

Advance Praise for Head First Mobile Web

“If you have been considering buying a book about mobile development that is cross‑browser and
cross‑vendor, you should stop right now and buy Head First Mobile Web. It’s written by amazingly smart
people [who] have great experience on mobile and don’t stop at one platform, but work on all of them.
Many developers spend days arguing [whether] they should go native or web. This book smoothly
goes from introductory topics to advanced ones, giving you all the needed information to create
exciting content for mobile.”

— �Andrea Trasatti, leader of the DeviceAtlas project and cocreator of
the WURFL repository of wireless device capability information

“A pragmatic introduction to the chaotic world of mobile web development as it is today, with a
glimpse of how we can and should approach it for tomorrow. Head First Mobile Web successfully
presents practical techniques all readers can use immediately, while giving plenty of foundation and
resources for more experienced developers to build upon.”

— �Stephen Hay, web designer, developer, speaker, and
cofounder of the Mobilism conference

“Hands-on from the get-go, Head First Mobile Web provides an excellent introduction to the challenges
and opportunities available when exploring the next chapter in web design.”

— �Bryan and Stephanie Rieger, founders of yiibu.com

Praise for other Head First books

“Head First Object-Oriented Analysis and Design is a refreshing look at subject of OOAD. What sets this book
apart is its focus on learning. The authors have made the content of OOAD accessible [and] usable for
the practitioner.”

— �Ivar Jacobson, Ivar Jacobson Consulting

“I just finished reading HF OOA&D, and I loved it! The thing I liked most about this book was its focus
on why we do OOA&D—to write great software!”

— �Kyle Brown, Distinguished Engineer, IBM

“Hidden behind the funny pictures and crazy fonts is a serious, intelligent, extremely well-crafted
presentation of OO analysis and design. As I read the book, I felt like I was looking over the shoulder of
an expert designer who was explaining to me what issues were important at each step, and why.”

— �Edward Sciore, Associate Professor, Computer Science Department,
Boston College

“All in all, Head First Software Development is a great resource for anyone wanting to formalize their
programming skills in a way that constantly engages the reader on many different levels.”

— �Andy Hudson, Linux Format

“If you’re a new software developer, Head First Software Development will get you started off on the right foot.
And if you’re an experienced (read: long-time) developer, don’t be so quick to dismiss this.…”

— �Thomas Duff, Duffbert’s Random Musings

“There’s something in Head First Java for everyone. Visual learners, kinesthetic learners, everyone can
learn from this book. Visual aids make things easier to remember, and the book is written in a very
accessible style—very different from most Java manuals.… Head First Java is a valuable book. I can
see the Head First books used in the classroom, whether in high schools or adult ed classes. And I will
definitely be referring back to this book, and referring others to it as well.”

— �Warren Kelly, Blogcritics.org, March 2006

“Rather than textbook-style learning, Head First iPhone and iPad Development brings a humorous, engaging,
and even enjoyable approach to learning iOS development. With coverage of key technologies including
core data, and even crucial aspects such as interface design, the content is aptly chosen and top-notch.
Where else could you witness a fireside chat between a UIWebView and UITextField!”

— �Sean Murphy, iOS designer and developer

Praise for other Head First books

“Another nice thing about Head First Java, Second Edition, is that it whets the appetite for more. With
later coverage of more advanced topics such as Swing and RMI, you just can’t wait to dive into those
APIs and code that flawless, 100,000-line program on java.net that will bring you fame and venture-
capital fortune. There’s also a great deal of material, and even some best practices, on networking and
threads—my own weak spot. In this case, I couldn’t help but crack up a little when the authors use
a 1950s telephone operator—yeah, you got it, that lady with a beehive hairdo that manually hooks in
patch lines—as an analogy for TCP/IP ports…you really should go to the bookstore and thumb through
Head First Java, Second Edition. Even if you already know Java, you may pick up a thing or two. And if
not, just thumbing through the pages is a great deal of fun.”

— �Robert Eckstein, Java.sun.com

“Of course it’s not the range of material that makes Head First Java stand out, it’s the style and approach.
This book is about as far removed from a computer science textbook or technical manual as you can get.
The use of cartoons, quizzes, fridge magnets (yep, fridge magnets…). And, in place of the usual kind of
reader exercises, you are asked to pretend to be the compiler and compile the code, or perhaps to piece
some code together by filling in the blanks or…you get the picture.… The first edition of this book was
one of our recommended titles for those new to Java and objects. This new edition doesn’t disappoint
and rightfully steps into the shoes of its predecessor. If you are one of those people who falls asleep with
a traditional computer book, then this one is likely to keep you awake and learning.”

— �TechBookReport.com

“Head First Web Design is your ticket to mastering all of these complex topics, and understanding what’s
really going on in the world of web design.… If you have not been baptized by fire in using something
as involved as Dreamweaver, then this book will be a great way to learn good web design. ”

— �Robert Pritchett, MacCompanion

“Is it possible to learn real web design from a book format? Head First Web Design is the key to designing
user-friendly sites, from customer requirements to hand-drawn storyboards to online sites that work
well. What sets this apart from other ‘how to build a website’ books is that it uses the latest research
in cognitive science and learning to provide a visual learning experience rich in images and designed
for how the brain works and learns best. The result is a powerful tribute to web design basics that any
general-interest computer library will find an important key to success.”

— �Diane C. Donovan, California Bookwatch: The Computer Shelf

“I definitely recommend Head First Web Design to all of my fellow programmers who want to get a grip on
the more artistic side of the business. ”

— �Claron Twitchell, UJUG

Other related books from O’Reilly

jQuery Cookbook

jQuery Pocket Reference

jQuery Mobile

JavaScript and jQuery: The Missing Manual

Other books in O’Reilly’s Head First series

Head First C#

Head First Java

Head First Object-Oriented Analysis and Design (OOA&D)

Head First HTML with CSS and XHTML

Head First Design Patterns

Head First Servlets and JSP

Head First EJB

Head First SQL

Head First Software Development

Head First JavaScript

Head First Physics

Head First Statistics

Head First Ajax

Head First Rails

Head First Algebra

Head First PHP & MySQL

Head First PMP

Head First Web Design

Head First Networking

Head First iPhone and iPad Development

Head First jQuery

Head First HTML5 Programming

Beijing • Cambridge • Farnham • K�ln • Sebastopol • Tokyo

Lyza Danger Gardner
Jason Grigsby

Head First Mobile Web

Wouldn’t it be dreamy if there
were a book to help me learn how to
build mobile websites that was more
fun than going to the dentist? It’s

probably nothing but a fantasy…

Head First Mobile Web

by Lyza Danger Gardner and Jason Grigsby

Copyright © 2012 Cloud Four, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Series Creators:		 Kathy Sierra, Bert Bates

Editor:			 Courtney Nash

Design Editor:		 Louise Barr

Cover Designer:		 Karen Montgomery

Production Editor:		 Kristen Borg

Production Services:	 Rachel Monaghan

Indexer:			 Ginny Munroe

Page Viewers:	 	 Katie Byrd, Danny Boomer, the Future-Friendly Helmet, and Tephra

Printing History:

December 2011: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations,
Head First Mobile Web, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No feature phones were harmed in the making of this book.

ISBN: 978-1-449-30266-5

[M]										 [2012-02-03]	
									

Katie Byrd

Daddy, can you
play now?

TephraFuture Friendly

Danny Boomer
aka /dev/cat

To the phenomenal women in my family: my sister, Maggie;
Momula, Fran; Aunt Catherine; stepmother, Christie; and above all,
to the memory of my grandmother, Pearl, whose fierce and literate
independence inspired generations.

