


SCOPE & I 
CLOSURES   

KYLE SIMPSON

“Kyle’s way of critically thinking about every tiny bit of the 
 language will creep into your mindset and general workflow.” 

 —SHANE HUDSON, freelance frontend website developer

YOU
 DON

’T KN
OW

 JAVASCRIPT  
KYLE SIM

PSON
SCOPE &

 CLO
SU

RES   

JAVA SCRIPT Twitter: @oreillymedia
facebook.com/oreilly

No matter how much experience you have with JavaScript, odds are you don’t fully understand 
the language. This concise yet in-depth guide takes you inside scope and closures, two core 
concepts you need to know to become a more efficient and effective JavaScript programmer. 
You’ll learn how and why they work, and how an understanding of closures can be a powerful 
part of your development skill set. 

Like other books in the You Don’t Know JS series, Scope and Closures dives into trickier parts 
of the language that many JavaScript programmers simply avoid. Armed with this knowledge, 
you can achieve true JavaScript mastery.

■ � Learn about scope, a set of rules to help JavaScript engines locate variables  
in your code

■ � Go deeper into nested scope, a series of containers for variables and functions

■ � Explore function- and block-based scope, “hoisting,” and the patterns and  
benefits of scope-based hiding

■ � Discover how to use closures for synchronous and asynchronous tasks, including 
the creation of JavaScript libraries

KYLE SIMPSON is an Open Web Evangelist who’s passionate about all things JavaScript. He’s an author, 
workshop trainer, tech speaker, and OSS contributor/leader.

oreilly.com
YouDontKnowJS.com

SCOPE & I CLOSURES   

The YOU DON’T KNOW JS series includes:

■  Up & Going
■  Scope & Closures
■  this & Object Prototypes
■  Types & Grammar
■  Async & Performance
■  ES6 & Beyond

ISBN: 978-1-449-33558-8

US $17.99	  CAN $20.99

JAVASCRIPT



Kyle Simpson

Scope and Closures



Scope and Closures
by Kyle Simpson

Copyright © 2014 Getify Solutions, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department: 800-998-9938
or corporate@oreilly.com.

Editors: Simon St. Laurent and Brian Mac‐
Donald
Production Editor: Melanie Yarbrough
Proofreader: Linley Dolby

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Rebecca Demarest

March 2014: First Edition

Revision History for the First Edition:

2014-03-06: First release

2015-05-01: Second release

See http://oreilly.com/catalog/errata.csp?isbn=9781449335588 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly Media, Inc. You Don’t Know JavaScript: Scope and Closures,
and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their prod‐
ucts are claimed as trademarks. Where those designations appear in this book, and
O’Reilly Media, Inc. was aware of a trademark claim, the designations have been printed
in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher
and author assume no responsibility for errors or omissions, or for damages resulting
from the use of the information contained herein.

ISBN: 978-1-449-33558-8

[LSI]

http://safaribooksonline.com
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449335588


Table of Contents

Foreword. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v
Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  vii

1. What Is Scope?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
Compiler Theory                                                                                 1
Understanding Scope                                                                          3
Nested Scope                                                                                         8
Errors                                                                                                   10
Review                                                                                                 11

2. Lexical Scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13
Lex-time                                                                                              13
Cheating Lexical                                                                                 16
Review                                                                                                 21

3. Function Versus Block Scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
Scope From Functions                                                                      23
Hiding in Plain Scope                                                                       24
Functions as Scopes                                                                           28
Blocks as Scopes                                                                                 33
Review                                                                                                 39

4. Hoisting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41
Chicken or the Egg?                                                                           41
The Compiler Strikes Again                                                             42
Functions First                                                                                   44
Review                                                                                                 46

iii



5. Scope Closure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47
Enlightenment                                                                                    47
Nitty Gritty                                                                                         48
Now I Can See                                                                                    51
Loops and Closure                                                                             53
Modules                                                                                               56
Review                                                                                                 63

A. Dynamic Scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65

B. Polyfilling Block Scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69

C. Lexical this. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75

D. Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79

iv | Table of Contents



Foreword

When I was a young child, I would often enjoy taking things apart and
putting them back together again—old mobile phones, hi-fi stereos,
and anything else I could get my hands on. I was too young to really
use these devices, but whenever one broke, I would instantly ask if I
could figure out how it worked.

I remember once looking at a circuit board for an old radio. It had this
weird long tube with copper wire wrapped around it. I couldn’t work
out its purpose, but I immediately went into research mode. What does
it do? Why is it in a radio? It doesn’t look like the other parts of the
circuit board, why? Why does it have copper wrapped around it? What
happens if I remove the copper?! Now I know it was a loop antenna,
made by wrapping copper wire around a ferrite rod, which are often
used in transistor radios.

