event in VB.NET

Private Sub txtInput_KeyUp(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.KeyEventArgs) _
 Handles txtInput.KeyUp
 KeyMsgBox("KeyUp", e)
End Sub

Figure 4-9. KeyDown and KeyUp events for shifted G

C#

VB

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Some Examples | 101

interprets the keystroke, not what key was actually pressed. For example, the G key
will result in the same Keys enumeration of G, with a key code value of 71, irrespec-
tive of whether the Shift key was pressed (to produce an uppercase G) or not (to pro-
duce a lowercase g). To determine the case, you need to process additional
properties. Similarly, the number 5 along the top of the keyboard will return a Keys
enumeration of D5 with a key code value of 53, while the 5 on the numeric keypad
will return a Keys enumeration of NumPad5 with a key code value of 101. In many
applications, you won’t care which key was pressed, you just want the ASCII value
for the number 5, which is 53.

The KeyPress event provides exactly this sort of information. In addition, you can
use the KeyPressEventArgs.Handled property to suppress a keystroke from being
processed by the operating system. This will be demonstrated later.

To implement the KeyPress event handler, use the described techniques to add a
KeyPress code skeleton to the ongoing example. Add the highlighted code shown in
Example 4-14 (for C#) or in Example 4-15 (for VB.NET) to the empty code skele-
tons. This event handler will get the character from the KeyPressEventArgs event
argument, and then append various pieces of information about the character to a
string displayed in the txtMsg TextBox. It also populates the lblUpper label with an
uppercase version of the character and lblLower label with a lowercase version.

Example 4-14. txtInput KeyPress event handler code in C#

private void txtInput_KeyPress(object sender,
 System.Windows.Forms.KeyPressEventArgs e)
{

char keyChar;
keyChar = e.KeyChar;

txtMsg.AppendText("KeyPress event." + "\r\n");
txtMsg.AppendText("\t" + "KeyChar: " + keyChar + "\r\n");
txtMsg.AppendText("\t" + "KeyChar Code: " + (int)keyChar + "\r\n");
txtMsg.AppendText("\t" + "Handled: " + e.Handled + "\r\n");
txtMsg.AppendText("\r\n");

// Fill in the Upper and Lower labels
lblUpper.Text = keyChar.ToString().ToUpper();
lblLower.Text = keyChar.ToString().ToLower();

}

Example 4-15. txtInput KeyPress event handler code in VB.NET

Private Sub txtInput_KeyPress(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.KeyPressEventArgs) _
 Handles txtInput.KeyPress

Dim keyChar As Char
keyChar = e.KeyChar

txtMsg.AppendText("KeyPress event." + vbCrLf)

C#

VB

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

102 | Chapter 4: Events

Running the application now and entering the letter G without the Shift key pro-
duces the results shown in Figure 4-10. Notice that the KeyPress information returns
a lowercase g and a key code of 103, rather than the key code of 71 returned by the
KeyDown event. 103 is the ASCII value for lowercase g while 71 is the ASCII value
for uppercase G.

The first two lines in the event handler get the character entered at the keyboard
from the KeyPressEventArgs event argument and assign it to a variable keyChar,
declared as type char, since the KeyPressEventArgs.KeyChar property is of type char
(i.e., it is a Unicode character).

The next several lines in the event handler use the KeyPressEventArgs.KeyChar prop-
erty to retrieve the composed ASCII character, i.e., already taking into account modi-
fier keys. Both the character name and integer value are displayed:

txtMsg.AppendText("\t" + "KeyChar: " + keyChar + "\r\n");
txtMsg.AppendText("\t" + "KeyChar Code: " + (int)keyChar + "\r\n");

txtMsg.AppendText(vbTab + "KeyChar: " + keyChar + vbCrLf)
txtMsg.AppendText(vbTab + "KeyChar Code: " + _

AscW(keyChar).ToString() + vbCrLf)
txtMsg.AppendText(vbTab + "Handled: " + e.Handled.ToString() + vbCrLf)
txtMsg.AppendText(vbCrLf)

 ' Fill in the Upper and Lower labels
lblUpper.Text = keyChar.ToString().ToUpper()
lblLower.Text = keyChar.ToString().ToLower()

End Sub

Figure 4-10. KeyPress event handler output

Example 4-15. txtInput KeyPress event handler code in VB.NET (continued)

VB

C#

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Some Examples | 103

txtMsg.AppendText(vbTab + "KeyChar: " + keyChar + vbCrLf)
txtMsg.AppendText(vbTab + "KeyChar Code: " + _
 AscW(keyChar).ToString() + vbCrLf)

Since the KeyChar property is of type char, there is no need to use the ToString
method in either language to concatenate it into a string. The character code value,
on the other hand, is an integer and must be cast as such, and then converted to a
string using the ToString method.