 —Lyza

To my parents for buying that Commodore 64 so many years ago;
to my lovely wife, Dana, without whose support and understanding
this book wouldn’t have happened; and to Katie and Danny—yes,
Daddy can play now.

 —Jason

viii

the authors

Lyza Danger Gardner (@lyzadanger) is a dev. She
has built, broken, and hacked web things since 1996.
Curiously, Lyza was actually born and raised in
Portland, Oregon, the town where everyone wants to
be but no one seems to be from.

Lyza started college early and cobbled together a
motley education: a BA in Arts and Letters from
Portland State University, followed by a master’s
program in computer science at the University of
Birmingham (UK).

Lyza has written a lot of web applications (server-side
devs, represent!), defeated wily content management
systems, optimized mobile websites, pounded on
various APIs, and worried a lot about databases.
Fascinated by the way mobile technology has changed
things, she now spends a lot of time thinking about the
future of the Web, mobile and otherwise.

Since cofounding Cloud Four, a Portland-based mobile
web agency, in 2007, Lyza has voyaged further into the
deep, untrammeled reaches of Device Land, exploring
the foibles and chaos of mobile browsers and the mobile
web. She has an odd set of anachronistic hobbies,
and it has been said that she takes a fair number of
photographs. She owns a four-letter .com domain. We’ll
bet you can guess what it is and go visit her there.

In 2000, Jason Grigsby got his first mobile phone.
He became obsessed with how the world could be
a better place if everyone had access to the world’s
information in their pockets. When his wife, Dana,
met him, he had covered the walls of his apartment
with crazy mobile dreams. To this day, he remains
baffled that she married him.

Those mobile dreams hit the hard wall of reality—
WAP was crap. So Jason went to work on the Web
until 2007, when the iPhone made it clear the time
was right. He joined forces with the three smartest
people he knew and started Cloud Four.

Since cofounding Cloud Four, he has had the good
fortune to work on many fantastic projects, including
the Obama iPhone App. He is founder and president
of Mobile Portland, a local nonprofit dedicated
to promoting the mobile community in Portland,
Oregon.

Jason is a sought-after speaker and consultant on
mobile. If anything, he is more mobile obsessed now
than he was in 2000 (sorry, sweetheart!).

You can find him blogging at http://cloudfour.com;
on his personal site, http://userfirstweb.com; and on
Twitter as @grigs. Please say hello!

Lyza

Jason

ix

table of contents

Table of Contents (Summary)

Table of Contents (the real thing)

Your brain on mobile web. � Here you are trying to learn something,

while here your brain is, doing you a favor by making sure the learning doesn’t

stick. Your brain’s thinking, “Better leave room for more important things, like

which wild animals to avoid and whether setting this BlackBerry Bold on fire

is going to activate the sprinkler system.” So how do you trick your brain into

thinking that your life depends on knowing mobile web?

Intro

Who is this book for?	 xxii

We know what you’re thinking	 xxiii

And we know what your brain is thinking	 xxiii

Metacognition: thinking about thinking	 xxv

The technical review team	 xxx

Acknowledgments	 xxxi

	 Intro	 xxi

1	 Getting Started on the Mobile Web: Responsive Web Design	 1

2	 Responsible Responsiveness: Mobile-first Responsive Web Design	 43

3	 A Separate Mobile Website: Facing less-than-awesome circumstances	 91

4	 Deciding Whom to Support: What devices should we support?	 137

5	 Device Databases and Classes: Get with the group	 151

6	 Build a Mobile Web App Using a Framework: The Tartanator	 217

7	 Mobile Web Apps in the Real World: Super mobile web apps	 267

8	 Build Hybrid Mobile Apps with PhoneGap: Tartan Hunt: Going native	 313

9	 How to Be Future Friendly: Make (some) sense of the chaos	 357

i	 Leftovers: The top six things (we didn’t cover)	 373

ii	 Set Up Your Web Server Environment: Gotta start somewhere	 387

iii	 Install WURFL: Sniffing out devices	 397

iv	 Install the Android SDK and Tools: Take care of the environment	 403

	 Index	 417

x

table of contents

1 Responsive Web Design

getting started on the mobile web

Get on the mobile bandwagon	 2

Something odd happened on the way to the pub	 4

If mobile phone web browsers are so great…	 5

What’s so different about the mobile web?	 6

Responsive Web Design	 10

Different CSS in different places	 12

CSS media queries	 13

The current structure of the Splendid Walrus site	 15

Analyze the current CSS	 16

What needs to change?	 17

Identify the CSS that needs to change	 18

Steps to creating the mobile-specific CSS	 19

What’s wrong with a fixed‑width layout, anyway?	 26

How is fluid better?	 27

The fluid formula	 28

Continue your fluid conversion	 29

Context switching	 31

What’s wrong with this picture?	 32

Fluid images and media	 33

Remember to be responsible	 36

That’s a responsive site!	 40

Responsive design is also a state of mind	 41

Hey there! Are you ready to jump into mobile?�
Mobile web development is a wildly exciting way of life. There’s glamour and

excitement, and plenty of Eureka! moments. But there is also mystery and confusion.

Mobile technology is evolving at bewildering speed, and there’s so much to know!

Hang tight. We’ll start our journey by showing you a way of making websites called

Responsive Web Design (RWD). You’ll be able to adapt websites to look great on a

whole lot of mobile devices by building on the web skills you already have.

styles.css

index.html

xi

table of contents

2 Mobile-first Responsive Web Design

responsible responsiveness

That’s a beautiful mobile site. But beauty is only skin deep.
�Under the covers, it’s a different thing entirely. It may look like a mobile site, but it’s

still a desktop site in mobile clothing. If we want this site to be greased lightning on

mobile, we need to start with mobile first. We’ll begin by dissecting the current site

to find the desktop bones hiding in its mobile closet. We’ll clean house and start

fresh with progressive enhancement, building from the basic content all the way

to a desktop view. When we’re done, you’ll have a page that is optimized regardless

of the screen size.

Very small screens
(feature phones)

Small screens
(smartphones)

Medium screens
(tablets)

Larger screens
(desktops and TVs)

P
ro

g
re

ss
iv

e
 e

n
h

a
n

c
e

m
e

n
t

b
a

se
d

 o
n

 s
c

re
e

n
 s

iz
e

 a
n

d
 c

lie
n

t
fe

at
u

re
s

Just when you thought it was time to celebrate…	 44

Is there really a problem? How do we know?	 45

What to do when things aren’t blazing fast	 47

Don’t let its looks fool you, that’s a BIG page	 48

There’s gold in ’em HAR hills	 49

Find the drags on page speed	 51

Where did that Google Maps JavaScript come from?	 53

It looks mobile friendly, but it isn’t	 55

Mobile-first Responsive Web Design	 56

What is progressive enhancement?	 57

Fix the content floats	 60

Mobile-first media queries	 61

Surprise! The page is broken in Internet Explorer	 62

One src to rule them all	 68

Zoom in on the viewport <meta> tag	 72

The right to zoom?	 73

Add the map back using JavaScript	 74

Build a pseudo-media query in JavaScript	 76

Add the JavaScript to the On Tap Now page	 77

These widgets aren’t responsive	 79

Move iframe attributes to CSS equivalents	 80

Remove attributes from the JavaScript	 81

The map overlap is back	 83

Let the content be your guide	 84

Breakpoints to the rescue	 87

xii

table of contents

3 Facing less-than-awesome circumstances

a separate mobile website

The vision of a single, responsive Web is a beautiful one…�
in which every site has one layout to rule them all, made lovingly with a mobile-first

approach. Mmm…tasty. But what happens when a stinky dose of reality sets in? Like

legacy systems, older devices, or customer budget constraints? What if, sometimes,

instead of mixing desktop and mobile support into one lovely soup, you need to keep

’em separated? In this chapter, we look at the nitty-gritty bits of detecting mobile users,

supporting those crufty older phones, and building a separate mobile site.

