




Advance Praise for Head First Mobile Web

“If  you have been considering buying a book about mobile development that is cross‑browser and 
cross‑vendor, you should stop right now and buy Head First Mobile Web. It’s written by amazingly smart 
people [who] have great experience on mobile and don’t stop at one platform, but work on all of  them. 
Many developers spend days arguing [whether] they should go native or web. This book smoothly 
goes from introductory topics to advanced ones, giving you all the needed information to create 
exciting content for mobile.”

— �Andrea Trasatti, leader of  the DeviceAtlas project and cocreator of  
the WURFL repository of  wireless device capability information

“A pragmatic introduction to the chaotic world of  mobile web development as it is today, with a 
glimpse of  how we can and should approach it for tomorrow. Head First Mobile Web successfully 
presents practical techniques all readers can use immediately, while giving plenty of  foundation and 
resources for more experienced developers to build upon.”

— �Stephen Hay, web designer, developer, speaker, and 
cofounder of  the Mobilism conference 

“Hands-on from the get-go, Head First Mobile Web provides an excellent introduction to the challenges 
and opportunities available when exploring the next chapter in web design.”

— �Bryan and Stephanie Rieger, founders of  yiibu.com



Praise for other Head First books

“Head First Object-Oriented Analysis and Design is a refreshing look at subject of  OOAD. What sets this book 
apart is its focus on learning. The authors have made the content of  OOAD accessible [and] usable for 
the practitioner.”

— �Ivar Jacobson, Ivar Jacobson Consulting 

“I just finished reading HF OOA&D, and I loved it! The thing I liked most about this book was its focus 
on why we do OOA&D—to write great software!”

— �Kyle Brown, Distinguished Engineer, IBM 

“Hidden behind the funny pictures and crazy fonts is a serious, intelligent, extremely well-crafted 
presentation of  OO analysis and design. As I read the book, I felt like I was looking over the shoulder of  
an expert designer who was explaining to me what issues were important at each step, and why.”

— �Edward Sciore, Associate Professor, Computer Science Department,  
Boston College 

“All in all, Head First Software Development is a great resource for anyone wanting to formalize their 
programming skills in a way that constantly engages the reader on many different levels.”

— �Andy Hudson, Linux Format 

“If  you’re a new software developer, Head First Software Development will get you started off  on the right foot. 
And if  you’re an experienced (read: long-time) developer, don’t be so quick to dismiss this.…”

— �Thomas Duff, Duffbert’s Random Musings 

“There’s something in Head First Java for everyone. Visual learners, kinesthetic learners, everyone can 
learn from this book. Visual aids make things easier to remember, and the book is written in a very 
accessible style—very different from most Java manuals.… Head First Java is a valuable book. I can 
see the Head First books used in the classroom, whether in high schools or adult ed classes. And I will 
definitely be referring back to this book, and referring others to it as well.”

— �Warren Kelly, Blogcritics.org, March 2006 

“Rather than textbook-style learning, Head First iPhone and iPad Development brings a humorous, engaging, 
and even enjoyable approach to learning iOS development. With coverage of  key technologies including 
core data, and even crucial aspects such as interface design, the content is aptly chosen and top-notch. 
Where else could you witness a fireside chat between a UIWebView and UITextField!”

— �Sean Murphy, iOS designer and developer



Praise for other Head First books

“Another nice thing about Head First Java, Second Edition, is that it whets the appetite for more. With 
later coverage of  more advanced topics such as Swing and RMI, you just can’t wait to dive into those 
APIs and code that flawless, 100,000-line program on java.net that will bring you fame and venture-
capital fortune. There’s also a great deal of  material, and even some best practices, on networking and 
threads—my own weak spot. In this case, I couldn’t help but crack up a little when the authors use 
a 1950s telephone operator—yeah, you got it, that lady with a beehive hairdo that manually hooks in 
patch lines—as an analogy for TCP/IP ports…you really should go to the bookstore and thumb through 
Head First Java, Second Edition. Even if  you already know Java, you may pick up a thing or two. And if  
not, just thumbing through the pages is a great deal of  fun.”

— �Robert Eckstein, Java.sun.com

“Of  course it’s not the range of  material that makes Head First Java stand out, it’s the style and approach. 
This book is about as far removed from a computer science textbook or technical manual as you can get. 
The use of  cartoons, quizzes, fridge magnets (yep, fridge magnets…). And, in place of  the usual kind of  
reader exercises, you are asked to pretend to be the compiler and compile the code, or perhaps to piece 
some code together by filling in the blanks or…you get the picture.… The first edition of  this book was 
one of  our recommended titles for those new to Java and objects. This new edition doesn’t disappoint 
and rightfully steps into the shoes of  its predecessor. If  you are one of  those people who falls asleep with 
a traditional computer book, then this one is likely to keep you awake and learning.”