Objects of type char can implicitly convert to a string, since there is no
loss of data in such a conversion. This is true even in VB.NET with the
type checking switch on (Option Strict On). You can not implicitly
convert from string to char, as information would be lost.

To declare a literal character in C#, enclose it in single quotes:

char myChar = 'A';

In VB.NET, you append the letter c, as in:

Dim myChar as Char = "A"c

The VB.NET version uses the AscW method rather than the more common CInt
method to cast the value, since Char values in VB.NET cannot be converted to Inte-
ger. The AscW method returns an integer value representing the character code of a
character.

The final three lines of code in Example 4-14 and Example 4-15 take the character
entered, convert it to both upper- and lowercase, and fill in the appropriate labels.

Suppose you want to intercept the keystroke and selectively replace it with a differ-
ent character. For example, suppose you want to intercept all dollar signs ($) and
replace them with a number sign (#). You could do this by handling the Validating
event (demonstrated in the next section), but often a better way would be to change
the character before it is even displayed on the screen. To do this, modify the Key-
Press event-handler method to add the highlighted code shown in Example 4-16 (in
C#) and Example 4-17 (in VB.NET).

Example 4-16. Character substitution in KeyPress event in C#

private void txtInput_KeyPress(object sender,
 System.Windows.Forms.KeyPressEventArgs e)
{
 char keyChar;
 keyChar = e.KeyChar;

 txtMsg.AppendText("KeyPress event." + "\r\n");
 txtMsg.AppendText("\t" + "KeyChar: " + keyChar + "\r\n");
 txtMsg.AppendText("\t" + "KeyChar Code: " + (int)keyChar + "\r\n");
 txtMsg.AppendText("\t" + "Handled: " + e.Handled + "\r\n");
 txtMsg.AppendText("\r\n");

 // Fill in the Upper and Lower labels
 lblUpper.Text = keyChar.ToString().ToUpper();

VB

C#

VB

C#

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

104 | Chapter 4: Events

When this code is run and a dollar sign (a shifted 4 on a U.S. English keyboard) is
entered in the input field, the events displayed are KeyDown for Shift, KeyDown for
4, and KeyPress for $, just as before. The Upper and Lower labels both display $,
since that character is unaffected by converting case. Before the event finishes,
though, the character is tested to see if it is a $. If so, the AppendText instance
method appends the desired character, the # sign, to the text box. Then e.Handled is
set to true. This suppresses all further handling of the original keypress.

TextBox Validation
Several events can play a role in validating the contents of a TextBox, including the
key events seen in the previous example. The sequence of events that occurs when a
TextBox gains and loses focus are:

 lblLower.Text = keyChar.ToString().ToLower();

// Change $ to #
if (keyChar.ToString() = = "$")
{

txtInput.AppendText("#");
e.Handled = true;

}
}

Example 4-17. Character substitution in KeyPress event in VB.NET

Private Sub txtInput_KeyPress(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.KeyPressEventArgs) _
 Handles txtInput.KeyPress
 Dim keyChar As Char
 keyChar = e.KeyChar

 txtMsg.AppendText("KeyPress event." + vbCrLf)
 txtMsg.AppendText(vbTab + "KeyChar: " + keyChar + vbCrLf)
 txtMsg.AppendText(vbTab + "KeyChar Code: " + _
 AscW(keyChar).ToString() + vbCrLf)
 txtMsg.AppendText(vbTab + "Handled: " + e.Handled.ToString() + vbCrLf)
 txtMsg.AppendText(vbCrLf)

 ' Fill in the Upper and Lower labels
 Dim str As String = e.KeyChar.ToString()
 lblUpper.Text = keyChar.ToString().ToUpper()
 lblLower.Text = keyChar.ToString().ToLower()

 ' Change $ to #
If (keyChar.ToString() = "$") Then

txtInput.AppendText("#")
e.Handled = True

End If
End Sub

Example 4-16. Character substitution in KeyPress event in C# (continued)

C#

VB

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Some Examples | 105

1. Enter

2. GotFocus

3. Leave

4. Validating

5. Validated

6. LostFocus

Of these, the GotFocus and LostFocus events are low-level events that are not typi-
cally used for validation. The Enter event is not useful for validation because it
occurs before any data entry can occur. The Leave event is also not usually used for
validation because its event argument, EventArgs, does not expose any properties for
influencing the event.