Creature Comforts has agents in the field	 92

How can agents get and share the info they need?	 93

Send mobile users to a mobile-optimized website	 96

Sniff out mobile users	 97

Getting to know user agents	 98

User agents: spawn of Satan?	 101

Straight talk: Most major sites have a separate mobile website	 104

When what you really want to do is (re-)direct	 105

Take a peek at the script	 106

How does the script work?	 107

Make a mobile mockup	 108

Special delivery…of complicating factors	 110

Not all phones are smartphones…not by a sight	 113

Let’s keep it basic: Meet XHTML-MP	 114

Why would we want to use that old thing?	 115

Keep your nose clean with XHTML-MP	 116

By the way, scrolling sucks	 119

One last curveball	 119

Access keys in action	 123

What went wrong?	 124

Fix the errors	 125

Mobile-savvy CSS	 127

Hmmm…something is missing	 132

The button look is sorely missed!	 133

Great success!	 134

xiii

table of contents

4 What devices should we support?

deciding whom to support

Definition
of where
to draw
the line

There aren’t enough hours in the day to test on every device.�
You have to draw the line somewhere on what you can support. But how do you

decide? What about people using devices you can’t test on—are they left out in the

cold? Or is it possible to build your web pages in a way that will reach people on devices

you’ve never heard of? In this chapter, we’re going to mix a magic concoction of project

requirements and audience usage to help us figure out what devices we support

and what to do about those we don’t.

How do you know where to draw the line?	 138

Step away from the keyboard for a second	 139

Things you don’t support vs. those you can’t support	 140

Ask questions about your project	 142

Ingredients for your magic mobile potion	 144

Draw from your cupboard of tools and data	 145

How do I know my customers have the right stuff ?	 150

xiv

table of contents

5 Get with the group

device databases and classes

Setting the bar for the devices we support doesn’t take care
of a few nagging issues.� How do we find out enough stuff about our users’

mobile browsers to know if they measure up before we deliver content to them? How do

we avoid only building (lame) content for the lowest common denominator? And how do

we organize all of this stuff so that we don’t lose our minds? In this chapter, we’ll enter

the realm of device capabilities, learn to access them with a device database, and,

finally, discover how to group them into device classes so that we can keep our sanity.

A panic button for freaked-out students	 152

Mobile device data sources to the rescue	 154

Meet WURFL	 155

WURFL and its capabilities	 156

WURFL: Clever API code	 159

We can build an explore page, too	 160

An explore page: Setting up our environment	 161

A quick one-two punch to improve our explore page	 168

Put capabilities to work	 170

Use WURFL to help differentiate content	 170

Initialize the device and get the info ready	 172

Is this thing mobile?	 172

Make the page a bit smarter with WURFL	 176

The panic button: For phones only	 177

Device classes	 181

Expanding a lucrative part of AcedIt!’s business	 182

Evaluate the home page wearing mobile-tinted glasses	 183

Group requirements into multiple mobile flavors	 184

Rounding out our device classes	 185

Get acquainted with the matching function	 191

What’s going on in that switch statement?	 192

Use the matching function to test capabilities	 193

Fill in the gaps in the device class tests	 200

We need a bigger safety net	 211

A stitch in time	 212

xv

table of contents

6 The Tartanator

build a mobile web app using a framework

“We want an app!”� Just a year or two ago, that hallmark cry generally meant

one thing: native code development and deployment for each platform you wanted

to support. But native isn’t the only game in town. These days, web‑based apps for

mobile browsers have some street cred—especially now that hip cat HTML5 and

his sidekicks, CSS3 and JavaScript, are in the house. Let’s dip our toes into the

mobile web app world by taking a mobile framework—code tools designed to help

you get your job done quickly—for a spin!

Hmmm...it’s...nice,
but can you make

it feel more...like a
native app?

HTML5…app…what do these words even mean?	 219

How “traditional” websites typically behave	 220

How applike websites often behave	 221

The master plan for phase 1 of the Tartanator	 224

Why use mobile web app frameworks?	 225

Our choice for the Tartanator: jQuery Mobile	 226

Build a basic page with jQuery Mobile	 228

Mark up the rest of the page	 229

The HTML5 data-* attribute	 231

Link to multiple pages with jQuery Mobile	 234

Take the list from blah to better	 241

Drop in the rest of the tartans	 243

Filter and organize a list	 244

Add a footer toolbar	 249

Make the toolbar snazzy	 250

Finalize the structure	 251

Time to make that tartan-building form	 253

Translate tartan patterns to a form	 255

Build an HTML5 form	 256

It’s time to add some basic fields	 257

Lists within lists let the users add colors	 258

Color-size ingredient pairs: The color select field	 259

Color-size field pairs: The size field	 260

Link to the form	 262

xvi

table of contents

7 Super mobile web apps

mobile web apps in the real world

The mobile web feels like that gifted kid in the class.�
You know, kind of fascinating, capable of amazing things, but also a

mysterious, unpredictable troublemaker. We’ve tried to keep its hyperactive

genius in check by being mindful of constraints and establishing boundaries,

but now it’s time to capitalize on some of the mobile web’s natural talents.

We can use progressive enhancement to spruce up the interface in more

precocious browsers and transform erratic connectivity from a burden to a

feature by crafting a thoughtful offline mode. And we can get at the essence

of mobility by using geolocation. Let’s go make this a super mobile web app!

It looks nice…	 268

Mobile apps in the real world	 270

Ready, set, enhance!	 274

Make a better form	 275

A widget to manage the list of colors and sizes	 276

A peek under the hood	 277

So, that’s the frontend enhancement…	 278

…and now for the backend	 280

The two sides of generate.php	 281

One last thing!	 282

Offline is important	 284

A basic recipe to create a cache manifest	 285

Dev tools to the rescue	 286

Serve the manifest as the correct content-type	 287

Victory is (finally) ours	 297

How geolocation works	 298

How to ask W3C-compliant browsers where they are	 299

Start in on the Find Events page: The baseline	 301

Let’s integrate geolocation	 303

Nothing found	 309

xvii

table of contents

8 Tartan Hunt: Going native

build hybrid mobile apps with PhoneGap

Sometimes you’ve got to go native.� It might be because you need

access to something not available in mobile browsers (yet). Or maybe your client simply

must have an app in the App Store. We look forward to that shiny future when we have

access to everything we want in the browser, and mobile web apps share that sparkly

allure native apps enjoy. Until then, we have the option of hybrid development—we

continue writing our code using web standards, and use a library to bridge the gaps

between our code and the device’s native capabilities. Cross-platform native apps

built from web technologies? Not such a bad compromise, eh?