— �TechBookReport.com

“Head First Web Design is your ticket to mastering all of  these complex topics, and understanding what’s 
really going on in the world of  web design.… If  you have not been baptized by fire in using something 
as involved as Dreamweaver, then this book will be a great way to learn good web design. ”

— �Robert Pritchett, MacCompanion

“Is it possible to learn real web design from a book format? Head First Web Design is the key to designing 
user-friendly sites, from customer requirements to hand-drawn storyboards to online sites that work 
well. What sets this apart from other ‘how to build a website’ books is that it uses the latest research 
in cognitive science and learning to provide a visual learning experience rich in images and designed 
for how the brain works and learns best. The result is a powerful tribute to web design basics that any 
general-interest computer library will find an important key to success.”

— �Diane C. Donovan, California Bookwatch: The Computer Shelf  

“I definitely recommend Head First Web Design to all of  my fellow programmers who want to get a grip on 
the more artistic side of  the business. ”

— �Claron Twitchell, UJUG 
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you’ve never heard of? In this chapter, we’re going to mix a magic concoction of project 
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and what to do about those we don’t.
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of  a few nagging issues.� How do we find out enough stuff about our users’ 

mobile browsers to know if they measure up before we deliver content to them? How do 

we avoid only building (lame) content for the lowest common denominator? And how do 

we organize all of this stuff so that we don’t lose our minds? In this chapter, we’ll enter 

the realm of device capabilities, learn to access them with a device database, and, 

finally, discover how to group them into device classes so that we can keep our sanity.
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build a mobile web app using a framework

“We want an app!”� Just a year or two ago, that hallmark cry generally meant 

one thing: native code development and deployment for each platform you wanted 

to support. But native isn’t the only game in town. These days, web‑based apps for 

mobile browsers have some street cred—especially now that hip cat HTML5 and 

his sidekicks, CSS3 and JavaScript, are in the house. Let’s dip our toes into the 

mobile web app world by taking a mobile framework—code tools designed to help 

you get your job done quickly—for a spin!
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The mobile web feels like that gifted kid in the class.� 
You know, kind of fascinating, capable of amazing things, but also a 

mysterious, unpredictable troublemaker. We’ve tried to keep its hyperactive 

genius in check by being mindful of constraints and establishing boundaries, 

but now it’s time to capitalize on some of the mobile web’s natural talents. 

We can use progressive enhancement to spruce up the interface in more 

precocious browsers and transform erratic connectivity from a burden to a 

feature by crafting a thoughtful offline mode. And we can get at the essence 

of mobility by using geolocation. Let’s go make this a super mobile web app!
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build hybrid mobile apps with PhoneGap

Sometimes you’ve got to go native.� It might be because you need 

access to something not available in mobile browsers (yet). Or maybe your client simply 

must have an app in the App Store. We look forward to that shiny future when we have 

access to everything we want in the browser, and mobile web apps share that sparkly 

allure native apps enjoy. Until then, we have the option of hybrid development—we 

continue writing our code using web standards, and use a library to bridge the gaps 

between our code and the device’s native capabilities. Cross-platform native apps 

built from web technologies? Not such a bad compromise, eh?
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9 Make (some) sense of the chaos

how to be future friendly

Responsive Web Design. Device detection. Mobile web 
apps. PhoneGap. Wait…which one should we use?� 

There are an overwhelming number of ways to develop for the mobile web. 

Often, projects will involve multiple techniques used in combination. There 

is no single right answer. But don’t worry. The key is to learn to go with the flow. 

Embrace the uncertainty. Adopt a future-friendly mindset and ride the wave, 

confident that you’re flexible and ready to adapt to whatever the future holds.
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set up your web server environment

Ever feel like something’s missing? We know what 
you mean…� Just when you thought you were done, there’s more. 

We couldn’t leave you without a few extra details, things we just couldn’t 

fit into the rest of the book. At least, not if you want to be able to carry 

this book around without a metallic case and caster wheels on the 

bottom. So take a peek and see what you (still) might be missing out on.

You can’t spell “mobile web” without the “web.”� There are no two 

ways about it. You’re going to need a web server if you want to develop for the mobile 

web. That goes for more than just completing the exercises in this book. You need 
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appendix, we’ll walk you through the steps of setting up a local web server on your 

computer and getting PHP going using free and open source software.
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Sniffing out devices

Take care of the environment

install WURFL
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The first step to solving device detection mysteries 
is a bit of  legwork.� Any decent gumshoe knows we’ve got to 

gather our clues and interrogate our witnesses. First, we need to seek 

out the brains of the operation: the WURFL PHP API. Then we’ll go track 

down the brawn: capability information for thousands of devices in a single 

XML data file. But it’ll take a bit of coaxing to get the two to spill the whole 

story, so we’ll tweak a bit of configuration and take some careful notes.

To be the master of  testing native Android apps, you need 
to be environmentally aware.� You’ll need to turn your computer into a nice 

little ecosystem where you can herd Android apps to and from virtual (emulated) or 

real devices. To make you the shepherd of your Android sheep, we’ll show you how to 

download the Android software development kit (SDK), how to install some platform 

tools, how to create some virtual devices, and how to install and uninstall apps.
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how to use this book

Intro

I can’t believe they 
put that in a mobile 

web book!

In this section, we answer the burning question:  

“So why DID they put that in a Mobile Web book?”
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1

2

3

Who is this book for?