Did you ever become addicted to figuring out all of the answers to
every why question? Most children do. In fact it is probably my favorite
thing about children—their desire to learn.

Unfortunately, now I’m considered a professional and spend my days
making things. When I was young, I loved the idea of one day making
the things that I took apart. Of course, most things I make now are
with JavaScript and not ferrite rods…but close enough! However, de‐
spite once loving the idea of making things, I now find myself longing
for the desire to figure things out. Sure, I often figure out the best way
to solve a problem or fix a bug, but I rarely take the time to question
my tools.

And that is exactly why I am so excited about this “You Don’t Know
JS” series of books. Because it’s right. I don’t know JS. I use JavaScript

v



day in, day out and have done for many years, but do I really under‐
stand it? No. Sure, I understand a lot of it and I often read the specs
and the mailing lists, but no, I don’t understand as much as my inner
six-year-old wishes I did.

Scope and Closures is a brilliant start to the series. It is very well targeted
at people like me (and hopefully you, too). It doesn’t teach JavaScript
as if you’ve never used it, but it does make you realize how little about
the inner workings you probably know. It is also coming out at the
perfect time: ES6 is finally settling down and implementation across
browsers is going well. If you’ve not yet made time for learning the
new features (such as let and const), this book will be a great intro‐
duction.

So I hope that you enjoy this book, but moreso, that Kyle’s way of
critically thinking about how every tiny bit of the language works will
creep into your mindset and general workflow. Instead of just using
the antenna, figure out how and why it works.

—Shane Hudson
www.shanehudson.net

vi | Foreword



Preface

I’m sure you noticed, but “JS” in the book series title is not an abbre‐
viation for words used to curse about JavaScript, though cursing at the
language’s quirks is something we can probably all identify with!

From the earliest days of the Web, JavaScript has been a foundational
technology that drives interactive experience around the content we
consume. While flickering mouse trails and annoying pop-up
prompts may be where JavaScript started, nearly two decades later, the
technology and capability of JavaScript has grown many orders of
magnitude, and few doubt its importance at the heart of the world’s
most widely available software platform: the Web.

But as a language, it has perpetually been a target for a great deal of
criticism, owing partly to its heritage but even more to its design phi‐
losophy. Even the name evokes, as Brendan Eich once put it, “dumb
kid brother” status next to its more mature older brother, Java. But the
name is merely an accident of politics and marketing. The two lan‐
guages are vastly different in many important ways. “JavaScript” is as
related to “Java” as “Carnival” is to “Car.”

Because JavaScript borrows concepts and syntax idioms from several
languages, including proud C-style procedural roots as well as subtle,
less obvious Scheme/Lisp-style functional roots, it is exceedingly ap‐
proachable to a broad audience of developers, even those with just
little to no programming experience. The “Hello World” of JavaScript
is so simple that the language is inviting and easy to get comfortable
with in early exposure.

While JavaScript is perhaps one of the easiest languages to get up and
running with, its eccentricities make solid mastery of the language a

vii



vastly less common occurrence than in many other languages. Where
it takes a pretty in-depth knowledge of a language like C or C++ to
write a full-scale program, full-scale production JavaScript can, and
often does, barely scratch the surface of what the language can do.

Sophisticated concepts that are deeply rooted into the language tend
instead to surface themselves in seemingly simplistic ways, such as
passing around functions as callbacks, which encourages the Java‐
Script developer to just use the language as-is and not worry too much
about what’s going on under the hood.

It is simultaneously a simple, easy-to-use language that has broad ap‐
peal and a complex and nuanced collection of language mechanics that
without careful study will elude true understanding even for the most
seasoned of JavaScript developers.

Therein lies the paradox of JavaScript, the Achilles’ heel of the lan‐
guage, the challenge we are presently addressing. Because JavaScript
can be used without understanding, the understanding of the language
is often never attained.

Mission
If at every point that you encounter a surprise or frustration in Java‐
Script, your response is to add it to the blacklist, as some are accus‐
tomed to doing, you soon will be relegated to a hollow shell of the
richness of JavaScript.

While this subset has been famously dubbed “The Good Parts,” I would
implore you, dear reader, to instead consider it the “The Easy Parts,”
“The Safe Parts,” or even “The Incomplete Parts.”

This “You Don’t Know JavaScript” book series offers a contrary chal‐
lenge: learn and deeply understand all of JavaScript, even and espe‐
cially “The Tough Parts.”

Here, we address head on the tendency of JS developers to learn “just
enough” to get by, without ever forcing themselves to learn exactly
how and why the language behaves the way it does. Furthermore, we
eschew the common advice to retreat when the road gets rough.

I am not content, nor should you be, at stopping once something just
works, and not really knowing why. I gently challenge you to journey
down that bumpy “road less traveled” and embrace all that JavaScript
is and can do. With that knowledge, no technique, no framework, no

viii | Preface