Hybrid App
Bridge

Opportunity knocks again	 314

How do hybrid apps work?	 317

Bridge the web-native gap with PhoneGap	 318

Get acquainted with PhoneGap Build	 321

How will the app work?	 322

Keep track of discovered tartans	 323

Anatomy of the Tartan Hunt project	 324

Download your apps	 328

Choose your adventure	 329

Who’s seen what? Store found tartans	 334

What can localStorage do for us?	 335

Check out what a browser supports	 339

Use a function to show which tartans are found	 340

The toggle and toggleClass methods	 341

You found a tartan, eh? Prove it!	 344

Rope in PhoneGap to take pictures	 345

PhoneGap is almost ready for its close-up	 347

Now we’re ready for the mediaCapture API	 348

How will we handle the success?	 349

It always looks a bit different in real life	 350

It’s just a bit anonymous	 351

One last thing!	 353

We nailed it!	 354

xviii

table of contents

9 Make (some) sense of the chaos

how to be future friendly

Responsive Web Design. Device detection. Mobile web
apps. PhoneGap. Wait…which one should we use?�

There are an overwhelming number of ways to develop for the mobile web.

Often, projects will involve multiple techniques used in combination. There

is no single right answer. But don’t worry. The key is to learn to go with the flow.

Embrace the uncertainty. Adopt a future-friendly mindset and ride the wave,

confident that you’re flexible and ready to adapt to whatever the future holds.

Now what?	 358

Time to dispel our collective illusions of control	 361

A future-friendly manifesto	 362

If you can’t be future proof, be future friendly	 364

App today, web page tomorrow	 365

It’s a long journey: Here are some guideposts	 366

Mix up a batch of mobile goodness	 369

Look toward the future	 371

xix

table of contents

#1. Testing on mobile devices	 374

#2. Remote debugging	 376

#3. Determine which browsers support what	 382

#4. Device APIs	 384

#5. Application stores and distribution	 385

#6. RESS: REsponsive design + Server-Side components	 386

What we need from you	 388

Only available locally	 389

Windows and Linux: Install and configure XAMPP	 390

Get going with XAMPP	 391

Mac folks: It’s MAMP time	 392

Make sure you dock at the right port	 393

Access your web server	 394

phpInfo, please!	 396

i

ii

The top six things (we didn’t cover)

Gotta start somewhere

leftovers

set up your web server environment

Ever feel like something’s missing? We know what
you mean…� Just when you thought you were done, there’s more.

We couldn’t leave you without a few extra details, things we just couldn’t

fit into the rest of the book. At least, not if you want to be able to carry

this book around without a metallic case and caster wheels on the

bottom. So take a peek and see what you (still) might be missing out on.

You can’t spell “mobile web” without the “web.”� There are no two

ways about it. You’re going to need a web server if you want to develop for the mobile

web. That goes for more than just completing the exercises in this book. You need

somewhere to put your web-hosted stuff, whether you use a third-party commercial

web hosting service, an enterprise-class data center, or your own computer. In this

appendix, we’ll walk you through the steps of setting up a local web server on your

computer and getting PHP going using free and open source software.

xx

table of contents

Index

Who’s got the brains?	 398

And who’s got the brawn?	 399

Getting the two to work together	 400

A bit of filesystem housekeeping	 401

Take note!	 402

Let’s download the Android SDK	 404

Get the right tools for the job	 405

Create a new virtual device	 408

Find the right PATH	 413

	 417

iii

iv

Sniffing out devices

Take care of the environment

install WURFL

install the Android SDK and tools

The first step to solving device detection mysteries
is a bit of legwork.� Any decent gumshoe knows we’ve got to

gather our clues and interrogate our witnesses. First, we need to seek

out the brains of the operation: the WURFL PHP API. Then we’ll go track

down the brawn: capability information for thousands of devices in a single

XML data file. But it’ll take a bit of coaxing to get the two to spill the whole

story, so we’ll tweak a bit of configuration and take some careful notes.

To be the master of testing native Android apps, you need
to be environmentally aware.� You’ll need to turn your computer into a nice

little ecosystem where you can herd Android apps to and from virtual (emulated) or

real devices. To make you the shepherd of your Android sheep, we’ll show you how to

download the Android software development kit (SDK), how to install some platform

tools, how to create some virtual devices, and how to install and uninstall apps.

you are here 4   xxi

the intro

how to use this book

Intro

I can’t believe they
put that in a mobile

web book!

In this section, we answer the burning question:

“So why DID they put that in a Mobile Web book?”

xxii   intro

how to use this book

1

2

3

Who is this book for?

Who should probably back away from this book?

If you can answer “yes” to all of these:

If you can answer “yes” to any of these:

this book is for you.

this book is not for you.

[Note from marketing: this book is for anyone with a credit card. Or cash. Cash is nice, too. - Ed]

Do you have previous web design and development
experience?

Do you want to learn, understand, remember, and
apply important mobile web concepts so that you can
make your mobile web pages more interactive and
exciting?

Do you prefer stimulating dinner-party conversation
to dry, dull, academic lectures?

1

2

3

Are you completely new to web development?

Are you already developing mobile web apps or sites
and looking for a reference book on mobile web?

Are you afraid to try something different? Would you
rather have a root canal than endure the suggestion
that there might be more than one true way to build for
the Web? Do you believe that a technical book can’t
be serious if there’s a walrus‑themed pub and an app
called the Tartanator in it?

It definitely helps if you’ve already got some scripting chops, too. We’re not talking rocket science, but you shouldn’t feel visceral panic if you see a JavaScript snippet.

you are here 4   xxiii

the intro

Great. Only
450 more dull,

dry, boring pages.

We know what you’re thinking

And we know what your brain is thinking

“How can this be a serious mobile web development book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

Your brain craves novelty. It’s always searching, scanning, waiting for something
unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with the
brain’s real job—recording things that matter. It doesn’t bother saving
the boring things; they never make it past the “this is obviously not
important” filter.

How does your brain know what’s important? Suppose you’re out for
a day hike and a tiger jumps in front of you. What happens inside your
head and body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows…

This must be important! Don’t forget it!

But imagine you’re at home, or in a library. It’s a safe, warm, tiger‑free zone.
You’re studying. Getting ready for an exam. Or trying to learn some tough
technical topic your boss thinks will take a week, 10 days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying to make
sure that this obviously nonimportant content doesn’t clutter up scarce resources.
Resources that are better spent storing the really big things. Like tigers.
Like the danger of fire. Like how you should never again snowboard
in shorts.

And there’s no simple way to tell your brain, “Hey brain, thank you
very much, but no matter how dull this book is, and how little I’m
registering on the emotional Richter scale right now, I really do want
you to keep this stuff around.”

Your brain thinks THIS is important.

Your brain t
hinks

THIS isn’t worth
saving.

xxiv   intro

how to use this book

So what does it take to learn something? First, you have to get it, and then make sure

you don’t forget it. It’s not about pushing facts into your head. Based on the latest

research in cognitive science, neurobiology, and educational psychology, learning

takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than

words alone, and make learning much more effective (up

to 89% improvement in recall

and transfer studies). It

also makes things more

understandable.

Put the words within

or near the graphics they

relate to, rather than on the bottom or on another page, and learners will be up to twice as

likely to solve problems related to the content.

Use a conversational and personalized style. In recent studies, students

performed up to 40% better on post-learning tests if the content spoke directly to

the reader, using a first-person, conversational style rather than taking a formal tone.

Tell stories instead of lecturing. Use casual language. Don’t take yourself too seriously.

Which would you pay more attention to: a stimulating dinner-party companion, or a lecture?

Get the learner to think more deeply. In other words, unless you actively flex your

neurons, nothing much happens in your head. A reader has to be motivated, engaged, curious,

and inspired to solve problems, draw conclusions, and generate new knowledge. And for that,

you need challenges, exercises, and thought-provoking questions, and activities that involve

both sides of the brain and multiple senses.