Who should probably back away from this book?

If  you can answer “yes” to all of  these:

If  you can answer “yes” to any of  these:

this book is for you.

this book is not for you.

[Note from marketing: this book is for anyone with a credit card. Or cash. Cash is nice, too. - Ed]

Do you have previous web design and development 
experience?

Do you want to learn, understand, remember, and 
apply important mobile web concepts so that you can 
make your mobile web pages more interactive and 
exciting? 

Do you prefer stimulating dinner-party conversation 
to dry, dull, academic lectures?

1

2

3

Are you completely new to web development?

Are you already developing mobile web apps or sites 
and looking for a reference book on mobile web?

Are you afraid to try something different? Would you 
rather have a root canal than endure the suggestion 
that there might be more than one true way to build for 
the Web? Do you believe that a technical book can’t 
be serious if there’s a walrus‑themed pub and an app 
called the Tartanator in it?

It definitely helps if you’ve already got some scripting chops, too. We’re not talking rocket science, but you shouldn’t feel visceral panic if you see a JavaScript snippet.
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Great. Only 
450 more dull, 

dry, boring pages.

We know what you’re thinking

And we know what your brain is thinking

“How can this be a serious mobile web development book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

Your brain craves novelty. It’s always searching, scanning, waiting for something 
unusual. It was built that way, and it helps you stay alive. 

So what does your brain do with all the routine, ordinary, normal things 
you encounter? Everything it can to stop them from interfering with the 
brain’s real job—recording things that matter. It doesn’t bother saving 
the boring things; they never make it past the “this is obviously not 
important” filter.

How does your brain know what’s important? Suppose you’re out for 
a day hike and a tiger jumps in front of  you. What happens inside your 
head and body? 

Neurons fire. Emotions crank up. Chemicals surge. 

And that’s how your brain knows…

This must be important! Don’t forget it!

But imagine you’re at home, or in a library. It’s a safe, warm, tiger‑free zone. 
You’re studying. Getting ready for an exam. Or trying to learn some tough 
technical topic your boss thinks will take a week, 10 days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying to make 
sure that this obviously nonimportant content doesn’t clutter up scarce resources. 
Resources that are better spent storing the really big things. Like tigers. 
Like the danger of  fire. Like how you should never again snowboard 
in shorts.

And there’s no simple way to tell your brain, “Hey brain, thank you 
very much, but no matter how dull this book is, and how little I’m 
registering on the emotional Richter scale right now, I really do want 
you to keep this stuff  around.”

Your brain thinks THIS is important.

Your brain t
hinks 

THIS isn’t worth 
saving.
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So what does it take to learn something? First, you have to get it, and then make sure 

you don’t forget it. It’s not about pushing facts into your head. Based on the latest 

research in cognitive science, neurobiology, and educational psychology, learning 

takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than 

words alone, and make learning much more effective (up 

to 89% improvement in recall 

and transfer studies). It 

also makes things more 

understandable. 

Put the words within 

or near the graphics they 

relate to, rather than on the bottom or on another page, and learners will be up to twice as 

likely to solve problems related to the content.

Use a conversational and personalized style. In recent studies, students 

performed up to 40% better on post-learning tests if the content spoke directly to 

the reader, using a first-person, conversational style rather than taking a formal tone. 

Tell stories instead of lecturing. Use casual language. Don’t take yourself too seriously. 

Which would you pay more attention to: a stimulating dinner-party companion, or a lecture?

Get the learner to think more deeply. In other words, unless you actively flex your 

neurons, nothing much happens in your head. A reader has to be motivated, engaged, curious, 

and inspired to solve problems, draw conclusions, and generate new knowledge. And for that, 

you need challenges, exercises, and thought-provoking questions, and activities that involve 

both sides of the brain and multiple senses.

Get—and keep—the reader’s attention. We’ve all had the 

“I really want to learn this, but I can’t stay awake past page one” 

experience. Your brain pays attention to things that are out of the ordinary, 

interesting, strange, eye-catching, unexpected. Learning a new, tough, technical 

topic doesn’t have to be boring. Your brain will learn much more quickly if it’s not.

Touch their emotions. We now know that your ability to remember 

something is largely dependent on its emotional content. You remember what 

you care about. You remember when you feel something. No, we’re not talking 

heart‑wrenching stories about a boy and his dog. We’re talking emotions like 

surprise, curiosity, fun, “what the…?” , and the feeling of “I rule!” that comes 

when you solve a puzzle, learn something everybody else thinks is hard, or 

realize you know something that “I’m more technical than thou” Bob from 

Engineering doesn’t.

We think of a “Head First” reader as a learner.

Watch out, mobile web! 

Here we come!
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If  you really want to learn, and you want to learn more quickly and more deeply, 
pay attention to how you pay attention. Think about how you think. Learn how 
you learn.

Most of  us did not take courses on metacognition or learning theory when we were 
growing up. We were expected to learn, but rarely taught to learn.

