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Foreword

When I was a young child, I would often enjoy taking things apart and
putting them back together again—old mobile phones, hi-fi stereos,
and anything else I could get my hands on. I was too young to really
use these devices, but whenever one broke, I would instantly ask if I
could figure out how it worked.

I remember once looking at a circuit board for an old radio. It had this
weird long tube with copper wire wrapped around it. I couldn’t work
out its purpose, but I immediately went into research mode. What does
it do? Why is it in a radio? It doesn’t look like the other parts of the
circuit board, why? Why does it have copper wrapped around it? What
happens if I remove the copper?! Now I know it was a loop antenna,
made by wrapping copper wire around a ferrite rod, which are often
used in transistor radios.

Did you ever become addicted to figuring out all of the answers to
every why question? Most children do. In fact it is probably my favorite
thing about children—their desire to learn.

Unfortunately, now I’m considered a professional and spend my days
making things. When I was young, I loved the idea of one day making
the things that I took apart. Of course, most things I make now are
with JavaScript and not ferrite rods…but close enough! However, de‐
spite once loving the idea of making things, I now find myself longing
for the desire to figure things out. Sure, I often figure out the best way
to solve a problem or fix a bug, but I rarely take the time to question
my tools.

And that is exactly why I am so excited about this “You Don’t Know
JS” series of books. Because it’s right. I don’t know JS. I use JavaScript
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day in, day out and have done for many years, but do I really under‐
stand it? No. Sure, I understand a lot of it and I often read the specs
and the mailing lists, but no, I don’t understand as much as my inner
six-year-old wishes I did.

Scope and Closures is a brilliant start to the series. It is very well targeted
at people like me (and hopefully you, too). It doesn’t teach JavaScript
as if you’ve never used it, but it does make you realize how little about
the inner workings you probably know. It is also coming out at the
perfect time: ES6 is finally settling down and implementation across
browsers is going well. If you’ve not yet made time for learning the
new features (such as let and const), this book will be a great intro‐
duction.

So I hope that you enjoy this book, but moreso, that Kyle’s way of
critically thinking about how every tiny bit of the language works will
creep into your mindset and general workflow. Instead of just using
the antenna, figure out how and why it works.

—Shane Hudson
www.shanehudson.net
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Preface

I’m sure you noticed, but “JS” in the book series title is not an abbre‐
viation for words used to curse about JavaScript, though cursing at the
language’s quirks is something we can probably all identify with!

From the earliest days of the Web, JavaScript has been a foundational
technology that drives interactive experience around the content we
consume. While flickering mouse trails and annoying pop-up
prompts may be where JavaScript started, nearly two decades later, the
technology and capability of JavaScript has grown many orders of
magnitude, and few doubt its importance at the heart of the world’s
most widely available software platform: the Web.

But as a language, it has perpetually been a target for a great deal of
criticism, owing partly to its heritage but even more to its design phi‐
losophy. Even the name evokes, as Brendan Eich once put it, “dumb
kid brother” status next to its more mature older brother, Java. But the
name is merely an accident of politics and marketing. The two lan‐
guages are vastly different in many important ways. “JavaScript” is as
related to “Java” as “Carnival” is to “Car.”

Because JavaScript borrows concepts and syntax idioms from several
languages, including proud C-style procedural roots as well as subtle,
less obvious Scheme/Lisp-style functional roots, it is exceedingly ap‐
proachable to a broad audience of developers, even those with just
little to no programming experience. The “Hello World” of JavaScript
is so simple that the language is inviting and easy to get comfortable
with in early exposure.

While JavaScript is perhaps one of the easiest languages to get up and
running with, its eccentricities make solid mastery of the language a
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vastly less common occurrence than in many other languages. Where
it takes a pretty in-depth knowledge of a language like C or C++ to
write a full-scale program, full-scale production JavaScript can, and
often does, barely scratch the surface of what the language can do.

Sophisticated concepts that are deeply rooted into the language tend
instead to surface themselves in seemingly simplistic ways, such as
passing around functions as callbacks, which encourages the Java‐
Script developer to just use the language as-is and not worry too much
about what’s going on under the hood.

It is simultaneously a simple, easy-to-use language that has broad ap‐
peal and a complex and nuanced collection of language mechanics that
without careful study will elude true understanding even for the most
seasoned of JavaScript developers.

Therein lies the paradox of JavaScript, the Achilles’ heel of the lan‐
guage, the challenge we are presently addressing. Because JavaScript
can be used without understanding, the understanding of the language
is often never attained.

Mission
If at every point that you encounter a surprise or frustration in Java‐
Script, your response is to add it to the blacklist, as some are accus‐
tomed to doing, you soon will be relegated to a hollow shell of the
richness of JavaScript.

While this subset has been famously dubbed “The Good Parts,” I would
implore you, dear reader, to instead consider it the “The Easy Parts,”
“The Safe Parts,” or even “The Incomplete Parts.”

This “You Don’t Know JavaScript” book series offers a contrary chal‐
lenge: learn and deeply understand all of JavaScript, even and espe‐
cially “The Tough Parts.”

Here, we address head on the tendency of JS developers to learn “just
enough” to get by, without ever forcing themselves to learn exactly
how and why the language behaves the way it does. Furthermore, we
eschew the common advice to retreat when the road gets rough.

I am not content, nor should you be, at stopping once something just
works, and not really knowing why. I gently challenge you to journey
down that bumpy “road less traveled” and embrace all that JavaScript
is and can do. With that knowledge, no technique, no framework, no
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