Get—and keep—the reader’s attention. We’ve all had the

“I really want to learn this, but I can’t stay awake past page one”

experience. Your brain pays attention to things that are out of the ordinary,

interesting, strange, eye-catching, unexpected. Learning a new, tough, technical

topic doesn’t have to be boring. Your brain will learn much more quickly if it’s not.

Touch their emotions. We now know that your ability to remember

something is largely dependent on its emotional content. You remember what

you care about. You remember when you feel something. No, we’re not talking

heart‑wrenching stories about a boy and his dog. We’re talking emotions like

surprise, curiosity, fun, “what the…?” , and the feeling of “I rule!” that comes

when you solve a puzzle, learn something everybody else thinks is hard, or

realize you know something that “I’m more technical than thou” Bob from

Engineering doesn’t.

We think of a “Head First” reader as a learner.

Watch out, mobile web!

Here we come!

you are here 4   xxv

the intro

If you really want to learn, and you want to learn more quickly and more deeply,
pay attention to how you pay attention. Think about how you think. Learn how
you learn.

Most of us did not take courses on metacognition or learning theory when we were
growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn about
mobile web development. And you probably don’t want to spend a lot of time. And
since you’re going to build more sites and apps in the future, you need to remember
what you read. And for that, you’ve got to understand it. To get the most from this
book, or any book or learning experience, take responsibility for your brain. Your
brain on this content.

The trick is to get your brain to see the new material you’re learning as
Really Important. Crucial to your well-being. As important as a tiger.
Otherwise, you’re in for a constant battle, with your brain doing its best to
keep the new content from sticking.

Metacognition: thinking about thinking

I wonder how I
can trick my brain
into remembering

this stuff...

So just how do you get your brain to think that mobile
web development is a hungry tiger?

There’s the slow, tedious way, or the faster, more effective way. The slow way is about
sheer repetition. You obviously know that you are able to learn and remember even the
dullest of topics if you keep pounding the same thing into your brain. With enough
repetition, your brain says, “This doesn’t feel important to him, but he keeps looking at
the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.

xxvi   intro

how to use this book

Here’s what WE did:
We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s
concerned, a picture really is worth a thousand words. And when text and pictures work
together, we embedded the text in the pictures because your brain works more effectively
when the text is within the thing the text refers to, as opposed to in a caption or buried in
the text somewhere.

We used redundancy, saying the same thing in different ways and with different media
types, and multiple senses, to increase the chance that the content gets coded into more than
one area of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for
novelty, and we used pictures and ideas with at least some emotional content, because your
brain is tuned to pay attention to the biochemistry of emotions. That which causes you to
feel something is more likely to be remembered, even if that feeling is nothing more than a
little humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening
to a presentation. Your brain does this even when you’re reading.

We included loads of activities, because your brain is tuned to learn and remember
more when you do things than when you read about things. And we made the exercises
challenging‑yet-doable, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures,
while someone else wants to understand the big picture first, and someone else just wants
to see an example. But regardless of your own learning preference, everyone benefits from
seeing the same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain
you engage, the more likely you are to learn and remember, and the longer you can stay
focused. Since working one side of the brain often means giving the other side a chance to
rest, you can be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view,
because your brain is tuned to learn more deeply when it’s forced to make evaluations and
judgments.

We included challenges, with exercises, and by asking questions that don’t always have
a straight answer, because your brain is tuned to learn and remember when it has to work
at something. Think about it—you can’t get your body in shape just by watching people at
the gym. But we did our best to make sure that when you’re working hard, it’s on the right
things. That you’re not spending one extra dendrite processing a hard-to-understand
example, or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, you’re a person. And
your brain pays more attention to people than it does to things.

Structured content (HTML)

Presentation (CSS)

Behavior (JavaScript)

you are here 4   xxvii

the intro

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

1

2

3

4

5 Drink water. Lots of it.

Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

Make this the last thing you read before
bed. Or at least the last challenging thing.

6

7

9 Create something!

Apply this to your daily work; use what you are
learning to make decisions on your projects. Just
do something to get some experience beyond the
exercises and activities in this book. All you need
is a pencil and a problem to solve…a problem that
might benefit from using the tools and techniques
you’re studying for the exam.

Listen to your brain.

8 Feel something!

Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke
is still better than feeling nothing at all.

Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim
the surface or forget what you just read, it’s time
for a break. Once you go past a certain point, you
won’t learn faster by trying to shove more in, and
you might even hurt the process.

Talk about it. Out loud.

Speaking activates a different part of the brain.
If you’re trying to understand something, or
increase your chance of remembering it later, say
it out loud. Better still, try to explain it out loud
to someone else. You’ll learn more quickly, and
you might uncover ideas you hadn’t known were
there when you were reading about it.

Part of the learning (especially the transfer to
long-term memory) happens after you put the
book down. Your brain needs time on its own, to
do more processing. If you put in something new
during that processing time, some of what you
just learned will be lost.

Read “There Are No Dumb Questions.”

That means all of them. They’re not optional
sidebars—they’re part of the core content!
Don’t skip them.

Do the exercises. Write your own notes.

We put them in, but if we did them for you,
that would be like having someone else do
your workouts for you. And don’t just look at
the exercises. Use a pencil. There’s plenty of
evidence that physical activity while learning
can increase the learning.

Slow down. The more you understand,
the less you have to memorize.

Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to the
answer. Imagine that someone really is asking
the question. The more deeply you force your
brain to think, the better chance you have of
learning and remembering.

Cut this out and stick it on your refrigerator.

Here’s what YOU can do to bend
your brain into submission

xxviii   intro

how to use this book

Read me
This is a learning experience, not a reference book. We deliberately stripped out everything
that might get in the way of learning whatever it is we’re working on at that point in the
book. And the first time through, you need to begin at the beginning, because the book
makes assumptions about what you’ve already seen and learned.

We expect you to know HTML and CSS.

If you don’t know HTML and CSS, pick up a copy of Head First HTML with CSS &
XHTML before starting this book. We’ll explain some of the more obscure CSS selectors or
HTML elements, but don’t expect to learn about that foundational stuff here.

We expect you to feel comfy around web scripting code.

We’re not asking you to be a world-class JavaScript expert or to have done a graduate
computer science project using PHP, but you’ll see examples using both languages
throughout the book. If the merest notion of a for loop makes you hyperventilate (or if
you have no idea what we’re talking about), you might consider tracking down a copy of
Head First PHP & MySQL or Head First JavaScript and then heading on back here.

We expect you to know how to track things down.

We’ll be blunt. The mobile web is an enormous topic, and mastering it involves expanding
your existing web development skills. There are too many things to know about the Web for
any one person to memorize, whether it’s a detail of JavaScript syntax or the specifics of a
browser’s support for an HTML5 element attribute. Don’t be too hard on yourself. Part of
the toolset of a good web dev is keeping your Google chops sharp and knowing when and
how to hit the Web to look up info about web topics. We bet you’re good at that already.

We expect you to go beyond this book.

It’s a big and beautiful mobile web world out there. We hope we can give you a shove to
start you on your journey, but it’s up to you to keep up your steam. Seek out the active
mobile web community online, read blogs, join mailing lists that are up your alley, and
attend related technical events in your area.

The activities are NOT optional.

The exercises and activities are not add-ons; they’re part of the core content of the
book. Some of them are to help with memory, some are for understanding, and some
will help you apply what you’ve learned. Don’t skip the exercises. They’re good for
giving your brain a chance to think about the ideas and terms you’ve been learning in a
different context.