But we assume that if  you’re holding this book, you really want to learn about 
mobile web development. And you probably don’t want to spend a lot of  time. And 
since you’re going to build more sites and apps in the future, you need to remember 
what you read. And for that, you’ve got to understand it. To get the most from this 
book, or any book or learning experience, take responsibility for your brain. Your 
brain on this content. 

The trick is to get your brain to see the new material you’re learning as 
Really Important. Crucial to your well-being. As important as a tiger. 
Otherwise, you’re in for a constant battle, with your brain doing its best to 
keep the new content from sticking.

Metacognition: thinking about thinking

I wonder how I 
can trick my brain 
into remembering 

this stuff...

So just how do you get your brain to think that mobile 
web development is a hungry tiger?

There’s the slow, tedious way, or the faster, more effective way. The slow way is about 
sheer repetition. You obviously know that you are able to learn and remember even the 
dullest of  topics if  you keep pounding the same thing into your brain. With enough 
repetition, your brain says, “This doesn’t feel important to him, but he keeps looking at 
the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different 
types of  brain activity. The things on the previous page are a big part of  the solution, 
and they’re all things that have been proven to help your brain work in your favor. For 
example, studies show that putting words within the pictures they describe (as opposed to 
somewhere else in the page, like a caption or in the body text) causes your brain to try to 
makes sense of  how the words and picture relate, and this causes more neurons to fire. 
More neurons firing = more chances for your brain to get that this is something worth 
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they 
perceive that they’re in a conversation, since they’re expected to follow along and hold up 
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation” 
is between you and a book! On the other hand, if  the writing style is formal and dry, your 
brain perceives it the same way you experience being lectured to while sitting in a roomful 
of  passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.
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Here’s what WE did:
We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s 
concerned, a picture really is worth a thousand words. And when text and pictures work 
together, we embedded the text in the pictures because your brain works more effectively 
when the text is within the thing the text refers to, as opposed to in a caption or buried in 
the text somewhere.

We used redundancy, saying the same thing in different ways and with different media 
types, and multiple senses, to increase the chance that the content gets coded into more than 
one area of  your brain. 

We used concepts and pictures in unexpected ways because your brain is tuned for 
novelty, and we used pictures and ideas with at least some emotional content, because your 
brain is tuned to pay attention to the biochemistry of  emotions. That which causes you to 
feel something is more likely to be remembered, even if  that feeling is nothing more than a 
little humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more 
attention when it believes you’re in a conversation than if  it thinks you’re passively listening 
to a presentation. Your brain does this even when you’re reading.

We included loads of  activities, because your brain is tuned to learn and remember 
more when you do things than when you read about things. And we made the exercises 
challenging‑yet-doable, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, 
while someone else wants to understand the big picture first, and someone else just wants 
to see an example. But regardless of  your own learning preference, everyone benefits from 
seeing the same content represented in multiple ways.

We include content for both sides of  your brain, because the more of  your brain 
you engage, the more likely you are to learn and remember, and the longer you can stay 
focused. Since working one side of  the brain often means giving the other side a chance to 
rest, you can be more productive at learning for a longer period of  time. 

And we included stories and exercises that present more than one point of  view, 
because your brain is tuned to learn more deeply when it’s forced to make evaluations and 
judgments. 

We included challenges, with exercises, and by asking questions that don’t always have 
a straight answer, because your brain is tuned to learn and remember when it has to work 
at something. Think about it—you can’t get your body in shape just by watching people at 
the gym. But we did our best to make sure that when you’re working hard, it’s on the right 
things. That you’re not spending one extra dendrite processing a hard-to-understand 
example, or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, you’re a person. And 
your brain pays more attention to people than it does to things. 

Structured content (HTML)

Presentation (CSS)

Behavior (JavaScript) 
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So, we did our part. The rest is up to you. These tips are a 
starting point; listen to your brain and figure out what works 
for you and what doesn’t. Try new things.

1

2

3

4

5 Drink water. Lots of it.

Your brain works best in a nice bath of  fluid. 
Dehydration (which can happen before you ever 
feel thirsty) decreases cognitive function. 

Make this the last thing you read before 
bed. Or at least the last challenging thing.

6

7

9 Create something!

Apply this to your daily work; use what you are 
learning to make decisions on your projects. Just 
do something to get some experience beyond the 
exercises and activities in this book. All you need 
is a pencil and a problem to solve…a problem that 
might benefit from using the tools and techniques 
you’re studying for the exam.

Listen to your brain.

8 Feel something!

Your brain needs to know that this matters. Get 
involved with the stories. Make up your own 
captions for the photos. Groaning over a bad joke 
is still better than feeling nothing at all.

Pay attention to whether your brain is getting 
overloaded. If  you find yourself  starting to skim 
the surface or forget what you just read, it’s time 
for a break. Once you go past a certain point, you 
won’t learn faster by trying to shove more in, and 
you might even hurt the process.

Talk about it. Out loud.

Speaking activates a different part of  the brain. 
If  you’re trying to understand something, or 
increase your chance of  remembering it later, say 
it out loud. Better still, try to explain it out loud 
to someone else. You’ll learn more quickly, and 
you might uncover ideas you hadn’t known were 
there when you were reading about it.