Table 4-10 summarizes the most useful events for validating a TextBox.

In the following example, you will see the KeyPress and Validating events used to
control and validate data entered in a TextBox. The example will allow a user to
enter an ISBN number, which will then be validated.

International Standard Book Number (ISBN) numbers are used by the book indus-
try to track and uniquely identify book titles. They are typically found on the back
cover of books, often in conjunction with a bar code. There is more to ISBN num-
bers than the information discussed here (for example, the meaning of the different
portions of the number and how they are assigned). All you need to know for this
example, however, is that an ISBN number consists of nine digits, called the true
number, plus one check digit or the letter X (for check-digit value 10). The digits
may be separated into sections separated by hyphens. The hyphens must be allowed
but are ignored.

The algorithm for calculating the check digit is as follows: Multiply the first digit in
the true number by 10, the next digit by 9, the next by 8, and so on until the last
digit is multiplied by 2. Add all these products together. The number needed to
increase that sum to the next multiple of 11 is the check digit (that is, the check digit

Table 4-10. TextBox events available for validation

Event name Event argument Description

KeyPress KeyPressEventArgs Use the KeyPressEventArgs.Handled property to suppress keystrokes.

TextChanged EventArgs Raised if the Text property changed, either by user interaction or under program-
matic control. Fires with every character entered in a TextBox.

Validating CancelEventArgs Raised after focus leaves the control and enters a control that has CausesValida-
tion set to true. If the CancelEventArgs.Cancel property is set to true, then the
current event is canceled, the Validated event is suppressed, and the focus is
forced to remain in the control.

Validated EventArgs Raised after control is finished validating (after the Validating event).

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

106 | Chapter 4: Events

is the sum of the products modulo 11). If the check “digit” turns out to be 10, use
the letter X instead.

To demonstrate how this works, open Visual Studio .NET and create a new Win-
dows application project called IsbnValidate. Add the controls and set the properties
listed in Table 4-11.

When all the controls are in place, the form layout should look similar to
Figure 4-11.

Table 4-11. IsbnValidate controls

Control Name Property Value

Form Form1 Size 272,320

Text ISBN Validation

Label label1 Location 48,16

Font Tahoma, 14.25pt, Bold Italic

Size 176,23

Text ISBN Validation

TextBox txtInput Location 72,64

Size 100,20

Text <blank>

Label label2 Location 24,104

Size 80,23

Text True Number:

Label label3 Location 32,152

Size 72,23

Text Check Digit:

Label lblTrue BorderStyle Fixed3D

Location 112,104

Size 100,23

Text <blank>

Label lblCheck BorderStyle Fixed3D

Location 112,152

Size 100,23

Text <blank>

Label lblResults Location 56,192

Size 152,24

Text <blank>

Button btnClear Location 88,240

Size 75,23

Text Clear

This is the Title of the Book, eMatter Edition
Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Some Examples | 107

Most validation work will occur in the Validating event of the input TextBox, which
takes CancelEventArgs as its event argument. CancelEventArgs has one property:
Cancel. When set to true, all events that would normally occur after the Validating
event are suppressed. This means that the Validated and LostFocus events do not
fire, and the cursor cannot leave the control.

Implement the Validating event handler in C# by highlighting the input TextBox con-
trol, clicking on the Events icon () in the Properties window, scrolling to the Validat-
ing event, and entering the event handler method name: IsbnValidate. In VB.NET, go
to the code-editing window, select the txtInput control from the drop-down list at the
top left of the window, then scroll to the Validating event in the right drop-down. The
method skeleton will have the default name of txtInput_Validation. Change it to
IsbnValidate.

Enter the highlighted code from Example 4-18 into the C# IsbnValidation code skel-
eton or the highlighted code from Example 4-19 for into the VB.NET code skeleton.

Figure 4-11. ISBN validator design layout

Example 4-18. IsbnValidation event handler in C#

private void IsbnValidate(object sender,
 System.ComponentModel.CancelEventArgs e)
{

string strTrue;
string strCheck;
string strIsbn = "";
string strPad;
int sum = 0;
int pad;

C#