The redundancy is intentional and important.

One distinct difference in a Head First book is that we want you to really get it. And we
want you to finish the book remembering what you’ve learned. Most reference books don’t
have retention and recall as a goal, but this book is about learning, so you’ll see some of the
same concepts come up more than once.

you are here 4   xxix

the intro

The Brain Power exercises don’t have answers.

For some of them, there is no right answer, and for others, part of the learning
experience of the exercise is for you to decide if and when your answers are right. In
some of the Brain Power exercises, you will find hints to point you in the right direction.

Software requirements
As for developing any website, you need a text editor, a browser, a web server (it can be
locally hosted on your personal computer), and the source code for the chapter examples.

The text editors we recommend for Windows are PSPad, TextPad, or EditPlus (but
you can use Notepad if you have to). The text editors we recommend for Mac are
TextWrangler (or its big brother, BBEdit) or TextMate. We also like Coda, a more
web‑focused tool.

If you’re on a Linux system, you’ve got plenty of text editors built in, and we trust you
don’t need us to tell you about them.

If you are going to do web development, you need a web server. You’ll need to go to
Appendix ii, which details installing a web server with PHP. We recommend doing that
now. No, seriously, head there now, follow the instructions, and come back to this page
when you’re done.

For Chapter 5, you’ll need to install the WURFL (Wireless Universal Resource FiLe) API
and data. And for Chapter 8, you’ll need the Android SDK and some related tools. You
guessed it: there are appendixes for those tasks, too.

You’ll also need a browser—no, strike that—as many browsers as
possible for testing. And the more mobile devices with browsers you
have on hand, the better (don’t panic; there are many emulators you can use
if you don’t have hardware).

For developing and testing on the desktop, we highly recommend Google’s
Chrome browser, which has versions for Mac, Windows, and Linux.
Learning how to use the JavaScript console in Google’s Chrome Dev Tools
is well worth the time. This is homework you need to do on your own.

Last of all, you’ll need to get the code and resources for the examples in the
chapters. It’s all available at http://hf-mw.com.

The hf-mw.com site has the starting
point of code for all the chapters.
Head on over there and get downloading.

The code and resources for the examples in the chapters are all
available at

http://hf-mw.com.

xxx   intro

The technical review team

the review team

Stephen Hay

Bryan Rieger

Andrea Trasatti

Trevor Farlow is an amateur baker, recreational soccer player,
and part-time animal shelter volunteer. When he’s not walking
dogs, scoring goals, or perfecting his New York–style cheesecake,
he can be found learning the art of product ownership in a lean,
mean, agile development team at Clearwater Analytics, LLC.

Brad Frost is a mobile web strategist and frontend developer
at R/GA in New York City, where he works with large brands
on mobile-related projects. He runs a resource site called Mobile
Web Best Practices (http://mobilewebbestpractices.com) aimed at
helping people create great mobile web experiences.

Stephen Hay has been building websites for more than 16
years. Aside from his client work, which focuses increasingly on
multiplatform design and development, he speaks at industry
events and has written for publications such as A List Apart and
.net Magazine. He also co-organizes Mobilism, a highly respected
mobile web design and development conference.

Ethan Marcotte is an independent designer/developer who
is passionate about beautiful design, elegant code, and the
intersection of the two. Over the years, his clientele has included
New York Magazine, the Sundance Film Festival, the Boston Globe,
and the W3C. Ethan coined the term Responsive Web Design to
describe a new way of designing for the ever-changing Web and,
if given the chance, will natter on excitedly about it—he even
went so far as to write a book on the topic.

Bryan Rieger is a designer and reluctant developer with a
background in theatre design and classical animation. Bryan has
worked across various media including print, broadcast, web,
and mobile; and with clients such as Apple, Microsoft, Nokia,
and the Symbian Foundation. A passionate storyteller and
incessant tinkerer, Bryan can be found crafting a diverse range
of experiences at Yiibu—a wee design consultancy based in
Edinburgh, Scotland.

Stephanie Rieger is a designer, writer, and closet
anthropologist with a passion for the many ways people interact
with technology. Stephanie has been designing for mobile since
2004 and now focuses primarily on web strategy, frontend
design, and optimization for multiple screens and capabilities. A
compulsive tester and researcher, Stephanie is always keen to
discover and share insights on mobile usage, user behavior, and
mobility trends from around the world.

Andrea Trasatti started creating WAP content in 1999 on the
Nokia 7110, which in Europe was considered groundbreaking at
the time. Andrea has led both WURFL and DeviceAtlas from
their earliest days to success, and during those years built vast
experience in device detection and content adaptation. You can
find Andrea on Twitter as @AndreaTrasatti, regularly talking
about mobile web and new trends in creating and managing
content for mobile.

Brad Frost

Stephanie Rieger

Ethan Marcotte

Trevor Farlow

you are here 4    xxxi

the intro

Acknowledgments

Courtney Nash

Lou Barr

The O’Reilly team:

Thanks to Lou Barr for her unfathomably speedy and masterful design and layout magic.
We’re seriously blown away here. Thank you. Our gratitude goes to Karen Shaner and
Rachel Monaghan for all the help juggling drafts, reviewers, and details!

Thanks to the rest of the O’Reilly folks who made us feel so welcomed: Mike Hendrickson,
for suggesting this crazy idea in the first place; Brady Forrest, for introducing and
championing us; Tim O’Reilly, for being the genuine, smart, and nice guy that he is; and
Sara Winge, for her graciousness and overall awesomeness.

Lyza’s friends and family:

Thanks to Bryan Christopher Fox (Other Dev), without whose coding chops, insight, support, and
all-around supergenius this book would not have been possible.

Huge shout-outs to my friends and family, who still seem to put up with me despite my long-term
disappearance into Book Land. Thanks to Autumn and Amye, who showed stunning tenacity in the
face of my constant unavailability. Thanks, Mike, always. And thanks to Dad, who always shows me
how to find aesthetic and new adventure. Finally, thanks to Huw and Bethan of Plas-yn-Iâl, Llandegla,
Wales, a fantastic, sheep-happy place where about a quarter of this book was written.

Our editor:

Thanks (and congratulations!) to Courtney Nash, who pushed us to create
the best book we possibly could. She endured a huge raft of emails, questions,
ramblings, and occasional crankiness. She stuck with us throughout this book
and trusted us to trust our guts. And thanks to Brian Sawyer for stepping
up at the end and taking us over the finish line.

Jason’s friends and family:

Thank you to my family for all of their support. Our parents, Jan, Carol, Mark, and Doanne, were
a tremendous help in keeping our sanity as we juggled book writing, family, and moving.

Special thanks to my wife, Dana Grigsby, for making it possible for me to work on a book while we
raised a baby and a preschooler and moved into a new house. I couldn’t have done it without you.

Our thanks:

Jason and Lyza work with the smartest people ever at Cloud Four. Our epic thanks to
fellow cofounders Aileen Jeffries and John Keith, and the rest of the Cloud Four team:
Matt Gifford, Chris Higgins, and Megan Notarte. This book is really a product of our
collective mobile web obsession, and they, more than anyone, championed and endured this
effort. Thanks a billion million zillion, you guys.