Part of  the learning (especially the transfer to 
long-term memory) happens after you put the 
book down. Your brain needs time on its own, to 
do more processing. If  you put in something new 
during that processing time, some of  what you 
just learned will be lost. 

Read “There Are No Dumb Questions.”

That means all of  them. They’re not optional 
sidebars—they’re part of  the core content! 
Don’t skip them.

Do the exercises. Write your own notes.

We put them in, but if  we did them for you, 
that would be like having someone else do 
your workouts for you. And don’t just look at 
the exercises. Use a pencil. There’s plenty of  
evidence that physical activity while learning 
can increase the learning. 

Slow down. The more you understand, 
the less you have to memorize.

Don’t just read. Stop and think. When the 
book asks you a question, don’t just skip to the 
answer. Imagine that someone really is asking 
the question. The more deeply you force your 
brain to think, the better chance you have of  
learning and remembering.

Cut this out and stick it on your refrigerator.

Here’s what YOU can do to bend 
your brain into submission
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Read me
This is a learning experience, not a reference book. We deliberately stripped out everything 
that might get in the way of  learning whatever it is we’re working on at that point in the 
book. And the first time through, you need to begin at the beginning, because the book 
makes assumptions about what you’ve already seen and learned.

We expect you to know HTML and CSS.

If  you don’t know HTML and CSS, pick up a copy of  Head First HTML with CSS & 
XHTML before starting this book. We’ll explain some of  the more obscure CSS selectors or 
HTML elements, but don’t expect to learn about that foundational stuff  here.

We expect you to feel comfy around web scripting code.

We’re not asking you to be a world-class JavaScript expert or to have done a graduate 
computer science project using PHP, but you’ll see examples using both languages 
throughout the book. If  the merest notion of  a for loop makes you hyperventilate (or if  
you have no idea what we’re talking about), you might consider tracking down a copy of  
Head First PHP & MySQL or Head First JavaScript and then heading on back here.

We expect you to know how to track things down.

We’ll be blunt. The mobile web is an enormous topic, and mastering it involves expanding 
your existing web development skills. There are too many things to know about the Web for 
any one person to memorize, whether it’s a detail of  JavaScript syntax or the specifics of  a 
browser’s support for an HTML5 element attribute. Don’t be too hard on yourself. Part of  
the toolset of  a good web dev is keeping your Google chops sharp and knowing when and 
how to hit the Web to look up info about web topics. We bet you’re good at that already.

We expect you to go beyond this book.

It’s a big and beautiful mobile web world out there. We hope we can give you a shove to 
start you on your journey, but it’s up to you to keep up your steam. Seek out the active 
mobile web community online, read blogs, join mailing lists that are up your alley, and 
attend related technical events in your area.

The activities are NOT optional. 

The exercises and activities are not add-ons; they’re part of  the core content of  the 
book. Some of  them are to help with memory, some are for understanding, and some 
will help you apply what you’ve learned. Don’t skip the exercises. They’re good for 
giving your brain a chance to think about the ideas and terms you’ve been learning in a 
different context.

The redundancy is intentional and important. 

One distinct difference in a Head First book is that we want you to really get it. And we 
want you to finish the book remembering what you’ve learned. Most reference books don’t 
have retention and recall as a goal, but this book is about learning, so you’ll see some of  the 
same concepts come up more than once.
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The Brain Power exercises don’t have answers.

For some of  them, there is no right answer, and for others, part of  the learning 
experience of  the exercise is for you to decide if  and when your answers are right. In 
some of  the Brain Power exercises, you will find hints to point you in the right direction.

Software requirements
As for developing any website, you need a text editor, a browser, a web server (it can be 
locally hosted on your personal computer), and the source code for the chapter examples.

The text editors we recommend for Windows are PSPad, TextPad, or EditPlus (but 
you can use Notepad if  you have to). The text editors we recommend for Mac are 
TextWrangler (or its big brother, BBEdit) or TextMate. We also like Coda, a more 
web‑focused tool.

If  you’re on a Linux system, you’ve got plenty of  text editors built in, and we trust you 
don’t need us to tell you about them.

If  you are going to do web development, you need a web server. You’ll need to go to 
Appendix ii, which details installing a web server with PHP. We recommend doing that 
now. No, seriously, head there now, follow the instructions, and come back to this page 
when you’re done.

For Chapter 5, you’ll need to install the WURFL (Wireless Universal Resource FiLe) API 
and data. And for Chapter 8, you’ll need the Android SDK and some related tools. You 
guessed it: there are appendixes for those tasks, too.

You’ll also need a browser—no, strike that—as many browsers as 
possible for testing. And the more mobile devices with browsers you 
have on hand, the better (don’t panic; there are many emulators you can use 
if  you don’t have hardware). 

For developing and testing on the desktop, we highly recommend Google’s 
Chrome browser, which has versions for Mac, Windows, and Linux. 
Learning how to use the JavaScript console in Google’s Chrome Dev Tools 
is well worth the time. This is homework you need to do on your own.

Last of  all, you’ll need to get the code and resources for the examples in the 
chapters. It’s all available at http://hf-mw.com.