We’d also like to thank the mobile web community. In particular, we’d like to thank Josh Clark,
Gail Rahn Frederick, Scott Jehl, Scott Jenson, Dave Johnson, Tim Kadlec, Jeremy Keith, Peter-
Paul Koch, Brian LeRoux, James Pearce, Steve Souders, and Luke Wroblewski. We’re proud
and thankful to be part of this community.

xxxii   intro

how to use this book

Safari® Books Online
Safari® Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are available
for print, and get exclusive access to manuscripts in development and post feedback for the
authors. Copy and paste code samples, organize your favorites, download chapters, bookmark
key sections, create notes, print out pages, and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full digital
access to this book and others on similar topics from O’Reilly and other publishers, sign up for
free at http://my.safaribooksonline.com.

this is a new chapter   1

getting started on the mobile web1

Responsive Web Design

Hey there! Are you ready to jump into mobile?�
Mobile web development is a wildly exciting way of life. There’s glamour and

excitement, and plenty of Eureka! moments. But there is also mystery and confusion.

Mobile technology is evolving at bewildering speed, and there’s so much to know!

Hang tight. We’ll start our journey by showing you a way of making websites called

Responsive Web Design (RWD). You’ll be able to adapt websites to look great on a

whole lot of mobile devices by building on the web skills you already have.

Dashing, exciting, fascinating,
and oh-so-popular...but am I
ready to take the plunge?

2   Chapter 1

it’s a mobile world

Get on the mobile bandwagon
There’s a pretty good chance you own a mobile phone. We know that not
simply because you bought this book (smart move, by the way!), but because
it’s hard to find someone who doesn’t own a mobile phone.

It doesn’t matter where you go in the world. Mobile phones are being used
everywhere, from farmers in Nigeria using their mobiles to find which
market has the best price for their crops, to half of Japan’s top 10 best-selling
novels being consumed and written—yes, written—on mobile phones.

At the beginning of 2011, there were 5.2 billion phones being used by the
6.9 billion people on Earth. More people use mobile phones than
have working toilets or toothbrushes.

The time is now
So yeah, mobile is huge, but it’s been big for years. Why should you get on
the mobile bandwagon now?

Because the iPhone changed everything. It sounds clichéd, but it is true.
There were app stores, touchscreens, and web browsers on phones before the
iPhone, but Apple was the first to put them together in a way that made it
easy for people to understand and use. Are you ready to get on

the mobile bandwagon?

you are here 4   3

getting started

The iPhone is fantastic, but people use a lot of
different phones for a lot of different reasons.
And the most popular phones are likely to change.

We have no way of knowing what the the leading phones will be
when you read this book. Three years ago, Android was a mere
blip on the radar. In 2011, it is a leading smartphone platform
worldwide.

Mobile technology changes quickly, but there are a few things we
feel confident about:

Everyone has iPhones. And
if they don’t, are they really
going to browse the Web?

Every new phone has a web browser in it.
You can probably find a new phone that doesn’t have a web
browser in it, but you have to look pretty hard. Even the most
basic phones now come with decent browsers. Everyone wants the
Web on their phone.

1

Mobile web usage will exceed desktop web usage.
Soon the number of people accessing the Web via mobile phones
will surpass those who use a computer. Already, many people say
they use their phones more frequently than their PCs.

2

The Web is the only true cross-platform technology.
iPhone, Android, BlackBerry, Windows Phone, WebOS, Symbian,
Bada—there are more phone platforms than we can keep track of.
Each one has its own specific programming hooks, meaning that if
you want to write software for each, you have to start from scratch
each time.

Mobile web has its own challenges, but there is
no other technology that allows you to create
content and apps that reach every platform.

3

So you’re in the right spot at the right time. Mobile web is taking off,
and you’re ready to ride the rocketship. Let’s get started!

4   Chapter 1

meet the splendid walrus

Something odd happened on the
way to the pub
Mike is the proprietor of The Splendid Walrus, a pub with a
clever name and a cult-like following of local beer enthusiasts.
Mike always has unusual beers on tap and highlights several
of them on his website.

Before he realized his lifelong dream of pub ownership, Mike
was a web developer. So he had no trouble putting together a
respectable website for The Splendid Walrus himself.

The Splendid Walrus
website is pretty

sweet—I used to do this
for a living, after all.

http://www.splendidwalrus.com

you are here 4   5

getting started

If mobile phone web browsers are so great…
Mike built the Splendid Walrus website several years ago, when
mobile browsing was still rudimentary and uncommon. It was made
for—and tested in—desktop browsers like Firefox, Internet Explorer,
and Safari.

Lots of newer mobile browers have good reputations. They’re
increasingly sophisticated and powerful, and starting to feel like some
of their desktop counterparts.

…shouldn’t this just work?
Mike had a rude awakening when he looked at the Splendid Walrus
site on his iPhone 4. It didn’t look so hot on a friend’s Android
device, either.

Here’s how the Splendid Walrus site looks on an iPhone 4… …and here’s how the site
looks on a Motorola
Backflip Android phone.

6   Chapter 1

the brave new world of mobile web design

There are 86 billion different mobile web browsers.
OK, not quite that many. But when you’re developing for the
mobile web, sometimes it feels this way. Unlike the handful
of leading desktop browsers, there are hundreds of different
mobile browsers. Yikes.

1

Mobile devices are smaller and slower.
Yeah, we know. Newer mobile devices are state-of-the-art
pocket computers. But they still pale in comparison to desktop
(or laptop) computers in terms of processing power. Mobile
networks can be flaky and downright poky, and data transfer is
not necessarily free or unlimited. This means we’ll need to think
about putting our sweet but enormous, media-rich, complex
sites on a performance-savvy diet.

3

Support for web technologies varies wildly.
On older mobile browsers (or even recent ones on less powerful
devices), you can pretty much forget about reliable CSS or
JavaScript. Even the newest browsers lack support for some
things, support them in bewilderingly different ways, or have
weird bugs. It’s the Wild West out here, folks!

2

Mobile interfaces require us to rethink our sites.
Just because a mobile browser can render a desktop website
with few hiccups doesn’t mean it necessarily should. Screens are
smaller; interactions and expectations are different.

People with mobile devices use all sorts of input devices: fingers,
stylus pens, the little nubbins they have on BlackBerry devices.
Typing and filling out forms can be tedious at best. Squinting
at type designed to fit a desktop browser window can give your
users headaches and fury. You get the idea.

4

What’s so different about the mobile web?

And just when you think you’re on top of all of them, a new one will pop up in, like, Thailand.

My iPhone has the Safari web
browser on it. My site looks great
in desktop Safari, so why does it

look all messed up on my phone?

you are here 4   7

getting started

Here’s how Mike’s iPhone 4 renders the Splendid Walrus website. It doesn’t look so
great. Can you spot the problem areas? Mark any problems you see.

1

3

2

4

8   Chapter 1

exercise solution

Did you spot some of these problem areas?

1

2

3

4

The navigation links
are all tiny and too
small to read or click.

1

The three-column
layout feels tight on
this screen resolution,
and the text is hard
to read.

3

The embedded
YouTube video
doesn’t work.

2

There is a weird gap
on the right edge
of the screen.

4

This is confusing and embarrassing.
I want my customers with mobile
devices to see a nice site. I’m out
of my depth here. Can you help?

you are here 4   9

getting started

Frank: Hold on a minute. We know that Mike makes a big
deal out of using clean, semantic HTML markup and uses
CSS to control layout and styling as much as possible.

Jim: And? That’s great and professional, but how does it
help us make this better?

Frank: Well, let’s think about this a bit. When I look at the
CSS he’s using for the Splendid Walrus site, I see a lot of
widths and sizes defined to fit within a 960-pixel box. It looks
like he’s designed the site on a 960-pixel grid, with three
main columns.