The hf-mw.com site has the starting 
point of code for all the chapters. 
Head on over there and get downloading.

The code and resources for the examples in the chapters are all 
available at

http://hf-mw.com.
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getting started on the mobile web1

Responsive Web Design

Hey there! Are you ready to jump into mobile?�
Mobile web development is a wildly exciting way of life. There’s glamour and 

excitement, and plenty of Eureka! moments. But there is also mystery and confusion. 

Mobile technology is evolving at bewildering speed, and there’s so much to know! 

Hang tight. We’ll start our journey by showing you a way of making websites called 

Responsive Web Design (RWD). You’ll be able to adapt websites to look great on a 

whole lot of mobile devices by building on the web skills you already have.

Dashing, exciting, fascinating, 
and oh-so-popular...but am I 
ready to take the plunge?
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it’s a mobile world

Get on the mobile bandwagon
There’s a pretty good chance you own a mobile phone. We know that not 
simply because you bought this book (smart move, by the way!), but because 
it’s hard to find someone who doesn’t own a mobile phone.

It doesn’t matter where you go in the world. Mobile phones are being used 
everywhere, from farmers in Nigeria using their mobiles to find which 
market has the best price for their crops, to half  of  Japan’s top 10 best-selling 
novels being consumed and written—yes, written—on mobile phones.

At the beginning of  2011, there were 5.2 billion phones being used by the 
6.9 billion people on Earth. More people use mobile phones than 
have working toilets or toothbrushes.

The time is now
So yeah, mobile is huge, but it’s been big for years. Why should you get on 
the mobile bandwagon now? 

Because the iPhone changed everything. It sounds clichéd, but it is true.  
There were app stores, touchscreens, and web browsers on phones before the 
iPhone, but Apple was the first to put them together in a way that made it 
easy for people to understand and use. Are you ready to get on 

the mobile bandwagon?
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The iPhone is fantastic, but people use a lot of 
different phones for a lot of different reasons. 
And the most popular phones are likely to change.

We have no way of  knowing what the the leading phones will be 
when you read this book. Three years ago, Android was a mere 
blip on the radar. In 2011, it is a leading smartphone platform 
worldwide.

Mobile technology changes quickly, but there are a few things we 
feel confident about:

Everyone has iPhones. And 
if they don’t, are they really 
going to browse the Web?

Every new phone has a web browser in it.
You can probably find a new phone that doesn’t have a web 
browser in it, but you have to look pretty hard. Even the most 
basic phones now come with decent browsers. Everyone wants the 
Web on their phone.

1

Mobile web usage will exceed desktop web usage.
Soon the number of  people accessing the Web via mobile phones 
will surpass those who use a computer. Already, many people say 
they use their phones more frequently than their PCs.

2

The Web is the only true cross-platform technology.
iPhone, Android, BlackBerry, Windows Phone, WebOS, Symbian, 
Bada—there are more phone platforms than we can keep track of. 
Each one has its own specific programming hooks, meaning that if  
you want to write software for each, you have to start from scratch 
each time.

Mobile web has its own challenges, but there is 
no other technology that allows you to create 
content and apps that reach every platform.

3

So you’re in the right spot at the right time. Mobile web is taking off, 
and you’re ready to ride the rocketship. Let’s get started!
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meet the splendid walrus

Something odd happened on the 
way to the pub
Mike is the proprietor of  The Splendid Walrus, a pub with a 
clever name and a cult-like following of  local beer enthusiasts. 
Mike always has unusual beers on tap and highlights several 
of  them on his website.

Before he realized his lifelong dream of  pub ownership, Mike 
was a web developer. So he had no trouble putting together a 
respectable website for The Splendid Walrus himself.

The Splendid Walrus 
website is pretty 

sweet—I used to do this 
for a living, after all.

http://www.splendidwalrus.com
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If mobile phone web browsers are so great…
Mike built the Splendid Walrus website several years ago, when 
mobile browsing was still rudimentary and uncommon. It was made 
for—and tested in—desktop browsers like Firefox, Internet Explorer, 
and Safari. 

Lots of  newer mobile browers have good reputations. They’re 
increasingly sophisticated and powerful, and starting to feel like some 
of  their desktop counterparts.

…shouldn’t this just work?
Mike had a rude awakening when he looked at the Splendid Walrus 
site on his iPhone 4. It didn’t look so hot on a friend’s Android 
device, either.

Here’s how the Splendid Walrus site looks on an iPhone 4… …and here’s how the site 
looks on a Motorola 
Backflip Android phone.
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the brave new world of mobile web design

There are 86 billion different mobile web browsers.
OK, not quite that many. But when you’re developing for the 
mobile web, sometimes it feels this way. Unlike the handful 
of  leading desktop browsers, there are hundreds of  different 
mobile browsers. Yikes.

1

Mobile devices are smaller and slower.
Yeah, we know. Newer mobile devices are state-of-the-art 
pocket computers. But they still pale in comparison to desktop 
(or laptop) computers in terms of  processing power. Mobile 
networks can be flaky and downright poky, and data transfer is 
not necessarily free or unlimited. This means we’ll need to think 
about putting our sweet but enormous, media-rich, complex 
sites on a performance-savvy diet. 

3

Support for web technologies varies wildly.
On older mobile browsers (or even recent ones on less powerful 
devices), you can pretty much forget about reliable CSS or 
JavaScript. Even the newest browsers lack support for some 
things, support them in bewilderingly different ways, or have 
weird bugs. It’s the Wild West out here, folks!

2

Mobile interfaces require us to rethink our sites.
Just because a mobile browser can render a desktop website 
with few hiccups doesn’t mean it necessarily should. Screens are 
smaller; interactions and expectations are different.

People with mobile devices use all sorts of  input devices: fingers, 
stylus pens, the little nubbins they have on BlackBerry devices. 
Typing and filling out forms can be tedious at best. Squinting 
at type designed to fit a desktop browser window can give your 
users headaches and fury. You get the idea.

4

What’s so different about the mobile web?

And just when you think you’re on top of all of them, a new one will pop up in, like, Thailand.

My iPhone has the Safari web 
browser on it. My site looks great 
in desktop Safari, so why does it 

look all messed up on my phone?
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Here’s how Mike’s iPhone 4 renders the Splendid Walrus website. It doesn’t look so 
great. Can you spot the problem areas? Mark any problems you see.

1

3

2

4
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exercise solution

Did you spot some of these problem areas?

1

2

3

4

The navigation links 
are all tiny and too 
small to read or click.

1

The three-column 
layout feels tight on 
this screen resolution, 
and the text is hard 
to read.

3

The embedded 
YouTube video 
doesn’t work.

2

There is a weird gap 
on the right edge 
of the screen.

4

This is confusing and embarrassing. 
I want my customers with mobile 
devices to see a nice site. I’m out 
of my depth here. Can you help?
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Frank: Hold on a minute. We know that Mike makes a big 
deal out of  using clean, semantic HTML markup and uses 
CSS to control layout and styling as much as possible.

Jim: And? That’s great and professional, but how does it 
help us make this better?

Frank: Well, let’s think about this a bit. When I look at the 
CSS he’s using for the Splendid Walrus site, I see a lot of  
widths and sizes defined to fit within a 960-pixel box. It looks 
like he’s designed the site on a 960-pixel grid, with three 
main columns.

Jim: …and most mobile devices have resolutions 
considerably less than 960 pixels. Also, three columns seems 
like a lot for a smaller screen. 

Frank: So…I have to wonder…what if  we could use different 
CSS for mobile devices? Say, maybe, CSS designed to lay out in 
320 pixels, which is the width of  a lot of  smartphone screens? 
And maybe reduce the number of  columns?

Jim: Nice idea, Frank. But I don’t see how we could do that 
without a lot of  server-side programming. I mean, how do we 
get mobile devices to use completely different CSS?

Frank: You know how Jill just got back from the Awesome 
Cool Mobile Web Camp conference and is all excited about 
that thing called Responsive Web Design?

Jim: How could I forget? It’s all she’s been talking about.

Frank: Well, she says it’s getting a lot of  attention from 
web developers and it sounds like it involves, at least in 
part, applying different CSS for different situations, without 
having to do heavy‑duty programming. Apparently it’s 
especially useful for developing mobile websites. I can’t really 
remember the details, but maybe we should check it out.

Jim Frank

Ugh! What a mess! We’re totally 
going to have to start from scratch...
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responsive web design

Responsive Web Design (RWD) is a set of  techniques 
championed by web designer Ethan Marcotte. Sites designed 
with this approach adapt their layouts according to the 
environment of  the user’s browser, in large part by doing some 
nifty things with CSS.

Depending on the current value of  certain browser conditions 
like window size, device orientation, or aspect ratio, we can 
apply different CSS in different circumstances. By rethinking the 
way we do page layouts, we can make formerly one-size-fits-all 
column and grid layouts flow more naturally across a continuum 
of  browser window sizes.

Responsive Web Design

Read Ethan’s original article for
 

A List Apart about RWD at 

http://bit.ly/nRePnj.

RWD is one of the simplest 
and quickest ways to make 
a website work handsomely 
on a lot of devices—and you 
can use the web skills you 
already have.

CSS3 media queries
Evaluating certain aspects of  the current browser 
environment to determine which CSS to apply.

1

Fluid-grid layouts
Using relative CSS proportions instead of  absolute 
sizes for page layout elements.

2

Fluid images and media
Making our images and media scale to fit within 
the size constraints of  their containers by using 
some CSS tricks.

3

The recipe for Responsive Web Design
There are three primary techniques for building a 
responsively designed website:

We can apply different CSS rules based on things like browser window width, aspect ratio, and orientation. 

RWD uses percentages instead 
of pixels as units for columns 
and other layout elements.

Fluid images and media keep within the 
bounds of their parent elements, scaling 
proportionally with the rest of the layout.
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styles.css

index.html

CSS media queries 
determine which of 
the CSS to apply to 
which environments.

We deliver the same 
HTML and CSS to all 
devices and browsers.