Jim: …and most mobile devices have resolutions
considerably less than 960 pixels. Also, three columns seems
like a lot for a smaller screen.

Frank: So…I have to wonder…what if we could use different
CSS for mobile devices? Say, maybe, CSS designed to lay out in
320 pixels, which is the width of a lot of smartphone screens?
And maybe reduce the number of columns?

Jim: Nice idea, Frank. But I don’t see how we could do that
without a lot of server-side programming. I mean, how do we
get mobile devices to use completely different CSS?

Frank: You know how Jill just got back from the Awesome
Cool Mobile Web Camp conference and is all excited about
that thing called Responsive Web Design?

Jim: How could I forget? It’s all she’s been talking about.

Frank: Well, she says it’s getting a lot of attention from
web developers and it sounds like it involves, at least in
part, applying different CSS for different situations, without
having to do heavy‑duty programming. Apparently it’s
especially useful for developing mobile websites. I can’t really
remember the details, but maybe we should check it out.

Jim Frank

Ugh! What a mess! We’re totally
going to have to start from scratch...

10   Chapter 1

responsive web design

Responsive Web Design (RWD) is a set of techniques
championed by web designer Ethan Marcotte. Sites designed
with this approach adapt their layouts according to the
environment of the user’s browser, in large part by doing some
nifty things with CSS.

Depending on the current value of certain browser conditions
like window size, device orientation, or aspect ratio, we can
apply different CSS in different circumstances. By rethinking the
way we do page layouts, we can make formerly one-size-fits-all
column and grid layouts flow more naturally across a continuum
of browser window sizes.

Responsive Web Design

Read Ethan’s original article for

A List Apart about RWD at

http://bit.ly/nRePnj.

RWD is one of the simplest
and quickest ways to make
a website work handsomely
on a lot of devices—and you
can use the web skills you
already have.

CSS3 media queries
Evaluating certain aspects of the current browser
environment to determine which CSS to apply.

1

Fluid-grid layouts
Using relative CSS proportions instead of absolute
sizes for page layout elements.

2

Fluid images and media
Making our images and media scale to fit within
the size constraints of their containers by using
some CSS tricks.

3

The recipe for Responsive Web Design
There are three primary techniques for building a
responsively designed website:

We can apply different CSS rules based on things like browser window width, aspect ratio, and orientation.

RWD uses percentages instead
of pixels as units for columns
and other layout elements.

Fluid images and media keep within the
bounds of their parent elements, scaling
proportionally with the rest of the layout.

you are here 4   11

getting started

styles.css

index.html

CSS media queries
determine which of
the CSS to apply to
which environments.

We deliver the same
HTML and CSS to all
devices and browsers.

A multicolumn, big
layout when there’s
plenty of room

Somewhat
simpler layout
as the window
width decreases

Streamlined,
single‑column layout
for narrower displays.

An example of a responsively designed site

This is just one example of
a responsive design approach.

12   Chapter 1

selective css

Different CSS in different places
If you’ve been doing web development for some time (and are
CSS-savvy), you might be friends with CSS media types already.
We can use @media rules to apply CSS selectively.

CSS media type declarations inside of a CSS file look like this:

@media screen { /* CSS Rules for screens! */ }

Another way to use media types to apply CSS selectively is from
within a <link> in your HTML document.

The rules between the
braces will only apply when
the content is rendered on
a screen.

“screen” is a media type.

<link rel="stylesheet" type="text/css" href="print.css" media="print" />

“print” is another media type.

You have certain features—your age, your height—and so do media
types. And just like The Splendid Walrus might want to establish a rule
that requires the minimum age of patrons to be 21 before they apply
alcohol, we might want to define certain CSS that we only apply to
browser window widths within a certain range.

We’re in luck! width, along with color and orientation, is one
of the media features defined in CSS3 for all common media types.
So, again, media types have media features.

Media features on their own don’t get us very far. We need a way to ask
the browser about the states of the ones we care about and, well, do
something about it. That’s where CSS3 media queries come in.

Media types, meet media features

Referencing the print media type like this is a common approach to
creating print stylesheets—that is, CSS styles that only get applied when
the content is printed.

The rules in this external stylesheet will only be applied if the content is rendered on a print device (that is, a printer).

screen
width

aspect-ratio

orientation“screen” is a useful
media type.

A few of the “screen”
media type’s media features.

P.S. There are more. But these
are the most useful to us.

height

Media Types
Up Close

Common (and useful) media types
include screen, print, and all.
There are other, less common media
types like aural, braille, and tv.

Curious? If you’re the kind of
person who reads technical specs for
fun or to satisfy curiosity, you can
see all of the media types defined
in CSS2 on the W3C’s site at
www.w3.org/TR/CSS2/media.html.

you are here 4   13

getting started

CSS3 media queries are
logical expressions that
evaluate the current
values of media features
in the user’s browser.
If the media query
expression evaluates as
TRUE, the contained
CSS is applied.

@media screen and (min-width:480px) { /* CSS Rules */ }

“screen” media type, we meet again!

“min-” is a media query prefix. Rather
intuitively, it means we want to query
about a minimum width.

“width” is a media feature
we want to evaluate on the
“screen” media type.

CSS media queries

This means: are we presently rendering content on a screen,
AND is the window currently at least 480 pixels wide?
Yes? OK! Apply these CSS rules.

Another example:

Unsurprisingly, there is
also a “max-” prefix.

@media all and (orientation: landscape) {}

Translating CSS media queries: You try it! Match the media query and its meaning.

@media print and (monochrome) {}

@media screen and (color) { }

<link rel="stylesheet" type="text/css"
href="my.css" media="screen and (color)" />

Apply these styles to all
media types when in
landscape orientation.

Apply these styles to
black‑and‑white printers.

Apply these rules to
color screens.

Apply the rules in this external
stylesheet to color screens.

@media print, screen and (monochrome) { }

Logical “or” is represented by a
comma. Yep, it’s a bit confusing.

“monochrome” is a media feature
of the “screen” media type. It
is either TRUE or FALSE.

Is this being rendered on a printer OR is it being rendered
on a screen that is monochrome (black and white)?
Yes? Use these styles!

These CSS rules will only get applied if the media query evaluates to TRUE.

14   Chapter 1

@media all and (orientation: landscape) {}

@media print and (monochrome) {}

@media screen and (color) { }

<link rel="stylesheet" type="text/css"
href="my.css" media="screen and (color)" />

how different?

Were you able to decipher the media queries?

Apply these styles to all
media types when in
landscape orientation.

Apply these styles to
black‑and‑white printers.

Apply these rules to
color screens.

Apply the rules in this external
stylesheet to color screens.

OK. Now I can understand media
queries and maybe even write my own.

But what am I doing here? How do I write
the CSS for mobile devices?

We’ll only write different CSS for those layout elements that need to be different for mobile.

CSS: How different is different?
We have a tool that lets us apply different CSS to different
situations. But now what?

Don’t panic. We do need to write some mobile-friendly CSS, but
we’re not going to have to start from scratch. Nor are we going to
have to have totally different CSS for our mobile devices—we can
share a lot of what’s already there.

To generate our mobile-friendly layout, we’ll:

Check out the current layout of splendidwalrus.com and
analyze its structure.

Identify layout pieces that need to change to work better on
mobile browsers.

Generate mobile-adapted CSS for those identified elements.

Organize our CSS and selectively apply the mobile and
desktop CSS using media queries.

Media type of “all,” you ask? Yep. This is what
we use if we want to look at the same media
feature across all media types