A multicolumn, big 
layout when there’s 
plenty of room

Somewhat 
simpler layout 
as the window 
width decreases

Streamlined, 
single‑column layout 
for narrower displays.

An example of a responsively designed site

This is just one example of 
a responsive design approach.
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selective css

Different CSS in different places
If  you’ve been doing web development for some time (and are 
CSS-savvy), you might be friends with CSS media types already. 
We can use @media rules to apply CSS selectively.

CSS media type declarations inside of  a CSS file look like this:

@media screen { /* CSS Rules for screens! */ }

Another way to use media types to apply CSS selectively is from 
within a <link> in your HTML document.

The rules between the 
braces will only apply when 
the content is rendered on 
a screen.

“screen” is a media type.

<link rel="stylesheet" type="text/css" href="print.css" media="print" />

“print” is another media type.

You have certain features—your age, your height—and so do media 
types. And just like The Splendid Walrus might want to establish a rule 
that requires the minimum age of  patrons to be 21 before they apply 
alcohol, we might want to define certain CSS that we only apply to 
browser window widths within a certain range.

We’re in luck! width, along with color and orientation, is one 
of  the media features defined in CSS3 for all common media types. 
So, again, media types have media features.

Media features on their own don’t get us very far. We need a way to ask 
the browser about the states of  the ones we care about and, well, do 
something about it. That’s where CSS3 media queries come in.

Media types, meet media features

Referencing the print media type like this is a common approach to 
creating print stylesheets—that is, CSS styles that only get applied when 
the content is printed.

The rules in this external stylesheet will only be applied if the content is rendered on a print device (that is, a printer).

screen
width

aspect-ratio

orientation“screen” is a useful 
media type.

A few of the “screen” 
media type’s media features.

P.S. There are more. But these 
are the most useful to us.

height

Media Types  
Up Close

Common (and useful) media types 
include screen, print, and all. 
There are other, less common media 
types like aural, braille, and tv. 

Curious? If  you’re the kind of  
person who reads technical specs for 
fun or to satisfy curiosity, you can 
see all of  the media types defined 
in CSS2 on the W3C’s site at 
www.w3.org/TR/CSS2/media.html.
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CSS3 media queries are 
logical expressions that 
evaluate the current 
values of media features 
in the user’s browser. 
If the media query 
expression evaluates as 
TRUE, the contained 
CSS is applied.

@media screen and (min-width:480px) { /* CSS Rules */ }

“screen” media type, we meet again!

“min-” is a media query prefix. Rather 
intuitively, it means we want to query 
about a minimum width.

“width” is a media feature 
we want to evaluate on the 
“screen” media type.

CSS media queries

This means: are we presently rendering content on a screen, 
AND is the window currently at least 480 pixels wide?
Yes? OK! Apply these CSS rules.

Another example:

Unsurprisingly, there is 
also a “max-” prefix.

@media all and (orientation: landscape) {}

Translating CSS media queries: You try it! Match the media query and its meaning.

@media print and (monochrome) {}

@media screen and (color) { }

<link rel="stylesheet" type="text/css" 
href="my.css" media="screen and (color)" />

Apply these styles to all 
media types when in 
landscape orientation.

Apply these styles to 
black‑and‑white printers.

Apply these rules to 
color screens.

Apply the rules in this external 
stylesheet to color screens.

@media print, screen and (monochrome) { }

Logical “or” is represented by a 
comma. Yep, it’s a bit confusing.

“monochrome” is a media feature 
of the “screen” media type. It 
is either TRUE or FALSE.

Is this being rendered on a printer OR is it being rendered 
on a screen that is monochrome (black and white)?
Yes? Use these styles!

These CSS rules will only get applied if the media query evaluates to TRUE.



14    Chapter 1

@media all and (orientation: landscape) {}

@media print and (monochrome) {}

@media screen and (color) { }

<link rel="stylesheet" type="text/css" 
href="my.css" media="screen and (color)" />

how different?

Were you able to decipher the media queries?

Apply these styles to all 
media types when in 
landscape orientation.

Apply these styles to 
black‑and‑white printers.

Apply these rules to 
color screens.

Apply the rules in this external 
stylesheet to color screens.

OK. Now I can understand media 
queries and maybe even write my own. 

But what am I doing here? How do I write 
the CSS for mobile devices?

We’ll only write different CSS for those layout elements that need to be different for mobile.

CSS: How different is different?
We have a tool that lets us apply different CSS to different 
situations. But now what? 

Don’t panic. We do need to write some mobile-friendly CSS, but 
we’re not going to have to start from scratch. Nor are we going to 
have to have totally different CSS for our mobile devices—we can 
share a lot of  what’s already there.

To generate our mobile-friendly layout, we’ll:

Check out the current layout of  splendidwalrus.com and 
analyze its structure. 

Identify layout pieces that need to change to work better on 
mobile browsers. 

Generate mobile-adapted CSS for those identified elements.

Organize our CSS and selectively apply the mobile and 
desktop CSS using media queries.

Media type of “all,” you ask? Yep. This is what 
we use if we want to look at the same media 
feature across all media types


